

1

The Power of Reusable Components and The Future of The

Web

2

The Power of Reusable Components and The Future of The

Web

 Yassine Laadraoui
 Bachelor’s Thesis
 autumn 2020
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Yassine Laadraoui
Title of the bachelor’s thesis: The Power of Reusable Components and The Fu-
ture of The Web.
Supervisor: Kari Jyrkkä
Term and year of completion: Autumn 2020 Number of pages: 68

The subject of this thesis is the study of the web component technology and a
breakdown of Angular, View.js and React. The three framework that dominated
the sphere of web components and web development in general during the last
few years.

the breakdown of each of the frameworks focuses on the structure of each
framework’s code, and how they differ when initializing a project. Followed by a
study of their most prominent features then their advantages and challenges.

Finally, the thesis provides a comparison of the frameworks by comparing the
most relevant information of the framework such as speed and size and other
criteria.

Keywords: Web components, Javascript Framework, front-end development

PREFACE

This thesis has no client, and it is the author’s, Yassine Laadraoui’s, personal

take on the future of web development as a mandatory part of his studies. The

objectives of the thesis were to research the web component technology, com-

pare current top frameworks using them to provide a deeper understanding of

which framework implements this technology best and what framework would

be best to learn and work with. The author applied some background

knowledge learned in school about the development. The research happened

on the Internet with Google and online library searches. A wide variety of books,

articles and other sources were used as materials. The main results are a de-

scription of how the web components work, a comparison of three major frame-

works. And the comparison focused on features that determine the success of a

framework or its failure.

Oulu, 5.9.2020
Yassine Laadraoui

CONTENTS

1 AIM OF THIS THESIS 9

2 INTRODUCTION TO WEB HISTORY 10

2.1 History of the web 10

2.1.1 Tim Berners-Lee’s Hypertext proposal: 10

2.1.2 Requirements for such system 11

2.1.3 Solution: The World Wide Web 12

2.1.4 Different versions of the web 13

3 REUSABLE WEB COMPONENTS 21

3.1 Introduction 21

3.1.1 Custom Elements 22

3.1.2 Shadow DOM 23

3.1.3 Template 25

3.2 challenges of web components 26

3.3 Different Web Component Libraries 28

4 VUE.JS 29

4.1 What is VUE.JS 29

4.2 Structure 30

4.3 Features: 31

4.3.1 Components: 31

4.3.2 Templates: 31

4.3.3 Reactivity: 31

4.3.4 Transitions: 31

4.3.5 Routing: 32

4.3.6 Server-Side Rendering 32

4.4 Problems of Vue.JS 32

5 ANGULAR 34

5.1 Structure 35

5.2 Features 36

5.2.1 Components 36

5.2.2 Templates, directives, and data binding 36

5.2.3 Routing 37

5.2.4 Modules 38

5.3 Advantages of Angular: 38

5.4 Challenges of Angular: 39

6 REACT 41

6.1 What Is React? 41

6.2 What Problems Does React Solve? 43

6.3 . Structure 45

6.3.1 React Components 45

6.4 Features 49

6.5 Advantages of React 50

6.5.1 Higher code stability 50

6.5.2 Easy to understand 51

6.5.3 Strong Open Source Community 51

6.5.4 Reusability of code components 51

6.5.5 Quick rendering 52

6.5.6 Helpful Developer Toolkit 52

6.6 Challenges of React 52

6.6.1 High pace of development 52

6.6.2 Poor documentation 53

6.6.3 JSX as a barrier 53

6.6.4 SEO hassle 53

7 ANALYSIS OF THE 3 DIFFERENT FRAMEWORKS 54

7.1 Stability 54

7.2 Technical Aspects and Architecture 55

7.2.1 the main development language 55

7.2.2 Components 55

7.2.3 Data Handling 56

7.3 Learning Curve 56

7.4 Size 57

7.5 Runtime Performance: 58

8 CONCLUSION 62

9 References 63

TERMS AND ABBREVIATIONS

AJAX: Asynchronous JavaScript And XML

ASP : Application Service Provider

CERN: The European Organization for Nuclear Research.

CGI: Computer Generated Imagery.

CSS: Cascading style sheets.

DNS: Domain name service.

DOM: Document Object Model

HTML: Hypertext markup language.

HTTP: Hypertext Transfer Protocol.

MVC: Model View Controller.

JS: JavaScript.

JSON: JavaScript Object Notation.

JSP: Java Server Page

JSX: JavaScript Extension

PERL: Practical Extraction and Report Language

PHP: Hypertext Preprocessor.

REST: Representational state transfer

SEO: Search Engine Optimization

SSR: Server-Side Rendering

URL: Uniform Resource Locator.

UI: User Interface

TCP/IP: transmission control protocol and internet protocol.

XML: Extensible Markup Language.

1 AIM OF THIS THESIS

The aim of this thesis is to give a detailed description of the web develop-

ment technology and its three popular frameworks -React, Angular and

Vue.JS- and then move to compare the three frameworks.

The first chapter of the thesis will focus on the history of the web and differ-

ent stages of its development starting with the first live website from CERN

and going through web 2.0 to web 3.0 Stating both their advantages and dis-

advantages.

 Then the thesis moves to the current state of the web and what lead to the

creation of web components. Next, there is an overview of the web compo-

nents and the three technologies that makes it possible and its benefits and

challenges. Then, the JavaScript frameworks, which are based on web com-

ponents, are handled.

In chapters 4, 5 and 6 the focus will be on Vue.JS, Angular and React with a

detailed description of each one, focusing on their respective strengths.

The seventh chapter focuses on a deep analysis of the different frameworks,

depending on criteria chosen in the beginning of said chapter. These com-

parison points are the biggest points that sway users one way or another.

the main aim of this thesis is to give the reader an understanding of web

components and the 3 different frameworks that lead the use of this technol-

ogy. With this understanding the reader can have enough information to de-

cide which framework to use in a project.

2 INTRODUCTION TO WEB HISTORY

2.1 History of the web

Prior to 1989, no information sharing system has existed commercially nor

academically. In the year, a British scientist named Tim Berners-Lee created

a system of information system for departments in CERN named the World

Wide Web.

2.1.1 Tim Berners-Lee’s Hypertext proposal:

in the year 1989 as Berners-Lee was working for CERN, he noticed a pat-

tern in the discussions between his colleagues, whenever they were talking

about a big project, giving that at that time it was the era of huge discoveries

thanks to LHC. Their talks ultimately settled when faced with one problem in

particular which is the huge amount of information involved in such a project

and how they would keep track and manage this information across multiple

departments. The structure at CERN, to put in Tim’s words, is a multiply

connected “web” [6], which means that as time goes by these webs will be-

come more and more complicated. Lacking a reliable information sharing

system, information about what projects are being worked on or what facili-

ties or equipment exists is usually shared through the word of mouth.

Other types of information such as technical knowledge that has to do with a

certain project, is usually recorded but giving the huge amount of data gath-

ered and recorded every day, the process of finding a certain piece of infor-

mation became this time a demanding task that lead to a decrease in

productivity and sometimes information is lost all together in the piles of

data. So often the only place to find the information is in the minds of people

who actually worked on the project. During that period of time, the typical

length of stay for a CERN employee was about two years. So some tech-

nical details are lost forever and when a new employee arrives, they are giv-

ing hints on who are the right people to talk to get them up to speed, which

takes time and resources that could be better used otherwise.

“CERN is a model in miniature of the rest of world in a few years’ time.

CERN meets now some problems which the rest of the world will have to

face soon. In 10 years, there may be many commercial solutions to the

problems above, while today we need something to allow us to continue.” [6]

2.1.2 Requirements for such system

For this system to be practical in the CERN environment, it needs to satisfy

a few requirements listed below:

• First, the system needs to allow remote access across networks as

CERN is a distributed across many computer and access to remote

machines is essential.

• Second, the system needs to be Heterogenetic, meaning that the

data could be accessed from different types of systems.

• Third, the system needs to be Non-Centralized, meaning that it

should allow new systems to be merged without any type of center for

control.

• Fourth, the system needs to allow Access to existing data. To allow

the system to get off the ground quicker, it needs to allow access to

existing data in CERN in the form of hypertext.

• Fifth, the system should allow one to add Private links from and to

public information.

• Sixth, the system should be able to store and display ASCII text

with the possibility of adding graphics.

• Seventh, given a large hypertext database, new uses can emerge,

such as Data Analysis. This gives the possibility of new features e.g.

search.

• Finally, the system should have Live links, so that the data can be

retrieved whenever the linked is pressed. Because data of a docu-

ment is always changing, this is necessary. And this allows a new

possibility of having an application fire up if a link is pressed.[6]

A non-requirement that could be added is security because a common prob-

lem with hypertext is the copyright enforcement and data security. Sophisti-

cated systems for authorization can be designed to protect sensitive data in

the future.

2.1.3 Solution: The World Wide Web

The World Wide Web is a collection of documents and resources from

across the world linked through the use of hyperlinks. These documents,

which can include text, images, and other multimedia, are delivered using in-

ternet protocols.

The World Wide Web came in as a combination of four basic ideas, hyper-

text, resources identifiers, a client-server model of computing and a markup

language.

2.1.3.1 How the Web Works

Previously it was mentioned a client-server model of computing as being

one of the four basic ideas that made the creation of the web possible. The

client part is responsible for the retrieval of information resources, such as

web pages or computer readable files, by sending a request to a server lo-

cated somewhere in the world by the use of its URL. Usually this client is a

web browser which makes it possible to display these resources on the

user’s machine (e.g. computer, tablet, phone). The client is not a passive

agent in this dynamic as it can also send data to the server by the use of

web forms and the server can either save this data or process it in some

way. Web pages are of the information resources submitted by a server and

they are usually grouped together in the form of collections of related mate-

rial referred to as Websites. These websites can contain multiple hyperlinks

where a user can click on one and jump to another website which is referred

to as surfing or browsing the web.

When you type a URL into the browser, the modern browsers usually keep a

local DNS cache to see if the domain has already been resolved recently. If

so, it will get the IP address from there. And if not, it will use a DNS resolver,

such as getHostByName POSIX system call to retrieve information either

from a local host or from a public DNS server, such as Google’s 8.8.8.8

server. The browser then receives an IP address that corresponds to the re-

quested server, to which the browser sends an HTTP request for the server

to send a copy of the website to the client. This request and all other data is

sent using the TCP/IP protocol. If the server approves the request, it will

send an “200 OK” message, and then it starts sending the website’s files to

the browsers as data packets.

The HTTP Server sends the “index.htm” web page. This is the default page

when no other filename is specified in the URL. If you enter a URL, including

a filename (for example http://yassine.me/prject.htm), the HTTP Server

sends this page. The default page index.htm is a static page. This means

that the content of the page stored into the server is sent unmodified to the

web client on request. Usually, this page contains links to other static or dy-

namic pages on the server. When a browser requests the default page, the

HTTP Server tries to open index.htm as a default web page. If this page

does not exist, the web server tries to open index.cgi instead. If this page is

also not present, the web server responds with an Error 404 - Not Found.[7]

2.1.4 Different versions of the web

2.1.4.1 Web 1.0

the web invented by Tim Berners-Lee is called web 1.0 and it is only limited to

read actions, where a small amount of people creates web pages and give ac-

cess to a large number of clients via the Internet. In the early days the interac-

tions of the clients with the web page were limited to only reading the infor-

mation provided and they could not submit their own information, such as com-

ments or add articles.

Web technologies are also used such as XML, XHTML and CSS. In web1.0

both server-side and client-side scripting are used such as ASP, PHP, JSP,

CGI, PERL as server-side scripting and JavaScript, VBScript, flash as client

side.[12]

Short comings of web 1.0

The early version of the web was slow and chunky in nature and every time a

new piece of information was entered to the web pages, a reload was neces-

sary. Web 1.0’s biggest problem was that it did not support two-way communi-

cations. The client-pull model made communication capabilities limited as it

could only be initiated by the client. This model made the networking possibili-

ties limited as it ignores the human sense for building networks and the limited

number of writers made the users of the early web starved for resources. The

assumption that the web was a publishing tool instead of the public space lim-

ited its capabilities.

2.1.4.2 Web 2.0

Web 2.0 is the version of the web that allowed a write and read operation. It ba-

sically provided a new operation by using existing web technologies to allow a

user to add, update and upload content into the web. It evolved the network into

a platform by the creation of places for sharing knowledge such as wiki or web

blogs.

The web 2.0 was based on few ideas that allowed the jump from a read only

web to this form:

❖ User generated content: this means that every single user can be a pub-

lisher on the web and post their own content through wikis or blogs and

other public spaces.

❖ Architecture of participation: the design of an architecture for online technol-

ogies that allows participation and collaborative.

❖ Openness: open access and providing open source software and re-use of

free data.

The technologies used to make the web2.0 were present way before the crea-

tion of it. They were all technologies that were behind the Internet, such as

XHTML, CSS, AJAX, Flash.

Infrastructure of web 2.0

❖ Content Syndication: is a technology that allows content from one website to

many websites. The two most known examples of content syndication is

RSS and Atom.

❖ Ajax-based Internet Technology: Ajax means Asynchronous JavaScript and

XML and it is used to allow the client side of the connection to retrieve data

from the server side asynchronously meaning that the data will be sent from

the server to the client as it appears in the server. An example of this would

be the modern-day chat or texting features available on many social media

sites.

❖ Document Object Model is a tree representation of an HTML document, with

many DOM nodes in every document.

❖ REST: Representational State Transfer (REST) is an architecture style that

represents a set of constraints used to create web services. It allows the re-

questing systems to access and manipulate textual representation of web

resources.

❖ XML: is a markup language that defines the encoding of documents in both

human and machine-readable format.

❖ CSS: Cascading Style Sheet, is a style sheet language used to describe the

representation of a document defined in a markup language.

Flaws of web 2.0

With the openness and accessibility that web 2.0 offers, an interesting set of

applications were developed. Although they were as optimal as the commu-

nity has ever seen, they were not without flaws. Because of the new found

ability to upload your own content to a website, a malicious user could, for

example, upload a content designed to run code or carry a malware to per-

form an authorized task or insert malicious code in a piece of free software

to collect information, such as Trojans and other types of hacking tools. Web

2.0 has common vulnerabilities that are well known by any computer pro-

grammer. Some of them are:

❖ Cross Site Scripting (XSS): Is a widespread security flaw that exist in any

application where a user is allowed to input data. It is a type of injection

attack where a malicious user uploads a script into a trusted website

where other users can view that data uploaded and use the same-origin

policy to bypass security checks. Since the victims browsers assume that

all data from a website, which has permission, is trusted it does not verify

it and executes it and the script ends up gaining access to information,

such as cookies or session tokens or other sensitive information. Up until

2007, XSS accounted for 84% of all security vulnerabilities documented

by the firm Symantec and in 2017 it was still considered a major threat

vector.

❖ Cross Site Request Forgery (CSRF): if the XSS attack uses the website’s

trust to attack a user, a CSRF attack uses a website’s trust in a user to

perform unauthorized actions. There are many ways this type of attack

can be performed either by tricking a user into submitting an unwanted

request to a website such as changing a password or sending infor-

mation. Such requests can be hidden in image tags or hidden forms. An-

other way it could be done is by taking their cookies and injecting it into a

browser to be identified as the victim and gain login into their account.

❖ SQL Injection: an injection attack that relies on input fields in a web appli-

cation to run malicious SQL code. A malicious user would type in an SQL

command designed to run a certain task in the database side. A well-

done SQL injection attack can allow the malicious user to spoof identity,

tamper with existing data, void transactions, change balance of an ac-

count, disclose all data in the database, destroy data or gain administra-

tor access to the database. These types of attacks are common in PHP

and ASP applications due to their interface structure and they can be

avoided by verifying a data before submitting it into the query in the data-

base.

❖ XSS Worm: is an attack where a malicious user uploads XSS code into a

website. The worm spreads to the users when they visit that website and

it can be harmful when giving the coder access to personal data or just

executing a certain task on the website from the victim’s profile.

❖ Authentication flaws: with the two way system that the web2.0 relies on

users are usually asked to create an account in web applications and this

can come with its own set of flaws, such as weak passwords that can be

guessed or figured out through brute force attacks. Also, the use of weak

password recovery systems can allow the theft of someone’s account.

With authentication comes the concept of session management and this

session ID. Sometimes these session IDs can be insufficient in length or

have no expiry time so if they are stolen, they can lead to huge problems.

Likely these are flaws related to the design of web application and can be

fixed with the use of multi-factor authentication. Session timeouts and a

server-side session ID generation system with long IDs do not include a

session ID in the URL, password strength checks, minimum password

length.

❖ Information Leakage: is a security flaw were a website or application re-

veals data that is meant to be secret. Sometimes this data can be sensi-

tive. The most common types of data leakage in the web is through the

use of HTML comments where sensitive or developer specific data is

written or through improper server configuration.

Safeguards in web 2.0

As with any system developed by humans, the creation of web 2.0 lead to

the creation of systems and architectures to safeguards flaws that web pre-

sent in this new version of the web.

❖ SSL or Secure Socket Layer Certificates: Is a small file that contains a

cryptographic key that is bound to an organization. By installing this cer-

tificate in the organization’s web server, it activates the HTTPS protocol

and allows a secure connection to the web server from a browser. When

the certificate is installed, all web traffic between the web server and the

web browser will be secure and a padlock or a green bar will show up in

the browser to mark that this website is secure, it is usually present when

entering credit card details or browsing social media. this technology

works by the use of two keys one of them is public and presents on the

public domain which can be used to encrypt data and that data can only

be decrypted by the use of the user’s private key. SSL certificate keeps

data secure, increases the website’s ranking on search engines, en-

hances trust of users and improves your conversion rates. Such certifi-

cates can be purchased from organizations GlobalSign.

❖ Risk Reporting Tools: Are a set of tools used to monitor suspicious activi-

ties and report them. It is present on many websites such as Facebook

or Instagram, and when you receive a notification that some suspicious

activity is happening in your account that is the result of the work done by

these tools. A common web application based on this idea is Google

Alerts.

❖ Web authorization: Enterprises should add new security policy and au-

thorization to refine authentication and access.

2.1.4.3 Web 3.0

Web 3.0 is the third generation of internet-based services. It includes websites

and applications that focus on the use of machine-based analysis of data to pro-

vide a data-driven and semantic web to create intelligent, connected and open

websites.

As of today, there is no currently defined understanding of Web 3.0. Major inter-

net and computer pioneers have been at odds on a specific and mutual under-

standing on what web 3.0 is.

Quotes from web pioneers are listed below:

• Google CEO, Eric Schmidt says that web3.0 will be “applications

which are pieced together – relatively small, the data are in the cloud

and it can be run on any device(pc or mobile),very fast, very customi-

zable and distributed virally(social network, email)”[35]

• Yahoo founder, Jerry Yang stated “...you don’t have to be a computer

scientist to create a program. We are seeing that manifest in Web2.0

and 3.0 will be a great extension of that, a true communal me-

dium...the distinction between professional, semi-professional and

consumers will get blurred, creating a network effect of business and

applications”[35]

• As Gian Gonzaga, Ph.D., senior director of research and develop-

ment at the dating site eHarmony, says, “The Web can give some-

thing back that was not previously known. Web 3.0 learns and under-

stands who you are and gives you something back.” [35]

• Berners-Lee originally expressed his vision of the Semantic Web as

follows: “I have a dream for the Web [in which computers] become

capable of analyzing all the data on the Web – the content, links, and

transactions between people and computers. A “Semantic Web”,

which makes this possible, has yet to emerge, but when it does, the

day-to-day mechanisms of trade, bureaucracy, and our daily lives will

be handled by machines talking to machines. The “intelligent agents”

people have touted for ages will finally materialize.” [6]

From these quotes, some ideas on which technologies that make web 3.0 a

possibility can be deduced. Some of them are currently available, others are be-

ing developed or not widely used. Here are some of these technologies that will

make up the next wave of the web:

• Semantic Web: this concept basically means that the web will be able to

understand the different meanings of data available online. It will be able

to tell the meaning and the difference between two sentences.

• Artificial Intelligence: is the use of machine intelligence to understand

data and filter websites and present users with data set to their prefer-

ences. In the current version of the web, the filtration of preferences is

done by peer review, but this method is not perfect as it is affected by

user biases. AI can solve these problems since it does not have any bi-

ases and with the increasing computational power, it can predict what the

users want to see.

• 3D Web: in the last few years, a lot of virtual reality product and technolo-

gies have become popular. Virtual reality headsets, such as Facebook’s

Oculus Rift or Microsoft’s HoloLens, are used to enhance your virtual or

augmented reality experience in the gaming industry but with develop-

ment and this technology becoming cheaper it gave a new horizon for

tech companies to operate in. The creation of a website that can be navi-

gated by the use of these headsets, projects for social-media websites

that use this technologies have been in development. If you follow tech

news you might have seen Facebook’s take on this trend by their project

called Facebook Horizon, where a user can interact with other users by

using an avatar and can shop and play games using it, offering a more

connected experience.

This thesis will focus on Eric Schmidt’s definition of web 3.0 that means that

the web 3.0 will be consisting of apps that are made up of a lot of compo-

nents linked together.

3 REUSABLE WEB COMPONENTS

3.1 Introduction

An average internet user likes to think of a website as a homogenous structure

that defines the website from top to bottom and that definition up to recent times

have been somewhat correct, as all elements of a website are defined in the

same file. But with the advancement of web technology and software engineer-

ing methods, developers and scientists have realized how flawed this approach

is because it forces the developer to rewrite the same code in a different part of

the website. For example, if a website has two buttons or image files, a devel-

oper has to write the code to define the button or the picture twice. This ap-

proach wastes time that could have been used to write different parts of the

website and it also makes the source code for the website bigger rendering it

harder to understand and reducing the clarity and the beauty of the code itself.

This is where reusable web components come into play. Considering the exam-

ple of building a set of Lego toys, you start by placing one block on top of an-

other. These blocks can have different shapes and different colors so you can

have the same block with different properties and this is basically the underlying

idea behind web components. A standalone block of code that defines a web-

site element, be it an image holder or a paragraph or any possible element you

can find in a website. These blocks can be as large as you want them to be and

have different functionality, but to keep your code clean and readable, it is rec-

ommended to keep your components as small as possible and they should

have a single function. And like Lego blocks, you can simply place it in your

code, and you will have the html element it defines on your website.

In the figure 1 below, you can see the Google home page. Each red square is a

component or a Lego brick, the only difference is that web components can

have a parent child relationship as one component can contain multiple compo-

nents

Figure 1 Google home page [38]

In order to provide this versatility and reusability, web components rely on three

main technologies:

3.1.1 Custom Elements

The custom Element API is the foundation of web components, it allows you to

create your own fully featured HTML tags or to extend components written by

other developers, By defining a custom element, programmers can inform the

browser on how to properly construct components and how elements of those

components should react to changes. As of this time, there are still many limita-

tions to custom elements that prevent them from explaining the behaviors of ex-

isting HTML elements.

Figure 2 Example of a custom element [25]

In figure 2 the class keyword is used to identify that what comes after, is a

stand-alone class extending the HTMLElement. The content of the class is in-

cluded in the brackets “{}”. After it, comes a window’s function that allows the

use of the class as an html tag.

After you define your custom element, you can now call upon simply by using a

tag mark “<>” and the name you gave to the component. In the case of our ex-

ample, it is called app-drawer.

3.1.2 Shadow DOM

A DOM or Document Object Model is a cross-platform and language-inde-

pendent interface that treats an XML or HTML document as a tree structure

where each node is an object representing a part of the document.[37]

Figure 3 Example of DOM hierarchy in an HTML document [26]

Figure 3 shows the concept of DOM found in all HTML based websites and

apps. It shows the tree framework that is the DOM.

A Shadow DOM is a tree of DOM nodes. It provides a separate DOM tree

for your component so that the component would have a total encapsulation

and the functionality of the components would not spill to other elements in

the HTML. A shadow DOM forms its own scope. For example, a shadow

DOM subtree can contain IDs and styles that overlap with IDs and styles in

the document (the original HTML document), but they do not clash with the

IDs in the original tree. It provides encapsulation for a subtree (children of

the parent component) from the parent page. This subtree contains its own

markup, CSS, JavaScript, or any asset that can be included in a web page

without any of the assets impacting the parent page, or vice versa.

The shadow DOM consists of two major elements that define it:

Shadow Root: is a root node for the shadow DOM branch. Creating a

shadow root on a node point on the parent page makes the said node a

shadow host.

Shadow Host: is a regular node that contains within it a shadow subtree.

Any child node that resides under the shadow host is still selectable except

the shadow root.

Figure 4 Interaction between DOM and Shadow DOM [28]

Figure 4 shows two types of DOM, one within the other, the second node in the

document tree (named shadow host) is an access point to a shadow DOM that

includes its own html elements. To the right of the figure, a flattened tree is

shown which describes how a shadow DOM interacts with the DOM and the

browser.

3.1.3 Template

The ability to create a reusable DOM structure using a new <template> element

which describes a standard DOM-based approach for client-side templating. It

allows you to declare fragments of HTML that will be inactive on the page load

and instantiate later.

Figure 5 Example of Template [28]

Figure 5 describes how a template is written. It includes normal HTML and CSS

code, to create a new HTML element called “my-paragraph”.

Using the <template> tag gives us a few new properties to use:

The content being inactive, which means your markup is hidden in the DOM

and does not render. So, any content within the template would not have any

side effects, scripts would not run, images would not load, and audio would not

play until your template is used. Moreover, the content is not considered to be

part of the document, so using statements, such as document.getElementById()

on the main page, would not return any child of the template. Templates can be

placed anywhere inside of the <head>, <body>, or <frameset> and can contain

any type of content.

3.2 challenges of web components

Implementation: The W3C web component specification is very new to the

browser technology and not completely implemented by the browsers.

Shared resource: A web component has its own scoped resources. There may

be cases where some of the resources between the components are common.

Performance: Increase in the number of web components takes more time to

get used inside the DOM.

Scalability: By default, attributes of Web Components can only take primitive

values, such as string, number and Boolean. Changes of the values of these at-

tributes can be watched and reacted to through the attributeChangedCallback

method. Attributes cannot take complex values like objects and arrays, so in

practice, data binding can only be done through attributeChangedCallback with

primitive values.

SEO: is the process of optimizing a website or an app to be easily mapped and

ranked by search engines. In a web component, the HTML code is inside the

component template. This different strategy of expressing your HTML creates

problems in the search engine because its crawlers are used to the HTML being

the main file on a website.

The Lack of Statelessness: Web Components are extended from the HTML Ele-

ment, which is the base class for all HTML tags. By nature, Web Components

are class-based. That is why they are stateless, and because of that it is quite

hard to build an app to scale for large use. Web components frameworks, like

React, provide works around for this problem. In the case of React they stated

with function components and then they were replaced by React Hooks.

Theming Web Components: web components can use a Shadow DOM which

provides a scoped CSS. So components can be styled with CSS from the inside

and the style only applies to the components. This approach solves a lot of

problems with naming scopes but at the same time it limits the possibility of a

consumer of the web components to style it the way they want. Of course, there

is a way for consumers to style the component but the properties of said com-

ponent should be explicitly exposed. Some browsers, like Chrome and Firefox,

support CSS Shadow Parts which makes theming easier.

No server-side rendering: Web components rely on the Shadow DOM so there

is no way to have server-side rendering as it is done by the browser.

3.3 Different Web Component Libraries

Web components can be hard to write from scratch as it requires writing a lot of

boilerplate code and web component specification is not completely imple-

mented by the browsers. However, there are many libraries with polyfill support

that make creating custom web components a straightforward task and saves a

lot of time and effort. You do not need to use a library to create and share cus-

tom web components but if you are writing a lot of custom elements, using a li-

brary can make your code simpler and cleaner. However, when choosing a li-

brary, you have to make sure to find one with a large feature set to cover your

use cases and should be able to create components as stand-alone elements

and without implementation details leak and it should have a high value-to-pay-

load ratio which means that they provide a lot of value in proportion to their

download size.

In recent years, web components specifications have been used to create sev-

eral different libraries, with their own specific features and challenges. Some of

these libraries became really popular in the web development community be-

cause of how versatile and efficient they are.

Here are the most popular libraries with their definitions and their features:

• Vue.JS

• Angular

• React

In the following chapter, you will have the chance to understand these different

frameworks in depth.

4 VUE.JS

4.1 What is VUE.JS

Vue.JS is a JavaScript framework for building user interfaces powering sophisti-

cated Single-Page Applications when used with modern tools and support li-

braries.

A single-page application (SPA) is a web application or website that interacts

with the web browser by dynamically rewriting the current web page with new

data from the web server, instead of the default method of the browser loading

entire new pages.[30]

Vue.JS was created by Evan You, and it is maintained by him and the rest of

the active core team members. The original thought behind developing Vue was

that after Evan worked for Google using Angular, he decided to build something

similar to Angular but only include the parts of it he liked in order to keep the

framework light. His thoughts are summed up in this quote “I figured, what if I

could just extract the part that I really liked about Angular and build something

really lightweight."[36]

One specialty about Vue is that it is entirely developed by the open source com-

munity and not a large enterprise. It started out as a hobby project by You until

he decided to quit his job and work full-time on it. The financing was completely

done through Patreon. Patreon is a community where people can become a

subscriber for a specific project that they want to support with a monthly pay-

ment. The supporters of the Vue project already contributed more than 4,000$

in total per month. As of April 2020, this figure has increased to more than

16,000$[20]. This rise in popularity can be understood by looking at other re-

lated community pages: On GitHub, success and popularity is displayed by the

number of stars a repository or project has. Vue has gained more than 40,000

stars in the course of 2017 making it the highest rising project overall of that

year. Part of this derives from the strong bonding and extensive support from

the PHP community, especially Laravel, where Vue is used as the default view

engine.

4.2 Structure

This section will discuss the code structure of Vue.JS app:

Figure 6 Simple Vue.JS code [22]

The figure above shows the variable “app” which contains an object of the Vue

class that holds two properties. The first one is called “el” which refers to an ele-

ment and it connects the vue.JS class variable to the html element with the ID

“app”. The second property is an array that holds a property called message. by

using the “{{}}”. You can have your variable render directly in your element.

The app variable created using the Vue class is called a view-model.

By attaching your html to the view-model, it gains the total control of the html el-

ement and can perform different actions, such as input handling and conditional

rendering all within the Vue instance.

4.3 Features:

4.3.1 Components:

Vue components are an extension of basic HTML elements used to encapsu-

late code for better usability. At a high level, components are custom elements

to which the Vue’s compiler (the compiler serves the same role as the Java vir-

tual machine serves, by translating the Vue syntax into The HTML code the

browser can understand) attaches behavior. In Vue, a component is called a

Vue instance.

4.3.2 Templates:

 Vue uses an HTML-based template by binding it to a Vue instance (the part of

the component that holds the logic functions). All Vue templates are valid HTML

code that can be parsed by any browser and/or an HTML parser. Vue compiles

the templates into a virtual DOM. The virtual DOM allows Vue to render compo-

nents in its memory before updating the browser. Combined with the reactivity

system, the template-based approach allows Vue to calculate the minimal num-

ber of components to re-render and apply the minimal amount of DOM manipu-

lations when the app state changes.

4.3.3 Reactivity:

Simply put, reactivity refers to the process of tracking internal state changes

that accrue within a Vue component, so the system knows precisely when to re-

render, and which components to re-render if changes are made. Vue.JS

achieves this by mapping the properties of every components and attaching a

setter/getter functions, these functions are invisible to the user, but they allow

Vue.JS to perform dependency tracking and re-rendering when properties are

modified.[29]

4.3.4 Transitions:

Vue supports transition effects in multiple ways: Automatically apply classes for

CSS transitions and animations.

• Integrating third-party CSS animation libraries, such as Animate.css.

• Using JavaScript to directly manipulate the DOM during transition hooks.

• Integrating third-party JavaScript animation libraries, such as Velocity.js.

4.3.5 Routing:

 Vue does not come with a prebuilt routing system but it does not mean that

Vue is not capable of routing. The open source "vue-router" package provides

an API to update the application's URL and supports navigation history. It sup-

ports nested routes for components within a component. With vue-router, com-

ponents must merely be mapped to the appropriate routes, and the library will

provide a complete routing system for your components.

4.3.6 Server-Side Rendering

Vue.JS makes server side rendering possible by rendering components into

HTML strings on the server. Then it sends them directly to the browser, and fi-

nally it integrates it into your static HTML, This process is known as SSR or

Server-Side Rendering

Some of the benefits of SSR are

• A better SEO, as the search engine crawlers will directly see the fully

rendered page.

• Faster rendering time. Server-rendered markup does not need to wait

until all JavaScript has been downloaded and executed to be displayed

and it is independent of the client’s internet speed, so the client will see a

fully rendered page sooner.

4.4 Problems of Vue.JS

Smaller market share and community – Compared to other frameworks, e.g.

React or Angular, Vue.JS has a much smaller community of developers sur-

rounding it due to it being new on the market. This results in lack of resources

and documents which makes dealing with bugs and errors harder compared to

its close competitors.

Problematic integration into larger projects – When trying to integrate Vue to

existing projects, developers often find out that Vue.js causes issues with com-

patibility with other libraries.

English documentation – some stages in the development of Vue.js projects

might be a little more complicated because of the lack of full English documen-

tation. However, as more and more material in the Vue.js documentation is be-

ing published by the team behind Vue or the community, that problem is bound

to disappear soon.

5 ANGULAR

AngularJS was the first framework to fully integrate the web component technol-

ogy on a grand scale and it became the most used JavaScript frameworks, as it

was initially introduced by Google corporation in 2012. Angular is built on

Model-View-Controller concept in mind. It was created by a Google engineer in

efforts to prove that the approach his fellow engineers were taking is slow and

unreliable. He re-wrote a Google project that took his team months in just few

weeks by using his newly created library. Angular introduced an approach to

separating the logic side and the front-end side of the project. It did this by intro-

ducing Controllers which are object functions that handle the logic part of the

application, and a View, which refers to the HTML part, and finally a Model,

where functions that communicate with the other world reside, functions such as

REST API calls and Database manipulation functions.

 Nowadays, AngularJS is outdated and not in use. As it was introduced early on

AngularJS showed the potential a framework built on this architecture could pro-

vide but it also showed the limitation to the initial release of angular.

To solve this Angular 2 was released with an overhauled design that got rid of

controllers, scope and view with TypeScript’s component approach.

TypeScript is an open-source programming language developed and main-

tained by Microsoft. It is a strict syntactical superset of JavaScript and adds op-

tional static typing to the language. TypeScript is designed for development of

large applications and trans-compiles to JavaScript [31].

5.1 Structure

Figure 7 Basic source code of an angular component [32]

Figure 7 is a simple example of an Angular component. It first begins by import-

ing the “Component” and “OnInit” from the core Angular library. These are the

main functions that an Angular component will rely on. Then “@component” is

used to mark a decorator function that specifies the Angular Metadata to be in-

cluded, inside it you can find a “Selector” which matches the name of the HTML

element that identifies this component. “templateUrl” refers to the file where the

HTML data is hosted and finally “StyleUrls” refers to the location of the CSS

files used to style this component.

The “ngOnInit()” is a lifecycle hook. Angular calls ngOnInit() shortly after creat-

ing a component. It's a good place to put initialization logic.

Figure 8 Use of Angular Component[32]

Like Vue and React, to use an Angular component, it merely requires the use of

the selector within a “<>” tag, as demonstrated by the figure 8 above.

5.2 Features

5.2.1 Components

Every Angular application has at least one component, the root component

which connects a component hierarchy with the page document object model

(DOM). It is usually referred to as the App component or root-app component, in

pure HTML it serves the same function as index.html serves. Each component

has a defined class that contains application data and logic, and the HTML for

the component is defined in a view file ‘.HTML’, to be displayed in a target envi-

ronment.

After the @Component() decorator, the class immediately below it is the com-

ponent class, and it contains the template and the metadata for the component.

5.2.2 Templates, directives, and data binding

A template holds the HTML to your component. A directive provides program

logic, and binding functions allow you to move data between the template and

directive allowing for the user input and output or function that executes when

certain conditions are met. There are two types of data binding:

• Event binding allows you to execute functions when a user has made

some sort of an event in the app. An example is the “ngOnInit” function in

the figure 3 above

• Property binding lets you render values that are computed from your ap-

plication data into the HTML.

Before an HTML element is displayed, Angular evaluates the directives and re-

solves the binding syntax (in figure 9 “{{title}}” will be exchanged for the value of

the variable named title) in the template to show the HTML elements with the

new data according to the program’s data and logic. Angular supports two-way

data binding, meaning that changes in the DOM can affect your app’s flow, for

example form an input from a user.

Templates also have “pipes” which are used by including a simple “|” next to the

binded data. It helps improve the user experience by transforming values for

display, for example, using pipes to display dates and currency values that are

appropriate for a user's location. Angular provides predefined pipes for common

transformations, and the user can also create new pipes.

5.2.3 Routing

The Angular Router module provides a routing service that defines a linking

path between the different application states and UI hierarchies. It is the same

as traditional browser navigation except that the Angular app does not have to

re-render to navigate from one link to another.

The router model maps URL-like paths to their respective views/UI instead of

pages. When a user interacts with the UI by clicking a link, that action normally

loads a new page in the browser. The Angular router blocks the browser's de-

fault action and shows or hides view/UI hierarchies.

By setting you navigation rules (an example in figure 9 below), the router can

figure out which link refers to what view. You can navigate to new views when

the user clicks a button or a link. The router model has a browser like history

feature, so the back and forward buttons work as well as in a normal browser.

Figure 9 Example of Routing rules [33]

Figure 9 shows how to use the route module. To set the rules for routing, you

need to create a constant that extends the Routes class. Within it, you can in-

clude paths to your components. The “Path” variable refers to the URL exten-

sion and “Component” refers to which component should be shown when the

URL is invoked.

5.2.4 Modules

Angular Modules differ from JavaScript (ES) modules. An NgModule compo-

nents can work in harmony with other user-built components, such as services,

to form functional units which can be used with any component the user builds.

Every Angular app has at least one module called the root module, named

AppModule, which provides the functions necessary to launch the application.

An app typically contains many functional modules. Like JavaScript modules,

NgModules can import functions from other modules and allow their own func-

tions to be exported to other modules. For example, the router module is used

by importing the Router NgModule. [33]

5.3 Advantages of Angular:

• Angular presents you not only with the tools but also design patterns to

build your project in a maintainable way. When an Angular application is

made properly, the code is not a tangle of classes and methods that are

hard to modify and test. The code is structured conveniently, and you

would not need to spend much time in order to understand what is going

on.

• Angular is built with TypeScript, which in turn relies on JS ES6. Type-

Script is a superset of JS so the skills and knowledge transfers over, with

the addition of new features like static typing, interfaces, classes,

namespaces, decorators etc.

• With Angular, you already have lots of tools to start crafting the applica-

tion right away. Directives gives HTML elements dynamic behavior, us-

ing FormControl gives more control over the HTML static forms and intro-

duce various validation rules to accept input. asynchronous HTTP re-

quests of various types allows for better data handling. routing is done

with little hassle by using NgRouter.

• Components are decoupled. Angular removes tight coupling of various

components in the application. Injections happen in NodeJS-style, so it

allows for the replacement of various components with ease. [39]

• All DOM manipulation happens where it should happen. With Angular,

you do not tightly couple presentation and the application’s logic because

of the MVC architecture making your markup much cleaner and simpler.

• Testing is built into the framework. Angular apps are built to be thor-

oughly tested and it supports both unit and end-to-end testing using li-

braries like Jasmine and Karma.

• Angular is mobile and desktop-ready, meaning you have one framework

for multiple platforms.

• Angular is actively maintained and has a large community and ecosys-

tem. You can find plenty of materials on this framework as well as many

community-built tools.[32]

5.4 Challenges of Angular:

• TypeScript is a superset of JavaScript, so you will need to be comforta-

ble with it as well.

• It is a good idea to get the grasp of the Angular CLI to speed up the de-

velopment process even further.

• Node’s package manager is used extensively to install Angular itself and

other components, so you will need to be comfortable with that as well.

• Learning how to set up a task runner like Gulp or Grunt can come in re-

ally handy, as there can be lots of things to be done before the applica-

tion is actually deployed to production.

• While developing the app, it is vital to be able to debug the code, so you

should know how to work with debugging tools like Augury.[40]

6 REACT

 React is the most popular web component framework at the moment With over

5.5 million weekly downloads.

l

Figure 10. Comparison of different web frameworks - Google Trends

Figure 10 shows a comparison between Angular, React and Vue.JS. React is

the most popular framework/library followed by Angular and then Vue.JS.

6.1 What Is React?

React is a JavaScript library mainly used to create user interfaces. It was built at

Facebook to address some of the challenges of building a large-scale, data-

driven website. React was built to preserve the speed of JavaScript and use a

new way of rendering webpages, making them dynamic and responsive to user

input. The React project was started by Jordan Walke, a Facebook software en-

gineer, in 2011. His goal at the time was to simplify and speed up the develop-

ment process while maintaining a comfortable user experience, he decided to

create a library that would allow the building of a web interface with JavaScript.

Facebook was confronted with a major user experience challenge which is

building a dynamic UI with high performance [4]. For example, Facebook

wanted to make news feed updates happen simultaneously with people using

chat. The idea seemed impossible due to the lack of technology to support, but

in 2011 Facebook released the ReactJS library on the basis of JavaScript.

While testing the framework they realized that ReactJS was faster than any

other implementation of its kind (mainly Angular). When React was released in

2013, the project was initially viewed with some skepticism because the con-

ventions of React are quite unique. So the web development community was

both interested and seemingly baffled by the changes React was doing to the

idea of always separating your application’s logic from its UI. React is managed

by Facebook and the open source community [4].

React challenged conventions that up to that point were the de-facto standards

for JavaScript framework best practices. React does this by introducing a new

architecture and shifting the status quo of what creating a scalable and main-

tainable JavaScript applications and user interfaces has to be. React provided a

shift in front-end development and it also came with a rich set of features that

made developing a single-page application or user interfaces easier for devel-

opers from many skill levels from those who have just been introduced to Ja-

vaScript, to experienced developers [4].

A common misconception about React is that it is a full-scale JavaScript frame-

work on the level of other frameworks such as Backbone, Knockout.js, Angu-

larJS, Ember, Dojo, or any of the numerous MVC frameworks that exist. How-

ever, React makes up only one particular piece of what these frameworks do.

React, in its simplest form, takes on the view part from MVC, MVVM, or MV*

frameworks. As stated in the previous paragraph, React is a way to describe the

user interface of an application and a mechanism to change that over time as

data changes [4].

React can be used as a base in the development of single-page applications,

websites or mobile applications. However, React is only concerned with render-

ing data to the DOM, it allows the user to effectively re-construct the DOM in Ja-

vaScript and push only those changes to the DOM which have actually oc-

curred. this means that a React application would require additional libraries for

state management and routing. Redux and React Router are the libraries com-

monly used with React [4].

React works in declarative code meaning that the code describes what we want

instead of saying how to do it, as you would with imperative code. At its core,

declarative code is like going to a restaurant and ordering a meal. You tell the

waiter what your choice is, but you do not tell the chef how to cook it. Declara-

tive code describes the end result, but it does not act as a step-by-step guide of

how to do it. In practice, that means that the declarative code is small, easier to

understand and modify, and creates less bugs. An example of declarative code

would be something like:

<header>

<SlideShow>

<Paragraph>

Each one of these tags is an example of a declarative code as it does not tell us

how the header, for example, works but mainly declares that there should be a

component, or a piece of code called header, in this place holder like a normal

HTML tag.

6.2 What Problems Does React Solve?

React does not intend to solve every problem in user interface design and front-

end development. React solves a specific set of problems, and in general, it is

focused on a single problem. According to Facebook, React builds large-scale

user interfaces with data that changes over time [34]. Building large-scale user

interfaces with data that changes over time could probably be something that

many web developers can relate to in their own work or hobby coding experi-

ences as most web applications are data driven and receive new pieces of data

every second. Problems arise when your project code is no longer maintaina-

ble. You must add extra pieces of code to get the data to bind properly when-

ever you add a new feature or a new HTML code. Sometimes you must restruc-

ture an application because a secondary business requirement has inadvert-

ently broken the way the interface renders a few interactions after the user

starts a task. All of this leads to user interfaces that are filled with bugs and

highly interconnected so changes in one part of your code can break your inter-

face. These are all problems that React attempts to solve.

Previous sections have discussed Angular and how the first versions of Angu-

lar, AngularJS, relied on a Model-View-Controller architecture with a two-way

data binding which means that an application must contain views that listen to

models, and then the views would update their html based on either user inter-

action or the data coming from the model. In a small application this is not a

great performance or productivity obstacle, but the scale of the application will

inevitably grow as new models and views are added to the application. This

quickly becomes more and more complicated. Items that are deep in the ren-

dering queue or in a different model are now affecting the output of other items.

In many cases an update that happens may not even be fully known by the de-

veloper because maintaining a tracking mechanism of different processes be-

comes increasingly difficult. This makes developing and testing your code

harder and ultimately leads to more bugs, which means that it becomes harder

to develop a method or new feature and release it. The code is now less pre-

dictable, less understandable and development time has skyrocketed. This is

exactly the problem that React sets out to solve [4].

Due to React being only responsible for the view part of an application, the de-

velopment process requires a stack of various technologies to be effective:

• Compiler (for JSX5)

• Modules (and an appropriate loader) for the application structure

• Build process

• Routing

• State management

6.3 Structure

6.3.1 React Components

React components are the main building blocks when structuring a React appli-

cation. React components are created by extending from the base “React.Com-

ponent” class using ES6. Or, more traditionally, using the “React.createClass”

method

class myComponent extends React.Component {

 render() {

return (

Hello World

); } }

Components as Functions, These are components created using a pure JS

functions that return exactly one React element. The name of the component is

the name of the function. This approach, however, has its limitations: Neither

can the state be altered, nor can you access lifecycle methods (e.g., compo-

nentDidMount) [4]

Components as ES6 Classes, In this approach, a JS class is used to create

the component. The class always has to extend the super class “React.Compo-

nent”. Furthermore, the HTML should be contained in a Render() method which

can only return one root element meaning that all your HTML has to be con-

tained in one HTML tag. The aforementioned limitations of the first approach do

not apply here: Classes can utilize states, lifecycle hooks and more. [4]

React’ best practices specify that a developer should always use a function

component whenever possible. That should support efficiency and re-usability

of the simple but often needed components. Class components are usually lo-

cated at a high position in the hierarchical tree of the application. They work as

parent components and handle the various states that are then passed down to

the child function components. [4]

The React.Component class also has lifecycle events that manage the creation

and destruction of component instances. Here are some of the most used

events in the React development cycle (figure 11):

Figure 11 Function invocation order during the initial render of a React compo-

nent [4]

ComponentWillMount:

componentWillMount is a lifecycle event that executes before React renders the

component class to your DOM. “componentWillMount” is executed before the

initial render of your component.

componentDidMount:

componentDidMount is a client-side function of React, after the component has

been rendered to the DOM, this function executes.

componentDidMount is a good place to write your component’s logic or initialize

any third-party JavaScript that requires a DOM. For example, a drag-and-drop

library or a library that handles touch events.

componentWillReceiveProps:

 componentWillReceiveProps is executed when the component will be receiving

props. This function is called every time there is a prop change, but never on

the first render.

ComponentWillUnmount

Mounting refers to when a component is rendered to the DOM. componentWil-

lUnmount, would be invoked immediately before the component is no longer

needed. This method is used to unmount/destroy the component. When a par-

ent component is unmounted, its children are unmounted first.

Previously the concept of Props and States have been discussed but never ex-

plained, the following paragraphs explain these concepts in more details

Props stands for properties and is being used for passing data from one com-

ponent to another. Data with props can only be passed in a uni-directional flow

meaning that it flows one way from a parent to a child Furthermore, data coming

from the parent cannot be changed by child components (figure 12) [4].

Figure 12 A case use of Props in a React Component – Book: introduction to

React

State allows components to create data and managed locally. So unlike props,

components cannot pass data with state, but they can create and manage it

within a said component. State should not be modified by direct access, but in-

stead a special method called setState() is invoked. One of the best features of

state that its counterpart (props) does not have is that when state changes, Re-

act gets informed and immediately re-renders the DOM, not the whole DOM,

but only the component to which the state belongs. State should be used very

carefully because it re-renders the components and could lead to infinite render-

ing if there are memory leaks in the component. This is why most developers

prefer to use functional components and keep class-based components to an

absolute minimum (figure 13) [4].

Figure 13 A Use Case Of State in a React Component [4]

6.4 Features

JSX

or JavaScript Extension is an XML/HTML-like syntax developed by Facebook to

be used by React. It extends ECMAScript so that XML/HTML code can be en-

capsulated by JavaScript/React code. JSX is intended to be used by compilers

like Babel to compile HTML found in JavaScript files into standard JavaScript

objects which a JavaScript engine will parse.

By using JSX, a developer can write HTML/XML-like structures in the same file

where they write JavaScript code. Then the Babel compiler will transform these

expressions into actual JavaScript code. Normally, developers used to put Ja-

vaScript inside HTML but instead JSX allows the user to put HTML into JavaS-

cript.[20]

JSX is not a requirement to write good React code. It is however, the agreed

upon best practice when it comes to React development. [4]

Flux

Flux is a design pattern whose purpose is to keep date flowing in one direction,

from a parent to a child, as it is the preferred method of data handling in React.

Before Flux was introduced by Facebook, web development architecture was

dominated by variations of the MVC design pattern. Flux is an alternative design

pattern to MVC that complements the functional approach of React. [4]

Routing

React does not natively support routing but routing can be handled with the Re-

act Router library. The React Router is based on the same principles as the

Ember-Router, a routing framework for JavaScript. [4]

State Management

As your application grows in size and complexity, the need to keep track of your

states grows as well. React applications often use Redux. Redux is a state

management library. In React version 16, Hooks were introduced to provide an

easy way for state management without using an outside library,

Hooks are functions that attach to a State of a certain component and allows

the user to track it or interact with it by the use of multiple feathers. [4]

6.5 Advantages of React

6.5.1 Higher code stability

React provides greater code stability as data flows in one direction only. When-

ever the developers use data binding techniques, then the changes in the child

structure would not affect parent structures as opposed to other frameworks.

A two-way data flow has a significant disadvantage when it comes to maintain-

ing or updating code over a long length of time in this architecture. Child ele-

ments may affect the parent if changed. Facebook removed these issues in Re-

act JS, making it just the view system with an unidirectional dataflow. [4]

6.5.2 Easy to understand

A JavaScript developer can quickly and easily work with React. A basic

knowledge of HTML, CSS and JS will efficiently serve the purpose. For mobile

app development, the React Native version offers multiple advantages over its

competitors and it is similar to React making accessing the mobile app business

easy for a novice developer.

6.5.3 Strong Open Source Community

The React library is available to more than 2,000 contributors on GitHub. There

is an active community of Reactjs developers on significant platforms, e.g.

StackOverflow, Slack, Freenode IRC and different types of forums, that provide

a satisfactory answer to the questions. The strong React community will make

the transition more accessible for the new developers. React was released as

an open-source project by Facebook which means that ReactJS uses all ad-

vantages of free access – a lot of useful applications and additional tools from

off-company developers and at least two features (batching and pruning) are

community developed [41]

6.5.4 Reusability of Components

Facebook added the functionality to reuse the code components that in turn

have made the life of React developers easy. It saves the time of the develop-

ers and frees them from the hassle of writing the same code repetitively. In case

of design technology, it reuses the same assets. otherwise, designers would

have to draw corporate logos, over and over again. It is pretty obvious that reus-

ing is a design efficiency. In programming, this process is more difficult. System

upgrades often turn into a complicated task as every change can affect the work

of other components in an entangled system. React does not suffer from these

problems because all React components are isolated and a change in one does

not affect others. This allows the reusing of components without affecting the

other components and their functionalities [41]

6.5.5 Quick rendering

The virtual DOM in ReactJS helps in removing the bottlenecks from code ren-

dering that helps in making the process smoother. With minimal re rendering,

the Virtual DOM will apply changes virtually and perform DOM changes. It mini-

mizes the time required to make the changes to the DOM and offers a fast per-

formance. Users can notice it when writing in Facebook chat and seeing a sim-

ultaneously updating news feed. Moreover, in React React elements are al-

ready connected to the DOM. This approach allows developers to work with UI-

objects faster and use hot reloading (applying changes in a real-time mode).

This made programming faster. [41]

6.5.6 Helpful Developer Toolkit

React enjoys one of the best debugging and design tools. “React Developer

Tools”, a browser extension can be downloaded for Chrome and Firefox. It

makes development easier due to its extensive toolkit for developers. Being a

great extension, it allows to observe reactive components and inspect the cur-

rent state and props of different components. [41]

6.6 Challenges of React

6.6.1 High pace of development

React is fairly new in the grand scheme of things and this means that it is con-

stantly evolving to accommodate a wide range of features as demands for them

grow. And sometimes big features lead to a major change in the framework

where developers have to learn the framework from the ground up over and

over with every major version. [41]

6.6.2 Poor documentation

With the fast pace of the development React is showing, constant releases and

tools are being presented into the ecosystem and this accelerating pace leaves

no room for developers to write proper documentations that could be looked at

by the community and checked for efficiency. So React has a number of poorly

written documentations [41]

6.6.3 JSX as a barrier

JSX is a major technology in React development, which makes it another bar-

rier of entry for new developer. Updating and the growing complexity of this li-

brary poses problems even for experienced developers. [41]

6.6.4 SEO hassle

There have been reports about problems in SEO concerning dynamic web

pages and client-side rendered content, but Google confirmed that their web

crawlers are capable of reading dynamic content. However, you still have to do

some testing to ensure that your app is indexed by Google as there were prob-

lems reported by some users. While this is not a big problem, SEO adds up to

your development effort. [41]

7 ANALYSIS OF THE 3 DIFFERENT FRAMEWORKS

The following sections will cover various aspects of decision making in terms of

adapting a new framework. While the preceding chapters contained many, more

technical related parts of the technologies, this comparison chapter will pick the

most relevant ones and furthermore include comparisons between the three dif-

ferent frameworks based on the following criteria:

• stability: has the framework frequently have a stable developer ready

version with a manageable number of bugs?

• Technical aspects and architecture: What feature each framework pro-

vides and how does their underlying architecture differ to solve different

problems?

• learning curve: How long does it take to get started with a framework?

• size: How big is the framework and how big are the compiled final pro-

jects produced by using these frameworks respective CLI?

• Runtime Performance: How well does the framework render its ele-

ments, how fast does it execute the code?

7.1 Stability

Stability generally refers to how reliable the framework is, how many bugs can

an average developer run to, how fast those bugs are patched, and do updates

regularly force you to redesign your code.

Angular has Google as a parent company. That name comes with a certain rep-

utation for reliable code especially In the area of web, and Angular has a longer

history than the other two to prove its stability. Angular had only one major rede-

sign that made developers migrate their code. When AngularJS became Angu-

lar 2, after that updates were seamless and retrofitting with the back versions.

As for bugs, Angular has a number of bugs but they are patched at a fast pace

and due to the large community bugs are also flagged at a higher rate.[3]

React also has the backing of Facebook and a large open source community

making it the fastest changing framework between the three. That comes with a

certain inconvenience for developers who have to update their projects regularly

because certain functions are struck down in the newer updates, and also a

large number of bugs, but the support is reliable as well and most bugs are eas-

ily fixable with a work around or an update.

Vue.JS is the new neighbor and it is still an unknown quantity, but most of the

bugs that have been flagged have been fixed at a good rate that a huge number

of developers are switching over to it for its simplicity which makes bugs rarer.

[24]

7.2 Technical Aspects and Architecture

7.2.1 the main development language

While Vue is liberal in this case offering developers more than one way to write

their code (e.g., ECMAScript5/6 or TypeScript since 2.5+) and also emphasizes

doing that, Angular is more restrictive: Although it is possible to develop an ap-

plication with Vanilla JS, all official resources as well as most of the available tu-

torials and code snippets require the usage of TypeScript. While this also

means an advantage in terms of being familiar for developers with any object-

orientated background, it may make simpler projects more complex. This goes

on with Angular being dependent on the Dependency Injection, a concept which

is not widespread among the JavaScript ecosystem. React, for example, does

not rely on it. However, React also comes with a quasi-restriction by enforcing

the use of JSX for developing. It definitely is the most diverse approach of all

three frameworks as JSX implies that HTML is strongly intermixed with JS.

Also, the concept of states can be a barrier to adaption as state handling in Re-

act is done by Redux and can be another burden to clear.[24]

7.2.2 Components

Vue, React and Angular share a relatively similar approach to structuring their

components: Both split up a template (HTML), a style (CSS) and logic (JS).

While all these frameworks offer the option to handle these parts either in one

file or in three separate ones, Angular definitely prefers the separation while

Vue and React emphasize the single file approach even offering a special file

extension for this purpose: .vue, .jsx. [24]

Single file components have the advantage as they force the developer to write

components as slim as possible to ensure simplicity and re-usability.

7.2.3 Data Handling

Data handling is the approach to binding. React uses one-way data binding

only. Angular and Vue offer a data flow in two ways by recommending the use

of unidirectional data flow. However, two-way binding may seem convenient at

first but can cause difficulty the more the application grows in terms of size and

complexity. With two-way binding it can sometimes be hard to track which data

gets updated and where. Also, bugs may occur more often. Therefore, it is rec-

ommended to use one-way binding as extensively as possible even though this

results in a generally higher coding effort for the developers. [24]

7.3 Learning Curve

Developers who attempt to learn React need to have a profound knowledge of

JavaScript because it is the main programming language for this framework.

One could say that React entails more JavaScript. This might become relevant

when a company has designers that work close to the code. In the real world, it

could eventually be hard to find designers that know how to modify JSX code in

order to change structural or styling related parts. For this task working with

HTML templates would be much easier. React breaks with long-term best prac-

tice of developers separating UI templates and in-lining JS logic but the usage

of JSX causes them to be intermixed again. This can be seen as both positive

and negative depending on the judge’s philosophy in the subject. Due to the

use of JSX, developers have to become familiar with this new form of syntax to

get started and due to the lack of state management, developers also have to

use Redux. [24]

Vue.JS is the easiest to learn compared to the other two frameworks, as it

mainly uses ES6 for developing and it does not require any additional compilers

or transpilers (compilers that are specific to web component frameworks) as it

only utilizes the basic web technologies. [24]

Angular has a rather steep learning curve. Setting up a project with the CLI only

takes a few minutes. From there on, developers can take the tutorial on the offi-

cial Angular homepage. It must be mentioned that the documentation is exten-

sive as well as comprehensive. As Angular is a complete framework and it pro-

vides a full set of homogeneous APIs, features and tool. It requires time and ex-

perience to gain an understanding of all the features that are offered. The

framework takes away many decisions for the developer on how to handle cer-

tain situations. This may be viewed as an imposed limitation. However, one

could argue that especially this argument poses an advantage for companies

that hire new developers. In the Angular world, a new developer, who has expe-

rience in Angular, will be familiar with the code base of the company relatively

faster as almost all Angular project are structured similarly. Furthermore, devel-

opers with a background in object-orientated programming will find TypeScript

to be close to, e.g., Java or C# and easy to access. [24]

7.4 Size

In terms of size Vue and React are the lightest with a huge difference compared

to Angular. Because Angular is a full fledge framework with many features that

do not exist in the other two then while being considered to be frameworks by

the community the other two are more accurately described as libraries.

An approximate size of the Angular framework is 500KB while Vue and React

only come at 80Kb and 100kb respectively.

The latest versions of Angular, have been able to reduce the size of their pro-

jects. However, a Vue 2 project with Vue Router included weighs about 30KB

Gzipped. That is still significantly lighter than an AOT-compiled Angular applica-

tion generated by Angular CLI that is approximately 65KB Gzipped.[23]

7.5 Runtime Performance:

React, Angular and Vue are exceptionally and similarly fast, so speed is unlikely

to be a deciding factor when deciding from a first look, but due to different ap-

proaches to the DOM Manipulation, performance differences arise. Angular

uses the real DOM and this affects its performance and ability to make dynamic

applications and it results in the low performance of this framework. As for Re-

act, it uses a Virtual DOM and it is not dependent on the browser. The use of

the virtual DOM allows it to manipulate the DOM with a low strain on the perfor-

mance and to keep the bugs to a minimum. Vue has taken all the good attrib-

utes of frameworks launched before it. With the same concept, Vue is using the

Virtual DOM popularized by React. This ensures a faster and bug-free perfor-

mance.

If the user knows what features they will be using in the project, they can

choose a framework depending on the small speed differences shown in the

graphs below:

Figure 14 Measurements of DOM manipulation actions [22]

The figure 17 above shows the execution time of different tasks in different

frameworks. Most of these frameworks are similar with few differences in cer-

tain actions.

Figure 15 Startup Metrics [22]

The following metrics (figure 17) concern the startup of the app, the first loading

of the frameworks and how much time it takes for the framework to perform the

main tasks.

To summarise a few relevant use cases and their respective recommendations

in terms of framework choice, the following collection can be made [24]:

• High knowledge of TypeScript ⇒ Angular

• structure of a project ⇒ Angular

• object-orientated programming (Java; C++; C#) background ⇒ Angular

• flexibility ⇒ React or Vue

• Large scale of applications ⇒ All three

• Easy learning curve ⇒ Vue

• the newest and the most popular technologies ⇒ Vue

• ecosystem/ Community ⇒ React

• Separation between HTML and logic ⇒ Vue

• Strong focus on using JavaScript ⇒ React

8 CONCLUSION

This thesis has tackled the subject of web components frameworks deeply and

analysed every aspect of it to help the reader to choose a suitable framework

for their next project. In the chapters above, the reader can find a detailed ex-

planation of the 3 major frameworks and arguments for or against the use of

each in a project. The matter of deciding which one is better is entirely subjec-

tive depending on the project specifications and the developer’s preferences.

This means that the conclusion reached by the readers of this paper will be dif-

ferent from one to another.

As mentioned in the previous chapter, every recommendation is subject to the

author’s own personal biases and is nothing but a recommendation and is not a

rule. Deciding to adopt a new framework always has to be an elaborate process

as it determines the success of future projects. However, in the JavaScript

world, where new frameworks are published on a regular basis, it may not be

smart to wait too long with the adoption of a new technology as it might be out-

dated by then. Although this, of course, depends largely on the size of a com-

pany: Whereas smaller development teams can test and adopt a new frame-

work more quickly, larger companies need more time for the assessment as a

wrong decision might result in financial struggles in hindsight. As an advice for

the readers trying to choose a framework to start with, have some time testing

all three, then you can make a more informed decision.

REFERENCES

1 Learning Web Component Development Discover the potential of web compo-

nents using PolymerJS, Mozilla Brick, Bosonic, and ReactJS by Sandeep Ku-

mar Patel.

https://www.oreilly.com/library/view/learning-web-component/9781784393649/

2 Developing Web Components By Jarrod Overson & Jason Strimpel.

https://www.adlibris.com/fi/e-kirja/developing-web-components-9781491905692

3 Angular: Up and Running Learning Angular, Step by Step by Shyam Sesha-

dri.

https://www.oreilly.com/library/view/angular-up-and/9781491999820/

4 Introduction to React by Cory Gackenheimer

https://www.apress.com/gp/book/9781484212462

5 Learning React Functional Web Development with React and Redux by Alex

Banks and Eve Porcello

https://www.oreilly.com/library/view/learning-react/9781491954614/

6 Information Management: A Proposal Tim Berners-Lee, CERN March 1989,

May 1990 - date of retrieval: 00.12.2019

http://cds.cern.ch/record/369245/files/dd-89-001.pdf

7 Network Component Version 7.12.0 MDK Middleware for IPv4 and IPv6 Net-

working - date of retrieval: 07.12.2019

https://www.keil.com/pack/doc/mw/Net-

work/html/group__ws__web__pages.html

https://www.oreilly.com/library/view/learning-web-component/9781784393649/
https://www.adlibris.com/fi/e-kirja/developing-web-components-9781491905692
https://www.oreilly.com/library/view/angular-up-and/9781491999820/
https://www.apress.com/gp/book/9781484212462
https://www.oreilly.com/library/view/learning-react/9781491954614/
http://cds.cern.ch/record/369245/files/dd-89-001.pdf
https://www.keil.com/pack/doc/mw/Network/html/group__ws__web__pages.html
https://www.keil.com/pack/doc/mw/Network/html/group__ws__web__pages.html

8 CERN, From Wikipedia - date of retrieval: 16.12.2019

http://www.en.wikipedia.org/wiki/CERN

9 World Wide Web, Mcgill university - date of retrieval: 17.12.2019

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/w/World_Wide_Web.htm

10 MDN web docs, How the Web works - date of retrieval: 22.12.2019

https://developer.mozilla.org/en-US/docs/Learn/Get-

ting_started_with_the_web/How_the_Web_works

11 How HTTP requests work - date of retrieval: 22.12.2019

https://flaviocopes.com/http-request/

12 Web 1.0 to Web 3.0 - Evolution of the Web and its various challenges by

Keshab Nath, Sourish Dhar and Subhash Basishtha - date of retrieval:

25.12.2019

https://www.researchgate.net/publication/269310255_Web_10_to_Web_30_-

_Evolution_of_the_Web_and_its_various_challenges

13 Cross Site Scripting (XSS) - date of retrieval: 25.12.2019

https://owasp.org/www-community/attacks/xss/

14 Cross-Site Request Forgery - date of retrieval: 25.12.2019

https://en.wikipedia.org/wiki/Cross-site_request_forgery

15 SQL INJECTIONS - date of retrieval: 25.12.2019

https://owasp.org/www-community/attacks/SQL_Injection

16 What is an SSL Certificate? - date of retrieval: 25.12.2019

https://www.globalsign.com/en/ssl-information-center/what-is-an-ssl-certificate/

https://www.freecodecamp.org/news/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/w/World_Wide_Web.htm
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://flaviocopes.com/http-request/
https://www.researchgate.net/publication/269310255_Web_10_to_Web_30_-_Evolution_of_the_Web_and_its_various_challenges
https://www.researchgate.net/publication/269310255_Web_10_to_Web_30_-_Evolution_of_the_Web_and_its_various_challenges
https://owasp.org/www-community/attacks/xss/
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://owasp.org/www-community/attacks/SQL_Injection
https://www.globalsign.com/en/ssl-information-center/what-is-an-ssl-certificate/

17 Getting Started with Web Components: Build modular and reusable compo-

nents using HTML, CSS and JavaScript by Prateek Jadhwani – date of re-

trieval: June 2019

https://books.google.fi/books?id=x7aoDwAAQBAJ&lpg=PP1&dq=build-

ing%20reusable%20web%20components&pg=PA23#v=onepage&q&f=false

18 Custom Elements - date of retrieval: 25/01/2020

https://html.spec.whatwg.org/multipage/custom-elements.html#dom-attachinter-

nals

19 Shadow Dom by W3C - date of retrieval: 25/01/2020

https://w3c.github.io/webcomponents/spec/shadow/

20 web components specifications - date of retrieval: 25/01/2020

webcomponents.org/specs

21 Reactenlightenment - What is JSX ? - date of retrieval: 26/03/2020

https://www.reactenlightenment.com/react-jsx/5.1.html

22 Introduction to Vue.JS - date of retrieval: 28/03/2020

https://vuejs.org/v2/guide/index.html#What-is-Vue-js

23 Benchmark of different frameworks - date of retrieval: 29/03/2020

https://stefankrause.net/js-frameworks-benchmark8/table.html

24 Comparison of Vue, React and Angular - date of retrieval: 01/04/2020

https://vuejs.org/v2/guide/comparison.html#Size

25 Custom Elements v1: Reusable Web Components - date of retrieval:

02/04/2020

https://books.google.fi/books?id=x7aoDwAAQBAJ&lpg=PP1&dq=building%20reusable%20web%20components&pg=PA23#v=onepage&q&f=false
https://books.google.fi/books?id=x7aoDwAAQBAJ&lpg=PP1&dq=building%20reusable%20web%20components&pg=PA23#v=onepage&q&f=false
https://html.spec.whatwg.org/multipage/custom-elements.html#dom-attachinternals
https://html.spec.whatwg.org/multipage/custom-elements.html#dom-attachinternals
https://w3c.github.io/webcomponents/spec/shadow/
https://www.reactenlightenment.com/react-jsx/5.1.html
https://vuejs.org/v2/guide/index.html#What-is-Vue-js
https://stefankrause.net/js-frameworks-benchmark8/table.html
https://vuejs.org/v2/guide/comparison.html#Size

https://developers.google.com/web/fundamentals/web-components/customele-

ments

26 Document Object Model From Wikipedia, the free encyclopedia - date of re-

trieval: 03/05/2020

https://en.wikipedia.org/wiki/Document_Object_Model

27 Using shadow DOM From MDN web docs – date of retrieval: 10/04/2019

https://developer.mozilla.org/en-US/docs/Web/Web_Components/Us-

ing_shadow_DOM

28 Using template From MDN web docs – date of retrieval: 10/04/2019

https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_tem-

plates_and_slots

29 Reactivity in Vue.js From VueJS – date of retrieval: 14/04/2019

https://v1.vuejs.org/guide/reactivity.html

30 Document Object Model From Wikipedia, the free encyclopedia - date of re-

trieval: 04/03/2020

https://en.wikipedia.org/wiki/Single-page_application

31 Typescript From Wikipedia, the free encyclopedia - date of retrieval:

04/03/2020

https://en.wikipedia.org/wiki/TypeScript

32 Getting started with Angular - date of retrieval: 08/05/2020

https://angular.io/tutorial/toh-pt1

33 Angular Routing - date of retrieval: 07/05/2020

https://angular.io/guide/router

https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/customelements
https://en.wikipedia.org/wiki/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_templates_and_slots
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_templates_and_slots
https://v1.vuejs.org/guide/reactivity.html
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/TypeScript
https://angular.io/tutorial/toh-pt1
https://angular.io/guide/router

34 React official website- date of retrieval: 04/09/2020

https://reactjs.org/

35 Semantic Web and ontology by Dhana Nandini - date of retrieval:

04/09/2020

https://tcherg.com/assets/images/eBook/1509101694_tology.pdf

36 Between the Wires: An interview with Vue.js creator Evan You – date of re-

trieval: 05/09/2020

https://www.freecodecamp.org/news/between-the-wires-an-interview-with-vue-

js-creator-evan-you-e383cbf57cc4

37 Document Object Model From Wikipedia, the free encyclopedia – date of re-

trieval: 05/09/2020

https://en.wikipedia.org/wiki/Document_Object_Model

38 Google Home Page encyclopedia – date of retrieval: 05/09/2020

www.google.com

39 Decoupling Angular components from Router From Medium – date of re-
trieval: 10/10/2020

https://medium.com/@klinkicz/decoupling-angular-components-from-router-
f6510ae7eaed

40 A Guide To Debugging Angular Applications Medium – date of retrieval:
10/10/2020

https://medium.com/@vamsivempati/a-guide-to-debugging-angular-applica-
tions-5a36bd88b4cf

41 The Good and the Bad of ReactJS and React Native – date of retrieval:
11/10/2020

https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-reactjs-
and-react-native/

https://reactjs.org/
https://tcherg.com/assets/images/eBook/1509101694_tology.pdf
https://www.freecodecamp.org/news/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://www.freecodecamp.org/news/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://en.wikipedia.org/wiki/Document_Object_Model
www.google.com
https://medium.com/@klinkicz/decoupling-angular-components-from-router-f6510ae7eaed
https://medium.com/@klinkicz/decoupling-angular-components-from-router-f6510ae7eaed
https://medium.com/@vamsivempati/a-guide-to-debugging-angular-applications-5a36bd88b4cf
https://medium.com/@vamsivempati/a-guide-to-debugging-angular-applications-5a36bd88b4cf

