

Mark-Felix Müller

Condition Monitoring of Test Equip-
ment Using Autoencoders

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Program in Electronics

Bachelor’s Thesis

26 November 2020

 Abstract

Author
Title

Number of Pages
Date

Mark-Felix Müller
Condition Monitoring of Test Equipment Using Autoencoders

40 pages
26 November 2020

Degree Bachelor of Engineering

Degree Program Degree Program in Electronics

Professional Major Electronics

Instructors Hannu K. Seppänen, Project Manager
Heikki Valmu, Principal Lecturer

This project aimed to research and develop a condition monitoring solution for test equip-
ment of a robotic manufacturing line. Measurement data collected by the test equipment is
used to train an artificial neural network to assess the condition of its future measurement
performance.

The project involved investigating the measurement data to derive an understanding of the
performance of the test equipment. This investigation led to the development of deep learn-
ing software used to power a visual display of the results.

Characteristics in the data indicating condition were discovered, which led to the develop-
ment of an autoencoder used to process measurement data. The processed data is manip-
ulated to determine the condition of the test equipment. The condition of the test equipment
is displayed in a graphical view for monitoring.

The result is a monitoring solution which provides timely insight on the tester data that may
be used to perform maintenance on the equipment. The project, its research, and its moni-
toring solution contribute to the development of a predictive maintenance solution.

Keywords Autoencoder, Condition Monitoring, Test Equipment

 Contents

Contents

List of Abbreviations

1. Introduction 1

2. Theoretical Background 2

2.1. Site Information 2
2.2. Problem Scope 5
2.3. Predictive Maintenance 7
2.4. Anomaly Detection 8
2.5. Machine Learning 9

2.5.1. Unsupervised Deep Learning 9
2.5.2. Elements of Artificial Neural Networks 10
2.5.3. Autoencoder 12

3. Methods and Materials 14

3.1. Workflow 14
3.2. Environment Setup and Data Acquisition 14
3.3. Data Preparation 15
3.4. Data Engineering 16
3.5. Selecting Subsets 19
3.6. Model Selection 22
3.7. Model Training 23
3.8. Traffic Light System Development 25
3.9. D-fend Dashboard Development 27

4. Results 28

4.1. Training Performance 28
4.2. Dashboard Samples 29

5. Discussion 34

5.1. Training Evaluation 34
5.2. Dashboard Sample Evaluation 35
5.3. Design Considerations and Shortcomings 36

6. Conclusion 37

References 39

 Abbreviations

List of Abbreviations

CR Count ratio. A value derived from feature engineering during the data prep-

aration stage.

dPxT Product feature. An alternate name for the feature resulting from the multi-

plication of the Leak and Test Time features.

GEHC GE Healthcare, a medical technology company of the American General

Electric Conglomerate. GEHC has a headquarters in Helsinki, Finland.

LCL Lower control limit. The lower bound of controlled behavior for a given dis-

tribution.

LSTM Long-short term memory. A neural network architecture which allows for

patterns over time in the data to be learned.

MSE Mean squared error. A mathematical loss function estimator which returns

an average of squares of errors.

PR Product ratio. A value derived from feature engineering during the data

preparation stage.

ReLU Rectified linear unit. An activation function that outputs its input if its value

is positive. Otherwise, it outputs zero if the input’s value is zero or a nega-

tive value.

RUL Remaining useful life. An estimation of the time a device or component

continues to operate as intended.

UCL Upper control limit. The upper bound of controlled behavior for a given dis-

tribution.

1

1. Introduction

This research aims to identify whether measurement data can be leveraged to assess

the condition of the measurement device itself. More specifically, the measurements per-

formed by test equipment are transformed and applied to monitor the equipment’s con-

dition. This is achieved by investigating the characteristics of the data, training a deep

neural network, and applying domain expertise to attain meaningful insight on the oper-

ating condition of the measuring device.

This research was performed in partnership with GE Healthcare (GEHC) and is intended

to aid its production function in monitoring valuable manufacturing machinery. By lever-

aging quality control data that is already being collected, the research hopes to innovate

and provide an alternative to investing resources that would explicitly monitor the condi-

tion of the machinery.

GE Healthcare, well-known in the healthcare industry for its patient monitoring systems,

develops various healthcare technologies and medical equipment. The healthcare in-

dustry demands a strict standard of quality for medical equipment. Such equipment re-

quires an appropriate manufacturing process with emphasis on quality control.

A successful manufacturing process outputs a consistent and controlled product. Mainte-

nance of manufacturing machinery is vital to the success of the manufacturing process.

However, maintenance of such machinery is often costly and nontrivial. Furthermore,

maintenance is only valuable when performed if the condition of the machinery deterio-

rates. Thus, the condition of the machinery is valuable information.

The research could lead to the development of smart monitoring and predictive mainte-

nance solutions for systems that do not support direct monitoring of the measurement

device. A smart solution in this case is one that utilizes machine learning and does not

rely on explicitly programmed rules.

Areas of this research are confidential as they are the property of GEHC. Specific in-

stances of data, code, and methods are omitted. This report’s focus is on the design and

application of the deep neural network. The report attempts to provide the key insights

and tools used to guide the development.

2

2. Theoretical Background

2.1. Site Information

GE Healthcare has a headquarters in Helsinki, Finland where various healthcare tech-

nology is researched, designed, tested, and manufactured. Development and manufac-

turing focus on medical imaging and patient monitoring hardware and software.

This report discusses processes involved in the manufacturing of a product named D-

fend Pro +, a water trap. Water traps are used to capture liquid water into a clear con-

tainer and are installed in a particular module of a patient monitoring system. Patient

monitoring systems are used in healthcare facilities to provide physiological information

about a patient to aid their treatment. These systems consist of modules designed for

specific applications. The respiratory module, intended for monitoring respiratory param-

eters of patients in an operating room or intensive care unit, requires a disposable water

trap produced by GEHC. The water trap, seen in figure 1, consists of a filtering system

and a container.

Figure 1. The D-fend Pro + water trap as seen from opposite angles [1]. Ports and membranes
are relevant components of the collected data.

The D-fend Pro + water trap has a semipermeable membrane made of polytetrafluoro-

ethylene which protects the respiratory module’s gas measurement system from water,

dust, and bacterial contaminants that may interfere with measurement accuracy. Gas

samples may pass through the membrane to the gas analysis unit, while condensed

water is trapped in the clear container. The container may be emptied during the water

trap’s operating life. [1.]

Ports

Membranes

3

The water traps are manufactured from unassembled components by a line of industrial

robots. These robots are modular and perform varying tasks on individual water traps

including heating, moving, assembling, and testing. The manufacturing line is predomi-

nantly automated, requiring a technician for troubleshooting and supplying batches of

unassembled components. The line may operate continuously for hours and has regular

periods of inactivity depending on production needs. This research focuses on quality

control data collected by one test point, namely the leak test.

Figure 2. The D-fend manufacturing line block diagram.

The block diagram in figure 2 represents the major functions of the d-fend manufacturing

line. The leak test module, the point of focus for this report, is highlighted in orange. In

reality, the various blocks of figure 2 are housed in enclosures as a series of assembly

and testing points seen in figure 3.

Figure 3. The D-fend manufacturing line. Each enclosure may contain up to several robots and
modules seen in the block diagram.

4

The leak test is one of the final testing stages in the manufacturing line and is situated in

an enclosure with a robot arm seen in figure 4. Units passing this stage are prepared

and packaged for distribution.

Figure 4. An enclosure housing a robot arm and various modules. The robot arm is loading a
water trap unit for testing into the leak tester.

The testers of the manufacturing line are controlled automatically by custom tester soft-

ware. The task of each tester is to ensure every water trap unit passing through the

manufacturing line is in compliance with quality control thresholds. The software instructs

the manufacturing line robots to remove water trap units that fail any test. The manufac-

turing line is designed to operate efficiently, allotting a predetermined maximum duration

for each tester to perform its operation.

The tester software logs the measurements performed by each tester in a database. As

a water trap unit encounters various testers throughout the line, various parameters are

measured and logged. However, individual water trap units are untraced and the meas-

urements of one tester are unlinked to those of another tester.

The leak test involves applying a vacuum pressure to the ports of a water trap unit to

determine the leakage of atmosphere via the membranes. Sensors read the leakage

value continuously until either the measured value complies to a predetermined thresh-

old or the maximum test duration is exceeded. This is to accommodate a stabilization

period of the vacuum pressure when a unit is situated in the leak tester.

The leak tester has two identical unit slots to allow for simultaneous testing during peri-

ods of high traffic in the line. Each slot is an individual leak tester with separate pressure

5

vacuum and sensor. Up to one water trap unit may be situated into each slot for testing.

The tester software prioritizes one slot, setting the other as an auxiliary. During normal

operation and depending on the line’s traffic, the frequency of use of the auxiliary slot is

up to, but not exceeding, that of the primary slot.

2.2. Problem Scope

The research was conducted by request of GEHC as a means to develop a predictive

maintenance solution for the D-fend manufacturing line. This solution should involve a

condition monitoring system with visual feedback to notify manufacturing technicians of

potential deterioration in the performance or condition of the manufacturing line. Put

bluntly, a traffic light should describe the current condition of the line, with yellow or red

lights indicating alarming performance. When alarmed, a technician would then be able

to investigate and maintain the line to prevent or minimize a halt in production.

My previous assignment with GEHC involved developing statistical visualizations for the

D-fend line’s tester data. These visualizations are tools aimed to assist a technician in

diagnosing an issue related to the line’s flow resistance or leak tester stages. The goal

was to combine the traffic light system and diagnosing tools into a dashboard viewable

in the production workspace, named D-fend Dashboard. This dashboard and research

contribute to an ongoing project within GEHC named Testerwatch, whose development

focuses on performance and condition monitoring of manufacturing machinery and test

systems.

A halt in the D-fend manufacturing line results in costly consequences, scaling in mag-

nitude to its duration. These consequences may cascade throughout several functions

of GEHC. There are various events that may result in a halt including mechanical jams

or equipment failure. Events that lead to halts often have unique resolutions, requiring

the domain expertise of a manufacturing technician. Although many halts are caused by

unpredictable events, some events may exhibit evidence in the tester data being col-

lected during manufacturing. The more knowledge a technician has about a problem

within the line, the more efficiently it can be resolved. The D-fend dashboard aims to

present relevant information of the accessible tester data to enable a quick response to

an issue. The D-fend dashboard is scalable by design, allowing further tools and func-

tionality to be added to it throughout its development.

6

The assignment had preconditions resulting in particular caveats, namely the limited us-

able data. These constraints were present due to stringent validation and verification

protocols set in place relating to the logistics of the manufacturing line. Therefore, the

introduction of external monitoring equipment for condition monitoring of the D-fend line

was prohibited.

Ideally, the device targeted for monitoring should have relevant data collected about it.

For example, monitoring accelerometer data from a sensor mounted on the exterior of a

wind turbine engine may provide insight on its operating condition. Vibrations detected

by the sensor may be used to construct a representation of typical performance during

the turbine’s intended operating condition. However, due to the research’s preconditions,

only measurement data collected by two testers is available for use. The flow resistance

and leak tester measurement data directly reflect the parameters of the water trap unit

under test, not the tester itself. Considering the prior example, this would be the equiva-

lent of assessing the turbine’s condition by monitoring the aerodynamic performance of

a unit under test in the wind tunnel. This data constraint is the crux of the research,

demanding innovation to diagnose the operating condition of the line using only tester

measurement data.

My previous work allowed me to become familiar with the flow and leak tester data by

performing time-series analyses and correlative investigation. This work indicated that

there was no reliable correlation between the values of either test with respect to the

operating condition of the manufacturing line. In the interest of development progress, I

decided to focus solely on the leak tester data. The leak tester has unique characteristics

I intended to take advantage of to assess its condition. The fact that the leak tester has

dual slots performing separate measurements allows me to compare their performances

against each other. As both slots are designed to operate equally, their measurements

performed should exhibit similar behavior over time. This presumes it is very unlikely

both slots encounter the same issue simultaneously, or that an issue affects both slots

similarly.

7

2.3. Predictive Maintenance

Predictive maintenance is a technique performed on machinery to reduce the likelihood

of malfunction by preemptively maintaining faulty components. Predictive maintenance

solutions are often research intensive and require engineers and data scientists to im-

plement. However, incentives including consistent production yields and reduced

maintenance costs make these solutions’ development a worthwhile investment. Predic-

tive maintenance aims to reduce the cost and frequency of maintenance requirements

by preventing unplanned reactive maintenance and guiding preventative maintenance

[2].

There are several variants of typical predictive maintenance solutions including remain-

ing useful life (RUL) prediction and anomaly detection. Given the data constraints of this

research, RUL prediction is not a candidate as it requires prior failure data and associ-

ated maintenance logs. The exclusion of RUL prediction impairs the predictive power of

any maintenance solution as scheduling a window for maintenance is unreliable. How-

ever, detecting irregular behavior prior to a halt in the manufacturing line could allow

technicians to become aware of the situation preemptively. Coupled with diagnosing

tools, reactive maintenance or the halt itself could potentially be avoided altogether.

Performing maintenance to alleviate an issue in the manufacturing line requires the abil-

ity to investigate an issue’s source. Knowledge about the issue improves the investiga-

tion’s efficiency. Evidence in the data relating to an issue is often crucial in planning a

maintenance procedure. The manufacturing line consists of many enclosures, robots,

and various modules resulting in numerous potential locations of disruption. Mainte-

nance is a targeted operation which a technician can perform more efficiently with diag-

nosis tools. Diagnosis tools attempt to aid a user answer the following questions pertain-

ing to an investigation:

1. What is the issue?

2. When does it occur?

3. Where is its source?

The D-fend dashboard is designed to include diagnosis tools to corroborate the results

of an alert system. Together, an alert system and corroborative tool form a condition

monitoring solution.

8

2.4. Anomaly Detection

The premise of anomaly detection is understanding normal operation in order to detect

irregularities. Data collected during normal operation can be constructed into a repre-

sentation of such a condition. When comparing data collected during irregular operation

to the normal representation, distinctions indicate anomalies. Consider the flow re-

sistance data represented in figure 5.

Figure 5. A ridge plot exhibiting a month of flow resistance tester measurement data.

The ridge plot in figure 5 displays the probability distributions of all measurements col-

lected by the tester each day for a month. The main membrane (blue) and side mem-

brane (orange) pressure readings are adjacent to each other, with one distribution of

each displayed per day. Vertical dashes extending from the x-axis indicate respective

9

lower and upper specification limits, whereas the green and red dashed lines indicate

the target value for the main and side membranes respectively. The target value is the

expected measurement value for which the membranes are designed. Water traps

whose pressure readings exceed the specification limits have failed the flow resistance

test and are removed from the manufacturing line.

Glancing at the ridge plot from bottom to top, the peaks of the blue and orange distribu-

tions seem to tend to the target value dashed line. However, the distributions for Sep-

tember 6th and 30th are particularly irregular in comparison to the other days of the

month. Such anomalies may be an indicator of an issue with the tester or a batch of

water trap units. When an anomaly is observed in a timely manner, investigation is war-

ranted to assess the need for maintenance.

2.5. Machine Learning

Machine learning is a subfield of artificial intelligence in which computer programs with

the ability to learn are developed. A program is said to learn if it automatically improves

its performance at a specific task through experience, paraphrasing Thomas M. Mitchell

[3]. Generally, such programs incorporate self-modifying algorithms that adjust their pa-

rameters when experience in the form of data is presented. Such algorithms pass data

through their operations, updating a tensor, a multidimensional array, of parameters that

represent patterns in the data. Ultimately, an input can be fed to a machine learning

algorithm resulting in an output resembling the learned patterns of that data.

2.5.1. Unsupervised Deep Learning

Deep learning is a subfield of machine learning in which artificial neural networks perform

layers of operations on a dataset in order to learn its patterns. A neural network consists

of nodes, called neurons, and their interconnections. Neurons perform varying opera-

tions depending on their activation function and connections. Artificial neural networks

with multiple layers of operation separating the input and output layers are known as

deep neural networks. The manner in which neurons of a deep neural network are inter-

connected is known as its shape. The architecture of deep neural networks is a descrip-

tion of its shapes and other hyperparameters.

10

Machine learning applications are developed in accordance with the data they intend to

model. Data including examples of how an input affects its output, an input-output pair,

lends itself to supervised learning. Supervised learning applications attempt to map input

values to a corresponding output value, reflecting the characteristics learned in the ex-

ample data. Conversely, data which exhibits only input examples may be used in unsu-

pervised learning applications. Unsupervised learning applications attempt to identify

patterns in the example data to which new inputs can be compared.

2.5.2. Elements of Artificial Neural Networks

Machine learning applications revolve around the data they represent. Data is a collec-

tion of values organized in columns and rows, namely features and examples respec-

tively. The features of a dataset describe the aspects being recorded whereas its exam-

ples are individual recordings. Within this report, example is the term used to describe

individual rows of a dataset. The values of a feature form a probability distribution, rep-

resenting their overall characteristics. Features may have independent value ranges

which could lead to complications in the training of a machine learning model. Thus,

values are often normalized to a range of zero to one using an equation such as the min-

max scaling observed in equation 1. The scaled feature’s value is given with respect to

the minimum and maximum values of the feature’s distribution. [4.]

𝑥!"#$%& =
𝑥 −	𝑥'()

𝑥'#* −	𝑥'()

 (1)

𝑊ℎ𝑒𝑟𝑒	𝑥	𝑖𝑠	𝑎	𝑓𝑒𝑎𝑡𝑢𝑟𝑒!𝑠	𝑣𝑎𝑙𝑢𝑒,	

𝑥"#$	𝑖𝑠	𝑎	𝑓𝑒𝑎𝑡𝑢𝑟𝑒!𝑠	𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑣𝑎𝑙𝑢𝑒,	

𝑥"%&	𝑖𝑠	𝑎	𝑓𝑒𝑎𝑡𝑢𝑟𝑒!𝑠	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑣𝑎𝑙𝑢𝑒,	

𝑎𝑛𝑑	𝑥'(%)*+ 	𝑖𝑠	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑	𝑥.

Data is further manipulated in the process of data preparation. Data preparation involves

the collection, preprocessing, and feature engineering of data [5]. Feature engineering

is the process of developing additional features which often combine or exhibit informa-

tive characteristics of existing features. Feature engineering aims to improve the perfor-

11

mance of a machine learning model by incorporating domain expertise to guide its train-

ing. Domain expertise is the expert knowledge of an experienced researcher or engineer

in a particular field or topic.

Datasets of a particular distribution are purposely divided into various subsets to enable

the training, validation, and testing of a neural network model. Generally, each subset

belongs to the same distribution while containing exclusive and unique examples. The

training subset, or example data, often contains the significant majority of examples and

is used to update the parameters of a model. The validation subset is used to verify the

training process and enables model tuning without influencing the example data. The

test subset is used to evaluate the model after its training and tuning processes have

taken place.

The neurons of a neural network have parameters associated to them known as weights

and biases. Weights describe the connection strength between various neurons within a

network and are used to favor and reinforce certain neural pathways. Biases are values

reflecting the learned characteristics of example data and are updated as the training

process progresses. Deep neural networks propagate examples of training data back

and forth throughout the network while updating their weights and biases accordingly.

Neural networks also exhibit hyperparameters describing the configurations of a model.

Hyperparameters are generally selected before training and tuned using the validation

subset. The number of layers in a neural network, the neurons per layer, and the activa-

tion function of a neuron are types of hyperparameters. Activation functions describe

how data is processed in a network, particularly how a neuron’s input is transformed at

its output. The activation functions discussed in this report are the rectified linear unit

(ReLU) function and the logistic sigmoid function presented in equations 2 and 3 respec-

tively [6]. The ReLU function returns the input value if is positive, otherwise it returns

zero. The sigmoid function returns values ranging from zero to one, where an input of

zero results in an output value of 0.5. The sigmoid function returns values tending to zero

for negative inputs and values tending to one for positive values, scaling with magnitude.

𝑅(𝑥) = max(0, 𝑥)
 (2)

𝑊ℎ𝑒𝑟𝑒	𝑥	𝑖𝑠	𝑎	𝑛𝑒𝑢𝑟𝑜𝑛!𝑠	𝑖𝑛𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒,	

12

𝑆(𝑥) =
1

1	 +	𝑒+*

 (3)

𝑊ℎ𝑒𝑟𝑒	𝑥	𝑖𝑠	𝑎	𝑛𝑒𝑢𝑟𝑜𝑛!𝑠	𝑖𝑛𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒.	

Another hyperparameter of a network is its loss function. A loss function, such as mean-

squared-error (MSE) presented in equation 4, provides a metric to determine how accu-

rately a network’s output represents its associated target. Due to the multidimensionality

of the input and output layers, their neuron’s values are iterated through and their errors

are summed and averaged. The greater the overall error between the target and output

values, the greater the MSE value.

𝑀𝑆𝐸 =
1
𝑛4(𝑦(− 𝑦6(),

)

(-.

 (4)

𝑊ℎ𝑒𝑟𝑒	𝑦# 	𝑖𝑠	𝑎	𝑛𝑒𝑡𝑤𝑜𝑟𝑘!𝑠	𝑖𝑛𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒,	

𝑦9# 	𝑖𝑠	𝑎	𝑛𝑒𝑡𝑤𝑜𝑟𝑘!𝑠	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒,	

𝑖	𝑖𝑠	𝑡ℎ𝑒	𝑖𝑡𝑒𝑟𝑎𝑡𝑜𝑟,	

𝑎𝑛𝑑	𝑛	𝑖𝑠	𝑡ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.

Certain hyperparameters, including the optimizer function and number of epochs, dictate

the manner in which parameters of a network are updated during training. The optimizer

function updates weights while observing the loss function to minimize overall loss. The

adjustable learning rate parameter provides a step size for certain optimizer functions,

such as the Adam optimizer based on stochastic gradient descent [7]. Generally, the

training process consists of several iterations of parameter updating. These iterations

are known as epochs and describe how many times example data is propagated through

a network and its algorithms.

2.5.3. Autoencoder

A deep neural network architecture designed to efficiently learn a representation of train-

ing data is known as an autoencoder. Autoencoders learn from example data to output

13

values which closely represent their input values. The output of an ideal autoencoder

equals that of its input. Although autoencoders can be implemented for unsupervised

learning applications, they are self-supervised as the target output is the input [8]. Gen-

erally, autoencoders are designed with a bottleneck layer imposing a compression of the

original input data. The number of neurons in the bottleneck layer is known as its encod-

ing dimension and indicates the autoencoder’s magnitude of compression.

The operation of an autoencoder assumes the features of the example data somehow

correlate and possess a discernable pattern. An autoencoder may be conceptualized as

the sum of an encoding and a decoding stage. The encoding stage consists of several

layers of decreasing dimension. The features of example data are presented at the indi-

vidual neurons of the input layer and are propagated forwards through the network until

they become compressed at the bottleneck layer. The decoding stage attempts to re-

verse the process, reconstructing the compressed representation of the bottleneck layer

into an output matching the input’s dimensions. Decoding is an imperfect process, re-

sulting in some reconstruction error. A loss function compares the reconstructed output

values to their respective input values and the network’s parameters are optimized to

minimize the loss. [9.]

The performance of the training process for an autoencoder model may be monitored by

its loss history. The loss history consists of training losses recorded after each epoch is

performed. The loss should minimize as the autoencoder learns to improve the repre-

sentation of its example data. Once the training loss has minimized and saturated, the

autoencoder’s parameters contain a representation of the patterns in the example data.

Data not presented during training yet belonging to the same distribution as the training

subset can be described as unseen data. Unseen data does not influence a model’s

parameter updating. Unseen data may be fed to the input of a trained autoencoder to be

decoded with accuracy comparable to the final training loss. The loss is expected to be

similar to the saturated loss if the unseen data closely resembles the training subset.

However, a greater magnitude of loss is observable the more the unseen data differs

from the training subset. This quality may be leveraged to detect anomalies by observing

the loss response with respect to unseen data. Anomalous data would yield a greater

loss than data closely representing the training data. An autoencoder trained on data

acquired during periods of normal condition would learn to represent such a condition.

Unseen data may be passed through the trained model to determine its loss and conse-

quently its associated condition. [10.]

14

3. Methods and Materials

3.1. Workflow

The project was approached with a basic machine learning workflow in mind, adding

consideration for the requirement of a visualization for the dashboard. The steps of the

workflow are listed as follows:

1. Data acquisition and programming environment setup.

2. Data preparation, engineering, and investigation.

3. Select appropriate machine learning model.

4. Train, test, and evaluate the model.

5. Develop a traffic light system powered by the model.

6. Develop and automate a dashboard.

3.2. Environment Setup and Data Acquisition

When beginning the project, a tour of the physical manufacturing line was given. The

software controlling the test equipment was described, including its process for storing

measurement data. The first priority was to import the data into a programming environ-

ment to begin data preparation. Python was selected as the backbone of the program-

ming environment as it is highly supported and compatible with numerous data science

and machine learning frameworks. A virtual environment was created using the Ana-

conda distribution and typical data science packages were installed including Pandas,

Plotly, and Jupyter Notebook. The Anaconda distribution is a data science platform and

comes preloaded with relevant python packages while providing a convenient way to

keep projects self-contained on a computer. Pandas is a data analysis and manipulation

tool, used primarily for its dataframe capabilities. Dataframes provide a fast and robust

way to manage and manipulate datasets, especially those of large dimensions. Plotly is

a graphing library with an assortment of tools designed to help visualize data. Jupyter

15

Notebook is a web-based development environment that provides a way to experiment

with and run code while having a legible and segmented structure. The notebooks have

markdown support allowing text to be included which explain code segments. This plat-

form was selected to enable a newcomer to the project to more easily understand and

follow the code in the event that development on this project should continue after my

contribution has ended.

The data is stored on a company network drive in comma separated value (CSV) text

files. The test software controlling the testers generates the CSV files, logging all meas-

urements recorded per tester per month in individual files. Python scripts were written to

extract and combine the entire backlog of data into a leak dataset. The dataset was

sorted by datetime and contains over a million samples, spanning over a year.

3.3. Data Preparation

Promising features were selected from the dataset and unnecessary features, such as

test system version numbers, were discarded. The resulting dataset contains the fea-

tures presented in table 1. All feature names are italicized when referred to in this report.

Table 1. A leak dataset sample with highlighted features.

The most relevant features of the leak dataset are highlighted. The DL feature (orange)

is a binary number indicating whether the example was logged from the primary (1) or

auxiliary (2) leak tester slot. The Test Time feature denotes the duration (in seconds) the

leak tester took to perform its measurement. The Leak feature represents the atmos-

pheric leakage across the inside and outside of the water trap.

16

Feature engineering was performed to obtain the Product feature, the multiplication of

Test Time and Leak values. This feature is also referred to by the more appropriate name

‘dPxT’, describing the change in atmospheric pressure relating to test time. The project

manager suggested the use of this feature as it had been useful in previous Testerwatch

research. The dPxT feature’s main application in this research is to provide a metric of

the tester’s measurements which is more easily monitored, combining two features into

a one-dimensional feature space.

The remaining features in table 1 are not used in this research but are relevant in diag-

nosis. The Label feature is a binary number indicating whether an individual example

passed or failed the leak test. However, the result of the leak test is irrelevant as this

determination is made after the measurements are performed. Within the scope of this

research, the Label value does not reflect any more information than the measurement

values. The Label value may be used in other applications to determine the scrap rate.

The scrap rate is an indication of how many water trap units fail the testing stages over

time. Scrapped units are unusable and removed from the line.

The test system generating the CSV files performs some data cleaning such as discard-

ing invalid test attempts that occur with negligible frequency and have little impact on the

line’s perceived performance. By consolidating the tester logs, the dataset inherits the

cleaned characteristics. At this stage, the datasets appeared to be in good form as all

values of a feature are sensible, numerical, and share the same datatype and scale.

3.4. Data Engineering

At this stage of design, the goal was to select a subset of the leak dataset that represents

examples under normal operation. A representation of this subset is what will be used to

evaluate future measurement data, provided it shares a similar distribution. To accom-

plish this, the data must be represented in a manner that allows a domain expert to

distinguish normal operation from abnormal operation. When comparing an example to

subsequent examples, it is not uncommon to notice relatively high variance in the values.

This is expected as water trap units are unique, some are expected to fail the leak test.

The number of measurements performed by the leak tester’s primary and auxiliary slots

per hour is confidential. However, this amount is sufficient and enables the use of aver-

aging. Thus, the dataset was downsampled to average each feature’s examples into 20-

17

minute windows. Prior to downsampling, the examples were grouped with respect to

which slot performed the measurement. Downsampling was performed in such a manner

that each example contains 20-minute averages of the Leak, Test Time, and Product

values for each slot. These features were grouped with respect to the slot they were

measured by, a number one indicating primary and a number two indicating auxiliary.

The new L1, L2, TT1, TT2, P1, and P2 features represent each slot’s Leak, Test Time,

and Product respectively.

During downsampling, new features, Count 1 (C1) and Count 2 (C2), were extracted and

added to the downsampled dataset. The value of each count is simply the number of

examples averaged in each 20-minute downsampling window per slot. The primary slot

count is denoted as C1 whereas the auxiliary slot count is denoted as C2. These features

describe how active the tester is during each window, scaling in magnitude with increas-

ing traffic in the line.

Examples collected during periods of line inactivity are irrelevant and may negatively

influence the distribution of the downsampled dataset. During inactivity, no measure-

ments are performed nor logged. However, due to the nature of downsampling into static

windows of time it is possible to encapsulate a few examples immediately before or after

a period of inactivity. These examples may negatively skew averaging and should be

removed. Thus, the dataset was modified, removing examples with a count value below

a certain threshold. This threshold, which will remain confidential, is selected with respect

to the average rate of measurements performed by the tester. The dataset is modified

using Pandas’ dataframe manipulation methods.

Feature engineering was performed after the downsampling stage to produce two ratios

relating to the tester’s slots performance, namely the count ratio (CR) and product ratio

(PR). These two features are inspired by the voltage divider equation and are presented

in equations 5 and 6.

𝐶𝑅 =
𝐶2

𝐶1 + 𝐶2

 (5)

𝑃𝑅 =
𝑃2

𝑃1 + 𝑃2

 (6)

18

The aim of the ratios is to provide a single value that indicates the influence a particular

value has over the other. The count ratio indicates the influence the auxiliary’s count has

over the combined count, calculated as displayed in equation 5. As the tester software

prioritizes the primary slot over the auxiliary slot, the value of CR should be at most 0.5

during periods of high traffic. This is to say the auxiliary slot does not perform more

measurements than the primary slot in a given window of time during normal operation.

Similarly, the product ratio describes the influence of the auxiliary slot’s dPxT value over

the primary. This value, calculated as displayed in equation 6, describes how similarly

each slot performs with respect to the measurements it completes within the 20-minute

windows. During normal operation, PR should be close to 0.5. The PR is more easily

understood when observing the interaction between each tester slot’s dPxT values, ob-

servable in section 4 and described in section 5 of this report. It is practical to train deep

neural networks with normalized data values ranging from zero to one, an intrinsic char-

acteristic the ratios conveniently possess. The other features were normalized during the

subset selection stage.

The dataset and features presented in the Data Preparation section have been substan-

tially modified, resulting in a downsampled dataset with the features presented in table

2.

Table 2. A downsampled leak dataset sample with engineered features.

To summarize, the dataset now contains examples of 20-minute averages of the Leak,

Test Time, and Product (dPxT) features per tester slot alongside the CR and PR values.

As a result of downsampling, the length of the dataset is reduced by several tenfold.

However, the downsampled dataset remains several tens of thousands of examples

long, adequate to successfully train the autoencoder. The actual tester datasets and their

dimensions are confidential as they are the property of GEHC and productivity metrics

shall not be described.

19

3.5. Selecting Subsets

The dataset now contains downsampled averages of the leak tester’s features, including

data acquired during periods of normal and abnormal operation. The ratio of normal to

abnormal operation is heavily skewed towards normal, by design.

In order to select a subset of normal operation from the dataset containing all operating

conditions, domain expertise about the tester is required. Several stages of filtering were

applied to the dataset in order to exclude periods of undesired condition. The filters were

selected with the aim of influencing which sort of input data would trigger a traffic light

warning. All filters only affect the downsampled and averaged dataset. Filtering was per-

formed using Pandas’ dataframe manipulation methods.

Firstly, the dataset was filtered to only include examples with a CR value less than 0.5

indicating the primary slot is indeed used primarily. Secondly, the averages of 20 minutes

of dPxT values should fall within the specification limits set in the tester software. This

ensures the majority of tests are passed, expected during normal condition. Thirdly, the

dPxT values of each slot should be similar indicating that both slots’ tester components

are operating similarly. This characteristic is exhibited with a PR value of about 0.5. At

this stage, the average of the subset’s PR values was also very close to 0.5. This pre-

condition suggests the use of applying control limits centered around the average as a

means to quantify similar slot operation. Using control limits it is possible to determine

when values deviate from the controlled behavior [11].

𝑈𝑝𝑝𝑒𝑟	𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑙𝑖𝑚𝑖𝑡	(𝑈𝐶𝐿):								𝑈𝐶𝐿 = 𝑃𝑅HHHH + 	3	 × 	𝜎 (7)

𝐿𝑜𝑤𝑒𝑟	𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑙𝑖𝑚𝑖𝑡	(𝐿𝐶𝐿):								𝐿𝐶𝐿 = 𝑃𝑅HHHH − 	3	 × 	𝜎 (8)

𝑊ℎ𝑒𝑟𝑒	𝑃𝑅HHHH	𝑖𝑠	𝑡ℎ𝑒	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑎𝑛𝑑	𝜎	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑃𝑅	𝑖𝑛	𝑡ℎ𝑒	𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑	𝑠𝑢𝑏𝑠𝑒𝑡.

The upper control limit (UCL) and lower control limit (LCL) equations are presented in

equations 7 and 8, respectively. The upper and lower control limits provide the bounds

for values that are considered in control. The control limits were used to filter the subset.

The dataset was filtered accordingly with the intention of preparing a training subset that

enables the autoencoder to represent controlled and normal tester behavior.

20

The resulting filtered subset was visualized to make final determinations, displayed in

figure 6.

Figure 6. dPxT of filtered subset displayed, including various biases.

The graph in figure 6 displays about a year’s worth of each tester slot’s dPxT values after

being filtered, indicating that these values correspond to normal tester condition. While

it is nearly impossible to determine individual data points from such a view, an overall

trend is discernible. Although all values displayed are considered normal, the variation

and bias of their distribution improves dramatically beginning October 2019, considering

lower dPxT values indicate better test performance. The zone denoted by a green

dashed line, beginning in January 2020, exhibits further improvement of the distribution.

The outlined area displays a particularly low bias and variance. This is consistent with

the desired test performance GEHC’s engineers work diligently to improve.

At this stage, consideration of the desired performance of the autoencoder was signifi-

cant in selecting its training subset. If the entire dataset displayed in figure 6 were to be

used to train the autoencoder, it would not necessarily flag values with a relatively high

bias as alarming. This is undesirable as the improvements to the line would not be re-

flected in the autoencoder’s representation. Instead, the outlined portion of data was to

be used as the training subset. Although this effectively halved the dataset length, ex-

perimentation indicated the subset length was adequate for training performance. The

resulting dataset will be referred to as the normal subset.

21

The training and validation subsets consist of the normal subset. The validation subset

will be created during training by performing a 20% validation split handled conveniently

by Keras. The model will be trained exclusively using the training subset. The validation

subset is used to evaluate training performance and will not influence training the auto-

encoder. The test subset consists of the abnormal examples and the normal examples

prior to January 2020. The test subset will be used to verify the traffic light colors respond

appropriately, discussed in section 3.8.

Lastly, the features of the training (and thus validation) and testing subsets were normal-

ized to improve the training performance of the autoencoder model. Scikit-learn’s pre-

processing package was installed into the environment for its MinMaxScaler class which

implements min-max scaling. Using the MinMaxScaler, the L1, L2, TT1, and TT2 fea-

tures were normalized to a range of zero to one. The normalized dataset is in the form

presented in table 3.

Table 3. A normalized training subset sample (Datetime index to be omitted).

Scaling was performed on the entire downsampled dataset, including both normal and

abnormal operation, in order for the calculations to take the full distribution of the data

into account. The P1 and P2 features were discarded as the neural network will inher-

ently perform more relevant combinations of the Leak and Test Time features during

training.

22

3.6. Model Selection

An autoencoder must be designed such that it learns to efficiently represent the normal

dataset. The programming environment was updated with the TensorFlow 2 framework.

TensorFlow is a fully featured machine learning platform developed by Google. It pro-

vides tools to build, train, evaluate and deploy machine learning models. This version of

TensorFlow is preloaded with Keras, a deep learning API that leverages TensorFlow’s

infrastructure. Keras is useful for developing and prototyping deep learning models.

Using Keras, an autoencoder is built by stacking layers of neurons in the desired network

shape while specifying other hyperparameters. The training data features dictate the in-

put and output layer dimensions of the autoencoder.

 input_layer = Input(shape=(6,))
 encoded = Dense(5, activation='relu')(input_layer)
 encoded = Dense(4, activation='relu')(encoded)
 encoded = Dense(3, activation='relu')(encoded)

 decoded = Dense(4, activation='relu')(encoded)
 decoded = Dense(5, activation='relu')(decoded)
 decoded = Dense(6, activation=‘sigmoid')(decoded)
 autoencoder = Model(input_layer, decoded)

Listing 1. Stacking layers of the autoencoder using Keras, written in python [8].

The code in listing 1 builds an autoencoder model consisting of seven layers with six

neurons at the input and output layers and an encoding dimension of three. The neurons

in the layers of the autoencoder were specified with the activation functions depending

on their purpose. The rectified linear unit (ReLU) function was used as the activation

function for every neuron except for those in the output layer. The activation function for

the output layer’s neurons was specified as the sigmoid function.

23

The code presented in listing 1 produces an autoencoder neural network whose shape

is displayed in figure 7.

Figure 7. The autoencoder’s shape with indication of layer types.

The network displayed in figure 7 demonstrates how the input data would be encoded

into a smaller dimension and decoded into its original dimension. The bottleneck layer

consisting of three neurons may also be referred to as the autoencoder’s encoding di-

mension.

3.7. Model Training

The selection of hyperparameters greatly influences the performance of the autoen-

coder. Brute force, educated guessing, and trial-and-error were the main methods of

finding the best hyperparameters, such is the standard practice at the time of writing.

Many combinations of hyperparameters were experimented with while monitoring their

resulting training and validation losses. The final hyperparameter selection is discussed

in the following.

24

Keras does not accept Pandas dataframes as an input type. The environment was mod-

ified with the installation of the NumPy package which provides a form of data manage-

ment compatible with Keras. The dataset dataframes are ordered by a datetime index.

However, this information was not required during training as the datasets would un-

dergo shuffling. Thus, the training and test subsets were reindexed using integers and

the datetime feature was removed. The subsets were then converted to NumPy arrays.

Prior to training, Keras requires a model to be compiled with the desired optimizer func-

tion and its associated learning rate as well as the loss function. The autoencoder was

compiled using the Adam optimizer with a learning rate of 0.0001 and Keras’ mean

squared error (MSE) loss function. Listing 2 presents the code declaring the optimizer

and loss function.

 autoencoder.compile(optimizer=Adam(learning_rate=0.0001),
 loss='mean_squared_error')

 ae_fit = autoencoder.fit(train, train,
 epochs=20,
 validation_split=0.2,
 batch_size=10,
 shuffle=True,
 verbose=2)

Listing 2. Code to compile and train the autoencoder with specified hyperparameters [8].

Keras’ training method allows users to specify several arguments, hyperparameters re-

lated to training. Firstly, the training data was specified to be the training subset. Sec-

ondly, the test data was also declared to be the training subset due to the nature of the

autoencoder attempting to reconstruct its input. Thirdly, a batch size of 10 and 20% val-

idation split ratio were selected. Lastly, training was instructed to occur for 20 epochs

with a shuffle performed at the beginning of each epoch. Shuffling performed at every

epoch prevents the model from learning order in the data.

The model was trained as configured and its associated history of training and validation

loss was recorded. The trained model and loss history were saved and can be reloaded

for use without retraining. The autoencoder code was inspired by the Keras guide involv-

ing autoencoders and the MNIST dataset [8].

25

3.8. Traffic Light System Development

The traffic light system consists of two visual components, namely the traffic light graph

and the input data graph. The trained autoencoder model is used to determine how

closely input data resembles the learned representation of normal operation. This is

measured by the MSE loss metric which is used to quantify how distinct an input is from

the representation. The traffic light system was designed to leverage this characteristic

to determine the magnitude of change in condition of the leak tester.

This was implemented by applying thresholds of the MSE loss values relating to the

colors of the traffic light. A green color should indicate that the input data resembles a

normal condition. A yellow color should indicate an abnormal, although not extreme, de-

viation from normal operation. A red color should indicate the input data has little to no

resemblance of a good condition.

The respective thresholds were selected using the autoencoder’s loss history resulting

from an input of the normal subset. This history was transposed by subtracting the train-

ing’s final epoch’s loss value from each history value. This transposition simply moves

the average of the history’s distribution to be very close to zero, allowing the thresholds

to be determined on a near absolute scale. This characteristic improves the visual dis-

tinction of abnormal cost values when observing a graph of the loss history by eliminating

the training loss offset. Further mentions of the transposed loss values are referred to as

absolute loss within this report.

Given the dataset represents normal operation, the vast majority of examples corre-

sponding to this absolute loss history should yield a green color in the traffic light. Exam-

ples with a cost greater than any value given in this history’s distribution should raise

yellow or red colors, respective to magnitude. In the interest of leaning towards false

alarm rather than missed alarm, the threshold for a yellow color was set with some tol-

erance in mind. A yellow color should correspond to values that are greater than the

upper control limit of the history’s distribution. The yellow color’s threshold was set to be

this upper control limit. Values with a red warning should greatly exceed any values ob-

servable in the loss history. This threshold was set to be twice the maximum observed

value. The test subset was used to validate adequate performance of the declared

thresholds.

26

Once the thresholds were established, a script was written to handle the inputs and out-

puts of the autoencoder. The purpose of the script is to prepare data for visualization in

the graphs by applying the autoencoder and the color thresholds. Any autoencoder input

data used is prepared in exactly the same manner as the training subset, undergoing the

same manipulations and using the same normalization scaler. Its loss value is also trans-

posed in the same manner before filtering by thresholds. Within the context of this report,

the output of the autoencoder is the input’s associated loss, not the reconstructed values

at its output layer.

The script transforms and prepares an input example or dataset and passes it through

the autoencoder. The script adds a feature to the input dataset containing the absolute

loss. A conditional script creates another new feature containing the color relating to an

input absolute loss. The input dataset’s original Leak, Test Time, CR, and PR features

remain unaltered. The input dataset’s new features for absolute loss and color are used

in the traffic light graph.

The traffic light graph was designed to indicate condition by displaying the color associ-

ated to a 20-minute window of tester performance. The data presented in this view is

created by the autoencoder’s loss response to its input. The graph is essentially a bar

graph with bars of constant height and varying color. The graph was designed to be

interactive, allowing users to adjust the time on the x-axis to access a historical view of

the traffic light colors over various periods of time.

The input data graph’s purpose is to corroborate the results of the traffic light graph. The

data presented in this corroborative graph is not influenced by the autoencoder. The leak

tester’s data is displayed on an interactive line graph, presenting the dPxT (per slot), CR,

and PR features. Additionally, dashed lines indicating the target value and specification

limits for dPxT are included. The data presented in this graph was downsampled and the

same features were generated. However, the data was not filtered and thus accurately

resembles the tester’s performance for each 20-minute window. The graph is interactive,

allowing users to adjust the time on the x-axis to access different ranges of examples.

The scale of the ratios is intentionally left unaltered as to not visually interfere with the

dPxT lines. Below the graph is a rangefinder, enabling quick jumps along the time axis.

The graphs and interactive controls were designed using Plotly’s Graph Objects module.

27

As the development of the traffic light system is considerably ‘hands-on’, a brief summa-

rization is given. The system consists of scripts, a trained autoencoder, and two graphs.

The system transforms input data into one of two views. One view displays a historical

graph of colors related to the condition of the leak tester, powered by the autoencoder.

The other view is kept separate from the autoencoder and displays the input data used

to determine these colors, enabling a user to corroborate the traffic light graph’s results.

Samples of these views are presented in section 4.2.

The code used to build and populate the graphs is omitted as it is the property of GEHC

and is not the focus of this report. However, the scripts and graphs are mentioned to

provide insight on any influence they may have had on the development of the autoen-

coder-based condition monitoring solution. Furthermore, their mentions help to explain

the traffic light graphs’ appearances in section 4 of this report.

3.9. D-fend Dashboard Development

In order to observe the condition monitoring solution, the D-fend dashboard was devel-

oped to be displayed on a large monitor in the production area. To enable further devel-

opment of the dashboard and given previous use of Plotly, the dashboard was developed

using JupyterDash. JupyterDash provides Plotly Dash tools integrated into Jupyter Note-

book to deploy a web-based dashboard while providing support for Plotly graphs. The

structure of the dashboard was built using mainly Dash Core Components, included in

the installations.

The dashboard consists of visual and nonvisual elements. The visual elements have

been discussed and include the traffic light graphs, their interactive buttons, and tabs for

accessing the diagnosis tools. The nonvisual elements include a data pipeline and auto-

mation. The purpose of automation is to enable the graphs to periodically update to in-

clude new tester data stored on the server. The automation processes are triggered via

callbacks implemented within the dashboard, which are only triggered when the dash-

board is running. The purpose of the data pipeline is to access and prepare newly rec-

orded tester data on the server for use with the graphs. Any incoming data must be

processed and prepared in exactly the same manner to ensure consistent performance

of the autoencoder. This includes feature generation, downsampling, filtering, dataframe

manipulation, normalizing (with the preconfigured scaler), and prediction.

28

The code used to build, automate and deploy the dashboard and graphs is omitted as it

is the property of GEHC and is not the focus of this report. However, the dashboard and

graphs are mentioned to provide insight on any influence they may have had on the

development of the autoencoder-based condition monitoring solution. Furthermore, their

mentions help explain the dashboard’s and graph’s appearance in section 4 of this re-

port.

4. Results

4.1. Training Performance

During training of the autoencoder two loss values were recorded after each epoch, the

training subset loss and the validation subset loss.

Figure 8. The autoencoder’s training and validation loss history.

Training loss and validation loss have converged and saturates at an MSE value of ap-

proximately 0.0024. The training loss history is evaluated in section 5 of this report.

29

4.2. Dashboard Samples

The dashboard, including the traffic light graph and input data graph, automatically up-

dates periodically. The graphs are interactive allowing users to pan and zoom the graphs.

Additionally, both graphs feature mouseover text, revealing actual values for the targeted

data point. To accommodate the static nature of a report, several samples are presented

with a description of their point of interest.

Figure 9. Typical sample of the dashboard and its views, describing a situation for July 15, 2020.

Figure 9 displays a typical view of the dashboard with the traffic light tab selected. The

other tabs, visible in the topmost portion of the sample, are implemented for diagnosis

but are not the focus of this report. The visible elements and the current situation are

described as follows.

30

The upper graph observable in figure 9, displaying colored bars, represents a historical

view of the traffic light. This view is powered by the autoencoder. Each bar represents a

20-minute window of the leak tester’s performance. The x-axis displays a range of time

which may be shifted, narrowed, or widened to the user’s needs. The lower graph, dis-

playing several lines, exhibits the features listed in the legend over a selectable window

of time. This view is not influenced by the autoencoder. Each point along a continuous

line represents a 20-minute average of the tester’s actual measurements for the selected

window of time. The lines interpolate from point to point to improve visual clarity. The

upper and lower dashed lines represent the upper and lower specification limits, respec-

tively. The central dashed line represents the target value for which the tester is de-

signed. Below this graph is a rangefinder, displaying a large range of the dataset to en-

able quick jumps along it.

The situation presented in this sample can be quickly determined by looking at the upper

traffic light view. The majority of the line’s performance over the period of three days is

considered normal and is indicated by the green bars. The normal performance is also

visible in the corroborative view, displaying the manner in which the dPxT values for each

tester slot are closely similar throughout time. Generally, normal performance is visible

when the orange and blue lines are near each other. White bars simply denote inactivity

of the manufacturing line. However, around midnight of July 15, the traffic light warns of

abnormal tester performance indicated by yellow and red bars. This abnormal period

lasts for several hours and is followed by line inactivity. Directly below the bar graph,

occurring at the same time, a sudden upwards jump of the dPxT 1 value is visible in the

line graph.

31

A second sample of the dashboard and its condition monitoring views is presented in

figure 10, describing a situation for July 15, 2020.

Figure 10. A second sample of the condition monitoring views for a situation on July 15, 2020.

Figure 10 displays a similar view to figure 9 of the same situation. The window of time

selected for both graphs has been narrowed down to a day centered around the abnor-

mal performance. Furthermore, mouseover text is visible for the red bar representation

at 23:00. The bar graph reveals the absolute loss, a value of 0.165, for its respective

example data resulting from application of the autoencoder.

32

A third sample of the dashboard and its condition monitoring views is presented in figure

11, describing a situation for June 14, 2020.

Figure 11. A third sample of the condition monitoring views for a situation on June 14, 2020.

Figure 11 displays a different situation of a short period of abnormal operation occurring

on June 14. The emphasis of this sample is on the mouseover text visible in the line

graph. Tags appear next to each line graph indicating its value associated to the point in

time the mouse is targeting. Additionally, the tag for dPxT 1 displays the color of the

traffic light of the example. However, this is merely a feature added to the dataset and

does not influence the line graph’s representations.

33

The fourth and final sample of the dashboard and its condition monitoring views is pre-

sented in figure 12, describing a situation for July 30-31, 2020.

Figure 12. A fourth sample of the condition monitoring views for a situation occurring during on
July 30-31, 2020.

Figure 12 displays yet another situation occurring during July 30-31, 2020. The situation

displayed is a period of uncharacteristic tester performance. This sample intends to re-

veal the autoencoder’s attempt to discern a particularly difficult case.

All the samples presented are evaluated in further detail in section 5 of this report. How-

ever, the fact that the traffic light view’s alerts correspond to the input data’s alarming

examples is an indication of a working condition monitoring solution. This is satisfying

result considering the two views’ data are derived with completely separate methods.

34

5. Discussion

5.1. Training Evaluation

The graph in figure 8 represents the training performance of the autoencoder with re-

spect to its declared loss function. At a glance, the graph displays a very satisfying trend

for training performance. The training loss and validation loss both decrease uniformly

as the parameters of the neural network update after each epoch. The losses are con-

verged and saturated. This indicates that the model is neither underfitting nor overfitting,

suggesting it will generalize well to unseen data. This assumes the unseen data follows

the characteristics of the training data’s distribution. Furthermore, saturation is estab-

lished by approximately the tenth epoch. The more epochs trained after this point the

greater the risk of overfitting. It is unknown the exact impact the additional epochs may

have had in this regard. This result was the most promising out of the entirety of the

hyperparameter experimentation phase.

The MSE loss value is a measure of how well the autoencoder reconstructs the input at

its output. This is measured for both the training subset and the validation subset. The

lower the value, the better the reconstruction. However, these values are likely decep-

tively low due to the normalization of the input data. Normalization is required to effec-

tively train the neural network. However, I suspect the distribution used to set the nor-

malization scaler was not adequately prepared. As the MinMaxScaler is prone to outliers,

further filtering of the training data would likely improve the validity of the MSE loss met-

ric. Despite this, I believe the generalization assumption holds given any input data uses

the same scaler.

The decision in section 3.5 to select a training subset from the distribution with the lowest

variance and bias also impacts generalization. In the event that the tester’s distribution

continues to change over time, the autoencoder must be retrained on a training subset

representative of the updated distribution.

The test subset’s examples and loss responses were investigated case-by-case to en-

sure adequate separation from the saturated trained loss. The investigation was per-

formed to determine whether the traffic light thresholds were set appropriately. About

98% of all examples considered abnormal were flagged as either a yellow or red warning.

35

The distinction between yellow and red warnings should be determined by a technician

with regards to the desired sensitivity for alerts.

5.2. Dashboard Sample Evaluation

The dashboard sample visible in figure 9 displays a satisfying result. The goal of moni-

toring the leak tester’s performance via an autoencoder is essentially accomplished. The

model has learned to represent the filtered training dataset with practical accuracy. This

is apparent when considering the line graph and focusing on the behavior of each tester

slot’s dPxT values, which are a representation of the tester’s overall measurements.

When these values are within specification limits and are similar to each other their re-

sulting loss detected via the autoencoder does not trigger a yellow or red warning. How-

ever, when these values differ by a substantial amount a warning is triggered.

Figure 10 displays an absolute loss associated to the divergent behavior which is signif-

icantly greater than the saturated training and validation losses. This indicates that the

thresholds deciding traffic light color are impactful and perform the desired function.

These thresholds may be tuned to adjust the sensitivity of the traffic light and should

ultimately be decided by an engineer with domain expertise over the matter.

The motivation for creating the product ratio, PR or dPxT Ratio, is clearly visible in figure

10. When each tester slot’s product (dPxT) value behaves in a manner visible in the

latter half of the line graph, the PR value is close to 0.5. However, in figure 11 the mouse-

over reveals a green tag displaying a low PR value of 0.026 when the slot’s measure-

ments are divergent. Furthermore, the targeted case also has a count ratio, CR, above

0.5 indicating the auxiliary slot has taken over the majority of the process. Both of these

are undesired characteristics and may warrant investigation for maintenance needs.

Figure 12 exemplifies an instance of when the traffic light system may be used to detect

less obvious abnormalities. While the majority of measurement values are within speci-

fication limits, the traffic light indicates a deviance in performance between the slots. This

feature may be beneficial in identifying maintenance needs before an issue has become

drastic. Figure 12 also demonstrates the value of a corroborative view for the traffic light

bar graph, improving its diagnosis capabilities.

36

5.3. Design Considerations and Shortcomings

The interesting characteristic of training an autoencoder to represent normal operation

is the absence of explicitly declaring limits for various combinations of input features.

Due to the nature of the neural network, all input features are combined in complex var-

iations that are likely unintuitive for a human engineer. There may be interactions occur-

ring that would indicate alarming performance in the input data that are completely un-

noticed by myself and other expert observers. By only applying thresholds to the result-

ing loss, it is possible to be alerted of a situation to which human experts are oblivious

to. However, this characteristic also increases the ambiguity of such a solution. As a

result, the system should only be used as complimentary solution to tradition statistic

monitoring methods as it cannot guarantee accurate and reliable condition monitoring.

When designing the system, a particularly difficult data aspect to take into account was

the temporal state. The raw data stored on the company server is timestamped and sev-

eral measurements are performed every few minutes. The decision to downsample the

data arose from my previous work with the leak datasets. I had failed to find correlation

in the measurement values as a time series when applying my, albeit limited, data sci-

ence techniques. However, research and discussion indicated that this is to be expected

as the nature of maintenance requirements is undefined and limitedly understood.

Thankfully, downsampling provided a crude, yet practical, means of incorporating a tem-

poral aspect of the data. In discussion with the project manager, it was agreed that a 20-

minute resolution of awareness is adequate to monitor the ongoing condition of the

tester.

The development of the monitoring solution involved the creation of several systems

ranging from data acquisition and transformation to displaying the results. In the interest

of reaching a practical use case of the application, development progressed as swiftly

as possible. Although the outcome was practical, hasty design decisions were imple-

mented.

The preparation of the training data was limited by my understanding of the tester’s con-

dition and its reflection in the data. This limitation is an indication of my level of domain

expertise in the matter. Data preparation inherits any assumptions made about the con-

dition of the tester. The level of domain expertise and assumptions made are reflected

in the representation of normal condition. Closer cooperation with the D-fend line’s ex-

perienced engineers would have undoubtedly improved the validity of the representation.

37

The development of the autoencoder and its history of hyperparameter tuning were not

logged nor recorded. The development progressed predominantly with a trial-and-error

approach. The autoencoder’s hyperparameter selection was determined with a desired

loss response in mind. The intention of linking traffic light colors to the MSE loss of input

data led to rudimentary hyperparameter selection choices. Hyperparameter tuning was

performed while comparing the autoencoder’s loss response for the validation and test

data. As soon as the responses were distinct enough to apply thresholds to, the hyperpa-

rameter tuning phase ended. Although this provided practical results, the autoencoder

design is not completely theoretically sound. For example, the use of the ReLU activation

function is prone to vanishing outputs at the neurons for values that approach zero. Cou-

pled with the MinMaxScaler issue discussed in section 5.1, it is possible the network had

issues performing backpropagation. Furthermore, different optimizer functions were not

experimented with.

The normal condition representation also lacks a ground truth to be used in validation.

Thus, the traffic light’s warnings must be investigated case by case to evaluate their

reliability and validity. This results in a lack of empirical analysis of the true performance

of the traffic light system. However, should adequate maintenance information be col-

lected alongside its related measurement data, such an analysis could be conducted.

6. Conclusion

The D-fend dashboard is used alongside other D-fend manufacturing line monitoring

tools in the production area of GEHC. The other tools monitor statistics related to the

scrap rate and measurement values of the water trap units. The D-fend dashboard’s

value is in assessing the tester’s data to determine its condition without relying on the

scrap rate. This is significant as the scrap rate may only indicate abnormal tester condi-

tion retroactively. The dashboard’s most significant capability is being able to determine

a state of condition without explicitly monitoring the tester itself. Although results repre-

sented in the dashboard may not be completely reliable, they do provide a justifiable

warning for maintenance needs.

The actual normal condition of the tester is dynamic and may be represented in endless

ways. The approach of training an autoencoder to build a reference representation is

38

flexible as further development allows for the representation to be adjusted. This adjust-

able characteristic essentially allows engineers with domain expertise to improve the

reliability of the traffic light’s warnings. This is accomplished by improving the training

subset preparation process, resulting in a more concise definition of normal condition.

The thresholds defining traffic light colors would then be updated accordingly, adjusting

the sensitivity of the warnings.

As the development of the Testerwatch project and D-fend dashboard continues, other

condition monitoring techniques and methods may be worthwhile investigating. With re-

gards to the research described in this report, emphasis on the selection and preparation

of the training subset are paramount. The performance of any machine learning and

deep learning application is superseded by the quality of its training data. Furthermore,

hyperparameter search tools are constantly being developed and improved during the

time of writing. These tools may save substantial experimentation time, allowing devel-

opment time to be more appropriately allocated.

Alternative machine learning techniques may also improve the development of a condi-

tion monitoring system. An autoencoder leveraging a long short-term memory (LSTM)

network may be able to detect useful patterns in the leak tester data. An LSTM is an

artificial recurrent neural network that is trained on blocks of data spanning over a deter-

mined time frame. LSTM and autoencoder techniques may be coupled to circumvent the

downsampling convention used in this research. However, the development and re-

search involved to implement such a system is much more intensive.

In conclusion, the developed D-fend dashboard is a functional condition monitoring so-

lution for the D-fend line’s leak tester. The approach of implementing an autoencoder is

practical given the undefined nature of actual normal condition. The implementation of a

traffic light view with accompanying corroborative view allows for the warnings to be ex-

plained. The research performed sheds light on the possible capabilities of predictive

maintenance solutions given the current state of the D-fend line’s data collection. Further

development would not require a complete redesign of the monitoring solution. Improve-

ment of reliability and validity would begin by revisiting training subset preparation and

threshold tuning.

39

References

Layout of this page in the number (Vancouver) referencing system:

1. GE Healthcare Services. D-fend Pro+ Water Trap Product Page Containing Im-

age and Description [online]. GE Healthcare Storefront: GE Healthcare;

URL: https://services.gehealthcare.com/gehcstorefront/p/M1200227.

Accessed 25 November 2020.

2. What is Predictive Maintenance? Benefits and Examples [online]. Fiix;

URL: https://www.fiixsoftware.com/maintenance-strategies/predictive-mainte-

nance/.

Accessed 11 August 2020.

3. Mitchell TM. Machine Learning. Singapore: McGraw-Hill; 1997.

4. Loukas S. Everything You Need to Know About Min-Max Normalization: A Py-

thon Tutorial [online]. Towards Data Science; 28 May 2020

URL: https://towardsdatascience.com/everything-you-need-to-know-about-min-

max-normalization-in-python-b79592732b79.

Accessed 11 November 2020.

5. Scott L. Data Preparation for Machine Learning: The Ultimate Resource Guide

[online]. Lionbridge; 9 July 2020

URL: https://lionbridge.ai/articles/data-preparation-for-machine-learning-the-ulti-

mate-resource-guide/.

Accessed 29 October 2020.

6. Wood T. What is the Sigmoid Function? [online]. DeepAI;

URL: https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function.

Accessed 30 October 2020.

7. Keras API Reference. Adam Optimizer [online]. Keras;

URL: https://keras.io/api/optimizers/adam/.

Accessed 12 July 2020.

8. Chollet F. Building Autoencoders in Keras [online]. The Keras Blog; 14 May 2016

URL: https://blog.keras.io/building-autoencoders-in-keras.html.

Accessed 13 May 2020.

9. Jordan J. Introduction to Autoencoders [online]. Self-publication; 19 March 2018

URL: https://www.jeremyjordan.me/autoencoders/.

Accessed 10 May 2020.

40

10. Kienzler R. Using Keras and TensorFlow for Anomaly Detection [online]. IBM De-

veloper; 2 March 2018

URL: https://developer.ibm.com/tutorials/iot-deep-learning-anomaly-detection-5/.

Accessed 24 July 2020.

11. Berardinelli C. The Complete Guide to Understanding Control Charts [online].

ISIXSIGMA;

URL: https://www.isixsigma.com/tools-templates/control-charts/a-guide-to-con-

trol-charts/.

Accessed 14 November 2020.

