Molei Hong

Al PROGRAMMING WITH JAVA

Final Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology

December 2020

Centria University Date Author
of Applied Sciences 1/9/2021 Molei Hong

Degree programme
Information Technology

Name of thesis
Al PROGRAMMING WITH JAVA

Instructor Pages
Kauko Kolehmainen 42
Supervisor

Kauko Kolehmainen

The thesis was about artificial intelligence project in Java. It started with the theoretical part of basic
presentation of Java programming language, introduced its history, importance and features. The sig-
nificant description of Java platform component Java Virtual Machine was involved. The definition of
Al, the types of Al and the different Al level which included machine learning and deep learning were
also presented. In the practical part, Weka, a software of machine learning algorithm in Java was intro-
duced and there were two data mining and classification experiments by using Weka demonstrated.
After that, a Java project with Weka’s Naive Bayesian algorithm illustrated the principle of email clas-
sification. In the project, necessary elements such as Weka packages, the datasets and important meth-
ods were presented in detail.

Key words
Java programming, Java Virtual Machine, Artificial Intelligence, Weka, Naive Bayesian, spam filter,
data classification.

ABSTRACT
CONCEPT DEFINITIONS

CONTENTS
L INTRODUCTIONttt ittt s et e e e e st e et e et e e ete e e beeasaeenseeesteeanaeesraeeseeaneeenneeas 1
2 JAVA PROGRAMMING LANGUAGEccoii ittt 2
2.1Java platform Standard Editioncccooeiiiiiiiiiiies Error! Bookmark not defined.
2.2Java Virtual Machineg.........ccccooiiie i Error! Bookmark not defined.
SARTIFICIAL INTELLIGENCE ...ttt snaa e 7
3.1The defiNItIONS OF Al......eoieieece et e et e e nre e e e rae e e snneeesnneeeennes 9
3.2TNE CALEGOIIES OF Al ettt ettt et enbee s 11
3.2.1 MaACNING LEAIMINGeiiiiitie ittt ettt ettt 12
3.2.2 DEEP LBAIMING...cciiiiiiieitie ettt ettt ettt 14
3.3Machine Learning tools and lIDraries iN JAVAccooveiiiiiieiiieiiie e 15
A NVEKA oottt ettt et e et e et et e e —e ettt e et e et e e te e teearaeenteeareeataeanee s 16
4.1 The exXplorer EXPEITMENTcouiiiii ittt ettt e e ns 18
4.2THe Class STFUCTUIE WEKAccuiieiiie ettt e te et e e e e e snaaeesnneeeanneaeas 23
4.2.1 The WekKa.Core PACKAGEcoiuiiiie ittt 24
4.2.2 The WekKa.classifiers PaCKagecoovveiiiie i 25
5 PROJECT EXPLANATION ..ottt ettt ettt 26
5.1 Naive Bayesian algorithmic reasoningc.ccocveiiiieiiiie e 26
5.2 SEIECTION OF QATASEES. ... eiiiieiiiieiie ettt ettt et et e et anb e e naee s 28
5.3 IMpPorting WekKa PaCKagescciiuiiiiiiie et e et e e e e e 30
S.ATIAINING GALAceiiiiieiiie e e e e e st e e e s e e e s te e e e tee e e teeeessaeeeasaeeesnteeeaneeeeanneeeanes 32
ORI =] A1 [0 o F- L - PR SPRRTPR 35
5.6 EVAIUATION FESUIL.......oiiiiiiii ettt et e et st e e nree s 36
B CONGCLUSION ..ottt ettt bbbt e e s bt e bb ekt e e st e e et bt e bt e e st e e sbbeenbeeanbee e 38
REFERENQCES ...ttt ettt ettt h bbbt et e bt e bt e be e e nbe e nb e e nteeenes 39

SOURCE OF FIGURESo 41

LIST OF FIGURES

Figure 1. Benefits of programming Al IN JAVAcccieiiiiiiiiiieiie e 3
Figure 2. The interface of Java Platform Manager (Netbeans IDE 8.2)ccccccceviiiiiinieniiennnn, 4
Figure 3. The internal architecture of the IVM ..o 5
Figure 4. The structure of Java 2 platform SE 5.0........ccccoiiiiiiiiiiie e 6
Figure 5. Four categories are organized for the definitions of Al.c.ccccco i, 10
Figure 6. Autonomous driving as the start of Artificial Intelligence levelccccooiiiiiienn. 11
Figure 7. Three learning methods of machine learning algorithmsccccoviiiiiiiciee, 13
Figure 8. Weka GUI Chooser (Version 3.8.3)couiiiiiiiiiiiieiie e 17
Figure 9. Problems of ARFF format in UCT dataset.............ccooviiiiiiiiiiiciie e 18
Figure 10. Reading in the diabetes data...........ccoiiiiiiiiiiiieie s 18
Figure 11. Classifier output of diabetes dataset............cceiieiiiiiiiiiie e 19
Figure 12. Images of RNiN0 and BronNtOSAUIUScooiiiiieiiiiiie et 20
Figure 13. Equal frequency, 43 examples of each in the dataset.............cccccoovveiiiiiiiicie 20
Figure 14. Additional features were added t0 the datasetcccoouveriiiiiiiieni e 21
Figure 15. ClasSITIEr OUTPULoiiiiiiieiieeiie ettt 22
Figure 16. Package Manager iN WEKAcooiiiiiiiiiiiie e 23
Figure 17. Method of Copyable INTErTaCE............oiiiiiii s 24
Figure 18. Method distributionFOrTNSTANCE()eeiivvreeiiie et e e 25
Figure 19. Training dataset and testing dataset............ccccocvieeiiie e 28
Figure 20. TrainingData.arff opened as tXt file............coveiiii e 29
Figure 21. Libraries included weka.jar and JDK 1.8cccccciiiiiiiiieiiin e 30
Figure 22. Weka.core packages used in the SOUrce COdecocvvviireiiiieiiiee e 31
Figure 23. Weka.classifiers package and StringToWordVector class are imported in the source
(o700 [PR P PP PRSP 31
Figure 24. Defined instances, attributes of training data and locations of training dataset files ..32
Figure 25. Attributes "label™ and "'text™ were added and “label” was assigned values 32
Figure 26. Loading and saving dataset CONTENT............cccveoiiieiiiie e 33
Figure 27. Converting text t0 feature VECTONcvviiiiie e 33
Figure 28. Using tokenizer to Split the SLHNGccoooiivi i 33
Figure 29. BUilding the CIasSITIercuvv i 34
Figure 30. Evaluating the classifier modelccoooiiii e 35
Figure 31. Main method for running Classifierccvooiie e 36
Figure 32. OULPUL after FUNNING.......ooiiii e e e e 37

1 INTRODUCTION

In recent years, machine learning, data science and artificial intelligence have been the most talked about
technologies. This is a matter of course. These advancements in technology have brought automation
and business processes to a new level. Organizations of all sizes have invested millions of dollars in
research and personnel to develop these extremely powerful data-driven applications. There are many
different programming languages that can be used to develop machine learning and data science appli-
cations. Although Python and R have become the first choice for developing these programs, many
organizations are turning to Java development to meet their needs. From enterprise-level business solu-
tions and navigation systems to mobile phones and applications, Java is suitable for almost every tech-

nical field.

However, there are also several flaws of using Java as programming language for Al. Compared with
C++, Java has lower execution speed and needs more response time. Although Java is portable and
supports running on multiple platforms, when it is executed on older platforms, significant adjustments
of both software and hardware are demanded. As an immature Al language, Java is under development
which indicates that it is not the mainstream programming language of Al. Artificial intelligence is re-

lated to the development of artificial neural networks, search algorithms and genetic programming.

The project which author makes is a spam-filter program mainly based on machine learning algorithm
Naive Bayes, which is a typical statistical-based spam filtering technology. The basis of its theory is to
analyze the common keywords of a large number of spam emails to obtain a statistical model of their
distribution, and to estimate the probability that the target is spam. According to the set threshold to
determine whether to accept mail, its biggest feature is the self-learning function, by continuous self-

updating filtering rules and ensuring long-term stable filtering efficiency without maintenance.

The main goal of this research was to implement the text data classification through training and testing
the machine learning model by Netbeans integrated development environment for certifying the feasi-
bility and effectiveness of artificial intelligence programming using the Java programming language.
The limitation of this study is that it cannot be compared with the performance of projects programmed
by other programming languages. Therefore, it is difficult to show the shortcomings of Java in artificial

intelligence programming.

2 JAVA PROGRAMMING LANGUAGE

Java was developed by the Sun Microsystems Corporation in the 90s, widely used in personal computers,
data centers, game consoles, supercomputers, mobile phones and the Internet. Maintainability, portabil-
ity and transparency are main advantages of Java programming language. Java was an effort to imple-
ment the various function of object-oriented programming. Compared with the early object-oriented
languages such as Common Lisp Object System, Flavors and Smalltalk developed by the Al community,
Java obtains significant attention from software engineering developers. (PART IV: Al programming in
Java Page 269.)

As a matter of fact, Java is widely used in real world: in Android phone, any application is written by
Java. In financial services industry, Java is taken as the developing language for the front-end and back-
end trading systems of global investment banks such as Citygroup, Standard Charted and Goldman Sachs.
Java also plays a big role in the web application space, the government departments like education,
defense, healthcare, using Java to establish their official web applications. Powerful software and inte-
grated development environment developed in Java e.g. IntelliJ IDEA, Eclipse and NetBeans IDE. In
the embedded system, Java platform shows its important feature of “portable”, it is initially designed for
embedded devices and is implementing step by step. However, Java takes the second position of the
popularity ranking of programming languages. The popularity of Java programming language shows a
decrease trend in the year of 2020. Because of the widespread using of Python and the dominant position
of C language in software development, the usage rate of Java has declined 4.32% since 2019. (TIONE
Index 2020.)

The hinge characteristic of Java is that it is an open standard with publicly available source code. Sun
Microsystems manages the Java language and concerning products, however, Sun's flexible licensing
policy stimulates the use of Java as a standard in the Internet community. Developers can download all
the tools they needed to develop and run Java applets and applications for free from Sun's Java website.
(Austerlitz 2003.)

Selecting the appropriate programing language is an important task for Al construction. There are di-
verse and general options such as python, C++ and LISP. Nevertheless, Java plays an essential role in
Al programming. Java is the most widely used programming language in the world, it is object-oriented
and scalable, which is necessary for Al projects. Gigantic Java code bases are exploited by public and
private organizations and sectors, and the Java Virtual Machine as a compute environment is heavily
relied. Java Virtual Machine allows developers to build a single application version that could run on all
Java-enabled computing platforms. Maintainability, portability and transparency are the three main ad-
vantages of Java programming language. The following figure shows the advantages that Java has in the
Al programming. (Nicholson 2020.)

Benefits of Programming Al in Java

Debugging ease

|,

Easy usage ﬁ o——q T
1
1
1

1
1
1
~

Sirnplified work
e S

with large-scale

projects
%
B, ’ p ﬁ]
Better user ‘%- —————— / M- » =2 Easyincorporation
interaction of Swing and
SWT
1 ! i
] !]
r Ll I I I
Anomaly [! L — - (flng) Real-time
detection “ "~ ® = engagement
Efficient time
utilization

Figure 1. Benefits of programming Al in Java (Source: https://www.oodlestechnologies.com/blogs/us-

ing-java-in-artificial-intelligence-programming/)

1
https://www.oodlestechnologies.com/blogs/using-java-in-artificial-intelligence-programming/
https://www.oodlestechnologies.com/blogs/using-java-in-artificial-intelligence-programming/

2.1 Java platform standard edition

Java platform standard edition provides the Java software developing and running environment for users.
Java applications with security and portability could be set up and developed rapidly on the Java platform
standard edition, simultaneously, the applications could be run on the server and desktop systems of
most operating systems. Java platform standard edition contains classes that form the core of the Java
programming language. For example: database connection, interface definition, input/output, network

programming. The following figure shows the interface of Netbeans’ platform manager. (Oracle 2020.)

@ Java Platform Manager *

j Use the Javadoc tab to register the API documentation for your JDK in the IDE.
Click Add Platform to register other Java platform versions.

| Platforms:

)\ lavaSE Platform Name: | JpK 1,8 {Default)

8= JDK 1.8 (Default) Platform Folder: [p:\1ava

Classes Spurces Javadoc

Platform Classpath:

@ D:'\Javaljre\ibyresources.jar A
@ D:'\Javaljre\iblrt.jar

@ D:'\Javaljreliblsunrsasign.jar

@ D:\avaljrelibljsse. jar

@ D:\avaljrellibYjce.jar

@ D:\Javaljrelib\charsets.jar

@ D:\Javaljre\ibljfr.jar

) DiVavatjre\dasses

@ D:'\Javaljreliblext\access-bridge-64.jar

@ D:'\Javaljre\iblext\ddrdata.jar

@ D:'\Javaljreliblextidnsns.jar

a D:\avaljrelliblextijaccess. jar W

Add Platform...

m
m

Figure 1. The interface of Java Platform Manager (Netbeans IDE 8.2, 2020)

The Java Virtual Machine (JVM) is an abstract machine which forms the foundation of Java platform.
It is the specification of software that executes programs and provides the runtime environment for the
program, which permits Java program to run on any operating system. Another function of JVM is to
manipulate and optimize the program memory. Before Java programming language was released, all
programs were stored in the specific operating systems, which means developers need to manage
memory manually. There is an instruction set placed inside the JVM for controlling each memory area

at runtime, that makes the allocation and relocation of the memory automatic. (Venners 1998.)

2.2 Java Virtual Machine

The JVM is a stack-based virtual machine, it has the heap store, the stack, the method area, runtime
constant pools and the PC register as runtime data areas, which refer to the basic structures. A binary
format which is independent from hardware and operating system is used for notating compiled code to
be executed by the JVM, stored in the “class file” format. Each JVM has a class loader subsystem for
loading types specified eligible names, and an execution engine for executing the instructions included
in the methods of loaded classes. The internal architecture of the JVM is shown in figure 3. (Oracle
2020.)

class
class files loader
subsystem
method Tava pe nafive
heap : method
area stacks registers
stacks
runtime data areas
R S
e .
VA
\V/ ¥ -
: native
e d native method method
engine interface libraries

Figure 2. The internal architecture of the JVM (Source: Venners,B. Inside the Java Virtual Machine,
Chapter 5, figure 5-1)

The JVM s a specification which implementors choose to provide algorithm and it is also a software
program that meet the requirements of the JVM specification. Moreover, it is the runtime instance cre-
ated by developers when they type the command to run the java class. The JVM is extensively deployed
and heavily used in the public and private sector and it runs Java class files in a portable method. No
matter what kind of hardware or operating system is used, a controllable environment for developers
could be set up by the JVM. Initially the JVM was only used for Java programming language, now it
has advanced to support various programming languages such as Scala, Groovy and Kotlin. And it has

a predictable advantage in the further development of developing environment. (Venners 1998.)

The JDK, the JRE and the JVM shape the core technology of Java programming. The JVM is the key
component of Java platform that execute programs, the JRE contains the Java class library and forms
the JVM, the JDK helps programmers to develop Java application that could be executed by the JVM
and run by the JRE. Figure 4 illustrates the structure of Java 2 platform, which indicates that JVM is
included in the Java Runtime Environment within Java development kit. (Parahar 2020.)

Java™ 2 Platform Standard Edition 5.0

Langﬁl:;g Java Language
Dfmul AP iava javac | javadoc apt jar javap JPDA Other
Security I Int'l I RMI I oL I Deploy I““"“‘-""i"’ﬁl ;ll'_';gggh!g-l VM TI

Integration
DK Libraries
Libraries

—

lang & util
Base Libraries

Java Virtual
Machine

Platforms Solaris™ Windows

Linux Other

Figure 3. The structure of Java 2 platform SE 5.0 (Source: https://docs.oracle.com/javase/1.5.0/docs/)

https://docs.oracle.com/javase/1.5.0/docs/

3 ARTIFICIAL INTELLIGENCE

From theory-only to achieving practical purposes, artificial Intelligence is one of the booming technol-
ogies nowadays. With plenty of computer science knowledge involved, Al algorithms are applied in
various strong-feature applications and applets which are currently supplied in many fields of human
life, such as multiple-language translation, virtual personal assistant, smart security system with face
recognition, self-driving cars and weather prediction. As the meaning of “Artificial Intelligence” is hu-
man-made machines with abilities of working as a human, to accomplish the level of “Intelligence “,

programs with specific algorithm are required to run in rational thinking ways like human. (Advani 2020.)

Artificial Intelligence is a popular topic in 21% century, it is one of the advanced research fields of com-
puter sciences. The work of Al began formally soon after World War II, and the word ”Artificial Intel-
ligence” was put forward by Stanford professor John McCarthy in 1956 on Dartmouth workshop. The
area of Al research goes further still, it aims not only exists in the theories but also to create entities,
which includes a significant variety of subfield, scaling from universal (studying and feeling) to partic-
ular, such as playing chess, diagnosing diseases, writing poetry, driving vehicles and proof of mathe-
matical theorems. With the technologies of Al evolving swiftly, its capabilities are been applied in all

aspects of society. (Russell & Norvig 2010.)

The utilizations of Al are practically unlimited, and the computer science field is rising. By 2023, the
global revenue of the Al market is expected to reach 97.9 billion US dollars. Companies, especially
those from the software and information technology services industries, are funding significantly in Al.
At the same time, Al-concentrated startups have gained the attention and inclination from investors.
From 2015 to 2018, the funding of Al startups has increased almost five times. Machine learning, a type
of Al, allows computers to learn without human intervention. In the end, at least 31.7 billion US dollars
was invested in this Al category. Many startups are also putting their money into the natural language
processing market, which involves speech and speech recognition and text prediction. By 2020, this
specific Al market is expected to grow to 12.4 billion dollars. (Khakurel & Penzenstadler & Porras &
Knutas & Zhang 2018.)

The main goals of Al consist of deduction and reasoning, knowledge expression, planning, natural lan-
guage processing, learning, consciousness, and the ability of controlling and shifting objects. Perennial
purposes of Al study involve implement creativity, social Intelligence, and general Intelligence. Al has
deeply affected every sectors of the society gradually. As Ray Kurzweil said, “Many thousands of Al
applications are deeply embedded in the infrastructure of every industry.” (Kurzweil) John McCarthy,
the creator of the term "Al", once said that “as soon as it works, no one calls it Al anymore.” (McCarthy)
(Chaudhary 2017.)

Early Al research focused on optimizing search algorithms. This method is very meaningful because it
can effectively solve many Al tasks by defining a state space and using search algorithms to define and
explore the search tree in this state space. By using heuristics to restrict the search area of these search
tree often makes the search program easy to handle. This heuristic is resolved through the using of qual-
ity damage to convert the program from the thorny problem into solvable problems. This trade-off
choices for less computational complexity rather than the best solution for Al programming has become
a standard design pattern. (Watson 2008.)

3.1 The definitions of Al

It is the general knowledge that the word “Intelligent” is for describing human smartness. There are two
ways to reflect if a human is “Intelligent”, which are thoughts and behaviors. ”Artificial Intelligence”
literally means the artifacts that could be the same intelligent as humans or even surpass human brain.
However, the structure of human brain is extreme complicated, and the emotions of human is diversified,
it is quite difficult for an artifact to fully imitate human thoughts and actions. As a matter of fact, an
artifact that is able to achieve this condition does not exist yet. Nevertheless, past research on Al imple-

mented several part of Al functions to some extent. (Russell, Norvig 2010.)

It is difficult to title machines of the real life as “Al” if following the strict definitions of Al. However,
there are three types that could be practically considered as Al, because they reach the essential area of
Al definition: first, taking simple machine actions that programmed by developers in advance. For in-
stance, speech or picture recognition systems which can only recognize speech or pictures, and industrial
robots in the production line that process the single work repeatedly. Second, seeking answers and solv-
ing problems through the rules set by humans. The common example is cleaning robots which can collect
data of environment by bumping into obstacles, so that they could build the virtual model of the room
in order to correct the route of movement; third, offering the predictable results by measuring the regu-
larity from collected data. For example, the recommendations system on the smart phone which based
on users’ browsing and purchasing history. Although the computer science researchers have different
opinion about definitions of Al, most of explanation could be categorized into four parts: systems that
thinking like humans; systems that acting like human; systems that thinking rationally; systems that

acting rationally. Figure 5 indicates these four types of Al definition. (Russell, Norvig 2010.)

Thinking Humanly

“The exciting new effort to make comput-
ers think ... machines with minds, in the
full and literal sense.” (Haugeland, 1985)

“[The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solv-
ing, learning . ..” (Bellman, 1978)

10

Thinking Rationally

“The study of mental faculties through the
use of computational models.”
(Charniak and McDermott, 1985)

“The study of the computations that make
it possible to perceive, reason, and act.”

(Winston, 1992)

Acting Humanly

“The art of creating machines that per-
form functions that require intelligence
when performed by people.” (Kurzweil,
1990)

“The study of how to make computers do
things at which, at the moment, people are
better.”” (Rich and Knight, 1991)

Acting Rationally

“Computational Intelligence is the study
of the design of intelligent agents.” (Poole
et al., 1998)

“Al ...1s concerned with intelligent be-
havior in artifacts.” (Nilsson, 1998)

Figure 4. Four categories are organized for the definitions of Al (Source: Russell,S. Norvig,P. Artifi-

cial Intelligence A Mordern Approach Third Edition, Chapter 1, figure 1.1)

11

3.2 The categories of Al

From the theoretical aspect, the category of Al is divided into three terms as either Artificial Narrow
Intelligence (AN, also known as weak Al) or Artificial General Intelligence (AGI, marked as strong Al)
or Artificial Super Intelligence (ASI) based on the level that a machine could reach. (Lawtomated 2019.)

The modern technology has allowed humans to achieve the ANI level in multiple ways such cars with
self-driving systems, Google search and email spam filters. However, this kind of machine could only
perform according to the algorithm input by developers. And in this level, machines are programmed
for the specific tasks and only work in single sphere. In the level of AGI, machines are able to improve
and upgrade the knowledge inventory through initiative learning. This kind of behavioral pattern is sim-
ilar to the human brain, and it could be exploited in various fields. AlphaGo is a significant example of
AGI. ASI achieves the most powerful and complicated level of Al, it has ability of surpassing human
intelligence in whole area that developed by human, including scientific research, general wisdom and
social skills. Figure 6 shows the development of Al which the autonomous driving is in the ANI level.
Al level begins from narrow intelligence, then steps into general intelligence and final stage is super
intelligence. (Panchal 2018.)

Autonomous driving — the start of Artificial Intelligence

ANI AGl ASI

Artificial Narrow Intelligence Artificial General Intelligence Artificial Super Intelligence

better than humans in one specific task

e.g. autonomous driving capable like humans in every task better than humans in every task

Figure 5. Autonomous driving as the start of Artificial Intelligence level (Source: https://accil-
ium.com/en/autonomous-driving-one-step-closer-to-artificial-intelligence/)

https://accilium.com/en/autonomous-driving-one-step-closer-to-artificial-intelligence/
https://accilium.com/en/autonomous-driving-one-step-closer-to-artificial-intelligence/

12

3.2.1 Machine Learning

Machine Learning is a subset of artificial intelligence which purpose on enabling machines to work
accurately by exploiting intelligent software. The term was introduced by American computer scientist
Arthur Samuel in 1959, who also came up with the definition of ML in 1995 that “Machine Learning
relates with the study, design and development of the algorithms that give computers the capability to
learn without being explicitly programmed.” (Samuel) ML is an interdisciplinarity of computer science
and math statistics. Machine Learning algorithms automatically analyze and obtain rules from the train-
ing data and predict unknown data. Computer systems with machine learning algorithms could construct

mathematical model to complete specific tasks. (Sugomori 2016.)

Three methods are applied for achieving ML, which are supervised learning, unsupervised learning and
reinforcement learning. In supervised learning, system gets a set of data samples “X” as inputs, takes
“Y” as their outputs. The machine with supervised learning is focus on finding the mapping function as
“” that could convert inputs to outputs. Spam filter is an example of supervised learning. The users
marked email (matrix X) as normal or spam (vector Y). The system makes the decision model through
learning algorithm for distinguish emails as normal or spam. In unsupervised learning, developers do
not have to label the data. Learning algorithm automatically assorts similar data inputs into clusters and
find concealed rules in the data. This kind of learning algorithm does not predict the outputs. One of the
most common examples is recommendation systems with mahine learning algorithm could find the same
sort of products that purchased by customer. Reinforcement learning is a kind of learning type that ena-
bles agents (machines) to learn through an incentive mechanism of rewards or punishments, which is
regarded as a series of reinforcements. For instance, fewer bonus of the game makes player agent aware
that there was one or more mistakes it made during the game. The agent decides which steps of the
movements prior to the reinforcement are most responsible to them. Figure 7 below shows the differ-

ences between three methods of machine learning. (Mohammed & Khan & Bashier 2016.)

(Data with labels) (Data without labels)

Input

Input

Unsupervised

Supervised learning learning

Error

'

Output
(Mapping)

Output

(Classes)

Critic

13

(States and actions)

Input

Reinforcement
learning

10413

Reinforcement
signal

¢ Critic
Output

(State/action)

Figure 6. Three learning methods of machine learning algorithms (Source: https://developer.ibm.com/ar-

ticles/cc-models-machine-learning/)

https://developer.ibm.com/articles/cc-models-machine-learning/
https://developer.ibm.com/articles/cc-models-machine-learning/

14

3.2.2 Deep Learning

Deep Learning is a method of machine learning which is able to exploit supervised learning and unsu-
pervised learning simultaneously or separately. It promoted to solve complex problems of certain field
in Al such as vision and sound processing. Deep learning is according to representation learning branch
of machine learning theory. The concept of representation learning started from the research about arti-
ficial neural network, which is a mathematical model of an algorithm that imitates the behavioral feature

of animal neural networks and performs distributed parallel information processing. (Wehle 2017.)

High-class and complex abstractions, for instance images or voice, are collected as data representations
by the hierarchical learning process. There are multiple hidden layers of models built in artificial neural
networks, gathered data was processed level by level, the output was sent to next layer after previous
layer finished processing the input. The advantage of a deep learning models is that the speed of pro-
cessing is higher than general machine learning methods. Deep learning models could recognize the
significant features automatically, instead of demanding manual selection for the related features through
developers. (Wehle 2017.)

Designing neural networks in any programming language requires understanding the structure and func-
tion of artificial neural networks. Traditional algorithmic methods need to execute a set of steps to
achieve a defined goal. Artificial neural networks can learn how to solve certain tasks on their own due
to their highly interconnected network structure. Artificial neurons have a structure similar to human
brain neurons. Natural neurons are composed of nuclei, dendrites and axons. Axons extend themselves
to several branches and form synapses with dendrites of other neurons. In addition, the connections
between neurons have associated weights that can modify the signal, thereby affecting the output of the
neurons. Since the weights are inside the neural network and affect its output, they can be regarded as
the internal knowledge of the neural network. Adjusting the weights representing the connections be-
tween neurons and other neurons or the external world will reflect the function of the neural network.
(Davis 2017.)

15

3.3 Machine Learning tools and libraries in Java

Machine learning is currently one of the popular technologies. Companies are actively recruiting skilled
programmers to fill the gaps in machine learning and deep learning code writing. According to the rele-
vant recruitment statistics, the Python language has now surpassed Java as the most urgently needed
machine learning programming skills for employers. But in fact, Java still plays an irreplaceable role in
project development, and many popular machine learning frameworks are also written in Java. There
are various Java-based open source libraries available for implementing machine learning algorithms.
(TIOBE Index 2020.)

Weka integrates machine learning algorithms for data mining. These algorithms could be directly ap-
plied to a dataset and utilized in the source code. Weka includes a series of tools, such as data prepro-
cessing, classification, regression, clustering, association rules and visualization. MOA, which stands
for Massive Online Analysis, is a popular open source framework for data stream mining, with a very
active growing community. It includes a series of machine learning algorithms such as anomaly detec-
tion, concept drift detection, and recommendation systems and evaluation tools. Java Machine Learning
Library is a series of related implementations of machine learning algorithms. These algorithms, both
source code and documentation, are well written. Its main language is Java. Deeplearning4j is the first
commercial-grade, open-source, distributed deep learning library written in Java and Scala. However, it
is designed to be used in a business environment, not as a research tool. Mallet is a Java-based machine
learning toolkit for text files. Mallet supports classification algorithms such as maximum entropy, naive
bayes and decision tree classification. H20 is a machine learning API for smart applications. It scales
statistics, machine learning and mathematics on big data. H20 is extensible, developers can use simple

mathematical knowledge in the core part. (Baeldung 2020.)

16

4 WEKA

Weka stands for the Waikato Environment for Knowledge Analysis. It is a workbench software written
in Java, developed at University of Waikato in New Zealand that could be run at the most of operating
systems such as Linux, Windows and Mac. Weka contains a large scope of data preprocessing tools
which help access users through a common interface so that they can contrast diverse methods and find
out the most appropriate one fast. It also provides implementations of machine learning algorithms which
could be exploited in various datasets. By preprocessing a dataset, feeding it into a learning scheme, the
resulting classifier and its performance could be analyzed by user without coding. (Frank & Hall &
Witten 2016.)

There are three main ways to exploit Weka. The first is to apply a learning scheme to a certain dataset,
and then analyze its output to learn more about these data. The second is to use the learned model to
predict new instances. The third is to use a variety of learners, and then choose one of them to make
predictions based on its performance. The user selects a learning method using the interactive interface
menu. Most learning programs have adjustable parameters. The user can modify the parameters through
the attribute list or object editor, and then evaluate the performance of the learning scheme through the
same evaluation module. Figure 8 is the interface of Weka GUI chooser. According to different applica-
tions, the object of data mining can be a variety of data. These data can be various forms of storage, such
as databases, data warehouses, data files, streaming data, multimedia and web pages. It can be stored
centrally in the data repository or distributed on network servers around the world. (Frank & Hall &
Witten 2016.)

17

| & Weka GUI Chooser — O 4
Program Visualization Tools Help
Applications
Explorer

P —
: 1WEKA Experimenter

The University
of Waikato

KnowledgeFlow

Waorkbench
Waikato Envircnment for Knowledge Analysis
Version 3.8.3
{c) 1999 - 2018 Simple CLI

The University of Waikato
Hamilton, New Zealand

Figure 7. Weka GUI Chooser (Version 3.8.3)

Most datasets exist in the form of database tables and data files. Weka supports reading database tables
and data files in multiple formats. Among them, the most used is a file called ARFF format. The ARFF
format is a Weka-specific file format. Weka’s official document states that ARFF stands for Attribute-
Relation File Format. This file is an ASCII text file that describes a list of instances that share a set of
attribute structures. It consists of independent and unordered instances and it is the standard method of
Weka to represent data collection. ARRF does not involve the relationship between instances. (Frank &
Hall & Witten 2016.)

However, there are two shortcomings of Weka compared with Python. First, Weka's pre-processing and
result output are more difficult. Although it is convenient for beginners to process data with a little filter,
it is easier to write programs like Python when processing large amounts of data. Similarly, although the
results can be run out by pressing "Start" in the classification, it is more troublesome for Weka to make
the results lead to the format or the next application. Second, the Python package is booming. Although
Weka also has a lot of packages, but a closer look will reveal that most of them are old and have not
been updated. The Weka suite written in Java is also difficult to rewrite and compile. In contrast, the
development of Python is flourishing. Most of late research could be repackaged into Python packages
for people to download and use, and there are countless developers studying Python. In this regard,
Weka is inferior to Python at all. (MNIST digits Classification with Weka 2017.)

18

4.1 The explorer experiment

The first step is preparing the training data. Weka application and datasets-UCI.jar (a JAR file including
37 classification problems, originally obtained from the University of California Irvine Machine Learn-
ing Repository) are downloaded in the computer. The JAR file was unzipped to folder datasets-UCI,

each dataset is stored as ARFF format. Figure 9 shows he dataset files that datasets-UCI.jar contains.

| anneal.arff | breast-cancerarff | | credit-g.arff
| anneal. ORIG. arff || breast-w.arff || diabetes.arff
| audiclogy.arff | colic.arff __| glass.arff
|| autos.arff || colic. ORIG.arff | heart-c.arff
| balance-scale.arff | | credit-a.arff __| heart-h.arff

Figure 8. Problems of ARFF format in UCI dataset

The second step is loading data into explorer. Clicked ”Explorer” button in the GUI chooser, Opened
folder datasets-UCI repository and chose ”diabetes.arff” as experimental dataset. Figure 10 displayed
the Weka explorer interface reading in the data from the dataset. At the blanket of “Current relation”,
768 examples or instances were demonstrated and 9 attributes or features are shown. The best attribute

to start with is class, or the label users want to predict. And usually in Weka, that is the last attribute in

a dataset.
0
€& Weka Explorer — [m] x
B
J Preprocess T Classify T Cluster TAssociate T Select aftributes T Visualize }
Iy
3 [Openfile.. J [Open URL... J [Open DB... J [Generate... J [Edit... J [Save... J
Filter
Choose ||None Apply
Current relation ~ Selected attribute
Relation: pima_diabetes Aftributes: 9 MName: preg Type: Numeric 1
Instances: 768 Sum of weights: 768 Missing: 0 (0%) Distinct: 17 Unigue: 2 (0%)
Attributes) Statistic | Value |
Minimum 0
Maximum 17
| All || Meme || Invert | | Pattern | Mean 3.845
j StdDev 3.37
it No. | | Name |
FE N & | || class: class (Nom) v || visualize All |
2| | plas
3] pres
4| skin
51 insu
6| mass
7 [nadi B
7| Status
oK

Figure 9. Reading in the diabetes data

19

The third step is building the decision tree. After headed to the “Classify” tab, author chosethe classifier

J48, which is an implemented algorithm in Weka. Then author clicked “Start” button and began to in-

voke, then a C4.5 decision tree was generated. Figure 11 is the output of the classification. J48 is one

type of tree that does pruning. For training a linear classifier like logistic regression, under “Functions”

and “Logistic” options, author hit to start it. It is more precise to flip back and forth between the two

classifiers to compare the results.

&) Weka Explorer — O X
[Preprocess | Classify | Cluster | Associate | Select atributes | Visualize |
Classifier
Choose |J48-C 0.25-M 2
Test options ~ Classifier output
) Use training set Root mean sqguared error 0.4463 "
N -
. €9.45
() Supplied test set Relative al.:-sclute error 69,4341 %
Root relative squared srror 93.6293 %
@ Cross-validation Folds 10 Total Number of Instances 768
) Percentage split === Detailed Accuracy By Class ===
l More options... | TF Rate FP Rate Precision Recall F-Measure MCC
0.514 0.403 0.790 0.514 0.s802 0.417
= 0.587 0.18¢ 0.632 0.557 0.6l4 0.417
‘ (Nom) class E Weighted Avg. 0.73%3 0.327 0.735 0.738 0.736 0.417
Start | === Confusion Matrix ===
1 : ’ . -
Result list (right-click for options) b o classified as
407 93 a = tested_negative
05:26:11 - trees Jd8 Toes —negats
g 1a0 | b = tested positive
05:34:37 - trees.J48
v
- K i e
Status)
oK Log ‘ ‘#1 x0

=

Figure 10. Classifier output of diabetes dataset

In the second data mining experiment, image classification was the main goal. The imageFilter package

that downloaded using the Package Manager of Weka was demonstrated. What the imageFilter package

does is enable users convert images into features so that they could run image classification experiments

for face recognition, scene recognition and object detection. The first step was to get the testing dataset

of 2 different animal types of image in one directory, the rhino and the brontosaurus were selected and

43 pictures for each. The content of testing dataset is shown in figure 12.

BE rhino.vs_brortosaurus

Bl = == meon >

- * 585 5 Data (D) » HH > rhino.vs bro

. @ -a& E .’.L..h 2 o

8 “‘[‘”-!ms@dm z, wﬂﬁuﬁ-!ﬁ

hino34jog

Figure 11. Images of Rhino and Brontosaurus

20

For the ARFF file, which was applied to the dataset, the first attribute is the string, which has to contain

the filenames of the images, and the second attribute contains the class. After the filters was applied, all

the filters added these further attributes. Figure 13 shows preprocess interface of the data. At the blanket

of “Current relation”, there showed 86 examples or instances, and 2 attributes or features. In the histo-

gram of class, rhino and brontosaurus has the same instance count which is 43.

& Weka Explorer — [m] x
J meocessT Classify Y Cluster YAssnc\ata T Select attributes Y Visualize 1
[Open file J [Open URL. J [Open DB. J { Generate J Undo L Edit J { Save J
Filter
{ Choose J|CulurLayuu|Filler—D Do¥FFrhino_vs_brontosaurus h Apply J Stop
Current relation Selected attribute
Relation: rhino_vs_brontosaurus Aftributes: 2 Name: class Type: Nominal
Instances: 86 Sum of weights: 86 Missing: 0 (0%) Distinct: 2 Unigue: 0 (0%)
Attributes No. | Label | Count | Weight
1 RHINO 43 430
2 BRONTOSAURUS 43 43.0
L All J l None J l Invert J L Pattern J
‘ No. | | Name '
1 [filename
| crass: class om) .'J[Visualize Al &l
Rem
Status
oK

Figure 12. Equal frequency, 43 examples of each in the dataset

21

All the filters were checked and available under Unsupervised/Instance/imageFilter. The filter which
was selected is the ColorLayoutFilter. After inputting the direcotries that contains all the images, the
filter could be applied and it could process every image. Weka read in all images and extracted each
feature. After that, additional numeric features were added to the dataset which is the figure 14 showed

below.

&) Weka Explorer - [m] x
Preprocess T Classify I Cluster TAssociate I Select attributes T Visualize]
[Openfile... J [Open URL... J { Open DB... J { Generate... J [Undo J [Edit... J [Save... J
Filter
Choose |ColorLayoutFilter -D Do #hrhino_vs_brontosaurus Apply
Current relation ~ Selected attribute
Relation: rhino_vs_brontosaurus-weka filters.unsupemnis... Attributes: 35 Name: MPEG-7 Color Layoutl Type: Numeric
Instances: 86 Sum of weights: 86 Missing: 0 (0%) Distinct: 20 Unique: 4 (5%)
Attributes Siatistic | Value |
| || Minimum 6
Maximum 28
L All J L None J L Invert A Pattern) Mean 15709
StdDev 4.419
Mo, || Name |
1|_| filename i

2 |_| MPEG-7 Color Layout0
3 W WPEG7Colorlayoutt |

4 | MPEG-7 Color Layout2
5] MPEG-7 Color Layout3
6 || MPEG-7 Color Layout4 —
7 (] MPEG-7 Calor Layouts |_Class: class (Nom) 'M Visualize All J
8 || MPEG-7 Color Layouts
9 || MPEG-7 Color Layout?

10 |_| MPEG-7 Color Layouts

11 || MPEG-7 Color Layoutd

12 || MPEG-7 Color Layout10

13 || MPEG-7 Color Layout11

14] MPEG-7 Color Layout12

15] MPEG-7 Color Layout13

16 || MPEG-7 Color Layout14

17 || MPEG-7 Color Layout15 v

status

oK

Figure 13. Additional features were added to the dataset

In order to run a classification experiment after running the filter for the first time, the filename attribute
should be removed, because it is a string and it could cause problems for different classifiers. After
finishing that step, switching to the classify tab then the J48 classifer was used as the testing classifier
for classification. The classification result was accuracy with 70.9302% of instances were classified as
figure 15 shows. It is possible to apply more filters to the images to improve or decrease the accuracy of

classification. For completing that, repeatedly applying different filters to the dataset is needed.

) Weka Explorer — [m] *
[Preprocess T(Xasr.u'y T Cluster TMsociale TSeled attributes T V\sualize]
Classifier
8| choose J|J4B-C 0.35-M 2 ‘
~| Test options Classifier output
i U Use lraining set S5ize of the tree : 17 :
() Supplied test set Set..
au
® Cross-validation Folds 10 Time taken to build model: 0.32 seconds
2 PR AR e <6 === Stratified cross-validation =—
Io l Ware aptions J === Summary ===
__‘ - Correctly Classified Instances (28 70.9302 §
Incorrectly Classified Instances 25 29.0693 %
(Nom) class
Kappa statistic 0.4186
1 Y Mean absclute srror 0.295¢
1 Start Stop Root mean squared error 0.5242
Tl Result list {right-click for options) Relatiwve absolute error 55.067 %
1 Root relative squared error 104.7432 %
T Total Nurber of Instances 86
T === Detailed Accuracy By Class ===
: TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
L 0.721 0.302 0.705 0.721 0.713 0.418 0.725 BHINO ™
A 0.698 0.27% 0.714 0.698 0.706 0.41% 0.725 BRONTOSAURUS
A Weighted Avg. 0.708 0.281 0.709 0.708 0.709 0.418 0.72%
= === Confusion Matrix ===
k- a b <-- classified as
1 3l 12 | a = RHINO
Tl 13 30 | b = BRONIOSRURUS ﬁ
A LS Y»| |
Status .
oK 1 Log ‘. x0

==

il |

Figure 14. Classifier output

22

23

4.2 The class structure Weka

Weka is mainly written in Java programming language. In object-oriented programming, a Java program
is implemented as a class, which is consist of variables and methods operating on them, all of them
together define the behavior of an object included in the class. The instantiation of class with assigned
values to class variables is called object, which is also named as an instance of the class. The implemen-
tation of a particular machine learning algorithm is represented by a class. For example, the functionality
of J48 class is building a decision tree. When the JVM executes the J48 class, it generates an instance of
the J48 through allocating memory for establishing and storing a decision tree classifier. Large-size Java
programs are divided into several classes that organized into directories which calls packages. Packages
are formed in a hierarchy. The classifiers package belongs to the overall Weka package, and it contains
the J48 package as its sub-package. Figure 16 illustrates the interface of Weka package manager. (Frank
& Witten 2000.)

& Package Manager - O X
Official InstalliUninstall/Refresh progress ~ Unofficial
| Refreshrepository cache | File/URL |
() Installed @ Available () Al
t
Package Category | Installed version Repository version | Loaded
AffectiveTweets Text classification 102 i
AnDE Classification 121 -
AnalogicalModeling Classification 0.04
ArabicStemmers_LightStemmers Preprocessing 1.00 1
Auto-WEKA Classification, Regression, Attribute S 261
BANGFile Clustering 1.00 B
= ICFWNB Classification 1.00 :
CHIRP Classification 1.01
CLOPE Clustering 1.0.1 i
CSForest Classification 11
CVAltributeEval Aftribute selection 100 al
om Preprocessing 11
DMNBtext Text classification 101 r
DTNB Classification 104 %
DilcaDistance Distance 1.01
DistributionBasedBalance Preprocessing 1.00 t
EAR4 Regression, Ensemble leamning 1.0
EBMC Classification 1.0.0
EMimputation Preprocessing 1.0.1
EvolutionarySearch Affribute selection 102
ForestPA Classification 10
GPAttributeGeneration Classification, Preprocessing 1.01
GenClustPlusPlus Clustering 15
HMK Classification, Multinstance, Sequence 011
IBELG Classification 1.01
IPCP Visualization 101
W35 Aftribute selection 1.00 ",,
il 4= ﬁ Package search Clear |
I

Figure 16. Package Manager in Weka

24

4.2.1 The Weka.core package

The weka.core package forms the kernel of Weka system. The classes which it contains could be almost
accessed to each other. The weka.core includes a kind of class called “interface”, however, interface
does not perform any operation, it only has methods without actual implementation. Rest of classes
provide code to the methods of a specific interface for implementation. For example, Copyable interface
defines methods that are implemented by classes that can produce “shallow” copies of their objects.

Attribute, Instance and Instances are the fundamental classes in the weka.core package. An object of
Attribute class is represented as an attribute, which essentially includes name, type and value in special
cases. An object of Instance class has the attribute values of a particular instance. An object in Instances
class contains a sequence of instances. Figure 17 shows the method of Copyable interface. (Frank &
Witten 2000.)

Interface weka.core.Copyable

public interface Copyable
Interface implemented by classes that can produce "shallow" copies of their objects. (As opposed to clone(), which is supposed to produce a "deep” copy.)

Version:
$Revision: 1.2 §
Author:
Eibe Frank (eibe@cs.waikato.ac.nz)

MeFhod Index

= copy()
This method produces a shallow copy of an object.

MeFhods

@ copy

public abstract Object copy()

This method produces a shallow copy of an object. It does the same as the clone() method in Object, which also produces a shallow copy.

Figure 17. Method of Copyable interface (Source: https://www.dbs.ifi.Imu.de/~zimek/diplomathesis/im-
plementations/EHNDs/doc/weka/core/Copyable.html/)

https://www.dbs.ifi.lmu.de/~zimek/diplomathesis/implementations/EHNDs/doc/weka/core/Copyable.html/
https://www.dbs.ifi.lmu.de/~zimek/diplomathesis/implementations/EHNDs/doc/weka/core/Copyable.html/

25

4.2.2 The Weka.classifiers package

The weka.classifiers package involves significant Classifier class, which defines overall architecture of
any scheme for classification or numeric prediction. Classifier class contains methods buildClassifier()
and classifylnstance(). In object-oriented programming, each learning algorithm is represented by a sub-
class of Classifier class, which inherits and implements those two methods mentioned before. Each
scheme redefines buildClassifier() and classifylnstance() respectively according to how it builds a clas-
sifier and how it classifies instances. This provides a generic interface for constructing and exploiting

classifiers from other Java programming part.

DistributionClassifier is a sub-class of Classifier class, it defines the method distributionForinstance(),
which returns a probability distribution of a certain instance. Each classifier which has function of com-
puting class probabilities belongs to the DistributionClassifier class and implementing the method dis-
tributionForlInstance(). All of these classes above belong to java.lang.Object class, the structure helps
for building a tree relevant to the hierarchy of Weka classes. Figure 18 illustrates the usage of method
distributionForinstance(): the parameter is the instance to be classified and it returns an array. (Frank &
Witten 2000.)

Methods

@ distributionForinstance
public abstract double[] distributionForInstance(Instance instance) throws Exception
Predicts the class memberships for a given instance. If an instance is unclassified, the returned array elements must be all zero. If the class is numeric, the array must consist of only one element, which contains the predicted value.

Parameters:

instance - the instance to be classified
Returns:

an array containing the estimated membership probabilities of the test instance in each class (this should sum to at most 1)
Throws: Exception

if distribution could not be computed successfully

Figure 18. Method distributionForInstance() (Source: https://weka.sourceforge.io/doc.dev/weka/classi-
fiers/Classifier.ntml#distributionForlnstance-weka.core. Instance-/)

https://weka.sourceforge.io/doc.dev/weka/classifiers/Classifier.html#distributionForInstance-weka.core.Instance-/
https://weka.sourceforge.io/doc.dev/weka/classifiers/Classifier.html#distributionForInstance-weka.core.Instance-/

26

5 PROJECT EXPLANATION

Naive Bayes classifier is a classic machine learning algorithm which is based on Bayes theorem and
independent assumption of feature. According to probability theory and Bayes theory, the classifier is
able to predict the category of a group of data set sample. It is an algorithm which could be easily im-
plemented to process and classify the training data fast. The most typical application of the Naive Bayes
classifier is the identification and filtering of spam, which is the function that the project had. In the case
of a very large amount of data, the accuracy of the identification can be close to 100%, and the imple-

mentation idea is not complicated. (Kaluza 2016.)

5.1 Naive Bayesian algorithmic reasoning

The origin of the word "naive™ in Naive Bayes is to assume that the features are independent of each
other. The assumption makes the Naive Bayes algorithm simple, but it frequently sacrifices certain clas-
sification accuracy. The Bayesian formula is Formula 1. Assume that the two types of mail are two
random events A and B, where A is spam and B is ham mail, which are all random events in the sample
space S of all self-learning E. T is a collection of mail words, where Ti is an element of T. (Bayesian

Multivariate Statistical Inference Theory 2006.)

Formula 1
P(B| A)=— P(A|B)P(B)
ZP(A | B,)P(B,)
Formula 2
PA|T) = P(T, | 4)* P(4)

" P(T.| A)* P(A)+ P(T. | B)* P(B)

27

According to the Formula 2, the amount of spam in the sample space is equivalent to ham mail, so P(A)
=P(B) = 0.5, assume that fA(Ti) = P(Ti|A), fB(Ti) =P(Ti|B), Formula 3 is for calculating the probability
of whether a mail is spam in the presence of a word. After the keyword list of rejection is learned, in the
case of multi-keyword filtering, the combining probability formula can be obtained as Formula 4. From
Formula 4, the probability of spam can be calculated when the email is received, and then determine
whether it is spam according to the set threshold. (Bayesian Multivariate Statistical Inference Theory
2006.)

Formula 3
P4 1) =—2L0)
AT+ f(T)
Formula 4
P(A|T,,..T,) = PA|T)* P(A|T)*.....P(A|T,)

[P(A|T)* P(A| T,)* ... P(A| T)]+ [(1= P(A| T,))* (1= P(A| T,))*c.c.. 1= P(A| T)))]

The steps of the algorithm: First, process the training data and propose each training data and its corre-
sponding label. Second, generate a vocabulary based on the training data. Third, vectorize each training
sample, then combine the generated vocabulary to train a Naive Bayes classifier. Fourth, process the test
data and propose each test data and its corresponding label. Fifth, vectorize each test data and classify it
using Naive Bayes classifier. Sixth, compare the probability of spam and ham to determine which cate-

gory it belongs to. (Bayesian Multivariate Statistical Inference Theory 2006.)

28

5.2 Selection of datasets

The implementation of Naive Bayesian algorithm is not complicated. The main difficulty lies in the
processing of the dataset, which improves the accuracy of the algorithm. Therefore, selecting suitable
training dataset and testing dataset is required before setting classifier. In the project, there is an ARFF
data file "TrainingData.arff” which contains total of 5000 messages with spam or ham label was used as
the training dataset, the testing dataset “TestingData.arff” is an ARFF data file that contains 525 mes-

sages with spam or ham label, also, there are two txt files as raw datasets respectively as the figure 19

shows below.
=| testixt 2020/3/17 22:44 g A4 KB
&) TestingData.arff 2020/3/11 23:08 ARFF Data File 45 KB
=| train.txt 2020/3/17 22:45 AT 420 KB
&) TrainingData.arff 2020/3/24 21:22 ARFF Data File 437 KB

Figure 19. Training dataset and testing dataset

Figure 20 below indicates the curt content of training dataset. In the file TrainingData.arff. “@relation
‘SMS spam’” defined relation name, which is string data type. In case of the name contains spaces, it is

required to be quoted. “@attribute label {spam, ham}” defined attribute “label” which includes two

[3

selections with “spam” and “ham”. “@attribute text string” defined the data type of attribute “text” is

string. The lines that start after "@data" are the instance data in the dataset.Each line represents an in-
stance, the attribute values are arranged in the order of the attributes and separated by commas, and the

carriage return indicates the end of the instance. The format is "label,text™.

ijrainingData‘aﬁf—iE,;zi _ o «
MHHE \EE ER0) EEY EEH
@relatiun 'SMS spam’

@attribute label {spam,ham}
@attribute text string

@data
ham, "Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...'
ham, "Ok lar... Joking wif u oni...’

spam, 'Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 28@5. Text FA to 87121 to receive entry question(std txt rate)T&C\'s apply ©84528188750verl
ham, "U dun say so early hor... U ¢ already then say...’

ham, "Nah I don\'t think he goes to usf, he lives around here though’

spam, 'FreeMsg Hey there darling it\'s been 3 weekl's now and no word back! IY'd like some fun you up for it still? Tb ok! XxX std chgs to send, £1.5@ to rcv"
ham, "Even my brother is not like to speak with me. They treat me like aids patent.’

ham, "As per your request \'Melle Melle (Oru Minnaminunginte Nurungu Vettam)\' has been set as your callertune for all Callers. Press =9 to copy your friends Ca
spam, "WINNER!! As a valued network customer you have been selected to receivea £988 prize reward! To claim call 09861781461. Claim code KL341. Valid 12 hours o
spam, "Had your mebile 11 menths or mere? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 0800298603
ham, "I\'m gonna be home soon and i don\'t want to talk about this stuff anymore tonight, k? I\'ve cried enough today.'’

spam, "SIX chances to win CASH! From 188 to 20,8008 pounds txt> CSH11 and send to 87575. Cost 15@p/day, 6days, 16+ TsandCs apply Reply HL 4 info’

spam, "URGENT! You have won a 1 week FREE membership in our £1080,00@ Prize Jackpot! Txt the word: CLAIM to No: 81@1@ T&C www.dbuk.net LCCLTD POBOX 44@3LDNW1AVRW
ham, "I\'ve been searching for the right words to thank you for this breather. I promise i wont take your help for granted and will fulfil my promise. You have
ham, "I HAVE A DATE ON SUNDAY WITH WILL!!®

spam, " XXXMobileMovieClub: To use your credit, click the WAP link in the next txt message or click here>> http://wap. xxxmobilemovieclub.com?n=QJKGIGHIIGCBL'
ham, *Oh k...i\'m watching here:)"

ham, "Eh u remember how 2 spell his name... Yes i did. He v naughty make until i v wet.’

ham, "Fine if thats the way u feel. Thats the way its gota b’

spam, "England v Macedonia - dont miss the goals/team news. Txt ur national team to 87877 eg ENGLAND to 87877 Try:WALES, SCOTLAND 4Atxt/dl.28 POBOXox36584WA5WQ 1
ham, "Is that seriously how you spell his name?’

ham 'Tim mnimm +n 4+ms £an D manthe ha ha ;nlo Saline’

s, E171 100% Unix (LF) UTF-8

Figure 20. TrainingData.arff opened as txt file

30

5.3 Importing Weka Packages

NetBeans IDE 8.2 was the development environment for the project. After creating the new application
named “Spam_Filter”, for exposing the weka API to NetBeans, so that weka packages could be imported
into java source code, it is necessary to add an archive file weka.jar into libraries of the project as the
figure 21 shows below.

|- @& Spam_Filter

- B8

o-[f aEa

Figure 21. Libraries included weka.jar and JDK 1.8

Weka packages were available after weka.jar file was included in the libraries. First, focus on Attribute,
and Instances in the core classes under the weka.core package. The collection of classifying samples is
saved as a global variable in the form of Instances, where each sample is an Instance. Each classifying
sample contains numbers of Attribute, and one Attribute of each Instance corresponds to a variable value.
In other words, the sample set Instances is a large table, the column direction is Instance, the row direc-

tion is Attribute, and the table stores the value of an Instance corresponding to the attribute.

The weka.core.converters packge is used to find out the file sources of training dataset and testing dataset
that in arff format, and then read data from those files either in incremental or batch mode. The
weka.core.tokenizers.NgramTokenizer includes the method that splits a string into an n-gram with min
and max grams, used to add the tokenizer that set min and max word number to the filter. Figure 22
shows weka.core packeges included in the source code. The weka.classifiers.Evaluation class was ex-
ploited to evaluate machine learning models. The weka.classifer.meta.FilteredClassifier class arbitrarily
classified the data that has been passed through a random filter. For constructing and implanting the

multinomial Naive Bayesian classifier, weka.classifier.NaiveBayesMultinomial was applied.

import

& import

import
import
import
import

import

wela.
weka.
wela.
weka.
wela.
weka.

weka.

core

core

core.

core.

core.

core.

core.

. Instances;

. Inztance;

Attribute;

Denselnstance;

converters. ArffSaver;

converters. Arffloader. ArffReader;

tokenizers. NGramTokenizer

Figure 22. Weka.core packages used in the source code

31

The weka.filters.unsupervised.attribute.StringToWordVector contains converter that transform string at-

tributes into a set of attributes denoting word occurrence information from the text contained in the

strings. In other word, this class convert the string attribute into a set of word attribute, the value of the

attribute could be specified in the parameter, such as the 0-1 variable that representing whether the word

appears in the instance. It is a class that commonly used in the text mining. Figure 23 below is the

weka.classifier packges which are imported into the code.

import
import
import

import

Figure 23. Weka.classifiers package and StringToWordVector class are imported in the source code

weka
weka
weka

weka

.classifiers. Evaluation;

.classifiers. meta.FilteredClassifier;

.classifiers. bayes. HaiveBayesMultinomial ;

.filters. unsupervised. attribute. StringToWordVector;

32

5.4 Training data

After understanding the structure of the data set, it is time to process the data set. First job is to train the
data set. Instances “TrainingData” was used for define the training data instances. The data type of
defined list ArrayList<> is limited to the object Attribute”, for generating new object which in-
cluded ”label” and "text” attributes, the class declared and instantiated the object as ”Weka Attributes”.
The locations and names of files are defined in the string variable “Training Data” and “Training-
Data_ ARFF”. Figure 24 below shows the defined instances, attributes of training data and locations of
training dataset files

45 private Instances Traininglata;

= private Arraylist <Attribute’ Weka Attributes = new Arravlist < > (J;

o private static final String Jraining Data = "dataset\\train.t=zt";

= private static final 3tring Traininglata ARFF = "datazet\\Iraininglata. arff’;

Figure 24. Defined instances, attributes of training data and locations of training dataset files

In the class WekaClassifier() created in the project, new array list was built in string data type to add
values of attribute “label”. The labels of mail were distinguished as “spam” and “ham”. Attribute class
from weka.core package was used to generate two attribute objects of data set. Among them ClassAt-
tribute included array list of mail label value “spam” and “ham”. Before added the attribute type “text”
into object AttributeText to save the message, List<String> was used to initialize the content list as null.
At last, both of these two attribute objects were put in the attribute list Weka_Attributes. In this way, the
feature vector was declared. Figure 25 illustrates that the attributes "label" and "text" were added and la-

bel” was assigned values.

65 ArrayList € String » LabelAttributeValues = new ArrayList < > ()

66 LabelAttributeValues. add(=pam™);

67 LabelAttributeValues. add(han');

?] Attribute ClassAttribute = new Attribute(label’, LabelAttributeValues):
5P| Attribute Attributelext = new Attribute(text’, (List < String ») null);
70

71 Weka Attributes.add{ClassAttribute) ;

72 Weka Attributes. add (AttributeText) ;

Figure 25. Attributes "label" and "text" were added and ”label” was assigned values

33

The following step is loading training data and setting feature generators. TRANSFORM() function was
built to handle training dataset and initiate the tokenizer. To load the training dataset in space seperating
text file and convert it to Arff format, the string variable Training_Data for indicating text format training
dataset file name and location was added into function loadRawDataset() shown in the figure 26. The
function saveArff() saved instances object which holding data into the ARFF format dataset file Train-
ingData_ARFF.

81 TrainingData = loadRawDataset (Training Data) ;

82 savelrff (Traininglata, TrainingData ARFF) ;

Figure 26. Loading and saving dataset content

Machine learning model algorithms require that the input data must be numeric, so the String-
ToWordVector class shown in the figure 27 was applied for converting those text in the file into numeric
data. By using the setAttributelndices() class to determine the range of attribute that is to be transformed,
since attributes are indexed from 1 and the attribute “text” is in the final, so it would convert on the last

attribute.

85 StringToWordVector filter = new StringToWordvVector () :
86 filter.setAttributeIndices(last’);

Figure 27. Converting text to feature vector

To implement the tokenizer, the class NGramTokenizer was used to create a tokenizer which divided
the string into an n-gram with the minimum and maximum word length as 1. Range was set as any non-
word character and the tokens are regulated as lower case. Both conditions were added into the filter.

Figure 28 below shows the code that using tokenizer split the string.

29 NGramTokenizer tokenizer = new NeramTokenizer () ;
a0 tokenizer. setNGramMin3ize (1) ;

a1 tokenizer. setNGramMaxSize (1) ;

92

a3

94 tokenizer. setDelimiters(W70 ;

a5 filter. setTokenizer (tokenizer) ;

95 filter. setLowerCaseTokens (true) ;

a7 CLASSIFIER. setFilter (filter) ;

Figure 28. Using tokenizer to split the string

34

The function fit() shown in figure 29 was built to implement the classifier with the training data. The
class buildClassifier classified the text instances in the training dataset. Try-catch statement was used
for handling the exception, the warning message would be generated by logger after the exception is
caught. This class is for running an arbitrary classifier on data that has been passed through an arbitrary
filter. Training data and test instances will be processed by the filter without changing their structure.

110 | [=] public wvoid Fi1t() |

111 try 1

112 CLASSIFIER. buildClassifier (TrainingData) ;
113 } catch (Exception e) |

114 Igr.warning (e. getMessage ()) ;

115 1

16| L 1

Figure 29. Building the classifier

35

5.5 Testing data

Regression testing is usually used to evaluate the accuracy of the classifier. The simplest method is to
classify the training data with the constructed classifier, and then give the correct rate evaluation based
on the result. But this is not a good method, because the use of training data as detection data may lead
to overly optimistic results due to overfitting. So, a better method is to use specialized data for detecting
the accuracy of the built classifier, which is called “testing data”. The function evaluate() in figure 30
was created to assess the classifier by using testing dataset.

First step is to load the testing data and Instance class from the weka.core package was exploited to
generate the instance “testData”. If-else statement was used to detect the location of the testing data
ARFF file if the file exists. The data from TestingData_ ARFF was read into the instance “testData”.
Then the instance “eval” which is constructed by the Evaluation class was used to evaluate the classifier
learning model “CLASSIFIER” by the object of the test data. The result of evaluation would be return
as string data type and in case of error there was a message sent by try-catch, then it would be return to

the logger “Igr” as the warning.

155 | [=] public String evaluate() {

156 try |

157

158 Instances testData;

159 if (new File(TestingData ARFF). existsi()) {
160 testData = loaddrff(Testinglata ARFF) ;
161 testData. setClassIndex (0) ;

162 } else {

163 testData = loadRawDataset(Testing Data);
164 saveArffitestData, Testinglata_ ARFF);
165 }

166

167 Evaluation eval = new Evaluation(testDatal:
168 eval. evaluateModel (CLASSIFIER, testData) ;
169 return eval. toSummaryString () ;

170 } catch (Exception e) {l

171 lgr.warning (e. getMessage ()) ;

172 return null;

173 }

174| L }

Figure 30. Evaluating the classifier model

36

5.6 Evaluation result

In the end, at the main method of RUN.java, loadModel() function was used to load the learning model
which is to be used as classifier. After the new object “wt” was generated, if-else statement was used to
launch functions for extracting training datasets, creating the filter then implementing the classifier by
the training data. The learning model was saved by using function saveModel(). Two testing messages
were written into the logger and processed to prediction. The prediction result was printed by using
evaluate() function. Figure 31 below shows the code of main() function.

public class RUN extends WekaClassifier |

public static void main(String[] args) throws Exception {
final String MODEL = “modsls :

WekaClassifier wt = new WekaClassifier():

if (new File (MODEL). exists()) {
wt. loadMode1 (MODEL) :
}oelse {
wt. TRANSFORM () :
wt. £it ()
wt. saveModel (HODEL) ;

Igr.info(" I think we could meet the day after tomorrow in the school and tal is " + wt.prediet ("I think we could meet the day after tomorrow in the school and talk,”)):
Igr.info (" Congratulations! You have won the 10,000 EUR prize is + wt.prediet ("Congruatulation! You have won the 10,000 EUR prize

Igr.info ("Evaluation Result: \n +wt.evaluate()):
}

Figure 31. Main method for running classifier

For building the classifier, after the function TRANSFORM() was launched, the training data was fed
to create the filter, then the filter was added into classifier. Two short messages were typed for testing
the prediction of the classifier. Because of the key words filtering, the first was labeled as “ham” and the
second one was given as “spam”. According to the result, the prediction was consistent of the definition
of testing messages. In the evaluation result, there were 522 instances which classified correctly in the
testing dataset and the rest 3 messages were not classified properly as shown in figure 32. The summary

of classification result came to precision.

DR

[{> spam Fiter (debug) X imepseemie x
u> debus:

@ +FE8 07, 2020 2:28:28 L wekaClassifier loadModel
%% {2 Loaded model: models
+FE 07, 2020 2:28:28 E% RUN main
{f=%. "I think we could meet the day after tomorrow in the school and talk * is ham
+F 07, 2020 2:28:28 B9 RUN main
f£%: ‘Congratulatiens! You have won the 10, 000 EUR prize!” is spam
+FE 07, 2020 2:28:29 EF RUN main

f£%: Evaluation Result:

Correctly Classified Instances 522 99, 4286 %
Incorrectly Classified Instances 3 0.5714 %
Kappa statistic 0.9783

Mean absolute error 0. 011

Root mean squared errer 0. 0742

Relative absclute error 4 5086 %

Root relative squared error 21,3327 %

Total Number of Instances h25

WIHE (2FE: 8 B

Figure 32. Output after running

38

6 CONCLUSION

Java is still considered a good choice for Al development. Al is related to searching algorithms, artificial
neural networks and genetic programming. Java provides these benefits: easy to use, easy to debug,
package services, simplifying the work of large projects, graphical representation of data, and better user

interaction. This is the reason why Java is used as the programming language of the presented project.

The technology of spam recognition and filter is one of the aspects in Al developing in today’s world.
Spam and ham mail classification could bring convenience and efficiency to the mailbox users. Although
Python is the most popular language for machine learning nowadays, the machine learning algorithm
collection written by Java such as Weka could also handle the data classification jobs smoothly, thus,
for the purpose of achieving the goal of spam filter, Weka workbench was used in the present study.

By applying Naive Bayes algorithm from Weka workbench software, the data classification is easy to
implement. The strong point of the classifier is that the storage only involves two-dimensional and the
time and the space cost in the classification process issmall. The classifier is "naive™ due to the assump-
tion of conditional independence of features. However, even if the algorithm is simple and efficient since
the conditional independence assumption would not be true in actual situations. This will lead to the

greater the correlation between the features in the actual process, the bigger the classification error.

Normally regression testing is used to evaluate the accuracy of the classifier. The simplest method is to
classify the training data with the constructed classifier, and then give the correct rate evaluation based
on the result. But this is not a good method, because using training data as detection data may lead to
too optimistic results due to overfitting, so a better method which used in the implementation is to divide
the training data into two at the beginning of the construction. One is the training dataset, another one is
the testing dataset for verifying the accuracy of the classifier. In the experiment, the test dataset com-
posed of 525 messages verifies the classifier well, which helps to prove that the classifier is more reliable

adopting test data.

39

REFERENCES

Daume, H I11. 2017. A Course in Machine Learning. Accessed: 15" October

Watson, M. 2008. Practical Artificial Intelligence Programming with Java. Accessed: 15" October

Joost, N. Egbert, J. Walter, A. Putten, P. 2009. Artificial Intelligence: Definition, Trends, Techniques,
and Cases. Accessed: 15" October

Wehle, H. 2017. Machine Learning, Deep Learning, and Al: What’s the Difference? Available:
https://www.researchgate.net/publication/318900216 Machine Learning Deep Learn-
ing and Al What%27s the Difference/ Accessed: 15" October

Khakurel, J. Penzenstadler, B. Porras, J. Knutas, A. Zhang, W. 2018. The Rise of Artificial Intelli-
gence under the Lens of Sustainability. Available: https://www.researchgate.net/publica-
tion/328653902_The_Rise_of_Atrtificial_Intelligence_under_the Lens of Sustainability/ Accessed:
15" October

Sugomori, Y. 2016. Java Deep Learning Essentials. Available: https://sites.google.com/site/aduh08ke-
langan1/POILJo784HDkg1311/ Accessed: 15" October

Witten, H. Hall, A. Frank, E. 2016. The WEKA Workbench. Accessed: 15" October

Kaluza, B. 2016. Machine Learning in Java. Accessed: 15" October

Russell, S. Norvig, P. 2010. Artificial Intelligence A Mordern Approach Third Edition. Accessed: 15"
October

Schildt, H. 2011. Java: A Beginner’s Guide, Eighth Edition. Available: https://sites.google.com/site/si-
jiloro321telu22/aBOt8201wesen2680/ Accessed: 15" October

Advani, V. 2020. What is Artificial Intelligence? How does Al work, Types and Future of it? Availa-

ble: https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/ Accessed: 15" October

Nicholson, C. 2020. Java Tools for Deep Learning, Machine Learning and Al. Accessed: 15" October

https://www.researchgate.net/publication/318900216_Machine_Learning_Deep_Learning_and_AI_What%27s_the_Difference/
https://www.researchgate.net/publication/318900216_Machine_Learning_Deep_Learning_and_AI_What%27s_the_Difference/
https://www.researchgate.net/publication/328653902_The_Rise_of_Artificial_Intelligence_under_the_Lens_of_Sustainability/
https://www.researchgate.net/publication/328653902_The_Rise_of_Artificial_Intelligence_under_the_Lens_of_Sustainability/
https://sites.google.com/site/aduh08kelangan1/POILJo784HDkg1311/
https://sites.google.com/site/aduh08kelangan1/POILJo784HDkg1311/
https://sites.google.com/site/sijiloro321telu22/aBOt8201wesen2680/
https://sites.google.com/site/sijiloro321telu22/aBOt8201wesen2680/
https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/

40

Sakovich, N. 2018. Java: Is It the Best Language for Artificial Intelligence? Available:
https://www.sam-solutions.com/blog/java-is-it-the-best-lanquage-for-artificial-intelligence/ Accessed:
15™ October

Austerlitz, H. 2003. Data Acquisition Techniques Using PCs. Accessed: 15" October

Parahar, M. 2020. Differences between JDK, JRE and JVM. Accessed: 15 October

TIOBE Index. 2020. Available: https://www.tiobe.com/tiobe-index/ Accessed: 15" October

Lawtomated. 2019. Al for Legal: ANI, AGI and ASI. Available: https://medium.com/@lawtomated/ai-
for-legal-ani-agi-and-asi-cea6e7a4079e/ Accessed: 15 October

Venners, B. 1998. Inside the Java Virtual Machine. Accessed: 15™ October

Chaudhary, S. 2017. Artificial Intelligence 101: How to get started. Available: https://www.hack-

erearth.com/blog/developers/artificial-intelligence-101-how-to-get-started/ Accessed: 15" October

Panchal, S. 2018. Types Of Artificial Intelligence And Examples. Available: https://medium.com/pre-

dict/types-of-artificial-intelligence-and-examples-4f586489c5de/ Accessed: 151 October

Mohammed, M. Khan, M. Bashier, E. 2016. Machine Learning: Algorithms and Applications. Ac-

cessed: 15" October

Davis, S. 2017. Navigating Neural Networks. Accessed: 15" October

Baeldung. 2020. Overview of Al Libraries in Java. Available: https://www.baeldung.com/java-ai/ Ac-

cessed: 15" October

https://www.sam-solutions.com/blog/java-is-it-the-best-language-for-artificial-intelligence/
https://www.tiobe.com/tiobe-index/
https://medium.com/@lawtomated/ai-for-legal-ani-agi-and-asi-cea6e7a4079e/
https://medium.com/@lawtomated/ai-for-legal-ani-agi-and-asi-cea6e7a4079e/
https://www.hackerearth.com/blog/developers/artificial-intelligence-101-how-to-get-started/
https://www.hackerearth.com/blog/developers/artificial-intelligence-101-how-to-get-started/
https://medium.com/predict/types-of-artificial-intelligence-and-examples-4f586489c5de/
https://medium.com/predict/types-of-artificial-intelligence-and-examples-4f586489c5de/
https://www.baeldung.com/java-ai/

41

SOURCE OF FIGURES

Figure 1: Arora,K Using Java in Artificial Intelligence Programming. Available: https://www.oodles-

technologies.com/blogs/using-java-in-artificial-intelligence-programming/

Figure 3: Venners,B. Inside the Java Virtual Machine, Chapter 5, figure 5-1

Figure 4: Oracle, JDK 5.0 Documentation. Available: https://docs.oracle.com/javase/1.5.0/docs/

Figure 5: Russell,S. Norvig,P. Artificial Intelligence A Mordern Approach Third Edition, Chapter 1,
figure 1.1

Figure 6: Kolb,D. Autonomous Driving - One step closer to artificial intelligence, figure 1. Available:

https://accilium.com/en/autonomous-driving-one-step-closer-to-artificial-intelligence/

Figure 7: Jones, T. Models for Machine Learning, figure 1. Available: https://developer.ibm.com/arti-

cles/cc-models-machine-learning/

Figure 17: Interface Copyable. Available: https://www.dbs.ifi.Imu.de/~zimek/diplomathesis/imple-
mentations/EHNDs/doc/weka/core/Copyable.html/

Figure 18: Method Summary, distributionForinstance. https://weka.sourceforge.io/doc.dev/weka/clas-

sifiers/Classifier.html#distributionForlnstance-weka.core.Instance-/

https://www.oodlestechnologies.com/blogs/using-java-in-artificial-intelligence-programming/
https://www.oodlestechnologies.com/blogs/using-java-in-artificial-intelligence-programming/
https://docs.oracle.com/javase/1.5.0/docs/
https://accilium.com/en/autonomous-driving-one-step-closer-to-artificial-intelligence/
https://developer.ibm.com/articles/cc-models-machine-learning/
https://developer.ibm.com/articles/cc-models-machine-learning/
https://www.dbs.ifi.lmu.de/~zimek/diplomathesis/implementations/EHNDs/doc/weka/core/Copyable.html/
https://www.dbs.ifi.lmu.de/~zimek/diplomathesis/implementations/EHNDs/doc/weka/core/Copyable.html/
https://weka.sourceforge.io/doc.dev/weka/classifiers/Classifier.html#distributionForInstance-weka.core.Instance-/
https://weka.sourceforge.io/doc.dev/weka/classifiers/Classifier.html#distributionForInstance-weka.core.Instance-/

	1 INTRODUCTION
	2 JAVA PROGRAMMING LANGUAGE
	2.1 Java platform standard edition

	3 ARTIFICIAL INTELLIGENCE
	3.1 The definitions of AI
	3.2 The categories of AI
	3.2.1 Machine Learning
	3.2.2 Deep Learning

	3.3 Machine Learning tools and libraries in Java

	4 WEKA
	4.1 The explorer experiment
	4.2 The class structure Weka
	4.2.1 The Weka.core package
	4.2.2 The Weka.classifiers package

	5 PROJECT EXPLANATION
	5.1 Naive Bayesian algorithmic reasoning
	5.2 Selection of datasets
	5.3 Importing Weka Packages
	5.4 Training data
	5.5 Testing data
	5.6 Evaluation result

	6 CONCLUSION
	REFERENCES

