

Bachelor’s thesis

Degree programme: Information and Communications Technology

2020

Duy Vu Dinh Pham

GAME ARCHITECTURES IN
UNITY PROJECTS

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme: Information and Communications Technology

November 2020 | 45

Duy Vu Dinh Pham

GAME ARCHITECTURES IN UNITY PROJECTS

Game architecture is an important aspect of game development but rarely mentioned. A game
architecture may be a factor for the success or failure of a game project. Video games are complex
pieces of software and game architectures are guidelines for programmers to understand that
complexity. This thesis is an attempt to give an overview of game architectures for Unity projects
and provide a general view of architecture implementation in the Virpa2 project as a practical
example. Virpa2 is an educational game that teaches children about fire safety. The project
utilizes game technologies to enhance the learning experience and deliver the best possible
result.

The thesis presents how a game architecture can be built in a game application by specifically
utilizing ScriptableObject, a built-in data type in Unity engine. The Virpa2 project is a case study
to experiment and test the core idea of architecture design. In the end, the result of the game
architecture implementation in the Virpa2 project is considered successful since it fulfilled all the
technical requirements of its game design and provided a coherent guideline for developers to
follow and contribute to the game.

KEYWORDS:

Game, software architecture, C#, Unity, design pattern, event-driven programming, data-driven
programming

CONTENTS

LIST OF ABBREVIATIONS 5

1 INTRODUCTION 6

2 BASIC BLOCKS OF A GAME ARCHITECTURE 8

2.1 Initialization 8

2.2 Data persistency 10

2.3 The Singleton 11

2.4 Preload scene 13

2.5 Managers 15

3 SCRIPTABLEOBJECT ARCHITECTURE 17

3.1 What is ScriptableObject? 17

3.2 Shared and non-shared states 18

3.3 Variables 21

3.4 Runtime Sets 23

3.5 Plugable event system 25

4 THE VIRPA2 PROJECT ARCHITECTURE 27

4.1 Introduction 27

4.2 Technical Requirements 27

4.3 Framework setup and plugins 28

4.4 Input Handling 29

4.5 Game Manager 30

4.6 Initializables 32

4.7 Entities Manager 33

4.8 State Manager 34

4.9 Event System 36

4.10 Score Manager 37

4.11 Action Log 38

4.12 Item Database 40

5 CONCLUSION 43

 REFERENCES 44

FIGURES

Figure 1. Simplified Order of Execution based on Unity documentation (Unity
Technologies, n.d.). .. 8
Figure 2. Single frame execution flow. .. 9
Figure 3. Preload scene execution flow. ... 14
Figure 4. Managers in a game. ... 16
Figure 5. Handling input for player’s movement and camera rotation. 30
Figure 6. A central GameManger that references subsystems. 31
Figure 7. GameManager gets called in Inspector. ... 31
Figure 8. IInitializable interface can be dragged into GameManager’s Inpsector. 32
Figure 9. UnityCallbackBehaviour in Inspector. ... 33
Figure 10. Collections and Managers for game entities... 34
Figure 11. ISaveState and ISavable.. 35
Figure 12. StateManager references other Isavables. ... 35
Figure 13. IComposeGameState interface. ... 36
Figure 14. GameState definition. .. 36
Figure 15. EventSystem connections. ... 37
Figure 16. ScoreManager interface. .. 38
Figure 17. ActionLog's definition. .. 39
Figure 18. Example of ActionLog<AnswerData>. .. 39
Figure 19. ActionLogManager's user interface. ... 40
Figure 20. ItemBlueprint and Item share the same data definition. 41
Figure 21. ItemBlueprint is defined in Editor and get added to ItemDatabase. 41
Figure 22. ItemDatabase. ... 42

CODE SNIPPETS

Code Snippet 1. Initilization using [RuntimeInitializeOnLoadMethod] attribute. 10
Code Snippet 2. Singleton implementation in Unity. .. 12
Code Snippet 3. Script to load Preload scene in Play mode. 15
Code Snippet 4. Sample script to handle input from players. 19
Code Snippet 5. Script handles player’s action. .. 19
Code Snippet 6. PlayerController handles new input devices. 20
Code Snippet 7. ScriptableObject wraps around a primitive float. 21
Code Snippet 8. ScriptableObject wraps around a primitive Vector2. 22
Code Snippet 9. Use Vector2Variable to decouple input handling’s data and logic. 22
Code Snippet 10. VirtualInput handler is added without changing PlayerController. ... 22
Code Snippet 11. Generic RuntimeSet implementation. ... 24
Code Snippet 12. New type of RuntimeSet can be easily implemented. 24
Code Snippet 13. Monster’s subcription to the set. ... 25
Code Snippet 14. Generic GameEvent implementation. ... 26

file:///C:/Users/Duy/Desktop/Vu%20DuyThesis(Language%20Check)%20Backup%20-%20Copy.docx%23_Toc59045464
file:///C:/Users/Duy/Desktop/Vu%20DuyThesis(Language%20Check)%20Backup%20-%20Copy.docx%23_Toc59045464

LIST OF ABBREVIATIONS

API Application Programming Interface

AR Augmented Reality

ECS Entity Component System

GUID Globally Unique Identifier

NPC Non-Playable Character

OOP Object Oriented Programming

RAM Random Access Memory

RPG Role Playing Game

UI User Interface

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

1 INTRODUCTION

Video games are composed of several components: graphics, audio, animation,

environment and scripting. Those components are computer programs provided by

game engines and exposed as APIs (Application Programming Interface). Game

developers mostly work with those APIs and combine their functionalities to create video

games. By combining them, we inherently define their relationship and form some kind

of structure or system. Those programs, the relationships between them and the human

discipline to follow as well as maintain the design are defined as software architecture

(Bass, et al., 2013, p. 4). Since video games are more or less software, we have the term

game architecture to express the intent of software architecture in the context of video

game development.

Usually, the codebase of a project with bad architecture falls into one of these two

categories:

• Spaghetti codebase: codes are written in unstructured and spontaneous manner

(Pizka, 2004, p. 3). Parts of the game reference each other without any clear

intention and gradually form into a woven thread of codes. This makes the

codebase extremely hard to inspect and understand. Whenever a new feature

built upon available functionalities is introduced to the codebase, developers

have to unravel the related parts and make an assumption about their connection.

The more ambiguous the assumption is, the higher the risk that leads to the

situation where changes in one functionality may accidentally break others. In the

best scenarios, those broken functionalities reveal themselves right after the

changes were made and this is manageable to fix. In the worst cases, they lurk

and wait until the new changes happen to touch them. This time it is hard to tell

exactly which modification in the history broke them and, therefore, a

considerable amount of time will be invested to trace down the suspect.

• Rigid codebase: unlike Spaghetti codebase, this one usually has a structure. The

main problem is that it does not embrace nor anticipate changes. Yet changes

are inevitable in software. Different architecture designs are considered for the

project and the most suitable is chosen in the beginning phase. Then the

implementation is conducted and tons of features are built upon it. A new idea

shows up a few weeks later and requires implementation that the architecture is

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

not well prepared for. In order to implement that new idea, coders have to tweak

the architecture to facilitate the new implementation and of course tons of

features that depend on it as well. This makes adding new features to the game

such a tedious task and if it is ever once taken carelessly the whole structural

codebase potentially ends up being just like the spaghetti one.

Bad architectures are always painful to work with but that does not mean projects with

good architecture design are always joyful and glorious. Good architecture requires a lot

of effort to design as well as discipline to maintain its elegant, well-organized structure

for the whole development cycle. (Nystrom, 2014, p. 9) The major reason that leads to

bad architecture is the way functionalities rely on each other, one thing changes could

affect anything that depends on it. Good architectures advocate modularity to solve this

problem but nevertheless introduce another layer of abstraction and indirection that

sometimes put taxing on performance and obscurity on the code logic (Nystrom, 2014,

p. 14).

The purpose of this thesis is to provide information about how game architectures are

applied in Unity projects and discuss about the tradeoffs of their implementations.

Chapter 2 introduces basic blocks to build a game architecture in Unity and some popular

methods which are widely adopted by the community. Chapter 3 introduces a designer-

friendly and data-oriented method that revolves around ScriptableObject. Chapter 4 is a

report of the Virpa2 project that is based upon ScriptableObject architecture.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

2 BASIC BLOCKS OF A GAME ARCHITECTURE

This chapter introduces basic concepts to build a game architecture and opens a

discussion about their pros and cons.

2.1 Initialization

Game applications often need some crucial functionalities to be set up before they can

be used. In general programming practice, initialization codes are usually put in a

constructor and then get invoked upon its creation. (McShaffry, 2012, pp. 130-133)

However, when working in Unity environment, developers mostly utilize MonoBehaviour

class-based components to control programmable behaviors of a GameObject. Unity

takes over the control of MonoBehaviour’s creation and provides a set of callback

functions as an alternative (Dickinson, 2017, p. 29). Although MonoBehaviour can be

instantiated by calling new MonoBehaviour()

however that method produces undefined

behavior and is strongly against convention. Upon

scene loading, Unity engine iterates through all

GameObjects within the current active scene to

collect all script components inherit from

MonoBehaviour and then invoke the pre-defined

callback functions available in that script. Unlike

other game engines, Unity finds and store

function pointers to those callbacks instead of

applying inheritance overriding. This means the

engine merely cares about the function’s name

and its presence in that script including empty

functions (Dickinson, 2017, p. 45).

By convention, codes in Awake() are responsible

for initialization tasks and the ones depend on the

initialized are put in any callback invoked after

Awake(), usually in Start() as demonstrated in

Figure 1. If the initialization codes complete

Figure 1. Simplified Order of Execution
based on Unity documentation (Unity
Technologies, n.d.).

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

their execution within a single frame, they are safe to be used by others after Awake().

(Dickinson, 2017, p. 29) This does not only apply to the initialization flow in the same

class but also across multiple classes since all the Awake()s in the same scene are

called and completed before any Start(). Class A can reference class B and utilize B’s

functionalities in Start() without any concern about whether those functionalities are

ready to use, as shown in Figure 2.

Figure 2. Single frame execution flow.

However, this setup fails its purpose in scenarios where initialization tasks are spread

across multiple frames. To tackle this problem, initialization codes can apply an event-

based solution where initialization processes trigger events upon their completion.

Even though the execution order of callbacks is deterministic, the MonoBehaviour’s is

not (Dickinson, 2017, p. 29). This means that the callback functions of GameObject A

may run before or after GameObject B’s counterparts and that order changes randomly

in every game run. Therefore, sequential initialization is not possible in this setup.

One more problem with this callback-based setup is that initialization codes tend to

scatter across the scene. Unity triggers all the MonoBehaviour callbacks it can find in a

scene so any GameObject could participate in the initialization invocation process. Since

GameObjects can be anywhere in the scene, the initialization is decentralized and in

turn, becomes difficult to trace in both Editor and codes. One solution is to create a

MonoBehaviour script that handles all the initializations and assign its Script Execution

Order to take place before any other MonoBehaviour. Then attach that script to any

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

GameObject which acts as a central initializer. However, with this setup, the initialization

process becomes scene-dependent and hence requires a strategy for data persistency

between scenes.

2.2 Data persistency

A game is usually comprised of multiple scenes. When a scene is unloaded, all of its

GameObject instances are destroyed (Unity Technologies, n.d.). This makes the data

belonged to a MonoBehaviour not persistent during scene transitions. This behavior

ensures scenes are always loaded in a clean slate. In many cases, it is desired. However,

it’s quite common that initialized data and states need to carry on across multiple scenes

and objects (Murray, 2014, p. 4). Static data appears to be useful in this scenario.

However, it also has some major limitations:

• They are not serializable (Unity Technologies, n.d.).

• They do not show up in Inspector.

• They can not have constructors. (Skeet, 2013)

• They advocate code-driven practice since all changes must be made by codes.

• Their execution order is non-deterministic (especially the moment when the

scene is first loaded).

• They do not support inheritance and polymorphism (Skeet, 2013).

One attempt is to use [RuntimeInitializeOnLoadMethod] attribute. The initialization

process is still centralized since all initialization codes can be put in one script. Most

importantly, this attribute does not require a class to inherit from MonoBehaviour. The

data’s life cycle, therefore, becomes scene-independent. Unity automatically calls all

functions marked with this attribute anywhere in the project.

Code Snippet 1. Initilization using [RuntimeInitializeOnLoadMethod] attribute.

public class Initializer
{
 [RuntimeInitializeOnLoadMethod]
 private static void Initialize()
 {
 // ... codes perform initialization
 }
}

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

However, the functions that execute initialization codes have to be static. Therefore, if

those functions happen to perform any operation on data (which is most likely), that data

also has to be static (Skeet, 2013). Therefore, this method inherits the limitations of

static as mentioned above.

By solving some of static classes’s problems and yet maintaining the singular global

accessibility and persistency between scene transitions, Singleton pattern come into

favor of Unity developers (Murray, 2014, p. 5).

2.3 The Singleton

Singleton is one of the most controversial patterns in software development. It is even

considered anti-pattern due to its false sense of convenience.

According to Gamma et al. (1994), the intent of Singleton is:

“Ensure a class has one instance, and provide a global point of access to it.”

Singleton internally uses static data and wraps it under an instance. Therefore, Singleton

achieves data persistency but still retains some attributes of a regular class instance

(Murray, 2014, p. 5). Singleton in Unity comes with many variants but they usually share

the same structure as demonstrated in Listing 2.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Code Snippet 2. Singleton implementation in Unity.

public class Singleton : MonoBehaviour
{
 private static Singleton instance;
 public static Singleton Instance { get => instance; }

 public int SomeData;

 private void Awake()
 {
 if (instance != null && instance != this)
 {
 Destroy(this.gameObject);
 }
 else
 {
 instance = this;
 DontDestroyOnLoad(this.gameObject);
 }
 }
}

Firstly, any class that needs to implement the Singleton pattern must inherit

MonoBehaviour so it is scene-dependent. Secondly, it destroys any duplicate instance if

detected. This ensures the initialized instance will not be overwritten when a new scene

that has the same Singleton class is loaded. Finally, if data need to persist across

multiple scenes, DontDestroyOnLoad() function is required to push that instance to a

Unity’s special scene called DontDestroyOnLoad. This scene only shows up in play

mode and stay active for the whole game session to display GameObjects marked with

DontDestroyOnLoad (Unity Technologies, n.d.). In Build mode, the scene does not exist

but the persistency of those objects still is retained (Unity Technologies, n.d.). With this

structure, Singleton provides some advantages:

• It is easy to setup. Classes that want to be a Singleton could simply follow the

code structure above or inherit a generic template for reusability.

• It is easy to use. Any class can access data from Singleton globally by calling

Singleton.Instance.

• The initialization process is controllable as opposed to pure static. In addition,

lazy initialization is also possible.

• Data can persist between scene loads.

• Instance’s data is open for serialization since they are not required to be static.

• Singleton supports interfaces and inheritance since the class itself is not static.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

However, Singleton has major problems:

• It restricts the class to only have one single instance. Which greatly reduces

flexibility and testability.

• It is troublesome to debug. Anywhere in the codebase can reference the global

instance. Whenever a bug related to the Singleton appears, developers have to

go through the whole codebase to investigate which parts touch that instance

and potentially cause the bug. (Nystrom, 2014, p. 74)

• It makes codes harder to understand and follow by inherently hiding

dependencies. Singleton.Instance can be conveniently called anywhere in the

class definition without field declaration. In order to find out which Singleton the

class depends on, developers have to manually go through every single line of

code in the class. (Nystrom, 2014, p. 74)

• It is not designer-friendly. If Singleton is applied to keep data persistent across

multiple scenes, that Singleton itself has to destroy any duplicate in other scenes.

Therefore, all the serialized references of those scenes’ instance will be lost. This

makes Singleton unusable in Editor.

2.4 Preload scene

Preload scene is a widely adopted method to solve initialization and data persistency

among Unity community. The idea is that the game application loads a scene which only

contains initialization codes (hence the name preload) and passes the initialized data or

services to other scenes by using Singleton. After all the initializations have been

completed, the next game scene is loaded and all initialized parts are ready for the rest

of the game via a Singleton as depicted in Figure 3. The preload scene is more extensible

as compared to using scripts for initialization. For example, the UI (User Interface) can

be utilized to perform a loading screen or visual effect to indicate the progress of

initialization.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 3. Preload scene execution flow.

However, preload scene has a huge drawback to the development phase. The preload

scene must be the first one loaded in Hierarchy during play mode in Editor. In order to

test a specific scene, developers have to manually find and open the preload scene and

then change the code handles initialization to load that scene after all initialization tasks

are completed. Instead of hitting the “Play” button to test that scene immediately,

developers have to manually jump between scenes to make a test.

One solution to automate this process is to make a script that automatically loads the

preload scene and attach it to every game scene of the project. The game scene has to

run before the preload scene in order for those methods to be executed. This throws

away one of the most important purposes for using the preload scene: all the data and

services are completely initialized in one scene before jumping to another. Additionally,

using this method may lead to different behaviors between Build mode and Play mode.

In Build mode, the preload scene has index 0 in the Build Setting and therefore is

inherently loaded before any other scenes (Unity Technologies, n.d.). The deterministic

initialization process works as intended. In Play mode, boilerplate codes and workaround

are needed to simulate this behavior if automation is wanted. The workaround for this is

to use pre-processors to change behavior based on the working environment but this

opens a possibility for future pitfalls since Unity’s Play mode has a completely different

flow from the Build mode.

Another option is to utilize the [RuntimeInitializeOnLoadMethod] that gets executed

before scene load. With this method, the preload scene is automatically loaded before

any game scene. However, it does not know which one to load next. In the first solution,

the game scene is loaded first and then the preload scene. The preload scene does not

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

need to know which scene to load next. In this case, the preload scene must contain

information about the next scene. Hence the developer has to change that information

manually whenever there is a scene that needs testing in Editor which is exactly the

original problem. Automation is now rendered useless.

Code Snippet 3. Script to load Preload scene in Play mode.

public class TestScene
{
#if UNITY_EDITOR
 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.BeforeSceneLoad)]
 static void LoadPreloadScene()
 {
 SceneManager.LoadScene("Preload Scene");
 }
#endif
}

Note that both attempts above are for Editor play mode only to avoid tedious workflow

and they all fail. However, the preload scene setup still works properly in Build mode

since Unity always loads scene with index 0 in Build Setting.

Overall using preload scene may benefit in some cases but it is still troublesome

nevertheless. A scene should function on its own without any dependency on other

scenes. This encourages decoupling and reduces the complexity of the game by

breaking the game into modular testable scenes.

2.5 Managers

Game functionalities are usually separated into dedicated sub-systems called managers

(Murray, 2014, p. 11). This makes codebase easier to reason about since developers

can always expect what a manager does, based on its specialization. For example, any

functionalities related to audio should go to AudioManager, how scoring works should

only be ScoreManager’s responsibility, UIManager will take care of UI elements for the

game as shown in Figure 4. These managers are belonged to the whole game itself

rather than to any specific scene so it is quite common to make them Singleton for global

accessibility. Therefore, they inherit all the pros and cons of a Singleton. An alternative

to minimize the need for Singleton will be discussed in a later chapter.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 4. Managers in a game.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

3 SCRIPTABLEOBJECT ARCHITECTURE

ScriptableObject Architecture is originally introduced by Ryan Hipple in Unite 2017 talk

(Unity Technologies, 2017). His method of solving dependencies, events and shared

data revolves around utilizing ScriptableObject. By separating data and logic, the system

becomes debuggable, testable and changeable. This chapter introduces

ScriptableObject and basic tools to build the foundation of a ScriptableObject

Architecture.

3.1 What is ScriptableObject?

ScriptableObject is a UnityEngine built-in class. They have all characteristics of regular

C# classes such as instantiating objects, containing data and methods (Unity

Technologies, n.d.). Unlike regular classes, ScriptableObject’s instances have different

representations based on how they are instantiated:

• If instances are created at run time by calling ScriptableObject.CreateInstance

or GameObject.Instantiate(), they are stored in RAM (Random Access Memory)

just as regular instances. Calling new ScriptableObject() is technically possible

but produces undefined behaviors.

• If instances are created in Editor by using [CreateAssetMenu] attribute, they are

serialized and stored as Unity asset files (Unity Technologies, n.d.). At run time,

those asset gets deserialized into a regular object and stored in memory.

Furthermore, ScriptableObject internally has the same C++ implementation as

MonoBehaviour so they share most of the functionalities including the ability of being

shown in Inspector (Unity Technologies, 2016). However, there are some distinctions:

• ScriptableObject can not be attached to a GameObject which means its life cycle

does not belong to any scene (Unity Technologies, n.d.).

• ScriptableObject’s callbacks such as Start(), Update(), OnCollisionXXX, etc ...

are not invoked as MonoBehaviour’s counterparts.

• ScriptableObject can not use coroutines.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Due to the lack of proper documentation, ScriptableObject becomes confusing and less

accessible to the community. Here are a few notes about ScriptableObject to help clarify

some of its undocumented behaviors:

• Even though Awake(), OnEnable(), OnValidate() are invoked as opposed to

other callbacks, they do not work reliably. In fact, most of the ScriptableObject’s

callbacks are recommended to not be used at all.

• Changes in ScriptableObject asset persist between scene loads since

ScriptableObject’s life cycle is not bound to any GameObject. Additionally,

changes even persist after exiting Play mode in Editor. (Unity Technologies,

2017) This is useful for keeping tweaked settings during Play mode. To make

data not persistent every run, the [NonSerializable] attribute could be used for

fields that should start in a clean slate. However, assets literally do not exist in

the context of Build mode so data persistency after game sessions does not apply

in the build version (Unity Technologies, n.d.).

• ScriptableObject assets are not loaded if they are not referenced in scenes which

behaves exactly like other Unity assets. (Unity Technologies, n.d.)

• If a ScriptableObject asset holds any reference to an object from a scene. That

reference will be shown as TypeMismatch in Inspector even though the reference

is still valid.

• ScriptableObject instances instantiated during runtime are not automatically

saved as asset files.

3.2 Shared and non-shared states

In OOP (Object Oriented Programming), a class is usually composed of data and

methods. This paradigm tends to be used to model self-contained objects. The data

describe what the object has and the methods describe what it does, together they define

what an object is. However, most of the time, classes need to reference others to access

external data and perform an action based on it. For example, a class called PlayerInput

which is responsible for handling input from the keyboard as shown in Listing 4.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Code Snippet 4. Sample script to handle input from players.

public class PlayerInput : MonoBehaviour
{
 private Vector2 movementAxis;
 public Vector2 MovementAxis { get => this.movementAxis; }

 private void Update()
 {
 movementAxis.x = Input.GetAxis("Horizontal");
 movementAxis.y = Input.GetAxis("Vertical");
 }
}

And PlayerController class reads the MovementAxis data from PlayerInput and

moves the player accordingly, as shown in Listing 5.

Code Snippet 5. Script handles player’s action.

public class PlayerController : MonoBehaviour
{
 [SerializeField]
 private PlayerInput input;

 private void Update()
 {
 Move(input.MovementAxis);
 }

 public void Move(Vector2 direction)
 {
 // codes control player’s movement based on directional input
 }
}

PlayerController merely reads the input value from PlayerInput and does not intervene

in how the input is processed. This creates a clear separation between handling input

and player’s mechanics. However, games nowadays require more than one type of input

devices, such as Xbox, Playstation and Wii controllers. To support those devices, the

PlayerController gets 3 more dependencies and it needs to change the logic to detect

and adapt each type of input device as shown in Listing 6. Suddenly handling input now

becomes PlayerController’s responsibility too.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Code Snippet 6. PlayerController handles new input devices.

public class PlayerController : MonoBehaviour
{
 [SerializeField]
 private PlayerInput input;
 [SerializeField]
 private XboxInput xboxInput;
 [SerializeField]
 private PSInput psInput;

 private void Update()
 {
 // check which device is active and handle movement
 }
}

A better solution is to transfer that responsibility to PlayerInput and the

PlayerController remains unchanged and unnoticed about the new devices. All it cares

about is one single value: MovementAxis. Fortunately, the Unity input system abstracts

the low-level devices. Input data from many types of physical devices can be retrieved

via Input.GetAxis(). However, those input data are read-only which means they are not

extensible for mobile devices.

Mobile games do not have physical devices for handling input. Their input data are

retrieved via the player’s physical interaction with the virtual buttons on the screen.

(Madhav, 2013, p. 105) If the logic for handling those virtual buttons is put into

PlayerInput then the class itself is responsible for handling both inputs from physical

devices and virtual ones. The problem that comes with this approach is that the virtual

devices come with UI components and other settings specific to them. This increases

the complexity of PlayerInput because the class is forced to combine the logic for

physical and virtual devices not to mention handling the UI for the virtual ones. However,

the virtual input handling cannot be put into a separate class either since

PlayerController has to reference it in order to use it and every new type of virtual input

will become a new component of PlayerController.

But what if the MovementAxis variable is changeable outside of PlayerInput. The script

for handling virtual device can reference PlayerInput and modify the MovementAxis

data directly. A new way of handling input is added to the system without producing any

major modification. PlayerInput just needs to make movementAxis field public and the

PlayerController remains the same.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

However, this breaks the data encapsulation principle of Object Oriented Programming.

PlayerInput does not own input data anymore and any class can modify its data freely.

This is one of the basic principle of data-oriented design. (DeLoura, 2000, p. 3)

3.3 Variables

In the example above, any script that needs access to MovementAxis has to reference

the whole PlayerInput class although its only interest is MovementAxis data.

Additionally, MovementAxis is defined within PlayerInput so this conceptually makes

that data bound to PlayerInput and in turn, makes its lifetime bound to a GameObject.

In Ryan’s idea of ScriptableObject Architecture (Unity Technologies, 2017), those data

should be disassembled into primitive types and contained by a ScriptableObject

instance as shown is Listing 7.

Code Snippet 7. ScriptableObject wraps around a primitive float.

[CreateAssetMenu(fileName = "FloatVariable.asset")]
public class FloatVariable : ScriptableObject
{
 public float Value;
}

The input handling example can be extended a bit further with ScriptableObject Variable:

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Code Snippet 8. ScriptableObject wraps around a primitive Vector2.

[CreateAssetMenu(fileName = "Vector2Variable.asset")]
public class Vector2Variable : ScriptableObject
{
 public Vector2 Value;
}

Code Snippet 9. Use Vector2Variable to decouple input handling’s data and logic.

public class PhysicalInput : MonoBehaviour
{
 [SerializeField]
 private Vector2Variable movementAxis;

 private void Update()
 {
 movementAxis.Value.x = Input.GetAxis("Horizontal");
 movementAxis.Value.y = Input.GetAxis("Vertical");
 }
}

The PlayerInput does not own the MovementAxis anymore instead it uses the shared

Vector2Variable as demonstrated in Listing 9. It also sensible to change the class name

to PhysicalInput since all values from Input.GetAxis() are physical devices’s inputs. By

sharing MovementAxis, any new input handler can be added to the system without

modifying others as shown in Listing 10.

Code Snippet 10. VirtualInput handler is added without changing PlayerController.

public class VirtualInput : MonoBehaviour
{
 [SerializeField]
 private Vector2Variable movementAxis;

 [SerializeField]
 private GameObject UIPanel;

 private void Update()
 {
 movementAxis = CalculateVirtualJoystickPosition();
 }
}

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

public class PlayerController : MonoBehaviour
{
 [SerializeField]
 private Vector2Variable movementAxis;

 private void Update()
 {
 Move(movementAxis.Value);
 }
}

The Vector2Variable is injected into those MonoBehaviour instances from Inspector.

One more benefit of creating a separation between these input handlers is that they can

be easily enabled or disabled on demand.

3.4 Runtime Sets

Besides UI, environment, sound and decorator objects, a scene also contains a number

of gameplay elements called game entities such as the player’s character, NPCs (Non-

Playable Character), collectible items, interactable objects. Most of the time they need

to be tracked or managed by a top-level system to compose meaningful gameplay.

(Gregory, 2009, p. 689) For example, a level requires the player to slay all the monsters

in the level before advancing to another. How does the system know if all the monsters

have been slain? One solution to this is to constantly find and check every monster in

the scene by calling Object.Find() every frame which is extremely costly for performance

(Dickinson, 2017, p. 63). The list of monsters, however, can be cached upon the object’s

creation to provide faster lookup and iteration. Then this opens a question of which object

should contain that list.

• A MonoBehaviour: this requires developers to manually drag the reference of the

list to every monster in the scene because prefab workflow can not be applied in

this case. Prefabs are not allowed to reference scene instances (Unity

Technologies, n.d.).

• A Singleton: list of entities gets referenced by a hard-coded global instance. No

manual work is needed which is a great help in scenarios where a game can

have up to thousands of entities in one scene. However, this method suffers from

all disadvantages of using Singleton as mentioned in the previous chapter.

• A ScriptableObject: solves all the problems that come with both methods above.

ScriptableObject instance can be used in prefabs. It also exists before any scene

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

load so any MonoBehaviour can safely use that list. ScriptableObject instances

are created in Editor hence different lists can be used during development.

Changes can also be made via Inspector instead of code modification.

ScriptableObject Runtime Set is an extended version of Variable. Instead of wrapping

a single primitive value, it contains a collection (Unity Technologies, 2017).

Code Snippet 11. Generic RuntimeSet implementation.

public class RuntimeSet<T> : ScriptableObject
{
 private HashSet<T> set;

 public void Add(T item) => set.Add(item);
 public void Remove(T item) => set.Remove(item);
 public bool Contain(T item) => set.Contains(item);
}

The set that stores those game entities can be any type of data structure. In this case, a

HashSet indicates that the set only contains unique entities. Furthermore, the class itself

is a template hence any new types of entities can be implemented easily. In fact, they

can be left empty as demonstrated in Listing 12.

Code Snippet 12. New type of RuntimeSet can be easily implemented.

[CreateAssetMenu(fileName = "MonsterSet.asset")]
public class MonsterSet : RuntimeSet<Monster>
{
}

A Monster script that handles the logic for a monster can reference a

RuntimeSet<Monster> asset and add itself to the set on OnEnable() as shown in Listing

13. This creates a safe and fast protocol to cache references of game entities scattered

across a scene.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Code Snippet 13. Monster’s subcription to the set.

public class Monster : MonoBehaviour
{
 [SerializeField]
 private MonsterSet set;

 private void OnEnable() => set.Add(this);
 private void OnDisable() => set.Remove(this);
}

In order to know if all monsters are gone in the level, a handler script can reference the

set and count the number of active monsters. Additionally, the set is a pure data container

hence it can serve all kinds of purposes. Other systems can reference the set and

operate its own logic to create new gameplay. Although this is not thread-safe, the Unity

main loop executes codes on a single thread so data is safe to be shared this way (Unity

Technologies, n.d.). To utilize multi-threaded operations on data, the Unity has in-house

ECS (Entity Component System) architecture for that purpose. However, ECS is out of

the scope of this thesis.

3.5 Plugable event system

Occasionally, the game system needs to be reactive based on what is happening or

changing in the game world. Polling the data changes is not quite effective since games

are interactive and many things happen at the same time. Constantly monitoring every

game element, especially in Update() callback, can dramatically slow down the

performance (Dickinson, 2017, p. 52). An event system is a good solution for this. Just

like shared data, events can be also be shared to indicate an event that happens in the

entire game world which is called Game Event (McShaffry, 2012, p. 308). These events

are free to be invoked or subscribed to by any class and hence effectively decouple the

messaging system. They can be put into one single static class and become a central

event system for the entire game (Penzentcev, 2015, pp. 37-39). However, this system

can be improved with ScriptableObject. Instead of cramming all GameEvents into one

script, each ScriptableObject instance will hold a GameEvent as shown in Listing 14.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Code Snippet 14. Generic GameEvent implementation.

public class GameEvent<T> : ScriptableObject
{
 private List<Action<T>> callbacks = new List<Action<T>>();

 public void Raise(T arg)
 {
 for (int i = callbacks.Count - 1; i >= 0; i--)
 callbacks[i](arg);
 }

 public void Subcribe(Action<T> action) => callbacks.Add(action);
 public void Unsubcribe(Action<T> action) => callbacks.Remove(action);
}

By using ScriptableObject, events have access to some advantages:

• They can be customized with CustomEditor since ScriptableObjects are

serializable by default (Unity Technologies, 2017).

• They can store extra data as opposed to pure events. For example, tracing

callbacks data.

• They are pluggable in Inspector without code modification (Unity Technologies,

2017).

• They enforce the dependency declaration and hence improve code tracing.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

4 THE VIRPA2 PROJECT ARCHITECTURE

4.1 Introduction

Virpa2 is an educational game that teaches children about fire safety. Virpa2 was funded

by Palosuojelurahasto. The game combines AR (Augmented Reality) and traditional

elements of an RPG (Role Playing Game) mobile game to enhance and gamify the

learning experience. Players will play as students in a school building where most of the

rooms are locked. In order to explore the three-floor building, players have to unlock the

rooms by scanning typical fire safety signs in the real world. Each room has a specific

topic about one of the safety signs. By answering the dedicated questions to those

rooms, players will gain score and precious rewards as well as climbing up the leader

board.

In the first game design phase, the game had many unclear mechanics and the

gameplay had to be developed along with the implementation. One of the most important

task was to design and build an architecture able to account for regular changes as well

as unexpected ones. Furthermore, the technical implementation required the game to

have a structure enabling connections between game implementation and the server

backend, data transfer and statistics, and the communication between RPG mode and

AR mode.

The purpose of this chapter is to present implementations of various parts of Virpa2

which are based on ScriptableObject essential blocks in Chapter 3 and how it is applied

to tackle technical requirements which will be introduced in the next section.

4.2 Technical Requirements

Firstly, the game was split up into several scenes. Those were; three scenes according

to three floors of the building, a scene for using the phone camera to scan real-world

objects, and a scene for the main menu of the game. The reasons for this separation are

coherent workflow and game performance. By separating the game into scenes, the

overall structure was improved and team members could also contribute to the game

without blocking each other. The collaboration becomes more fluid by reducing the

chance of blocking members when the whole game is divided into multiple scenes.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Therefore, the Virpa2 project applied multiple scenes and prefab workflow to create

flexible collaboration. Another reason for using multiple scenes was about performance.

The map of the game was large but mobile devices usually have limited resources as

compared to other platforms, such as computers and consoles. If the game would not

had been chunked into multiple scenes, the memory space in a mobile device to

accommodate could have been quickly used up and the frame rate would had drop. By

splitting the game into multiple scenes, the architecture had to take data persistency and

scene management into account.

Secondly, the game required scanning real fire safety signs via the phone camera. Unity

has a built-in plugin for image recognition which is AR Foundation. However, the plugin

proved to be insufficient for the task. The accuracy of the scanned signs needed to be

absolute since a faulty result could ruin the educational purpose. Therefore, a neural

network was implemented to overcome that failure. The architecture was decided to be

modular and extendable to integrate with the neural network API and communicate with

the backend server.

Thirdly, the game required expose functionalities to Editor so that everyone, not just

programmers, could participate creating game mechanics. To do that, the architecture

was designed to be flexible and serializable interface for data and functions to be shown

in the Inspector.

Finally, the game included several subsystems such as: initializing data and services,

saving and loading game state, database system, logging players’ actions and sending

them to the backend server, a scoring system that handles different scenarios, and finally

managers that handle game entities in scenes. The architecture harmonically

coordinated these subsystems and avoided dependency between them so that adding a

new subsystem to the game did not interfere with others nor increase the complexity of

the architecture.

4.3 Framework setup and plugins

Virpa2 project was built with Unity version 2019.3.9f1. It had 6 plugins but only 3 of them

were essential tools to build the foundation of the game architecture:

• Odin Inspector: this library improves the workflow of Editor customization.

However, the most important functionality that was used extensively in the Virpa2

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

project is the Odin serialization system. The Odin Serializer can serialize

interfaces and abstract classes as well as complicated data structures, such as

Dictionary. Therefore, the plugin plays a crucial role in building a clean

architecture.

• Guild-based References: provides GuidComponent script to automatically

generate persistent GUID (Globally Unique Identifier) for objects that need state

saving in scenes.

• ScriptableObject Architecture: this plugin is not an architecture itself but rather a

library that already defines and implements basic blocks such as Variable,

RuntimeSet and GameEvent as mentioned in Chapter 3. They have debug

Inspector and Editor features which are essential to speed up the Virpa2

development process. In this plugin, RuntimeSet is renamed to Collection but

it still shares the same principle with the original RuntimeSet.

4.4 Input Handling

The movement of the player’s character was controlled by 2 virtual joysticks. The left one

was for moving the character relative to the forward direction of the camera and the right

one was for rotating the camera. Their relationship and definition are depicted in Figure

5.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 5. Handling input for player’s movement and camera rotation.

The Joystick was responsible for handling the player’s touch actions on the screen and

calculating input value based on those touch positions then adjusting the sprite of the

joystick accordingly. The JoystickInput extracted Direction value from Joystick and

wrote that value to variable Input. Then KeyboardInput read input from Input.GetAxis()

and wrote that value to variable Input. The Vector2Variable was an intermediary that

contains the input value for both reading and writing operations. A new method for

handling input can be added without affecting the relationship between input reader

(CustomCharacterController) and input writers (JoystickInput and KeyboardInput).

The right joystick for handling camera rotation shared the same principle.

4.5 Game Manager

GameManager was a central system that references other subsystems as depicted in

Figure 6. It served 2 purposes: being a unified interface for calling most of the

functionalities in the game and acting as a coordinator that combines functionalities from

multiple subsystems. This made exposed functionalities in Inspector convenient for

designers since most functionalities can be found from GameManager. In addition, it

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

encouraged decoupling subsystems by being a middleware for handling composite

actions. Subsystems did not need to reference each other to make new functionalities

that may beyond their responsibility.

Figure 6. A central GameManger that references subsystems.

The GameManager itself was a ScriptableObject which means it belongs to the whole

game rather than any specific scene. Its lifetime also binds to the game application rather

than a specific GameObject. Since a ScriptableObject instance can be shown in

Inspector, its setting can be modified without changing internal code. GameManager’s

functionalities were exposed to Inspector and can be invoked as demonstrated in Figure

4. This allowed everyone to participate in the game development process and enforces

modular design in programming practice.

Figure 7. GameManager gets called in Inspector.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

4.6 Initializables

ScriptableObject instances are not invoked automatically when the scene is loaded.

Therefore, they require another script to call them. Most of the subsystems in Virpa2

were ScriptableObject and they required initialization before being used. This has led to

another main role of GameManager: initialize other ScriptableObjects. In Virpa2 project,

MonoBehaviours were not allowed to be a subsystem that is used by others due to its

nature. The GameManager.Initialize() invoked all the subsystems that implement

IInitializable interface as shown in Figure 8.

Figure 8. IInitializable interface can be dragged into GameManager’s Inpsector.

To invoke GameManager.Initialize(), there must be GameObject that references

GameManager instance and call that method. It was a special GameObject named

Main. It was an entry point to execute codes when the scene is loaded as shown in

Figure 9. This GameObject contained a MonoBehaviour script which is called

UnityCallbackBehaviour. The script’s execution order was modified to run before any

other MonoBehaviours to ensure its deterministic order. Upon invocation, the script

triggered UnityEvents that correspond to Unity callbacks such as Awake(), Start() and

OnDestroy(). Then the GameManager.Initialize() can be attached to one of these

UnityEvent to start the initialization. This made the application inspectable and adjustable

in the game view without digging into codes. In Virpa2 project, the initialization process

happened in the first Awake() and within one frame. This ensured other classes can use

the services and data from subsystems without any concern about the initialization

process. Additionally, this created a safe protocol for initialization which in turn enables

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

the ability to run the game from any scene as long as that scene calls

GameManager.Initialize().

Figure 9. UnityCallbackBehaviour in Inspector.

4.7 Entities Manager

In Virpa2, there were 3 game entities that need to be managed. They were NPCs, Doors

and Requirers. These entities were stored in a ScriptableObject Collection and

tracked by EntitiesManager<T> where T is a MonoBehaviour. Each of these

EntitiesManager referenced a Collection<T> as shown in Figure 10. These managers

acted as central processors that handled operations on all the active entities in the scene.

One example is saving and loading state operations. They were also containers to store

saved data across multiple scenes since these entities were MonoBehaviour. The

Collections were general for different purposes. Two of their practical applications in the

project were statistic and mini map mechanics. The mini map referenced these

Collections to reflect player’s progression in a particular scene and show it in the

minimap’s canvas.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 10. Collections and Managers for game entities.

4.8 State Manager

Every MonoBehaviour object that needed state saving or loading implemented

ISaveState interface and got tracked by its corresponding EntitiesManager. When the

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

game needed to save these entities, the managers looped through all the entities in

Collection and capture the state data returned from SaveState() and stored them in a

Dictionay<Guid, object> with the key is the entitiy’ GUID and the value was its captured

state. The GUID was automatically assigned to an entity when it was first created in the

scene by GuidComponent script.

There was one more layer of abstraction in the save/load system. The ISaveState

worked great for objects that can not store the saved data themselves since their lifetime

was bound to a GameObject. A ScriptableObject instance, by its nature, can store

persistent data throughout the application life cycle. There came another interface to

unify both scenarios, the ISavable.

Figure 11. ISaveState and ISavable.

The EntitiesManagers inherited the ISavable interface and then got enlisted in

StateManager along with other savable objects which can contain saved data

themselves, such as Inventory. The StateManager had a unified list of ISavables so

that any object that needs state saving can register itself to StateManager and the

application can invoke StateManager.Save() to effectively command all the savables to

capture their current state as depicted in Figure 12.

Figure 12. StateManager references other Isavables.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

The StateManager had one more responsibility: collect the saved data of the whole

application and transform it into a serializable format that can be stored in a file. The

ISavable represented objects that have state persist across multiple scenes whereas

IComposeGameState represented objects that want their data stored in a unified object,

GameState, which in turn got serialized into a file.

Figure 13. IComposeGameState interface.

A GameState was an object that stores the serializable format of the saved data from

ISavables as shown in Figure 14.

Figure 14. GameState definition.

4.9 Event System

Virpa2 had a few game events which are exposed to the whole game by ScriptableObject

GameEvent instances. These assets were put in a directory and serve as a central place

to distribute all GameEvent instead of a static class that stores them. Subsystems or

GameObjects can reference these GameEvents to subscribe or trigger them without

establishing a direct connection to any other subsystems or GameObjects as shown in

Figure 15. This effectively reduced dependencies among classes and simplified the

structure of game architecture.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 15. EventSystem connections.

Furthermore, each interactable entity also had an extra C# event type and triggers it

upon being interacted. An entity triggered the GameEvent to signal the whole game that

an action had been performed on that entity, and another C# event was for the interactor

that was currently interacting with it. This completed the communication protocol for the

entities.

4.10 Score Manager

The game had different scoring scenarios, such as when the player scans a sign in the

real world, when the player unlocks a door, when the player answers a question correctly.

By participating in a modular and central event system, the ScoreManager can listen to

those interested events to give scores. Codes that performed actions, such as

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Door.Unlock(), did not need to define how they would give score to the players. Instead,

they triggered the GameEvent OnDoorUnlocked and the ScoreManager listened to

that event and then gave scores to the player. Additionally, if a Door knows how to give

scores, it needs to define how many scores it should give and reference PlayerProfile

for the score transfer. This makes Door has extra responsibilities that it should not have

and hence increases the complexity of a Door in particular and the architecture as a

whole. By putting all the scoring mechanics into ScoreManager, the system was

simplified and modularized.

Since ScoreManager was a ScriptableObject, it can expose setting to Inspector for

better visualization and customization as shown in Figure 16.

Figure 16. ScoreManager interface.

All scoring settings were defined in one place and can be easily tweaked or changed or

even removed without affecting any other part of the game. The ScoreManager needed

to be initialized in order to participate in the game system. By not getting enlisted in the

Initializables list from GameManager, the ScoreManager was unplugged from the

system without causing any interference.

4.11 Action Log

Virpa2 project was an educational game. Therefore, statistics and players’ activities were

important. The game needed to track when players unlock doors with scanned signs,

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

whether players go into the rooms to answer questions from NPCs, how many answers

are correct and so on. These activity records were called action logs and represented by

ActionLog type as shown in Figure 17.

Figure 17. ActionLog's definition.

The ID was used to uniquely identify between different types of ActionLog, such as

ActionLog<AsnwerData> and ActionLog<Door>. It was also used to match with the

server backend action log’s ID. The GameEvent field was the event that the ActionLog

create log data when the event is triggered. The data included the timestamp and

description of the logged action. Each ActionLog<T> was a ScriptableObject so they

can be created in Editor and tweaked in Inspector as shown in Figure 18.

Figure 18. Example of ActionLog<AnswerData>.

The ActionLogManager was a central place to contain and initialize action logs. Just

like ScoreManager, the ActionLogManager shared the same philosophy: being

independent and modular as much as possible. It provided a user interface for choosing

which action should be logged or whether the whole action log subsystem is a part of the

game as depicted in Figure 19.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 19. ActionLogManager's user interface.

4.12 Item Database

In Virpa2, players scanned fire safety signs in the real world and get items as rewards.

These items could be corresponding sign items, stars or apparels. In a traditional item

database, the definitions of these items are usually hardcoded in the database which

means in order to create a new entry, developers have to add a new item blueprint in the

database script and then recompile the project. This makes the item database code-

driven and eliminates the designer’s participation in this part. Since item data is pure

data so it can be put in a file, get parsed in runtime and populated as entries in the

database. This makes the system more data-driven and does not require script

recompilation. In Virpa2, the item database applied ScriptableObject extensively. Each

item had a blueprint definition and an item instance will be created from those blueprints

at runtime. The Item shared the exact data definition with ItemBlueprint as shown in

Figure 20. In Editor, ItemBlueprint instances were used as draggable data to help

developers design game mechanics. In runtime, these ItemBlueprints produced Item

instances to be used in the game, such as requirement and Inventory system.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 20. ItemBlueprint and Item share the same data definition.

The ItemBlueprints were created and changed flexibly in Editor and then got added to

ItemDatabase instance (which is also a ScriptableObject) as shown in Figure 21.

Figure 21. ItemBlueprint is defined in Editor and get added to ItemDatabase.

The ItemDatabase was a singleton that acted as a central database for querying items.

This provided a convenient and safe way to manage items in the Virpa2 project since

ItemDatabase can be accessed flexibly via code or Editor.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Figure 22. ItemDatabase.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

5 CONCLUSION

This thesis was a part of the Virpa2 project. The main goal of this thesis was to build a

scalable architecture for experimenting with a new way of utilizing ScriptableObject and

satisfying the technical requirements of the project. One of the initial challenges was the

time constraint. The architecture had to be built within one month along with the game

design phase of the project so that when the basic features of the game are formed, the

architecture is ready to accommodate them.

Fortunately, the first version of the architecture was finished in time and continuously

updated afterward. In the first version, classes were attached and referenced by concrete

types instead of abstract ones or interfaces since Unity’s built-in serializer is not able to

serialize abstract or interface classes. This created a huge limitation to the architecture

since those classes can not inherit multiple interfaces hence reducing modularity. For

example, a class can inherit both the ISaveState and IComposeGameState interfaces

to perform saving its state between scene loads and saving the state to a file. In the first

version, those interfaces were a single interface. Therefore, a class must implement both

of those features even though it may need only one. Another limitation with Unity’s

serializer is the custom Inspector workflow. One of the aims of the Virpa2 architecture

was to provide tools for artists and designers so that they can participate in the project

and create new gameplay through those exposed programming tools. Creating tools via

Unity custom Inspector API is time-consuming and error-prone. Therefore, Odin

Inspector was integrated into the project to help express the architecture’s intent better

and improve workflow for creating tools. The architecture that is presented in this thesis

is the second version built with the Odin Inspector plugin which both functioned and

fulfilled all technical requirements of the Virpa2 project.

The architecture formed a guideline for programmers since it created patterns to follow

in order for a new feature to be integrated into the project. Adding new functionalities

became easier since programmers only needed to understand and followed the guideline

and the rest was handled by the system. This also came with a challenge of learning.

Programmers must understand the basic idea of the architecture to work with it as well

as have knowledge about serialization and ScriptableObject. Therefore, instruction and

education were needed to help others participating in the development process.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

REFERENCES

Bass, L. J., Bass, L. & Kazman, R., 2013. Software Architecture In Practice. 3rd toim.

s.l.:Addison-Wesley Professional.

DeLoura, M., 2000. Game Programming Gems 1. s.l.:Charles River Media.

Dickinson, C., 2017. Unity 2017 Game Optimization: Optimize all aspects of Unity

performance. 2nd toim. s.l.:Packt Publishing.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994. Design Patterns: Elements of

Reusable Object-Oriented Software. 1st toim. s.l.:Addison-Wesley Professional.

Gregory, J., 2009. Game Engine Architecture. 1st toim. s.l.:A K Peters/CRC Press.

Madhav, S., 2013. Game Programming Algorithms and Techniques: A Platform-Agnostic

Approach. 1st toim. s.l.:Addison-Wesley Professional.

McShaffry, M., 2012. Game Coding Complete. 4th toim. s.l.:Cengage Learning PTR.

Murray, J. W., 2014. C# Game Programming Cookbook for Unity 3D. s.l.:s.n.

Nystrom, R., 2014. Game Programming Patterns. 1st toim. s.l.:Genever Benning.

Penzentcev, A., 2015. Architecture and implementation of system for serious games in

Unity 3D. s.l.:Masaryk University.

Pizka, M., 2004. Straightening Spaghetti-Code with Refactoring?. s.l.:s.n.

Skeet, J., 2013. C# in Depth. 3rd toim. s.l.:Manning Publications.

Unity Technologies, 2016. Unite 2016 - Overthrowing the MonoBehaviour Tyranny in a

Glorious Scriptable Object Revolution. [Online]

Available at: https://youtu.be/6vmRwLYWNRo

[Accessed5 10 2020].

Unity Technologies, 2017. Unite Austin - Game Architecture with Scriptable Objects.

[Online]

Available at: https://youtu.be/raQ3iHhE_Kk

[Accessed 3 10 2020].

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Vu Dinh Pham

Unity Technologies, ei pvm Unity Documentation. [Online]

Available at: https://docs.unity3d.com/

[Accessed 3 10 2020].

