
Bachelor’s Thesis

Bachelor of Business Administration, Business IT

2020

Vesa-Matti Antero Mäntysaari

PLANNING AND
IMPLEMENTATION OF
HONEYPOT SYSTEM

– Building of a bogus Microsoft SQL server

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Bachelor of Business Administration, Business IT

2020 | 32 pages, 8 in appendices

Vesa-Matti Antero Mäntysaari

PLANNING AND IMPLEMENTATION OF
HONEYPOT SYSTEM

­ Building of a bogus Microsoft SQL server

The main objective of the thesis’ was the building of a prototype bogus Microsoft SQL server,
essentially creating a honeypot Microsoft SQL server. Additional machines like the Intra were
included to determine how the honeypot Microsoft SQL server could be integrated into a
believable honeypot network.

Requirements for the honeypot Microsoft SQL server and honeypot network were established
and a constructive research method was selected. The honeypot SQL server would be considered
a success if one could connect to it with genuine Microsoft SQL tools, whilst for the honeypot
network the number of total machines was set to five, each with their own separate functions.

During the research portion for the required hardware different bare metal and virtualization
technologies were examined with the final plan materializing around nested virtualization with the
Oracle VM VirtualBox and Proxmox, whilst in the Microsoft SQL server research, the prevalence
of Tabular Data Stream protocol on top of TCP was discovered.

The building of the honeypot SQL server in Python proceeded quickly once it was discovered that
Tabular Data Stream packets contain the message type as the first byte in the message.

As forensics the logs from the machines inside the honeypot network were analyzed and an attack
was confirmed after the machines were breached with either Kali tools or the mere browser, whilst
the honeypot SQL server was subjected only to port scan and a connection test with the sqlcmd
utility.

In the end, the additional machines which were meant to bring substance to the experiment were
a success as the Intra wiki allowed the hiding of critical information believably into the page edit
history, while the prototype of a honeypot Microsoft SQL server gave a successful impression of
a working database server while also highlighting what the full honeypot database system would
need to fool more experienced attackers.

KEYWORDS:

honeypot, HIDS, Microsoft SQL Server, Tabular Data Stream, Proxmox, nested virtualization,
computer forensics

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tradenomi, Tietojenkäsittely

2020 | 32 sivua, 8 liitesivua

Vesa-Matti Antero Mäntysaari

HUNAJAPURKKIJÄRJESTELMÄN SUUNNITTELU
JA TOTEUTUS

­ Microsoft SQL -valetietokantapalvelimen rakentaminen

Opinnäytteen päätarkoituksena oli rakentaa prototyyppi Microsoft SQL -valepalvelimesta,
käytännössä siis itsenäinen Microsoft SQL -palvelin hunajapurkki. Jotta pystyttäisiin
päättelemään, miten hunajapurkin voisi uskottavasti liittää osaksi hunajapurkki ympäristöä,
projektiin lisättiin lisäkoneita, kuten sisäinen wikisivusto.

Asetettiin vaatimukset hunajapurkki Microsoft SQL -palvelimelle ja hunajapurkki ympäristölle.
Työssä käytettiin konstruktiivista tutkimusmenetelmää. Hunajapurkki SQL -palvelimen toteutusta
pidettäisiin onnistuneena, jos siihen pystyttäisiin yhdistämään aidolla Microsoft SQL -työkalulla.
Ympäristölle asetettiin vaatimukseksi viisi tietokonetta, joista jokaisella oli erilainen funktio.

Laitteistovaatimusten tutkinnassa käsiteltiin erilaisia ”bare metal” -palvelintyyppejä ja
virtualisointiteknologioita, mutta lopullinen suunnitelma koottiin sisäkkäisen virtualisoinnin
ympärille käyttäen Oracle VM Virtual Boxia ja Proxmoxia. Microsoft SQL -palvelimen tutkinnassa
havaittiin sen käyttävän Tabular Data Stream -protokollaa TCP-yhteiskäytännössä. Hunajapurkki
Microsoft SQL -palvelimen ohjelmointi Pythonilla sujui nopeasti, kun havaittiin, että Tabular Data
Stream -paketit sisältävät viestityypin ensimmäisenä bittinä.

Tietoturvaloukkauksen tutkintaosiossa hunajapurkkiverkkoon kuuluvilta tietokoneilta lähetettyjä
lokeja analysoitiin ja varmistettiin tapahtunut hyökkäys joko Kalin työkaluilla tai pelkällä selaimella.
Hunajapurkki Microsoft SQL-palvelimeen kohdistettiin porttiskannaus ja yhteydentestaus
SQLCMD-työkalulla.

Työssä todettiin hunajapurkkiverkkoon liitettyjen lisätietokoneiden tuoneen lisäarvoa ja
uskottavuutta projektiin, sillä sisäinen wikisivusto salli kriittisen tiedon piilottamisen uskottavalla
tavalla sivun muokkaushistoriaan. Hunajapurkki Microsoft SQL -palvelimen prototyyppi antoi
uskottavan vaikutelman toimivasta tietokantapalvelimesta, ja samalla korostui, mitä täysi
hunajapurkkitietokantajärjestelmä tulisi tarvitsemaan huijatakseen kokeneempiakin hyökkääjiä.

ASIASANAT:

hunajapurkki, HIDS, Microsoft SQL Server, Tabular Data Stream, Proxmox, nested virtualization,
forensiikka

CONTENT

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

2 REQUIREMENTS FOR THE HONEYPOT SYSTEM 9

3 FINALIZATION OF THE HONEYPOT PROTOTYPE PLAN 10

3.1 What is nested virtualization 12

4 BUILDING THE HONEYPOT PROTOTYPE 13

4.1 pfSense firewall 14

4.2 Office computer 15

4.3 Log collector 16

4.4 MediaWiki powered Intra server 16

4.5 Bogus Microsoft SQL server 18

5 BREAKING INTO THE HONEYPOT 20

5.1 Office computer 21

5.2 MediaWiki powered Intra server 22

5.3 Bogus Microsoft SQL server 24

6 FORENSICS 26

6.1 Office computer 26

6.2 MediaWiki powered Intra server 27

6.3 Bogus Microsoft SQL server 28

7 CONCLUSION 31

REFERENCES 32

APPENDICES

Appendix 1. Researching the Microsoft SQL 2017 server
Appendix 2. Building the bogus Microsoft SQL database server

FIGURES

Figure 1. Network diagram for the honeypot node 11
Figure 2. Nested virtualization shown as levels (Wasserman, 2013) 12
Figure 3. Client to server connection steps shown as a simple diagram ([MS-TDS]:
Tabular Data Stream Protocol, 2020) 1
Figure 4. Flowchart of the server states in TDS protocol ([MS-TDS]: Tabular Data
Stream Protocol, 2020) 5

PICTURES

Picture 1. Proxmox VM system settings with enabled nested virtualization support 13
Picture 2. Proxmox networking table 13
Picture 3. Network devices connected to the pfSense in Proxmox 14
Picture 4. The enabled interfaces on pfSense’s WebGUI 14
Picture 5. The changed Tunable in pfSense advanced settings 14
Picture 6. pfSense WAN port firewall rules 15
Picture 7. pfSense LAN port firewall rules 15
Picture 8. UFW firewall status showing the open SSH ports 15
Picture 9. Verifying that usage of sudo is not allowed 16
Picture 10. Log Collector up and running as “logpot” 16
Picture 11. Verifying that DNS service works 17
Picture 12. The main page on Intra 17
Picture 13. Verifying that the Apache is not exposing version information to client 18
Picture 14. The scan result for the default gateway 20
Picture 15. THC-Hydra showing the correct password for user pertti 21
Picture 16. The directory listing of Documents folder 21
Picture 17. Todo file printed to the CLI 22
Picture 18. Intra page saying that database should be used to save customer data 22
Picture 19. Edit history of talk page showing the message Jyrki had sent 23
Picture 20. Edit history page for user Pertti showing Jyrki’s message 23
Picture 21. The diff page showing the database credentials that were edited out 24
Picture 22. The recon query 24
Picture 23. Unexpected connection dropout 25
Picture 24. Kibana showing the difference between failures and successes 26
Picture 25. Logs showing the brute force and the successful login to Pertti’s account 27
Picture 26. Command sudo mkdir checkpoint failed 27
Picture 27. Log entry showing 10.0.2.32 accessing the edit page function 28
Picture 28. Log entry showing the user accessing page’s edit history 28
Picture 29. User accessing the diff function on the page that contained credentials 28
Picture 30. The successful binding to port 1433 and the first connection 29
Picture 31. The full connection establishment and authentication for user sa 29
Picture 32. The recon query and the following disconnect 30
Picture 33. Showing the usage of sqlcmd 1
Picture 34. The SQL query and it’s result 1
Picture 35. Recorded traffic filtered to show only TDS traffic 2
Picture 36. The environment change from “master” to “tuotteet” 2
Picture 37. Set quoted identifier 3

Picture 38. Set text size to 4096 3
Picture 39. The select all Transact-SQL query 3
Picture 40. Table returned by the server 3
Picture 41. Determine the packet’s meaning with the header type 1

TABLES

Table 1. Nested virtualization support for AMD Ryzen platform 10
Table 2. Machines and their function in the honeypot system 11
Table 3. Scan results gathered 20
Table 4. Machine IPs and hostnames mapped 21

LIST OF ABBREVIATIONS

Abbreviation Explanation of abbreviation (Source)

Bare metal Physical dedicated server (Reynaldo, 2014)

Beats Open and free data shipper platform (Beats: Data Shippers
for Elasticsearch | Elastic, 2020)

HIDS Host-based intrusion detection system (Wazuh · The Open
Source Security Platform, 2020)

Honeypot Security resource that is meant to be attacked (Spitzner
2002, 58)

TDS Tabular Data Stream ([MS-TDS]: Tabular Data Stream
Protocol, 2020)

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

1 INTRODUCTION

The thesis’ aim was to establish the usefulness of a subterfuge technique that is not

commonly used, a bogus Microsoft SQL database without an actual database as the

backend. In public GitHub there are database honeypots available that either act as a

proxy to a dummy database like MongoDB-HoneyProxy or as a low to medium-

interaction honeypots for non-Microsoft database solutions like nosqlpot. (Nazario, 2020)

Hence, there was a need for this research.

The bogus database was written in Python and setup in an environment that simulated

the office network of a small Finnish metal industry company, with its implementation of

a bogus SQL database being considered a success if one can connect to it via genuine

Microsoft SQL tools and get an impression of a working server.

To tackle this problem, the constructive research method was used to first determine the

requirements for the system (for both the bogus database prototype and the additional

machines required to simulate the network) and then, built and tested. In the bogus SQL

database’s case this meant it was necessary to research how the Microsoft SQL tools

and a genuine Microsoft SQL server communicate and then use the acquired knowledge

to build a bogus SQL database prototype. The research portion for the additional

machines necessitated the specification of what services the machines needed to

provide and how those would be used to lead the attacker to the next step.

After these phases were done, the logs were analyzed to verify the points where the

monitoring shows possible unusual activity. And finally, in the conclusion it is discussed

whether the bogus database prototype reached the given objective and whether the

simulated environment provided the research additional value.

The project was primarily focused on the host-based intrusion detection system (HIDS),

the bogus MS SQL server, with the simulated environment trying to be as genuine a

Finnish (metal industry) company production network as possible in this scope. The

project was conducted as a commission.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

2 REQUIREMENTS FOR THE HONEYPOT SYSTEM

The honeypot should be built as a mix between high and low-interaction principles. High-

interaction principles dictate that the attacker should be able to control the systems as

they would any regular OS, the resource’s goal being the maximum capture of the

attacker’s interactions (Spitzner 2002, 96). The low-interaction principle, on the other

hand, is an opposite to that. The bogus database and Intra wiki will be low-interaction

while the Office-PC will be high-interaction.

The bogus SQL database implementation will be considered a success if one can

connect to it with the sqlcmd utility which comes with the Microsoft Command Line

Utilities 15.

The system should consist of more than two virtual machines, the entry point, and the

main target with a dedicated log collector machine. The log collector would need to be

set behind a strict firewall that only allows traffic that is needed for the log collection.

All machines would need security log handling whilst the bogus database would need a

way to output readable logs.

The system GUIs, usernames, bogus data, and other such elements should be in

Finnish, to further supplement the simulation of being a Finnish company.

All machines apart from the firewall and the log collector should be part of the same

domain named pertinpelti.local.

As a bonus the plan will also contain an Intra machine hosting a company wiki. The wiki

can be implemented with the MediaWiki and could be used to give the attacker some

tips on the bogus database.

The passwords used on the machines should be hard-to-guess long Finnish sentences

written together like the following “MustikatsuorastaanPomppivatmustikapiidakkaan”,

except for “Toimisto-PC” that should have an easily guessable password on the non-

privileged user account.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

3 FINALIZATION OF THE HONEYPOT PROTOTYPE

PLAN

Based on the requirements the project could have continued into three directions: two

robust machines running a VMware vSphere or an equivalent virtualization platform, five

spare machines and a switch, or a virtualization environment inside another non-bare

metal virtualization environment, i.e., nested virtualization, which currently works on an

AMD Ryzen platform.

Unfortunately, neither five spare machines nor even one robust machine running

vSphere was available. Thus, a survey of virtualization solutions allowing the use of

nested virtualization with AMD Ryzen was conducted (Table 1).

Table 1. Nested virtualization support for AMD Ryzen platform

 VMware

Workstation

Microsoft

Hyper-V

Oracle VM

VirtualBox

Proxmox

Nested

virtualization

support as

host

Yes, Workstation

8+ [6]

Not in Windows

builds older

than 19636 and

currently no

KVM support

[7]

Yes, 6.1.4+ [8] Yes [9]

Nested

virtualization

support as

guest

Yes, Workstation

9+ [6]

Not in Windows

builds older

than 19636 and

currently no

KVM support

[7]

- Yes [9]

In the end the combo of Oracle VM VirtualBox and Proxmox was selected, and therefore

five virtualized machines in total were needed, each with its own task (Table 2).

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Table 2. Machines and their function in the honeypot system

Machine Services / Function

Toimisto-PC SSH login with weak password /

Password to Intra hidden among regular

tasks

Intra Private MediaWiki / Database credentials

hidden in a past page edit

DB Bogus MS-SQL server / Provide false

information

pfSense Transparent firewall / Connect Log

Collector to the main network

Log Collector Elastic stack (ELK) with Logstash / Collect

and index logs centrally sent from clients

As a network diagram it would look like this (Figure 1).

Figure 1. Network diagram for the honeypot node

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

3.1 What is nested virtualization

Nested virtualization allows one to run virtual machines inside other virtual machines.

Usually these are described as levels in the nested virtualization diagram, with the lowest

number meaning the closest layer to the hardware itself (Wasserman, 2013). In this

project this means that the L0 hypervisor will be Oracle VM VirtualBox, whilst L1

hypervisor will be Proxmox and under it (L2) we will be running our honeypot network

and its machines (Figure 2).

Figure 2. Nested virtualization shown as levels (Wasserman, 2013)

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

4 BUILDING THE HONEYPOT PROTOTYPE

To expose the nested virtualization support to the VM the box “Enable Nested VT-

x/AMD-V” must be checked in the VM’s System settings under the Processor tab (Picture

1).

Picture 1. Proxmox VM system settings with enabled nested virtualization support

After the Proxmox installation one extra Linux bridge needs to be added to the Proxmox

networking table as the secondary network where the log collector will be setup, since

there is one Linux Bridge already the new one gets the name “vmbr1” (Picture 2).

Picture 2. Proxmox networking table

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

4.1 pfSense firewall

Configuring pfSense as transparent firewall between the previously mentioned Linux

Bridges vmbr0 and vmbr1 will allow the protection of log collector, without exposing the

log collector itself. This requires the adding of an additional network device to the

pfSense VM with a different Linux Bridge as its link (Picture 3) and the creation of a

bridge connection between these devices (Picture 4).

Picture 3. Network devices connected to the pfSense in Proxmox

Picture 4. The enabled interfaces on pfSense’s WebGUI

To filter the packets moving in the bridge interface the tunable

net.link.bridge.pfil_bridge value must be set to 1 at System -> Advanced -> System

Tunables (Picture 5).

Picture 5. The changed Tunable in pfSense advanced settings

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Lastly, the firewall rules needed to be changed. In the WAN rule section incoming traffic

meant to Logstash was allowed and on top of that the anti-lockout rule to the pfSense

WebGUI was created (Picture 6).

Picture 6. pfSense WAN port firewall rules

In the LAN rules it was specified that the log collector can send to any (Picture 7).

Picture 7. pfSense LAN port firewall rules

4.2 Office computer

To the Ubuntu 20.04 Office-PC SSH server was installed and the UFW firewall was set

to allow the incoming SSH connections (Picture 8).

Picture 8. UFW firewall status showing the open SSH ports

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

By default, Ubuntu adds the user created on the OS installation to the sudoers file and

group. However, the first step on the attacker’s ladder will not be needing any more

privileges than a basic user account gives. Therefore, the additional privileges need to

be removed. This can be accomplished with the command sudo deluser pertti sudo

(Picture 9).

Picture 9. Verifying that usage of sudo is not allowed

4.3 Log collector

The Log Collector will have the Logstash and Elastic stack (ELK) running on Debian

10.6. at the previously mentioned secondary network (Picture 10).

Picture 10. Log Collector up and running as “logpot”

4.4 MediaWiki powered Intra server

After the installation of MediaWiki, onto a Debian 10.5., it is configured to act as private

wiki, allowing access only to authenticated users. Three users are created, one

administrative and two with the principles of least privileges needed, as the SP 800-53

Rev. 5 (19-23, 36-39) recommends as access control measures.

DNS service is added to the Intra server and the top domain is named pertinpelti.local to

simulate a small business in the metal industry and to facilitate the resolving of the

honeypot hostnames to IP (Picture 11).

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 11. Verifying that DNS service works

The fake information used in the company wiki will supplement the top domain (Picture

12).

Picture 12. The main page on Intra

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Before the installation of a Beat the apache2 and OS information from the HTTP headers

and 404 web pages is hidden. It was also verified that the PHP version information is

hidden. These result on headers that only contain “Apache” (Picture 13).

Picture 13. Verifying that the Apache is not exposing version information to client

The Picture 13 also confirms that the redirect from site root to the MediaWiki works as

intended, an attacker cannot access the site root as its always redirected to the

subdirectory where MediaWiki resides.

4.5 Bogus Microsoft SQL server

Due to database server not being genuine the machine only needs the Python 3 which

is already installed. Therefore, only the machine’s firewall needed to be configured and

it was setup to only allow incoming connections to the TCP port 1433 which is the default

for Microsoft SQL server installations.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

After the Debian 10.5. machine was ready the research portion for the client and

Microsoft SQL 2017 server started in a separate environment (Appendix 1). With the

information uncovered during the research it was possible to start the actual

programming part in Python (Appendix 2).

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

5 BREAKING INTO THE HONEYPOT

A Kali with the required tools and text files (that contained common Finnish names and

passwords) was added to the vmbr0 bridge. The machine got the IP of 10.0.2.32/24 and

the firstly network scanning with the tool Nmap was done. This gave a nice overview of

the machines connected to the network (Table 3).

Table 3. Scan results gathered

IP Open ports / services

10.0.2.22 22 / SSH

10.0.2.50 80 / HTTP

10.0.2.111 1433 / MS-SQL

10.0.2.201 5044 / Logstash

The scan also showed with a very high certainty that the default gateway 10.0.2.2 is

running within a virtualized environment (Picture 14).

Picture 14. The scan result for the default gateway

With the following Nmap command sudo nmap -sn 10.0.2.* the IPs were mapped to the

correct hostnames (Table 4).

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Table 4. Machine IPs and hostnames mapped

IP Hostname

10.0.2.22 Toimisto-PC

10.0.2.50 Intra

10.0.2.111 db

10.0.2.201 -

After those were analysed, the password list was formatted by removing the unnecessary

spaces after the passwords and then the brute forcing attack was started on the open

SSH port of “Toimisto-PC” using the THC-Hydra tool. It took little over an hour to find the

correct password (Picture 15).

Picture 15. THC-Hydra showing the correct password for user pertti

5.1 Office computer

Upon logging into the “Toimisto-PC” the sudo command was tried, but it was denied, the

current account did not have privileges to use the command. Therefore, as a resort it the

machine’s directories were searched for any worthwhile information (Picture 16).

Picture 16. The directory listing of Documents folder

When searching among the subdirectories of Documents an interesting looking todo file

was found with what seemed like an embedded password in the todo objectives. And

sure enough, by closely looking at the last objective it was determined that the password

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

for Intra is either: ”Yö Saapuu nopeasti Joka Päivänä” or

“YöSaapuunopeastiJokaPäivänä” (Picture 17).

Picture 17. Todo file printed to the CLI

5.2 MediaWiki powered Intra server

At Intra all pages redirect to a login prompt, however by presuming the username is the

same as on the Ubuntu it is possible to log in easily. Although the password needed to

be written without the spaces. Inside the Intra the pages were searched for anything

worthwhile manually, and in the end, a page detailing how the database will be used to

handle customer data was found (Picture 18).

Picture 18. Intra page saying that database should be used to save customer data

On the talk page for user Pertti Jyrki (the site admin) had left a message not to save any

credentials on the wiki pages (Picture 19).

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 19. Edit history of talk page showing the message Jyrki had sent

With the knowledge of basic wiki installations keeping all page content changes in the

page histories it would not be far-fetched for the credentials to still be there, wherever

that may be. Therefore, the page histories were manually searched for any worthwhile

information. After a while, the user page for Pertti was found to contain a change entry

by Jyrki with the change’s comment telling not to save credentials to Intra (Picture 20).

Picture 20. Edit history page for user Pertti showing Jyrki’s message

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Looking at the diff page between the Jyrki’s edit and Pertti’s original version we find that

the credentials seem to be for the database since the username looks to be sa, which is

commonly used in Microsoft SQL servers as the default database administrator account

(Picture 21).

Picture 21. The diff page showing the database credentials that were edited out

5.3 Bogus Microsoft SQL server

With the sqlcmd utility already on the Kali machine the command sqlcmd -U sa -S

10.0.2.111 was used to connect to the database server. However, when trying to log into

the database it was found out that the password was written incorrectly to the wiki page.

The correct password version did not contain “ä”. With the minor setback handled the

login completed successfully and it was possible to send a recon query that would show

the tables on the database schema (Picture 22).

Picture 22. The recon query

After sending the select query it takes a while before the sqlcmd utility informs about an

unexpected disconnect (Picture 23).

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 23. Unexpected connection dropout

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

6 FORENSICS

With the successful completion of penetration testing in the previous section the systems

have undoubtedly created very interesting looking logs about the interactions, therefore

in this section the objective is to determine what has happened and with whom. It is then

determined how much of the information was accessed (if any) and how critical that

information was.

6.1 Office computer

When looking at the Kibana dashboard for the “Toimisto-PC” an alarming number of

failed logins in the last 6 hours were found compared to the successful ones (Picture 24).

Picture 24. Kibana showing the difference between failures and successes

By closely looking at the logs it is discovered that the user pertti was compromised during

the brute force attempt (Picture 25).

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 25. Logs showing the brute force and the successful login to Pertti’s account

After the brute force attack, the logs show the same IP login to Pertti’s account, and the

first thing that was tried was using the sudo to elevate privileges (Picture 26).

Picture 26. Command sudo mkdir checkpoint failed

When that did not work the attacker started perusing the directories that did not require

higher privileges. It can therefore be concluded that the user pertti had been

compromised and all information that was inside any of the accessed directories is now

compromised as well. Next, the apache access logs from the Intra were checked.

6.2 MediaWiki powered Intra server

There were only 75 apache access logs for Intra but looking closer at them showed

someone from a previously not seen IP 10.0.2.32 had looked and tried editing the

“Asiakkaat” page which contained the first clue about the function of the database in this

company (Picture 27).

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 27. Log entry showing 10.0.2.32 accessing the edit page function

Reading the logs further it seems the attacker found also the second clue, after which

the attacker combed the site looking for the correct page (Picture 28).

Picture 28. Log entry showing the user accessing page’s edit history

After some time, the attacker accesses the diff function on the correct page, getting the

database credentials that were not removed correctly (Picture 29).

Picture 29. User accessing the diff function on the page that contained credentials

We can then conclude that the attacker has compromised the user pertti on the Intra wiki

and gained access to a page which shows the database credentials. Therefore, we need

to check the database logs if the attacker was able to use the stolen credentials.

6.3 Bogus Microsoft SQL server

For easier readability, the bogus Microsoft SQL server logs were run through a prettify

script which turned the JSON log entries to JSON data that is more spaced out and

therefore, easier to read.

The logs showed the program was able to successfully start listening on the default

Microsoft SQL port 1433 and client from 10.0.2.32 connected to it (Picture 30) but the

client did not have the correct credentials.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 30. The successful binding to port 1433 and the first connection

After the failed authentication, the same IP made a new connection which then

authenticates with correct credentials. The connection setup follows the simple method

specified in Appendix 2, as such the pre-login message and the authentication request

(which succeeds) can be seen. From this it is possible to deduce that the attacker was

successful in gaining access to the bogus database. After the authentication, the

environment change queries sent by the client are received and logged. (Picture 31)

Picture 31. The full connection establishment and authentication for user sa

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

After the TDS connection has been established and authenticated it the client sends a

recon query meant to show information about what tables the currently selected

database has. However, since the server is not genuine it simply ignores the query by

not responding to it and writes the full query to the log after which it closes the connection

to the remote client. (Picture 32)

Picture 32. The recon query and the following disconnect

In this instance the attacker was not able get any useful information even though the

stolen credentials gave the rights to login to the bogus database.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

7 CONCLUSION

The additional machines in the project were successful as they brought credibility and

substance to the network experiment in the form of more services and information

relaying options such as the MediaWiki powered Intra with its wiki pages filled with fake

and mostly useless information. Their implementation went smoothly, although the

original plan needed to be modified for the Office-PC by removing the rate limiting in

UFW firewall since with it set, the machine was too well protected against the SSH brute

force attack.

Although the implementation for the honeypot Microsoft SQL 2017 server had some

setbacks such as the need to use tools, Python modules and transmission protocols that

were not familiar to the author beforehand, the planning and implementation of the

honeypot database server was still a success since one was able to connect to it with

the genuine Microsoft SQL tool sqlcmd and send a Transact-SQL query, which was then

logged for further analysis.

The building of a prototype honeypot Microsoft SQL server emphasizes that the full

honeypot can be implemented in Python and the findings gained in Appendix 2 give

pointers what a genuine Microsoft SQL server consists of, in terms of responding to client

messages and the handling of said messages.

The possibilities for a bogus Microsoft SQL database are endless. One could for example

build one where the server procedurally generates database structures for each day,

authenticated connection and so on, a database with randomized values, or one housing

data that seems real but is fake.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

REFERENCES

[1] Reynaldo, M., 2014. Bare metal vs. virtual servers: Which choice is right for you?. Thoughts
on Cloud, Available at: https://www.ibm.com/blogs/cloud-computing/2014/07/25/bare-metal-vs-
virtual-servers-choice-right/ Accessed 8 November 2020.

[2] Elastic. 2020. Beats: Data Shippers For Elasticsearch | Elastic. Available at:
https://www.elastic.co/beats/ Accessed 8 November 2020.

[3] Wazuh. 2020. Wazuh · The Open Source Security Platform. Available at: https://wazuh.com
Accessed 8 November 2020.

[4] Nazario, J., 2020. Awesome Honeypots. GitHub. Available at:
https://github.com/paralax/awesome-honeypots#readme Accessed 30 October 2020.

[5] Spitzner, L. 2002. Honeypots: Tracking Hackers. Boston: Addison-Wesley.

[6] Mattson, J., 2016. Running Nested Vms |Vmware Communities. Communities.vmware.com.
Available at: https://communities.vmware.com/docs/DOC-8970 Accessed 31 October 2020.

[7] Huybregts, C., 2020. AMD Nested Virtualization Support.
TECHCOMMUNITY.MICROSOFT.COM. Available at:
https://techcommunity.microsoft.com/t5/virtualization/amd-nested-virtualization-support/ba-
p/1434841 Accessed 31 October 2020.

[8] Docs.oracle.com. 2020. 2.34. Nested Virtualization. Available at:
https://docs.oracle.com/en/virtualization/virtualbox/6.0/admin/nested-virt.html Accessed 31
October 2020.

[9] Pve.proxmox.com. 2020. Nested Virtualization - Proxmox VE. Available at:
https://pve.proxmox.com/wiki/Nested_Virtualization Accessed 31 October 2020.

[10] Wasserman, O. 2013. Kvm Forum – Red Hat Inc. Available at: http://www.linux-
kvm.org/images/e/e9/Kvm-forum-2013-nested-virtualization-shadow-turtles.pdf Accessed 12
September 2020.

[11] SP 800-53 Rev. 5. Security and Privacy Controls for Information Systems and Organizations.
Maryland: National Institute of Standards and Technology.

[12] 2020. [MS-TDS]: Tabular Data Stream Protocol. 30th ed. Microsoft. Available at:
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-
b076-ec4dbb7d13ec Accessed 2 November 2020.

Appendix 1 (1)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Researching the Microsoft SQL 2017 server

The research environment had Windows Server 2016 Standard running the SQL 2017

Developer hence to be referred to as only SQL 2017 and the latest Kali version in a host-

only networking mode on Oracle VM VirtualBox. Both machines were in the same

192.168.56.0/24 IP block.

On the SQL 2017 an account “_jyrki” was made and setup as one of the database

administrator accounts whilst on the Kali the msodbcsql17 and mssql-tools packages

from Microsoft’s Debian package depository was installed. The first package is a

backend driver for the SQL which is used by the latter package of tools to connect to the

SQL server.

Firstly, research needed to determine what the network traffic between a genuine SQL

server and client looks like, therefore Wireshark was set to record the traffic between

Kali and SQL 2017 whilst the SQL 2017 was logged into using the sqlcmd utility found

among the mssql-tools package (Picture 33).

Picture 33. Showing the usage of sqlcmd

After a successful login, a basic select all query was done on a previously made table

(Picture 34).

Picture 34. The SQL query and it’s result

After these actions, the connection was ended by logging out, whilst the logging of

network traffic was stopped and then saved. By looking at the saved traffic one could

deduce that the SQL transmissions use Tabular Data Streams (TDS) to send and receive

the data (Picture 35) with the actual login being hidden even for Wireshark.

Appendix 1 (2)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 35. Recorded traffic filtered to show only TDS traffic

Upon closer inspection one can see that the SQL 2017 sent an environment change

message to the client (Picture 36) after the authentication has happened behind closed

doors.

Picture 36. The environment change from “master” to “tuotteet”

After the client has confirmed the receiving of the environment change message from

SQL 2017 it sends two of its own environment change messages. First of them asks not

to use quoted identifier (Picture 37) and second one to set the variable textsize to 4096

(Picture 38), to facilitate the writing of long Transact-SQL queries.

Appendix 1 (3)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Picture 37. Set quoted identifier

Picture 38. Set text size to 4096

After these it is possible to see the client’s select all query (Picture 39), to which the SQL

2017 responds with a table (Picture 40).

Picture 39. The select all Transact-SQL query

Picture 40. Table returned by the server

Appendix 2 (1)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Building the bogus Microsoft SQL database server

Before the research, the fact of default Microsoft SQL installs listening on port 1433 was

known by the author, however what was not know was that the server uses Tabular Data

Stream (TDS) as a message carrier over TCP connections, therefore also the bogus

server needed to handle TDS data. In the simplest instance there are two messages,

from both client and server, before the client can query the database (Figure 3).

Figure 3. Client to server connection steps shown as a simple diagram ([MS-TDS]:

Tabular Data Stream Protocol, 2020)

The technical documentation for the protocol states that all TDS packets contain a

header type value as the first byte in the message, therefor the server must differentiate

between these packets by looking at that value (Picture 41).

Picture 41. Determine the packet’s meaning with the header type

Appendix 2 (2)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Inside these handler functions the received message is mapped into a Python dictionary

object (which resembles JSON format), this allows the quick and easy to understand

debugging and response generation to the client machine(s). For example, the mapped

pre-login message from client would look like the following JSON dump.

 Continues

{
 "type": 18,
 "status": 1,
 "lengthC": [
 94,
 0
],
 "spidC": [
 0,
 1
],
 "packetID": 0,
 "window": 0
}
{
 "version": 0,
 "pl_offset1C": [
 36,
 0
],
 "pl_option_length1C": [
 6,
 1
],
 "encryption": 0,
 "pl_offset2C": [
 42,
 0
],
 "pl_option_length2C": [
 1,
 2
],
 "instOpt": 0,
 "pl_offset3C": [
 43,
 0
],
 "pl_option_length3C": [
 1,
 3
],

Appendix 2 (3)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

The JSON dump shown above is cut into two sections the first one is the packet header

whilst the second is the data section of the packet. The short explanation is as follows:

in the case of the header’s status field being 1 means that this packet is the end of the

message, whilst the length tells how much data the whole TDS packet has in it (as bytes),

this includes the header as well.

The data packet itself contains options like version and encryption, however when client

sends the first pre-login message these and other such options are set to 0. Worth a note

is also that when a client sends the pre-login message the traceID is serialized into the

 "threadID": 0,
 "pl_offset4C": [
 44,
 0
],
 "pl_option_length4C": [
 4,
 4
],
 "MARS": 0,
 "pl_offset5C": [
 48,
 0
],
 "pl_option_length6C": [
 1,
 5
],
 "traceID": 0,
 "payload": [
 49,
 0,
 36,
 6,
 0,
 85,
 0,
 1,
 255,
 17,
 6,
 0,
 1
]
}

Appendix 2 (4)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

payload portion of the packet, whilst in server response messages the payload contains

the individual settings (on/off) for the previously mentioned options.

After experimenting with the response for the author can formulate a response with the

encryption flag set to off and server TDS version as 14.0.1000. This response was then

hardcoded into the program.

In the login part the server must compare allowed credentials and the credentials

received, if those check out it sends a response containing an environment change with

also the server name. However, before the comparing can even begin the password

needs to be unscrambled since the TDS protocol requires the client scrambles the

password before sending it. According to the MS-TDS: Tabular Data Stream Protocol’s

technical documentation (2020, 66) the client does this by first swapping “the four high

bits with the four low bits" and then running XOR on the result with the binary 10100101,

which is 165 as a decimal. Therefore, in the bogus server this needs to be run in reverse

to get a password which can be compared to the one allowed.

After the authentication is finished the client can send its own environment change

requests, like for example set textsize to 4096. These can be easily handled by the

sqlHandler portion, since they came as SQL batch messages. However, this was just a

small part of the TDS protocol (Figure 4) and further development would surely be

needed to fool experienced attackers.

Appendix 2 (5)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Vesa-Matti Mäntysaari

Figure 4. Flowchart of the server states in TDS protocol ([MS-TDS]: Tabular Data Stream
Protocol, 2020)

