

E-COMMERCE PLATFORM INTEGRATION
DEVELOPMENT

Case: Liana Technologies Oy

Klimenko, Artem

Bachelor’s thesis
School of Business and Culture

Business Information Technology
Bachelor of Business Administration

2019

School of Business and Culture
Business Information Technology
Bachelor of Business Administration

Author Artem Klimenko Year 2019
Supervisor Yrjö Koskenniemi
Commissioned by Liana Technologies Oy
Title of Thesis E-commerce Platform Integration Development
Number of pages 43

Modern businesses often have to deal with multiple software systems involved

in their process of value creation. This fact often creates an excessive amount

of overhead, which results in higher costs. In the diverse software context, the

solution to this problem can be found by developing system integration. This

thesis was focused on system integration development applied to a customer

case.

This research had three main objectives. The first objective was to provide an

understanding of what system integration is and how it can be developed. The

second objective was to study how communication to web services can be

established. The final objective of this thesis was to fulfill a customer case by

developing the integration of an e-commerce platform with two external web

services.

Constructive research approach has been used throughout this research work.

This research targeted to solve a practical problem. Therefore, the theoretical

knowledge was collected through a literature review in order to be applied to

produce a new practical solution.

The outcome of this research was an e-commerce platform, which was

complemented with an integrated logic, provided by external web services. The

platform fulfills customer requirements and is deployed to a production

environment. Additionally, the platform integration has been tested in order to

mitigate possible risks.

Key words E-commerce platform, system integration, PHP, Plugin

development, Plugin architecture

CONTENTS

1 INTRODUCTION .. 6

1.1 Background and Motivation .. 6

1.2 Research Topic and Objectives .. 7

1.3 Scope and Limitations .. 8

1.4 Thesis Structure ... 8

2 RESEARCH QUESTIONS AND METHODOLOGY 10

2.1 Research Questions ... 10

2.2 Research Methodology ... 10

3 SYSTEM INTEGRATION ... 12

3.1 System Integration .. 12

3.2 Web Services ... 13

3.3 API Integration .. 14

4 LIANACOMMERCE PLATFORM .. 15

4.1 E-commerce Platform Definition ... 15

4.2 Plugin Architecture.. 15

4.3 Hook System .. 18

4.4 PHP and Liana Framework ... 18

5 WEB SERVICE COMMUNICATION STANDARDS 19

5.1 Web Service Standards .. 19

5.2 SOAP .. 19

5.2.1 SOAP Message Structure ... 19

5.2.2 WSDL .. 20

5.3 RESTful Web Services ... 21

5.3.1 Client-Server ... 22

5.3.2 Stateless .. 22

5.3.3 Cache .. 23

5.3.4 Uniform Interface ... 23

5.3.5 Layered System... 23

6 REQUIREMENT ANALYSIS ... 24

6.1 Requirement Analysis Description .. 24

6.2 Stakeholder Analysis .. 24

6.3 Functional Requirements .. 25

6.4 Non-Functional Requirements .. 25

7 AVENUE WEB SERVICE INTEGRATION .. 27

7.1 Specification Analysis ... 27

7.2 Plugin Structure .. 28

7.3 Service Integration .. 30

7.4 Unit Testing .. 34

8 DYNAMICS CRM INTEGRATION .. 35

8.1 Specification Analysis ... 35

8.2 Service Integration .. 36

9 CONCLUSION .. 41

BIBLIOGRAPHY ... 42

5

SYMBOLS AND ABBREVIATIONS

API Application Programming Interface

B2B Business-to-business

CLI Command Line Interface

CRM Customer Relationship Management

CRUD Create Read Update Delete

ORM Object-Relational Mapping

REST Representational State Transfer

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

UI User Interface

6

1 INTRODUCTION

1.1 Background and Motivation

In the 21st century, software systems are widely used across various spheres of

human life. These spheres are extensively interconnected and there is a

demand for interlinking the software systems to achieve better efficiency and

performance in the field of application. The sphere of e-commerce is not an

exception.

There are often multiple software systems involved in the process of online

retail. This is clearly visible in the B2B sector when various business partners

are utilizing software systems from different vendors and of a different

application domain. In this context, system integration of various software

services becomes crucial for business success. The system integration process

is highly dependent on the internal architecture of the systems involved; thus, it

is difficult to generalize the set of requirements and automate it.

This thesis studies the process of software integration development with the

example of LianaCommerce e-commerce platform. LianaCommerce is cloud-

based software, developed by Liana Technologies Oy. This study provides an

overview of how e-commerce software can be integrated with other cloud-based

software systems. More specifically, this thesis focuses on an integration of

LianaCommerce platform with Microsoft Dynamics CRM (hereinafter Dynamics)

and Avenue digital product management (hereinafter Avenue) systems.

The choice of this thesis topic has been fostered by the researcher’s interest in

software development and his professional involvement in the development of

LianaCommerce platform. This work helps the researcher to broaden his

knowledge on the topics of system integration development and web service

communication. The possibility of professional growth as a back-end developer

has been considered as one of the key motivating factors.

7

1.2 Research Topic and Objectives

The topic of the thesis is system integration development. More specifically, this

research focuses on studying how Liana Technologies should develop system

integration of their LianaCommerce e-commerce platform with Dynamics CRM

and Avenue systems. This integration is a customer case designed to fulfill the

requirements of a company in the education management industry (hereinafter

EMI company), who is the user of LianaCommerce platform. Therefore, a set of

user requirements is to be considered throughout the implementation phase

and is provided by the EMI company.

This thesis has three main objectives. The first objective is to develop an

understanding of how system integration can be developed. This objective

requires theoretical information on software architecture, design patterns and

module development approaches used in the target system.

The second objective is to learn how data transfer between various software

systems can be done. To achieve this objective, API and other technical

documentation related to the systems of integration will be studied. Information

about protocols and service architectures used to share the messages between

the web services will be obtained and analyzed. Based on the findings, relevant

tools and development approaches will be selected to deliver the service

integration implementation. Test requests to the systems of integration will be

made to provide a proof of concept before proceeding with the implementation

phase.

The third objective is to fulfill the customer case by providing an integrated e-

commerce environment with custom business logic. This objective will be

achieved by creating a system integration based on customer requirements.

The implementation will result in the client being provided with an e-commerce

solution which implements custom business logic tailored according to the

requirements of the client.

8

1.3 Scope and Limitations

The scope of this thesis is limited to studying the technologies and tools which

are relevant to the system integration of LianaCommerce platform with external

systems. In other words, this study does not intend to observe various ways

which could contribute to an integration of a software system. Instead, the study

provides a detailed description of a particular system and system integration

development within its technical context.

The limitations of this study derive from an existing technical environment and

development guidelines established in the case company. These factors are

limiting the choice of development tools and force the researcher to follow a

defined coding style, utilizing a set of tools adopted in the company. However,

the limitations mentioned above do not put any notable impact on the external

validity of this research. Its results can be re-applied within a similar context in

another technical environment with a minimal amount of adaptations.

Another limitation is related to Liana Technologies’ security policy and is

affecting publishing of the source code. Therefore, during the implementation

phase, only the code which is crucial to the research objectives of this thesis

and does not expose any business, security and privacy-critical information will

be published.

Final limitation considers the database structure. During the implementation

phase, the database structure and data storing mechanisms are not discussed,

due to extensive utilization of object-relational mapping (hereinafter ORM) and

object serialization by LianaCommerce platform.

1.4 Thesis Structure

To sequentially cover each topic, the structure of this thesis has been divided

into 9 chapters. Chapters 1 and 2 are providing a discussion on what the thesis

is about and describe the theoretical framework used throughout this work.

Chapter 3 defines what software integration is and describes the type of

9

integration developed as part of this research’s outcome. Chapters 4 and 5

provide an overview of the technical context of this thesis. Chapter 4 describes

LianaCommerce platform, its plugin system, and development environment.

Chapter 5 focuses on web services, their architectures and how the architecture

defines the communication style used to communicate to the service. Chapter 6

collects and analyzes the requirements to be fulfilled during the implementation

phase. Chapters 7 and 8 apply the theoretical knowledge, presented in the

previous chapters, to provide an overview of the plugins developed as an

outcome of this research. Chapter 9 draws a conclusion by outlining the results

of this thesis and providing ideas for further improvement.

10

2 RESEARCH QUESTIONS AND METHODOLOGY

2.1 Research Questions

This study addresses the following research questions:

1. How can a system integration for an e-commerce platform be

developed?

This question tries to identify a set of technological constraints which have to be

fulfilled to integrate external systems to LianaCommerce platform. To answer

this question, the module system and architectural patterns used inside of

LianaCommerce platform are studied carefully.

2. What are the characteristics of the final system suitable for the case

company?

This question identifies what the client company is trying to achieve with the

system integration. It studies the requirements, business logic provided by the

external systems and the desired business logic of the e-commerce platform.

3. How can possible risks related to the system integration be mitigated?

The purpose of this question is to identify how does the risk domain expand

when external services are involved in the delivery of business logic. It aims to

find solutions to minimize the risk if any is to be identified during the

implementation phase.

2.2 Research Methodology

The primary methodology used throughout this research is constructive

research approach. Piirainen & Gonzalez (2014) define it as a methodology

which utilizes an existing theory to create an applied solution to a practical

problem. According to Lassenius et al. (2001), constructive research seeks for

11

novel solutions. This thesis does not extend the existing theoretical base.

Instead, it utilizes theory, collected by means of literature review, to create a

practical outcome, which is an e-commerce platform integration. The theoretical

knowledge is gained through literature reviews and documentation analysis. In

addition, developers and software architects of the case company are

interviewed to obtain technical guidelines and suggestions for the

implementation.

12

3 SYSTEM INTEGRATION

3.1 System Integration

System integration is a process of making separate applications to compose

unified application logic by establishing automatic communication to each other

(Viitala 2017). The system integration process should be seen as the utilization

of various design patterns and architectural guidelines to compose a single

application. As discussed in the introductory chapter, modern companies are

utilizing a set of various distributed software systems which have a narrow

application domain. The integration of those systems into a single one can

result in better control over multiple business processes and benefit the entire

organization. For example, information can be automatically shared between

various applications, reducing the risk of an error which can occur if a user does

manual input.

Hasselbring (2000) defines three architectural levels of an organizational unit at

which integration can be performed. These units are presented in Figure 1

below.

Figure 1. Fragmentation of Organization Units (Hasselbring 2000)

Business architecture layer contains a representation of the system’s

functionality in logical units, which are understandable for the users of the

system. Application architecture layer contains an implementation of the

13

application’s business logic. In addition, it is providing an interface between the

technology architecture layer, which is responsible for the ICT infrastructure,

and the business logic unit.

3.2 Web Services

Introduction of distributed and cloud-based computing has induced the

popularity of web services. Services in computer science can be referred to as

fine-grained units of logic, containing a limited set of functionality. This implies

that web services are the services which are operating on the web. There exist

multiple alternative meanings for the term “web service”, shared across multiple

domains; however, this research utilizes the following definition. According to

W3C (2004), a web service is a software system designed to support

interoperable machine-to-machine interaction over a network.

In order for the service to be reachable by other systems, it has to provide its

interface description also known as API. According to Christensson (2016), an

API is a set of functions and commands, used by programmers to interact with

an external system. API is used to expose the functional interface of the service

to the developers. It consists of a service descriptor, describing the parameters

to be given; resources to be called and the structure of the data returned as a

response.

The communication between the web services is typically done by sending XML

or JSON messages transferred through Hypertext Transfer Protocol (hereinafter

HTTP). The HTTP protocol is used due to it being widely supported across the

browsers and operating systems. In case additional security layer is required,

more secure version of HTTP – HTTPS is used.

Modern software applications are utilizing various languages and technological

stacks and in order to facilitate communication, web services should be built

context-agnostic. This means that they should comply with strictly-defined

standards, which ensure correct functioning regardless of the technological

context of the service requestor or the service provider. Therefore, web services

14

should fulfill two basic principles – statelessness and composability (Alemu,

2014, 14). Composability means that a web service can be combined with other

web services to form an application. Statelessness characteristic requires that

service’s response does not depend on the client metadata. Instead, it is

defined by the request parameters and the resource identifier (Alemu, 2014).

3.3 API Integration

The integration type used throughout this research is called point-to-point API

integration. This type of integration directly uses API of an external web service

to obtain the necessary data. Viitala (2017, 11) defines point-to-point as a fast

and simple way to connect two applications. Figure 3 represents a model of

point-to-point integration.

Figure 3. Point-to-Point Integration (Linthicum 2001 as cited in Viitala 2017, 11)

The point-to-point pattern has been praised for its efficiency and is known to be

cost-effective and easy to implement. It is often utilized in small enterprises

when no customizations and interface changes are expected. Therefore, this

integration pattern is relevant to the scope of this thesis, as the target

integration is utilized by a single client and is not requiring any customizations.

This pattern assumes utilization of middleware on the client side, which will

provide message creation and connectivity to the web service. The technologies

facilitating implementation of the middleware are discussed in the next chapter.

15

4 LIANACOMMERCE PLATFORM

4.1 E-commerce Platform Definition

LianaCommerce is an example of an e-commerce platform. E-commerce

platform is software, specifically designed to provide merchants with a set of

tools to control various aspects of their e-businesses. According to Oracle

NetSuite (2018), an e-commerce platform is a software, which encapsulates

core business functions under a single software solution; it fosters improved

collaboration, aligns operational processes and provides real-time data visibility

within organizations. An e-commerce platform cohesively delivers the following

functions:

• Analytics and reporting

• Customer support

• Order and inventory management

• Procurement

• Content management

• Marketing

• Pricing and promotions

(Oracle NetSuite 2018).

For many companies, e-commerce platforms serve as a hub for their supply-

chain management applications, such as CRM and ERP systems. This requires

from the platforms to be flexible and to provide an easy API for integrating

solutions from the other vendors into their workflow. Architectural solutions

which ensure flexibility of LianaCommerce platform are discussed in the

following sections.

4.2 Plugin Architecture

LianaCommerce platform allows extending its functionality employing external

plugins, which are managed by its plugin system. This system can also be used

to create middleware for developing a system integration to other cloud-based

16

services. LianaCommerce plugin system is done by using a microkernel

architecture pattern (also known as plugin architecture pattern). Architecture

patterns define on a high level how the application’s code has to be organized

in order to provide a solution to a common problem. According to Richards

(2015, 21), microkernel architecture pattern allows the application’s functionality

to be extended by means of fine-grained units of logic, called plugins. Figure 4

illustrates the elements of the plugin architecture pattern.

Figure 4. Plugin Architecture Pattern (Richards 2015, 22)

The core system is responsible for the delivery of the main functionality of the

application. Plugins can be seen as isolated logical units, which extend the core

system’s logic and are responsible for a limited set of functionality. Plugins are

often isolated from each other and are built according to the loose-coupling and

separation of concerns (hereinafter SoC) principles. These principles state that

every unit of logic should be responsible for a defined set of features and should

not be tightly interconnected with the rest of the system (Richards 2015, 22).

The core system gets the knowledge of what plugins are available through a

plugin registry, which contains information on what is the name of the plugin,

what functionality does it expose for calling and what kind of configuration data

does it require (Richards 2015, 23).

Plugin architecture pattern can be seen as a possible solution to a common

software entropy problem illustrated in Figure 5 below.

17

Figure 5. Software Failure Curve (Pressman & Maxim 2015, 6)

During its lifetime, software gets altered which leads to an increase in the failure

rate. Consecutively, patches for the existing problems are released, and the

software gets updated again. These steps are repeated multiple times, and

according to Pressman & Maxim (2015, 5-7), the failure rate begins to rise

contributing to software deterioration. When the changes affect the software so

much that it becomes hard and unprofitable to fix the existing errors, the

development team usually abandons the current version of the software and

starts developing a new version from scratch.

The scenario mentioned above can be partially avoided by means of plugin

architecture pattern. The software functionality is modified using loosely-

coupled plugins, which are integrated into the core logic. This way every single

part of added software functionality is encapsulated into a plugin and can be

maintained without the rest of the software being affected. This approach can

significantly reduce maintenance costs and simplify risk management.

18

4.3 Hook System

In order to manage different plugins, LianaCommerce is utilizing a system of

hooks and filters. According to Wordpress (2018), hooks are defining a way for

one piece of code to interact or modify another. A hook is placed inside of a

function and serves as a function-trigger. There exist two types of hooks –

actions and filters. (Wordpress 2018). Actions are calling a function inside of a

plugin class, serving as function triggers. Whereas filters are calling a function

with a parameter given by a reference. Called function is modifying the given

data and the data is used further during the execution. Hook system is used to

connect the plugin functionality with the core system’s logic so that they can

perform as a whole.

4.4 PHP and Liana Framework

LianaCommerce platform is written using PHP language. This language is

widely used across the Web and is one of the main languages there. In order to

extend the essential features of a programming language and provide advanced

functionality, software frameworks are used. A software framework is a set of

essential functions, provided through an API, which can be re-used by the

developers. Software frameworks are often based on widely-adopted

architecture design patterns, which positively affects the code quality.

LianaCommerce platform development is done using Liana framework,

developed by Liana Technologies; therefore, this framework is utilized during

the practical part of this research. Liana framework provides a variety of useful

features some of which involve ORM, which allows automatic serialization of

objects into the database. Plugin registry and the hook system are also

provided by the framework and do not need to be implemented from scratch.

The framework helps to maintain a high quality of code by providing access to

design pattern implementations, which can be reused by the developers. Also,

framework utilization significantly improves the development speed and code

security by providing encoding, encryption, authentication, data transfer, and

connectivity functionality.

19

5 WEB SERVICE COMMUNICATION STANDARDS

5.1 Web Service Standards

As the practical part of this thesis deals with web services, it is crucial to define

and describe technologies laying behind the communication and

implementation of them. In order for a service to be accessible through the web,

it should be built in compliance with a set of web service architecture standards.

Those standards in their basic form define the way a web service is providing its

functionality, which protocols are used for the communication and what

message structure is utilized. Nowadays, there are two widely-used web service

implementation approaches – SOAP web services and RESTful HTTP. The

following chapter provides a detailed description of both of them, as well as,

compares them against each other. The web service standards ensure

interoperability among various operating systems, programming languages and

cloud services. In order to understand web services, understanding of their

standards should be obtained. (Chen et al. 129).

5.2 SOAP

Simple Object Access Protocol (hereinafter SOAP) is one of the most widely-

used web service standards. According to W3C (2007), SOAP is a lightweight

protocol dedicated to exchanging information in a distributed and decentralized

environment. SOAP is an XML-based communication protocol; therefore, all the

data transferred through SOAP has to be serialized into XML format first. XML

messages used inside of SOAP are called SOAP envelopes and contain

response data from the service.

5.2.1 SOAP Message Structure

SOAP protocol defines a structure for an XML message; therefore cross-

platform and cross-language compatibility is ensured, which significantly

reduces development overhead. According to Christensson (2006), Each SOAP

message is contained in an envelope, which always includes the header and

20

the body elements. These elements are known as required parts of the

message. SOAP message is encoded as an XML document, consisting of an

<Envelope> element, an optional <Header> element and a <Body> element.

<Body> element can optionally contain a <Fault> element for error reporting

(IBM Knowledge Center 2018). An envelope is a SOAP message root element

used for identifying the beginning and the end of a SOAP message. A header is

an optional element of a SOAP message, and it contains information on how

the message should be processed. SOAP body is a mandatory element

containing data payload transferred to the message receiver. SOAP fault

element is used to provide verbose information if an error occurs during SOAP

request processing. Figure 6 provides an example of a basic SOAP message

structure.

Figure 6. SOAP Message Structure

5.2.2 WSDL

Web Services Description Language (hereinafter WSDL) is an essential part of

a SOAP web service. WSDL contains a machine-readable description of all the

service endpoints exposed by a web service and provides the client with a

description of the service request and response parameters. According to W3C

(2001), WSDL uses an XML format to describe network services which

communicate using messages with a document- and procedure-oriented

information. This implies that WSDL is not restricted to any specific message

format or a network protocol, making it applicable to protocols other than SOAP.

21

5.3 RESTful Web Services

The second widely-used way for implementing web services is Representational

State Transfer (hereinafter REST). There is a common misconception, that

REST is a web service communication protocol. However, REST is much more

than that. REST concept has been defined by Roy T. Fielding. Fielding has

formulated REST by inheriting constraints from various existing software

architecture styles and extending them with a set of new ones. Introduction of

constraints was motivated by a necessity to formalize the communication

between the services and provide a reliable standard which would eliminate the

diversity of API implementations on the Web. Fielding (2000), defines REST as

an architectural style to be used with distributed hypermedia systems.

According to Shaw & Clements (1997), architectural style defines components

and connectors used to create a system. In contradiction to SOAP, which is

protocol-neutral, REST was designed intending to extensively utilize HTTP

protocol, which is the main application-layer protocol of the internet. HTTP

provides a variety of methods, which facilitate various CRUD operations such

as GET, POST, PUT and DELETE. There exist many more, but the

abovementioned ones are considered to be the sufficient minimum for a REST

implementation. Figure 7 provides a correlation of CRUD functions with the

respective HTTP and SQL functions.

Figure 7. CRUD Actions

As the REST architecture has been already covered it is time to clarify the term

“RESTful.” A RESTful web service is a service built according to the REST

architecture. Following sub-sections describe REST constraints which need to

be fulfilled by a web service in order to implement the REST architecture.

22

5.3.1 Client-Server

The client-server constraint is based on the separation of concerns principle.

This constraint is dedicated to separate service requestor and service provider

logic so that these components can be altered separately. This constraint

introduces an abstraction to the implementation of the service. Communication

is done through a well-defined interface, and the client does not know the

implementation details of the server. (Fielding 2000). Figure 8 provides a

schematic description of a client-server constraint.

Figure 8. Client-Server Constraint (Fielding 2000.)

5.3.2 Stateless

Stateless is another REST constraint defined by Fielding. It enforces the

communication between the client and the server to be stateless, inducing the

information provided as a response to be affected only by the parameters

provided in the request. Response information must not be affected by any

client-related data which is not stored on the server; therefore, all the session-

related data has to be managed by the client. This constraint helps to improve

the performance of the server and positively influences the scalability of the

service as the responses can be cached and delivered to several clients

(Fielding 2000.) It also improves the key characteristics of a service –

scalability, visibility, and reliability. Figure 9 illustrates the concept of stateless

constraint.

23

Figure 9. Stateless Constraint (Fielding 2000.)

5.3.3 Cache

Cache constraint states that when a client obtains a response from the server,

the payload might be cached by the client so that the same request does not

have to be done multiple times. The usage of caching on the client side can

significantly reduce the server load and therefore is a widely-adopted practice

even beyond REST context. Roy Fielding in his dissertation states, that “the

most efficient network request is the one that doesn’t use the network” (Fielding

2000).

5.3.4 Uniform Interface

This constraint is what makes REST different from any other service

architecture. Uniform Interface constraint means that the interaction with the

service is done through a finite set of requests which are generic. Resources of

the service are manipulated via a Unique Resource Identifier (hereinafter URI),

using HTTP verbs such as GET, POST, etc.

(Reese 2012).

5.3.5 Layered System

Layered System constraint in its basic form allows the RESTful service to

encapsulate any degree of complexity by representing an infinite set of

interlinked sub-systems. This constraint helps to implement scalable services by

allowing the use of various load balancers and distributed computing software.

However, the complexity of such systems should not affect the client as his

interaction with the service is restricted to the uniform interface. (Reese 2012;

Fielding 2000).

24

6 REQUIREMENT ANALYSIS

6.1 Requirement Analysis Description

Requirement analysis is an initial starting point of any development project.

According to Kotonya & Sommerville (1998, 3), requirement analysis is a

process, which determines conditions to be met by a software project in order to

satisfy its stakeholders. It plays a significant role in the success of the overall

project.

At first, the stakeholders for this project are identified. After that, functional and

non-functional requirements are gathered and analyzed. Finally, the outcomes

of the requirement analysis are used to construct the sequence diagrams

presented in the specification sections of the implementation chapters.

6.2 Stakeholder Analysis

The primary stakeholder for this project is the EMI company. The company is

providing various educational and leadership services, consequently, they are in

need for an e-commerce solution which would satisfy their current requirements

and would allow them to distribute their products online. The potential users of

the system are the merchants of the EMI company who need to manage the

product stocks, prices and promotions, as well as, to do the inventory and

content management.

This project involves project managers who are the direct stakeholders of it.

Project managers are present on both sides – at Liana Technologies and the

EMI company. Their main areas of concern are activities which facilitate the

project development and ensure, that the project is executed according to the

schedule.

The researcher is a primary internal stakeholder as he is directly involved in the

project development. The researcher is responsible for the development and

25

delivery of the project according to the requirements as well as ensuring that the

customer is satisfied with the result.

6.3 Functional Requirements

This project is intended to deliver a fully-functional e-commerce platform, the

outcome should include all the basic features provided by the LianaCommerce

platform plus the features identified by the requirements listed in this section.

The custom functionality expected by the customer is described below.

According to the client, the web store built on the platform has to provide digital

product licenses alongside the other products. Implementation of this feature

requires integration of LianaCommerce platform with Avenue digital product

system. A meeting has been initiated with the client and workflow for the

desired web store has been identified. The desired workflow is as follows: web

store user adds a product license to cart and creates order. When the order is

paid, LianaCommerce platform requests a product link from the Avenue web

service. When the link is obtained from Avenue system, the web store should

send it to the user via email.

During the communication session, it also has been noted, that the

LianaCommerce functionality should be extended with integration of Dynamics

CRM system into its workflow. The workflow of LianaCommerce must be

modified in such a way that every time the user creates an order, the order

information is transferred to the Dynamics CRM with the data defined by the

documentation for the Dynamics service of the EMI company.

6.4 Non-Functional Requirements

According to the functional requirements listed above, the technical part of this

project is highly dependent on the communication between individual web

services. This shifts the focus of the non-functional requirements mainly to the

area of web service communication and availability.

26

Separate vendors provide the Avenue and Dynamics CRM web services;

therefore, Liana Technologies cannot predict the availability times of these

services. The downtime of service can result in data transfer failure or lead to

an inconsistent data state and data loss. Thus, a mechanism for error handling

and data consistency check should be considered during the implementation

phase.

From a developer’s perspective, during the technical implementation special

attention must be paid to the code style and its compliance with the

organization’s technical guidelines. The code must be readable and easy to

understand. This can be achieved by extensive usage of Liana framework

functionality and the usage of design patterns. Additionally, the code should be

self-documenting, e.g. variables should be given descriptive names and

comments should be used where necessary.

Furthermore, it is crucial to ensure the stability of the platform after the new

functionality has been added. This can be done by covering the new

functionality with unit tests. If an implementation is using a network, the

responses from the services should be mocked. This contributes to faster test

execution end eliminates the test failure on service denial event.

Security is another topic to be considered during the implementation. All the

data transfer during the service communication must be done with security in

mind, therefore data should be encoded and stored according to the

organization’s security guidelines.

27

7 AVENUE WEB SERVICE INTEGRATION

7.1 Specification Analysis

Avenue plugin is a part of LianaCommerce platform, which serves as a

connecting component between the platform and the Avenue web service.

Technical specifications for implementation of this plugin derive from

requirements gathered during the requirement analysis section. The outcome of

the analysis is a sequence diagram provided in Figure 10 below. According to

Bell (2004), sequence diagrams are helping to define the behavior of the future

system as well as provide a refinement of the collected requirements. This

diagram represents the requirements as an interaction of objects and serves as

a technical reference throughout the plugin development process.

Figure 10. Avenue Plugin Sequence Diagram

According to the diagram above, the user is an event-trigger, who creates and

pays an order. Once LianaCommerce platform has validated the payment data,

28

the order status is set to ‘paid’. The status change event is tracked by

LianaCommerce plugin system. The plugin system does a

‘processCompletedOrder’ function call to the Avenue plugin, providing an order

object as an argument. The plugin does processing of the order-related data

and performs a POST request to the Avenue web service. Once a response

from the server is obtained, Avenue plugin performs a validation of the

response payload. If the payload contains a valid JSON data with a URL inside,

then the response is considered successful. The plugin saves the link to the

database and sends an email with the digital product URL to the user. Finally,

Avenue plugin marks the order as handled, by setting a success status to it.

Alternatively, if an error occurs and the digital product URL is not obtained, the

order is marked as failed by setting a ‘failed’ status.

7.2 Plugin Structure

In LianaCommerce, software plugins are managed by Liana framework’s built-in

hook system. Therefore, there exist several constraints which plugin should

follow in order to function correctly. One such constraint is that all the plugins

implementing an integration to external services should be located under

Plugin2 directory. Therefore, all the Avenue plugin-related data is placed at the

store/Plugin2/Avenue directory.

Figure 11. Avenue File Structure

29

As shown in Figure 11 above, Avenue folder contains two files: Avenue.php and

AvenueConf.php. Avenue.php is the core file of Avenue plugin. It contains

Avenue class with an implementation of the plugin’s logic. Special attention has

to be paid to the naming of the files, folders, and classes. Liana framework

contains an autoloader script, which refreshes the class structure of a web store

every time the store is updated. The class structure is providing a correct

namespace mapping ensuring that functions used across several classes can

be correctly used throughout the project.

AvenueConf.php is a configuration file, containing the plugin’s settings. These

settings are automatically imported by LianaCommerce’s upgrade script, which

is used by the LianaCommerce team to distribute the updates across the web

stores. The upgrade script reads the configuration file and automatically inserts

the default values for the settings to the database’s plugin configuration table.

Figure 12. Avenue Plugin Configuration

Figure 12 illustrates the structure of the Avenue plugin configuration file created

according to the plugin’s specification. Static fields at the beginning of the file

are defining the default values for the settings, while the ‘$configurable_fields’

array defines the fields which will be configurable by the admin user from the UI.

Figure 13 shows the web store’s plugin configuration interface. This interface

has been automatically created by the LianaCommerce’s upgrade script from

the configuration provided in the AvenueConf.php file.

30

Figure 13. Avenue Configuration Interface

LianaCommerce’s module system supports feature toggle functionality.

According to Hodgson (2017), feature toggle is a part of the continuous delivery

process, allowing in-progress features to be merged to master branch while still

keeping the branch production-stable. Feature toggle is a handy technique as it

serves several purposes. Firstly, it allows to do the software versioning and

keep the module’s functionality isolated from the rest of the code in case that a

specific client does not require the functionality. Secondly, feature toggle

contributes to the stability of the web store during the development and testing

of the plugin. The plugin can be enabled for a short time for the testing

purposes and can be easily turned off after the testing is done. Thus, if the

module contains any bugs, they will not affect the business-critical logic of the

system if the module’s feature toggle is turned off.

7.3 Service Integration

Avenue web service provides a RESTful API for communication. According to

the service documentation, the interface consists of a single ‘invitationlink’

resource. Call to this resource is performed via a standard HTTP POST

method. The service requires authentication; thus, the ‘X-DigiAPV-Api-Key’

authentication key has to be provided as an HTTP header.

31

Figure 14. Invitationlink Request Body

Avenue invitationlink resource is expecting a set of POST parameters to be

contained inside of the request payload. The structure of the request body is

illustrated in Figure 14 above. This request has a single mandatory parameter –

id of the purchased digital product. This id corresponds to a digital product id

inside of the Avenue system.

Figure 15. Invitationlink Postman Call

In order to proceed with the plugin implementation, a test call has to be done to

the system. The data obtained through a test call serves as a validation of

correct API utilization and serves as a good reference throughout the

implementation. The test call is done using Postman software, which is a

special tool for working with various APIs. According to the test call, Avenue

service responds with a single parameter – the digital product URL.

32

Figure 16. Invitationlink Request Code

Postman can be useful not only for testing various APIs, but it can also

significantly reduce the development time by automatically generating client

code snippets. Figure 16 shows an auto-generated PHP code snippet,

implemented with the use of PHP Client URL library (hereinafter cURL). This

snippet is used inside of plugin’s ‘sendRequest’ function with minor changes.

According to LianaCommerce’s plugin system, every plugin requires function

triggers to connect to the core logic of LianaCommerce. These triggers are

provided by Liana framework and are called hooks. According to the plugin

specification, the request to the web service should be made when the order is

completed, and its status is changed. Figure 17 shows how Avenue hooks are

configured inside of Hook.php file. Array keys ‘order:order_completed’ and

‘order:status_change’ are the names of event-triggers, defined at specific

places of the Model/Order.php file. The ‘from’ element defines the name of the

plugin, and the ‘call’ element defines the callback function to be called. When

the trigger call is reached during the runtime, the framework checks the

configuration inside of each sub-array one-by-one and if the plugin configuration

flag is set to ‘enabled’, does a function call.

33

Figure 17. Avenue Hook Configuration

When ‘onStatusChange’ and ‘processCompletedOrder’ functions are called,

they are given an order object as a parameter. This object contains Avenue

product id and other order-related data which is serialized as JSON string by

‘createSendData’ function. The service request is done through ‘sendRequest’

function, which contains cURL PHP implementation from the Postman API

development environment.

Figure 18. Digital Product Information

When the service responds with a correct URL, ‘processCompletedOrder’

function sets the response URL to “Order extra 3” field. After that,

‘sendLinkToCustomer’ function sends an email to the user, and

‘avenue_accepted_order_status’ is set as a new status of the order. Figure 18

shows web store admin UI with a product URL saved to ‘Order extra 3’ field.

34

If an error occurs and no product link is returned from Avenue service, then an

‘avenue_failed_order_status’ is set, and the store’s administrator is notified with

an email, containing verbose error data. When the problem is resolved, the

additional request to the service can be triggered manually by changing the

order status manually to ‘avenue_accepted_order_status’.

7.4 Unit Testing

In order to ensure that the plugin performs as defined, unit testing is done.

According to Fowler (2007), a unit is the smallest software part, which could be

tested. Thus, unit testing as a method to ensure that separate units are

performing according to their specification (Kolawa & Huizinga, 2007). Tests for

avenue plugin are intended to verify that the system performs correctly given

invalid and valid responses from the web service. For this purpose, a mocked-

up JSON response is passed to ‘processCompletedOrder’ function. To assert

that the values are correct a Liana PHP assertion library is used. Figure 19

below shows the results of the avenue unit test execution.

Figure 19. Unit Tests

35

8 DYNAMICS CRM INTEGRATION

8.1 Specification Analysis

Dynamics plugin is facilitating interaction between LianaCommerce platform

and Dynamics CRM system. The initial set of requirements discussed in

Chapter 3 has identified a need for a service downtime management

mechanism to be considered within this implementation. The communication

with the Dynamics service is done via SOAP protocol over HTTP. Dynamics

plugin serves as an example of how a SOAP service can be integrated with an

application. Together with Avenue plugin, it comprises EMI web store’s custom

business logic.

Dynamics CRM is an example of an application, which is designed for providing

services to multiple software systems, assuming that the communication

stability is crucial. However, during the implementation process, it has been

identified that the service does not scale well – the responses tend to get stuck

during the transfer as well as the service response time fluctuations are difficult

to predict. Since Apache server configuration used at Liana’s production server

does not allow requests to last longer than 30 seconds, an asynchronous

mechanism for data exchange has to be considered.

36

Figure 20. Dynamics Plugin Specification

As shown in Figure 20, Dynamics plugin is triggered on the order status change

event. Plugin checks if the order has not yet been exported to Dynamics system

and marks it as ‘pending’. Cron script has been added to the workflow to

eliminate service interruptions and guarantee that the data is transferred

successfully. Cron is constantly monitoring the order changes in the

background. Once an order has been marked for transfer, Cron performs a

‘createSendData’ call to the Dynamics plugin. The plugin serializes order-

related data as a SOAP envelope and performs a call to the Dynamics web

service. After the response is obtained, the plugin does a payload check and

sets a new status to the order.

8.2 Service Integration

The structure of the Dynamics plugin shares the majority of structural aspects

with the Avenue plugin, due to both of them being constructed according to the

37

guidelines of Liana framework. As can be seen from the Figure 21, the only

difference between Avenue and Dynamics plugin file structures is the

Dynamics.bin.php file. This file contains a PHP script which is managed by the

Cron daemon.

Figure 21. Dynamics File Structure

Plugin configuration file illustrated in Figure 22 contains configurable fields,

used to connect to the Dynamics service. SOAP used in Dynamics is having

several differences from the one described in Chapter 5. It does not provide

WSDL or any other kinds of service description, which could be used directly by

a SOAP client. Instead, WSDL is created dynamically by using a DynamicsCRM

PHP library. This library provides a convenient API for an envelope creation and

data passing. It is important to note, that Dynamics uses custom data

structures, which have to be used carefully. The service is using static data

types, and a single type conversion error would lead to the payload being

rejected. Thus, special attention has to be paid to the typecasting of date, float,

and double variables. It is especially important to remember because the

implementation is done in PHP, which is a dynamically-typed language.

38

Figure 22. Dynamics Configuration

From the developer’s perspective, Dynamics CRM can be seen as a remote

database, which is accessed by sending SOAP envelopes to it. Like in any

other database there are tables. In Dynamics CRM, the tables are called

entities. Entities contain attributes, which are having data types and are

functioning as columns. Service requests are done through an endpoint URL,

which is defined in the plugin configuration panel. Every request should contain

a name of a target entity with data attributes mapped to it. Figure 23 shows an

example of a request body, containing ‘fs_firstname’, ‘fs_lastname’ and

‘fs_jobtitle’ attributes of string type. The LogicalName tag below contains a

target entity’s name.

Figure 23. Request Body Example

39

Dynamics service is using preemptive authentication, meaning that every

service request should contain authentication data. This data consists of

username and password fields which are defined in the Dynamics configuration

file. According to the Dynamics plugin specification, it should transfer the order

data to Dynamics when status is set to ‘paid’. To implement this,

‘onStatusChange’ function is created inside of the plugin. Figure 24 illustrates

the ‘onStatusChange’ function. This function performs a status check and marks

the order as pending by adding “Dynamics pending” string into order’s “notes”

field.

Figure 24. Dynamics onStatusChange Function

To connect the plugin to the core logic of LianaCommerce, hook mapping is

done inside of Hooks.php model. Dynamics plugin has two hooks assigned to it

- 'order:status_change' and ‘order:order_completed’. When the hooks are

triggered, ‘onStatusChange’ static function is called.

According to non-functional requirements, connection interruption, which might

occur during the message transfer should be prevented. This requirement can

be addressed by delegating the message transfer to a daemon. Daemon is a

background process which is listening for a specific event to occur, rather than

being triggered by the user (The Linux Information Project, 2005). Linux

systems have a built-in daemon named Cron. Cron can execute the desired

script according to a schedule. Cron schedules are configured inside of Crontab

files, which contain a definition of which script should be running at which point

of time.

Dynamics.bin.php is a Cron script, which is constantly checking if there are any

orders marked as “Dynamics pending”. When such an order is found, the script

tries to transfer it to the Dynamics service. The script itself does not handle

40

service connections. Instead, it triggers a ‘createSendData’ function inside of

Dynamics.php plugin file. This function serializes order data into a JSON string

and passes the string to ‘sendDataToDynamics’ function which converts JSON

data into an XML envelope and makes a request to the Dynamics service.

When a successful response is obtained, the Cron script marks the order as

transferred and sets it a “Dynamics success” status. In case any error has

occurred during the data transfer, the Cron will try to send the order during the

next 24 hours and if the error persists, it will mark the order as failed. Also, on

failed order status the error is written into a log file and the web store

administrator is notified via email.

41

9 CONCLUSION

This thesis work has achieved all the desired objectives by implementing

system integration of the LianaCommerce platform with external services.

During this research, the theoretical concept of system integration has been

studied with an example of point-to-point integration. The obtained theoretical

knowledge has been tested against the real-world case during the

implementation phase, extending the theoretical understanding with practical

knowledge. The stability of the integration has been verified by covering the

implementation with unit tests and ensuring the successful data transfer with a

Cron script. In addition, the researcher has extended his knowledge on web

services and their architectures, improved his professional skills by following

code style guidelines and utilizing various software architecture patterns.

The customer case has been fulfilled by delivering the client a working e-

commerce platform with integrated logic provided by external services. The

platform has been deployed to a production environment and has been used as

a web store. The client has given positive feedback on the provided e-

commerce solution.

The integration done during this research has proven itself to be sufficient in the

existing context; however, it does not support scalability. This fact provides a

fertile environment for future studies. One example of such study could be to

consider implementation of an integration service, which would serve as

middleware between LianaCommerce platform and other systems. This type of

middleware could facilitate changes and allow system integrations to be

developed with less manual input required from the developer’s side.

42

BIBLIOGRAPHY

Alemu, M., B. 2014. REST API Implementation with Flask-Python. Lapland
University of Applied Sciences. Faculty of Communication, Transport and
Technology. Bachelor’s Thesis.

Bell, D. 2004. UML basics: The sequence diagram. IBM developer. Accessed
22 December 2018.
https://www.ibm.com/developerworks/rational/library/3101.html.

Chen, M., Chen, A., K. & Shao, B., M. 2003. The Implications and Impacts of
Web Services to E-Commerce Research and Practices. Journal of Electronic
Commerce Research, 128-129.
https://pdfs.semanticscholar.org/698e/fa2bfd0afa2cd5d70de80c355fd720f9ce07
.pdf.

Christensson, P. 2006. SOAP Definition. Accessed 12 December 2018
https://techterms.com.

Christensson, P. 2016. API Definition. Accessed 13 December 2018
https://techterms.com.

Fowler, M. 2007. Mocks aren't Stubs. Accessed 4 January 2019.
https://martinfowler.com/articles/mocksArentStubs.html.

Fielding, R., T. 2000. Architectural Styles and the Design of Network-based
Software Architectures. University of California, Irvine.
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Hasselbring, W. 2000. Information system integration. Communications of the
ACM. Volume 43, Issue 6, 32-38.

Hodgson, P. 2017. Feature Toggles. Accessed 14 January 2019.
https://martinfowler.com/articles/feature-toggles.html.

IBM Knowledge Center. 2018. The structure of a SOAP message. Accessed 16
December 2018.
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.et
ools.mft.doc/ac55780_.htm.

Kolawa, A. & Huizinga, D. 2007. Automated Defect Prevention: Best Practices
in Software Management. Wiley-IEEE Computer Society Press.

Kotonya, G. & Sommerville, I. 1998. Requirements Engineering: Processes and
Techniques. Chichester, UK: John Wiley and Sons.

Lassenius, C., Soininen, T. & Vanhanen, J. 2001. Constructive Research
Methodology workshop. Helsinki University of Technology.

https://www.ibm.com/developerworks/rational/library/3101.html
https://pdfs.semanticscholar.org/698e/fa2bfd0afa2cd5d70de80c355fd720f9ce07.pdf
https://pdfs.semanticscholar.org/698e/fa2bfd0afa2cd5d70de80c355fd720f9ce07.pdf
https://techterms.com/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac55780_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac55780_.htm

43

Linthicum, D. 2001. B2B Application Integration. Boston: Addison-Wesley.

Oracle NetSuite. 2018. What is an ecommerce platform? Accessed 30 October
2018. http://www.netsuite.com/portal/resource/articles/ecommerce/what-is-an-
ecommerce-platform.shtml.

Piirainen, K., A. & Gonzalez, R., A. 2014. Constructive Synergy in Design
Science Research: A Comparative Analysis of Design Science Research and
the Constructive Research Approach. Nordic Journal of Business. No. 3-4, 206-
234.

Pressman, R., S. & Maxim, B., R. 2015. Software Engineering: A Practioner’s
Approach. 8th Edition. McGraw-Hill Education.

Reese, G. 2012. The REST API Design Handbook. 1st Edition. Amazon Digital
Services LLC. EBook.

Richards, M. 2015. Software Architecture Patterns. 1st Edition. O’Reilly Media,
Inc.

Shaw, M. & Clements, P. 1997. A field guide to boxology: Preliminary
classification of architectural styles for software systems. Twenty-First Annual
International Computer Software and Applications Conference, 10-12.

The Linux Information Project. 2005. Daemon definition. Accessed 17 January
2019. http://www.linfo.org/daemon.html.

Viitala, K. 2017. Integration Architecture Development for Pori Energia.
Satakunta University of Applied Sciences. Master’s thesis.

W3C 2001. Web Services Description Language (WSDL) 1.1. W3C Note 15
March 2001. Accessed 3 January 2019.
https://www.w3.org/TR/2001/NOTE-wsdl-20010315.

W3C 2004. Web Services Architecture. Working Group Note, 11 February
2004. Accessed 11 November 2018 https://www.w3.org/TR/ws-arch/.

W3C 2007. SOAP Version 1.2 Part 1: Messaging Framework. 2nd Edition. W3C
Recommendation 27 April 2007. Accessed 3 January 2019.
https://www.w3.org/TR/soap12-part1.

WordPress. 2018. Plugin handbook: Hooks. Accessed 27 December 2018.
https://developer.wordpress.org/plugins/hooks.

http://www.netsuite.com/portal/resource/articles/ecommerce/what-is-an-ecommerce-platform.shtml
http://www.netsuite.com/portal/resource/articles/ecommerce/what-is-an-ecommerce-platform.shtml
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/ws-arch/
https://developer.wordpress.org/plugins/hooks/

	1 introduction
	1.1 Background and Motivation
	1.2 Research Topic and Objectives
	1.3 Scope and Limitations
	1.4 Thesis Structure

	2 RESEARCH QUESTIONS AND METHODOLOGY
	2.1 Research Questions
	2.2 Research Methodology

	3 SYSTEM INTEGRATION
	3.1 System Integration
	3.2 Web Services
	3.3 API Integration

	4 LIANACOMMERCE PLATFORM
	4.1 E-commerce Platform Definition
	4.2 Plugin Architecture
	4.3 Hook System
	4.4 PHP and Liana Framework

	5 WEB SERVICE COMMUNICATION STANDARDS
	5.1 Web Service Standards
	5.2 SOAP
	5.2.1 SOAP Message Structure
	5.2.2 WSDL

	5.3 RESTful Web Services
	5.3.1 Client-Server
	5.3.2 Stateless
	5.3.3 Cache
	5.3.4 Uniform Interface
	5.3.5 Layered System

	6 REquirement anaLysis
	6.1 Requirement Analysis Description
	6.2 Stakeholder Analysis
	6.3 Functional Requirements
	6.4 Non-Functional Requirements

	7 AVENUE WEB SERVICE INTEGRATION
	7.1 Specification Analysis
	7.2 Plugin Structure
	7.3 Service Integration
	7.4 Unit Testing

	8 DYNAMICS CRM INTEGRATION
	8.1 Specification Analysis
	8.2 Service Integration

	9 CONCLUSION
	BIBLIOGRAPHY

