

MOSES ADELERE

AN FPGA MUSIC PLAYER

TECHNOLOGY AND COMMUNICATION

2011

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology Degree Programme

ABSTRACT

Author Moses Adelere

Title An FPGA Based Music Player

Year 2011

Language English

Pages 55

Name of Supervisor Yang Liu

As the demand for portable electronics devices increase, so is the need for an

improved technology. Electronics manufacturers around the world are looking for

ways to make profit at a reasonable cost of production.

The objective of this thesis is to replace microcontroller based electronic devices

with an FPGA which eliminates the cost of acquiring new peripheral when new

functionality is to be added to existing devices.

The design is in two phases, mainly consisting the hardware and software. The

hardware modules use an Intellectual properties from Terasic Technology, excepts

the VGA display. The software module communicates with the Nios processor.

Keywords FPGA, Microcontroller, Intellectual properties

ACKNOWLEDGEMENT

First and foremost, to Almight God for his guidance and wisdom all through the

years I have lived. To my mother for giving me life. To the rest of my family for

their support. To all my friends, who support and advise me all through my study.

To my supervisor, Liu Yang for his advise and support. To Jarmo Makela, who

made mathematics so simple, also not to forget Dr Gao Chao, a teacher of high

pedigree, and to the rest of the teacher in VAMK.

To Altera and Terasic, for giving the right to edit source code and other

intellectual propery of the company.

 1

CONTENTS

ABSTRACT

ACKNOWLEDGEMENT .. 2

ABBREVIATIONS .. 3

1 INTRODUCTION .. 4

1.1 BRIEF INTRODUCTION ABOUT FPGA .. 4

1.2 BENEFIT OF USING FPGA IN DESIGN ... 4

2 DE2 EDUCATIONAL BOARD .. 5

2.1 STRUCTURE OF THE DE2 BOARD ... 6

3 DEVELOPMENT SOFTWARE .. 9

3.1 QUARTUS II SOFTWARE ... 9

3.2 SOPC BUILDER .. 11

3.3 NIOS II EMBEDDED DEVELOPMENT IDE 12

4 BACKGROUND ABOUT THE SYSTEM REQUIREMENT 13

4.1 WAV FORMAT ... 13

4.2 FAT FILE SYSTEM ... 16

4.2.1 STRUCTURE OF THE FAT16 FILE SYSTEM 18

4.3 WM8731 AUDIO CODEC ... 19

4.4 SD CARD ... 22

4.5 ADV7123 VGA CODEC .. 23

5 IMPLEMENTATION .. 25

5.1 SD CONTROLLER .. 28

5.2 AUDIO CONTROLLER .. 31

5.3 VGA CONTROLLER .. 34

5.4 FAT FILE LIBRARY ... 45

5.5 WAVE LIBRARY .. 48

5.6 OTHER PERIPHERALS .. 50

5.7 USER CONTROL .. 51

5.8 FUNCTIONAL DIAGRAM ... 52

5.9 PROBLEM FACED.. 53

5.10 FUTURE WORK .. 54

 2

6 CONCLUSION .. 54

REFERENCE .. 55

 3

ABBREVIATIONS

FGPA Field gate programmable array

I2C Inter integrated circuit

FAT Fat allocation table

SD Secure digital

SOPC System on programmable chip

RIFF Resources interchange file format

JTAG Joint test action group

UART Universal asynchronous receiver/transmitter

HDL Hardware description language

VHDL VHSIC Hardware description language

VHSIC Very high speed integrated circuit

DAC Digital to analog converter

 4

1 INTRODUCTION

The aim of this thesis is to build an FPGA based music player. Firstly, the word

FPGA is an acronym for “Field programmable gate array” which is an integrated

circuit designed to be configured by the designer after being manufactured. The

configuration of an FPGA can be done using HDL and C programming language

provided it has a custom program inbuilt processor like in Altera FPGA used for

the implementation of this project.

Altera defines FPGA ha a semiconductor device that can be programmed after

manufacturing, and allow you to program products features and functions, adapt

to new standards, and reconfigure hardware for specific applications even after the

product has been installed on the FPGA [5].

1.1 BRIEF INTRODUCTION ABOUT FPGA

The manifestation of the FPGA industry began from PROM (programmable read

only memory) and PLD (programmable logic device). Both of which can be

programed in batches from the factory.

In 1984, the first FPGA device was invented by Ross Freeman, also the co-

founder of the Xilinx technology. The first design was “XC2064” chip, is a

computer chip full of open gates that engineers can reprogram as much as the

need arises to add a new functionality to custom device, and the adaptation to

changing specification.

1.2 BENEFIT OF USING FPGA IN DESIGN

The following benefits can be derived from using FPGA chips in electronics

designs.

 5

1. Good performance

considering the advantage derived from hardware parallelism, FPGA exceeds

the computing power of digital signal processing [10].

2. Customization

This option provides the designer of electronics system the flexibility to

choose the desire components, controllers and peripherals to be used in

designs.

3. Component and cost reduction

With the vast capability of FPGA, previous system designs that required

additional components to improve its functionality can be replaced with a

single FPGA chip. The reduction in the number of components in a design

can reduce the robust size of the board and inventory management, thus

reduce the time expended and also cut down the cost of production.

4. Obsolescence mitigation

FPGA soft-processor provides an excellent solution that arises when

considering the lifespan of electronics designs. Since the source of HDL

for the soft-processor can be purchased from it owner to combat the issue

of component obsolescence mitigation.

2 DE2 EDUCATIONAL BOARD

The information about the DE2 educational board is an extract from the user

manual provided by Altera on the board.

 6

2.1 STRUCTURE OF THE DE2 BOARD

The figure below shows a labelled diagram of the DE2 educational board,

illustrating its layout, and indicating the component constituting the board.

The board has many features, allowing end-user to implement a wide range of

embedded application ranging from the simple to sophisticated circuits.

The board is equipped with the following hardware;

- Altera cyclone II 2C35 FPGA device

- Altera serial configuration device – EPCS16

Figure 1: DE2 Educational Board [5]

 7

- USB Blaster for programming and user API control, both JTAG

and Active serial programming modes are supported

- 512-Kbytes SRAM

- 8-MByte flash memory

- SD Card socket

- Four user push-button switches

- 18 Toggle switches

- 18 Red user LEDs

- 9 Green user LEDs

- 50-MHz and 27-MHz Oscillator for clock sources

- 24-bit CD quality audio CODEC with line-in, line-out, and

microphone in-jacks

- VGA DAC (10-bits high speed triple DACs) with VGA-out

connector

- TV decoder (NTSC/PAL) and TV-in connector

- 10/100 Ethernet controller with a connector

- USB Host/Slave controller with USB type A and B connector

- PS/2 mouse/keyboard connector

- IrDA transceiver

- Two 40-pins Expansion headers with diode protection

Also with the above hardware, the board is also equipped with software examples.

The board requires its users to be familiar with Quartus II software before the

 8

FPGA chip can be programmed, and in some case the requirement is not only the

Quartus II software, but also the NIOS II software.

The figure below shows the block diagram of the DE2 board.

Figure 2: Block diagram of the DE2 board.[x1]

 9

3 DEVELOPMENT SOFTWARE

In this section of the report, the software used for the implementation of the

project will be described in short detail.

3.1 QUARTUS II SOFTWARE

The software was developed by Altera technology for programming FPGA device

using HDL programming, Block diagram/schematic files, or others design entry

formats. it has an easy to use graphical user interface, and a modular complier

which includes the following lists below;

1. Analysis and synthesis

2. Fitter (place and route)

3. Assembler (generates the programming file)

4. Timing Analysis

5. EDA Netlist Writer.

The following procedure describe how to create a new project on the Quartus II

graphical interface

1. Launch the software from your computer

2. Create a new project, select File → New project wizard

3. Choose the device family (for this project cyclone II)

4. Using the Text editor, create a new HDL file (Verilog/VHDL), or Block

editor to create clock diagram with symbols representing the design.

5. Use the MegaWizard Plug-in manager to generate custom variations of

megafunctions and IP functions to instantiate the design. (Optional)

 10

6. Use SOPC builder, or DSP builder to create a system-level design. (For

this project, SOPC builder was deployed)

7. Use the Analysis and synthesis to synthesize the design

8. Perform place and route on the design using the fitter.

9. Perform the timing analysis on the design using the timer analyser

10. Create the programming file using the Assembler

11. Program the FPGA device using the .sof or .pof file created by the

Assembler from the programmer.

Note: The Quartus II software includes solutions for all phases of FPGA and

CPLD designs [user manual].

Figure 3: Quartus II Graphical user interface

 11

3.2 SOPC BUILDER

The SOPC builder is one among the system-level design flow supported by the

Quartus II software. It is included in the Quartus II software, and allows engineers

to rapidly design and evaluates system-on-chip architecture, as well as design at a

higher level of abstraction.

The SOPC builder is an automated system development tools that dramatically

simply the task of creating a high-performance SOPC designs [user manual].it

provides engineers the opportunity to design a custom component, use SOPC

system component in design architectures, as well as generate and verifying the

system before final integration of the system. It composed of components such as

CPU, memory, timer, standard and user-define peripheral, UART, JTAG, Avalon

tri-state bridge etc., and also provide an interface to user-defined logics. There are

four techniques for using SOPC builder system with user-defined logic;

1. Simple PIO connection

2. Bus interface to external logic

3. Publishing a local SOPC builder component, and

4. instantiation inside the system module

For each project created with the SOPC builder contains a system descriptive file.

The file which has a .ptf extension contains all the options, setting, and parameter

included in the SOPC builder. Each component included in the SOPC design has a

corresponding PTF file, and this file is used in generating the source code,

software component and simulation files for the system.

 The design flow of a typical SOPC builder is shown below;

 12

3.3 NIOS II EMBEDDED DEVELOPMENT IDE

The Nios II IDE is based on the Eclipse IDE platform, and the Eclipse CDT plug-

in. It has a user friendly development environment that works for all Nios II

processor based system. With the Altera FPGA connected to the host machine

running Nios IDE, engineers can write program for and communicate with Nios II

processor via the Altera JTAG usually the USB Blaster.

The Nios EDS automatically creates a board support package (BSP) for Nios II

processor based system, thus saving time required for manually creating it (BSP).

The BSP created provide C/C++ runtime environment, insulating engineers from

the hardware in the embedded system design.

It has an easy to use graphical interface which creates and manages makefile

generated based on the system file (.ptf) create with the SOPC builder.

Figure: 4 Design flow of SOPC builder [].

 13

4 BACKGROUND ABOUT THE SYSTEM REQUIREMENT

The following heading gives an insight about the major entity of the system.

4.1 WAV FORMAT

The Wav file format is part of the numerous formats defined in the Microsoft

RIFF specification for storing media files. It can be identified by the extension in

its filename (.wav). The type of data samples stored is the raw data without any

form of compression making it relatively large compared to other media format

like the MPEG.

It consists of three chunks of information namely;

1. RIFF (Resource interchange file format)

2. Format

3. Data

The RIFF is a tagged file structure developed for multimedia resources files. Its

structure is very similar to the Electronic Art IFF, though not a file format in its

own natural existence, but contains “Interchange file format” related to its origin.

As a chunk, it identifies the file as a Wav file making it suitable for;

1. playing back multimedia data

2. recording multimedia data

3. Exchanging multimedia data between applications.

The format chunk identifies parameters such as numbers of channel, sample

rates etc., while the Data chunk contains the actual data sample of the media

file. The figure below show a Wav file format block;

 14

The table below gives an insight about the wav file format

Offset Name Size (Bytes) Description

0 ChunkID 4 Contains the

letters “RIFF” in

ASCII format

(0x46464952

little- endian

form).

4 ChunkSize 4 4 + (8 +

Figure 5: A Canonical Wav file format [4]

 15

subchuk1Size) +

(8 +

SubChunk2Size)

8 Format 4 Contains the letter

“WAVE”

(0x45564157

little-endian form)

12 Subchunk1ID 4 Contains the letter

“fmt”

(0x20746d66

little-endian form)

16 Subchunk1Size 4 16 for PCM

20 AudioFormat 2 PCM = 1, other

values indicate a

form of

compression in

the data

22 NumChannels 2 Mono = 1, Stereo

= 2

24 SampleRate 4 8000, 44100 etc.

28 ByteRate 4 SampleRate *

NumChannels *

BitsPerSample/8

32 BlockAlign 2 The number of

bytes for one

sample including

 16

all channels.

36 Subchunk2ID 4 Contains the

letters “data”

(0x61746164

little-endian

form).

40 Subchunk2Size 4 This is the number

of bytes in the

data sample.

44 Data no specific size The actual sound

data.

4.2 FAT FILE SYSTEM

The FAT is an abbreviation of File Allocation Table, designed by Microsoft

giving operating systems the possibility to track the location and determine the

order of succession of each pieces of a file. Since the inception of the common

removable flash memory, the FAT system has become a format widely used file

format in digital device, computers.

The FAT file system provides a way of tracking and monitoring when a file is

created or updated, and identifying the size of the file. It also provides mechanism

for storing other characteristics of a file such as read-only, whether a hidden in a

directory display making it an ideal file format for removable memory devices.

The table below provides information about the structure of the FAT file system;

Table 1: Wave Data information [4]

 17

Byte Offset Length (Bytes) Description

0x00 3 jump instruction to boot

code

0x03 8 indicates what system

formatted the volume

0x0B 2 number of bytes per

sector

0x0D 1 number of sector per

cluster

0x0E 2 number of reserved

sector

0x10 1 number of allocated

tables

0x11 2 maximum number of root

directory entries

0x13 2 total number of sector

0x15 1 media descriptor

0x16 2 sectors per FAT

0x18 2 sectors per track

0x1A 2 Numbers of heads for

interrupt 0x13.

0x1C 4 count of hidden sectors

preceding the partition

 18

0x20 4 This field is the new 32-

bit total count of sectors

on the volume.

4.2.1 STRUCTURE OF THE FAT16 FILE SYSTEM

The FAT system disk is organised into sectors, with each sector storing 512 bytes

of data. The sector is the smallest unit used when writing or reading data from

disk formatted with the FAT system. Unlike the sector, the cluster is used by the

operating system as the smallest unit when allocating storage space on disk with

FAT partition, having a variying size depending on size of the partition, and

varies from drive to drive.

The FAT identifies each cluster in a partition as;

1. Cluster in-use by a file

2. Bad cluster

3. Unused cluster

4. Last cluster in a file

FAT16 file system uses 16 bits cluster addressing system, and its volume is

divided into four as shown in Figure 6 below.

The boot sector is the first sector of the volume, defining the volume, and also

contains the code to enter the file system.

The FAT is a series of addresses for checking the next cluster in the system,

and accessed as a lookup table. The FAT is an important data structure such

Table 2: Common offset among versions of FAT file system [1]

 19

that it has two copies, one as the primary, and the other as a backup when

there is a fault in the system.

The root folder/directory has a fixed location and length (512 bytes), always

located at the start of the volume.

The other folders and all files occupy the rest of the volume, and are divided

into clusters.

Note: FAT16 can not be used on volume greater than 2GB.

4.3 WM8731 AUDIO CODEC

The CODEC is a low power stereo codec integrated with a headphone driver,

specifically designed for portable audio device such MP3 player, PDAs,

smartphone, recorders etc. The CODEC is equipped with stereo line and

microphone level audio inputs, alongside with a mute function, programmable

Figure 6: Structure of the FAT16 volume

 20

line level volume control, and a bias voltage output suitable for an electret type

microphone.

It has a sampling rate ranging between 8 KHz to 96 KHz, and can be controlled

using serial I2C bus interface. The controlling interface uses 2 or 3 wire serial

interface, which provides the access characteristic like volume control, power

management, mute, and de-emphasis. Digital filter de-emphasis is provided at 32

KHz, 44.1 KHz, and 48 KHz, can be applied to the digital data under software

control.

The figure below shows the block and schematic of the Audio CODEC

respectively;

Figure 7: Block diagram of WM8731 Audio CODEC []

 21

The CODEC includes a crystal oscillator circuit which allows audio system

reference clock to be generated on device. The oscillator is designed for low EMI,

and radiation type. In buffered form, it is available to the rest of the audio system

on CLKOUT.

In Digital audio interface, it can be operated in any of the 4 mode offer. These are;

1. I2C

2. DSP

3. Right justified

4. Left justified

The entire modes have a common characteristic of MSB first, and operate with

data 16 to 32 bit; also the DACLRC and ADCLRC must always change on the

falling edge of the BCLK. Only the Right justified does not supports 32 bits data.

 22

4.4 SD CARD

The SD Card known as the secure digital card was design to cater for the need for

reliable data storage on consumer mobile and portable electronics, such as digital

camera, mobile phones, etc. it was design by the SD Card association. All SD

Card supports Microsoft FAT16 file system.

The SD Card can be accessed via a dedicated serial interface for fast data

transmission. The interfacing buses are:

1. SPI

2. SD 1-bit mode

3. SD 4-bit mode

Figure 8: Schematic diagram of Audio CODEC

 23

4.5 ADV7123 VGA CODEC

The ADV7123 is triple high speed, digital-to-analog converter on a single

monolithic chip [4]. It has three 10 bit input ports, 5V/3.3V power supply, and

requires clock input for full functionality. Also include in the ADV7123 is an

additional control signals, composite SYNC and BLANK. Its applications can be

seen in the following;

1. Video signal reconstruction

2. Instrumentation

3. Digital radio modulation

4. Image processing

5. High resolution colour graphic

6. Digital video systems

The figure below show the schematic diagram of the ADV7123 video DAC

connected to the VGA port.

Figure 9: SD Card Architetcture [8]

 24

The table below shows the electrical signal and description of the video DAC.

Signal name Description

VGA_R[9:0] 10-bit red level

VGA_G[9:0] 10-bit green level

VGA_B[9.0] 10-bit blue level

VGA_CLK VGA clock

VGA_BLANK VGA BLANK

VGA_HS VGA HSYNC

Figure 10: Schematic of Video DAC

 25

VGA_VS VGA VSYNC

VGA_SYNC VGA SYNC

5 IMPLEMENTATION

The implementation for the system requirement of this project is divided into two

parts;

1. Hardware

2. Software

which the SOPC builder uses the Avalon switch fabric as the connecting bridge

between the hardware and the software. Avalon switch fabric is a collection of

signals and logics that connects master and slave of the SOPC builder and other

custom components in a Nios II system development.

The block diagrams below hardware and software stack for the project;

Table 3: Signal assignment of ADV7123

 26

Figure 11: Software stack

System Requirement

Hardware Software
SOPC

 27

In the hardware development, I used the SOPC builder components and other

custom or user defined components to configure and generate the Nios system.

For the software development, the Nios embedded design suite was used to

communicate with the processor.

The figure below shows the hardware connection in the SOPC builder for the

implementation of the project.

Figure 12: Hardware stack

 28

5.1 SD CONTROLLER

In the software stack diagram, the SD Card was used to store the music file which

was read by the Nios II processor. The main operation of the SD Card was

implemented in the software phase using the SD 1 bit mode of operation; in the

hardware phase four PIO pins were connected to the SD Card socket. Figure 14

below shows the hardwire connection between the SD card in SD 1-bit mode and

the host device.

Figure 13: SOPC Builder connection

 29

The SD 1 bit mode is a synchronous serial protocol with one line for data, used

for bulk data transfer, one clock line for data synchronisation, and one command

line for sending command frames. It support bus sharing, and can be simply be

describe as a command-data protocol.

The data signal/line has three purposes;

1. To signal interrupts from the signal to the host

2. To indicate successful reception of data blocks on write operations

3. To implement wait states from the device to the host

Figure 14: SD Card 1-bit Mode [7]

 30

In the software implementation, the following function prototype were used to

configure the card in 1-bit mode. This means that it will only read a block of data

at a time i.e. 512 byte.

1. SD_read_block

This function read a single block of data at a time whose size is 512 byte. It

sent the cmd17 to read the data on the SD card, then synchronise the data with

the clock. Figure 15 shows the reading operation.

2. response_R

This function return the response related to the command issued.

3. send_cmd

Figure 15: Read operation [6]

 31

This function sends command to the SD card.

4. SD_card_init

This function function initialises and detects the card. It persistently sends

command to the card, and waits until the response is a success. An example of

the response is the CRC.

The command sent in this function is in the following sequence;

cmd55 cmd41 cmd2 cmd3 cmd9 cmd10 cmd7

cmd16

The hardware peripheral as used in the SOPC builder for the wiring the SD

card uses four parallel input/output (PIO) peripheral. The PIOs are SD_CLK,

SD_DAT, SD_DAT3, SD_CMD. The SD_CLK has data width of 1,

directional port is set to output, and the port direction reset value is 0x0. The

SD_DAT, SD_CMD, and the SD_DAT3 has a data width of 1, direactional

port is set to bidirectional tristate, and the port direction reset value is 0x0.

5.2 AUDIO CONTROLLER

The Audio controller used is a user-defined SOPC component from Terasic

technology. It needs an input clock of 18.432 MHz which was generated using

PLL, and the resulting clock fed to the Audio controller was 18.51 MHz. The

audio configuration demands that the controller operates in the master mode, so

that the serial bit (BCK) and the left/right channel clock were provided by the

audio chip. The master mode was enabled in the software with the function below;

Bool audio_init(void){

Bsuccess = audio_regwrite(7, 0x0042);

}

 32

The function set the data register for the mode of operation which I2C was

preffered to other mode of operation for the project, and enable the master

clocking mode.

Figure 16: Master mode connection

 33

In the SOPC builder, two PIO pins were connected to the I2C bus. This bus

protocol was implemented in the software module to configure the audio chip

with 16-bits per channel. In this mode, the MSB is available on the second rising

edge of the BCLK following the transition in the DACLRC or ADCLRC. Figure

19 below gives an insight. The audio data fetched from the SD card is always 512

bytes, and will be written to the DAC FIFO of the audio controller. Before the

writing, it checks if the FIFO buffer is not full.

Figure 17: Digital Audio Data Timing – Master Mode

 34

The I2C bus consists of two wires and a ground connection. The two wires are

I2C_SCLK which has a data width of 1, port direction is set to output, and port

direction reset value of 0x0, and the I2C_SDAT which has a bi-direction port,

data width of 1, and port direction reset value of 0x0.

5.3 VGA CONTROLLER

The standard VGA format of a monitor contains 640 columns by 480 rows of

picture elements. These elements are referred to as pixels, performing the function

of displaying images on the screen of the monitor by turning ON and OFF of

individual pixel.

The VGA monitor uses five control signals: RED, GREEN, BLUE, HSYNC, and

VSYNC. The first three control signals are commonly referred to as RGB signal,

controlling the colour formation of a pixel at any location on the screen of the

monitor. These signals are carried by the VGA connector to the VGA port of the

host. The signals are analog signal with voltage level ranging from 0.7 to 1V.

Figure 19: Two wire I
2
C mode

Figure 18: I
2
S mode of operation

 35

Figure 14 and Table 3 show a typical VGA connector and pin numbering of the

connector.

Pin 1 RED

pin 2 GREEN

pin 3 BLUE

pin 4 ID2

pin 5 GND

pin 6 RGND

pin 7 GGND

pin 8 BGND

pin 9 +5V

pin 10 GND

Figure 20: VGA Connector

 36

pin 11 ID0

pin 12 ID1

pin 13 HSYNC

pin 14 VSYNC

pin 15 ID3

To achieve different colour combinations, the RGB signal voltage have to be

varied. The text color on the VGA display for this project is white as can be seen

in Figure 15 below. This shows that the RGB signals are high. Table 4 show the

voltage level of the signal to achieve 2
3
 different color combinations.

Table 4: Pin numbering of VGA Connector

Table 5: Color combination

 37

The VGA timing requirement is an important parameter that was considered when

implementing the VGA controller circuit. The timing parameters for the display

are 640 x 480 resolutions, a 25.175 MHz clock, 31.469 KHz Line Frequency, and

59.94 Hz Field Frequency.

Pixels Role

8 Front porch

96 Horizontal Sync

40 Back Porch

8 Left border

640 Active

8 Right border

800 total/line

Lines Role

2 Front porch

2 Vertical Sync

25 Back porch

8 Top Border

 38

480 Active

8 Bottom border

525 total/field

The values in table 5 and 6 were used for the horizontal and vertical scanning of

the screen at a refreshing rate of 60 Hz. The horizontal and vertical scanning uses

a counter for its implementation which can be seen in the screenshot below. The

total horizontal is 800, and that of the vertical is 525.

Table 6 and 7: Horizontal and vertical sync signals

 39

The VGA timing table shown in Table 7 is derived from 640 x 480 resolutions

using the clock of 25.175 MHz.

Figure 21: Horizontal and vertical counter

 40

Since the clock required for the resolution 640 x 480 need 25 MHz, and the board

provides a 50 MHz clock. I generate the 25 MHz using the VHDL code in the

screenshot below.

The display raster was implemented using an 8 x 8 rom. An example of the rom

created for letter “V” is shown below;

01100110

Table 8: VGA Timing

Figure 22: 25 MHz clock generation

 41

01100110

01100110

01100110

01100110

00111100

00011000

00000000

The method used for the text displayed on the VGA is called “tile mapping”. The

texts are in predesigned patterns. An example for a pattern “TIME:” is shown

below;

Figure 23: VGA Display

 42

0111111000111100011000110111111000000000

0001100000011000011101110110000000000000

0001100000011000011111110110000000011000

0001100000011000011010110111100000000000

0001100000011000011000110110000000000000

0001100000011000011000110110000000011000

0001100000111100011000110111111000000000

00

The update of the data displayed on the VGA screen is done both in the hardware

and software. In the software, I used the function IOWR (VGA_0_BASE,

ADDRESS, PARAMETER), and for the hardware update, bit mapping method

was employed. The process involves creating a tile memory, example an 8 x 80

rom for numerical values shown below, and each ascii bit on the VGA display

gets its bit from the memory.

001111000001100000111100001111000000011001111110001111000111111000

11110000111100

011001100001100001100110011001100000111001100000011001100110011001

10011001100110

011011100011100000000110000001100001111001111100011000000000110001

10011001100110

011101100001100000001100000111000110011000000110011111000001100000

11110000111110

 43

011001100001100000110000000001100111111100000110011001100001100001

10011000000110

011001100001100001100000011001100000011001100110011001100001100001

10011001100110

001111000111111001111110001111000000011000111100001111000001100000

11110000111100

00

00000000000000

The screenshot below shows the implementation of a single bit update for the

VGA.

 Figure 24: Bit update process

 44

This process was performed for every information (title of the song, sample rate,

time, and volume) displayed on the VGA monitor. Each of the character and

symbol displayed on the VGA monitor were given an address to make it

accessible to the Nios processor for update. The screenshot below gives an insight

how it was implemented in the VHDL code.

Note: Using to_integer() gives a compilation error on Quartus V10, try to avoid it.

The address uses 5 bits which accommodate up to 32 addresses. The Nios uses

this addresses to update the information on the VGA monitor. An example is

shown in the screenshot below for updating the sample rate of the wav song.

Figure 25: Bit addressing

 45

5.4 FAT FILE LIBRARY

The FAT file library implement the FAT16 file system for reading wave file

stored in the SD Card. The FAT library support 8 characters long file name, and

only reads 512 bytes of data at a time.

The following functions implement the FAT library used in this project;

1. FatClusterType

This function identifies the cluster type in the FAT system. A cluster is a

group of sectors on memory devices that have at lease a piece of information

in it. The table below describe the FAT cluster type and their value or range as

used in the implementation.

FAT value Description

0000h Unused cluster

Figure 26: Nios screen updating

 46

0002h-FFEFh Used, Next cluster in file

FFF0h-FFF6h Reserved cluster

FFF7h Bad cluster

FFF8h-FFFF Used, Last cluster in file

The screenshot below shows how the FAT cluster type was implemented.

2. Fat_Dump

This function checks the directory created by the FAT system, and fetch out

information like name of the file in the directory, date created, attributes of the

file e.g hidden file, read-only, system file, volume of the file and so on.

Table 9: Cluster Types [9]

Figure 27: Cluster type

 47

3. Fat_ComposeFilename

This function was used to fetch the name and the extension type of the file in

the directory of the FAT system. The FAT system supports 8.3 filename

system i.e. 8 bits for the file name and 3 bit for its extension type. The figure

below shows how it was implemented in the Nios C code.

4. Fat_FileSize

This function returns the size/volume of the file in the directory.

5. FatNextCluster

This fuction check the status of thr next clusters of the data. The pseudo-code

below describes the flow of the implementation.

1. if status is readonly

2. Nextcluster = *(unsigned short *)(gVolumeInfo.szFatTable

+(ThisCluster << 1));

3. ClusterType = fatClusterType(NextCluster);

4. check if type is not next in file and not last in file {NextCluster = 0}

Figure 28: File name compose

 48

5. else

6. nFatEntryPerSector = gVolumeInfo.BPB_BytsPerSec/nFatEntrySize;

7. sector = gVolumeinfor.FatEntrySector +

(ThisCluster*nFatEntrySize)/gVolumeInfo.BPB_BytsPerSec;

8. read data block from SD Card

9. NextCluster = *(unsigned short *)(szBlock +

(ThisCluster%nFatEntryPerSec)*nFatEntrySize);

10. go to 4

11. exit

6. Fat_FileCount

This function was used to count the number of files in the FAT directory.

The implementation is shown below;

5.5 WAVE LIBRARY

The WAVE library implements the decoding and retrieving of audio signal from

the wave file. The code implementation will be seen in the Appendices.

Figure 29: File counting in the FAT system

 49

The following function implements the wave format used in the project.

1. Wave_IsWaveFile

This function check the format of the file stored in the SD card. The

algorithm used is shown with the screenshot below.

2. Wave_GetSampleRate

The function returns the sample rate of the music file. Ths screenshot below

shows the algorithm.

Figure 30: Wave_IsWaveFile

Figure 31: GetSampleRate

 50

3. waveGetChunkOffset

This function is returns the offset value of the wav format. The offset value

contains the necessary information of the wav format, that is why this function

is important to other functional implementation of the wav format as can be

seen in the code above. The implementation can be seen below:

5.6 OTHER PERIPHERALS

The DE2 board provides a 2 x 16 LCD module, which display the name of the

music currently playing, and the volume of the player. The LCD module is an

SOPC builder component which was included into the project. The LEDs display

the strength of the audio signal which I called an equaliser. The LEDs module was

included into the SOPC builder as a PIO component, which includes 9 PIOs for

the green LEDs, and 18 PIOs for the red LEDs; both having an output direction

port.

The timer is another SOPC component used in the project. The project includes

two interval timer components from the SOPC library. The timers have 1

Figure 32: waveGetChunkOffset

 51

milliseconds period, with a counter size of 32 bits, with enabled writable period,

readable snapshot, and start/stop control bit.

The SDRAM controller provides the memory for the Nios system. The SDRAM

has a data width of 16 bits, address width with a row of 12 bits and column of 8

bits.

The Flash memory interface is also an important SOPC component. It has a data

width of 16 bits, and address width of 22 bits. It was used in the SOPC builder

system to provide memory for the system.

The SRAM module used in the SOPC builder is a user defined component, also

providing an altaernative memory for the processor. It has an address width of 18

bits, and a data width of 16 bits.

The CPU module provides the arithmetic logic unit for the system. It uses the 32

bit RISC architetcture, and runs at 100MHz clock speed which was provided

using the Altera PLL generator.

The Phase lock loop (PLL) module was used to set the required clocking for the

system. It takes an input clock of 50 MHz, to generate a clock of 100 MHz for the

CPU and other components, with the exception of the Audio controller which

runs at a clock of 18.432 MHz.

The JTAG UART module provides the communication interface between the host

PC and the SOPC builder system. It eliminate the need for a separate RS-232

connection.

5.7 USER CONTROL

User control is provided with four key buttons and two switches. The key buttons

and the switches were connected using the PIOs in the SOPC builder.

 52

The buttons perform the different functions; the rightmost button is used to reset

the program on the DE2 board, two middle buttons were used to increase and

decrease the audio volume, leftmost for increasing and the rightmost for

decreasing. The last, leftmost button was used to play next track song on the SD

card.

Each of the switches used for this project performs two different functions, since

it can go back and forth. The first switch SW [0] is used to either continuously

repeat the current playing song from the SD card or leave it as a free playing

music player i.e. plays all the song stored in the SD card and go back to the first

track. The second switch, SW [1] was used to either play or pause the music in the

card.

5.8 FUNCTIONAL DIAGRAM

The use case diagram below shows the benefits the user of the music player will

derived from application.

 53

After the FPGA chip have been configured, the user will be able to perform the

functions in the use case diagram with the music player.

5.9 PROBLEM FACED

The problem faced at first was understanding the HDL language. Secondly,

making the display interface most of the time used in the project, because I have

no good background or prior experience. Firstly, I was using the 100 MHz clock

Figure 33: Use case diagram

 54

for the clock input, instead of the 50 MHz which was processed in the VHDL

implementation of the display to generate a 25 MHz used for the 640 x 480

resolution display of the VGA. When the project was first ran, I found that the

audio out was too fast resulting in a humming output. This was caused by the

crystal clock not been connected in the HDL used for the custom component.

5.10 FUTURE WORK

After the completion of the project, I planned to make a video game with the DE2

educational board preferable a soccer game, and a chat application.

6 CONCLUSION

In this project I have create a music player on an FPGA chip. The target of the

project in the beginning was achieved.

The Altera DE2 Education board is a good starting point to learn how to program

an FPGA. Altera already provides software tool like Quartus II, SOPC builder,

and Nios EDS as the programming IDE for the FPGA.

 55

REFERENCE

1. Dave Dittrich. http://staff.washingtom.edu/dittrich

2. Microsoft. http://www.microsoft.com/about

3. Mcgill. http://www.mmsp.ece.mcgill.ca

4. Analog Device. http://www.analog.com

5. Altera. http://www.altera.com

6. Terasic. http://www.terasic.com

7. http://downloads.amilda.org/MODs/SDCard.SD.pdf

8. http://alumni.cs.ucr.edu/~amitra/sdcard/ProductManualSDCardv1.9.pd

f

9. http://home.teleport.com/~binary/fat16.htm

10. National instrument. http://zone.ni.com/devzone/cda/tut/id/6984

11. Wolfson microelectronics. http://www.wolfsonmicro.com

