

PLEASE NOTE! THIS IS PARALLEL PUBLISHED VERSION /
SELF-ARCHIVED VERSION OF THE OF THE ORIGINAL ARTICLE

This is an electronic reprint of the original article.
This version may differ from the original in pagination and typographic detail.

Author(s): Väänänen, Olli; Hämäläinen, Timo

Title: Sensor data stream on-line compression with linearity-based methods

Year: 2020

Version: Accepted version (Final draft)

Copyright: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Please cite the original version:

Väänänen, O. & Hämäläinen, T. (2020). Sensor data stream on-line compression with linearity-based
methods. Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP),
14–17 September 2020, Bologna, Italy. Virtual Event. DOI: 10.1109/smartcomp50058.2020.00049

URL: https://doi.org/10.1109/smartcomp50058.2020.00049

https://doi.org/10.1109/smartcomp50058.2020.00049

Sensor Data Stream On-line Compression with
Linearity-based Methods

Olli Väänänen
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

0000-0002-7211-7668

Timo Hämäläinen
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

0000-0002-4168-9102

Abstract—The escalation of the Internet of Things applications
has put on display the different sensor data processing methods.
The sensor data compression is one of the fundamental methods to
reduce the amount of data needed to transmit from the sensor
node which is often battery powered and operates wirelessly.
Reducing the amount of data in wireless transmission is an
effective way to reduce overall energy consumption in wireless
sensor nodes. The methods presented and tested are suitable for
constrained sensor nodes with limited computational power and
limited energy resources. The methods presented are compared
with each other using compression ratio and inherent latency.
Latency is an important parameter in on-line applications. The
improved variation of the linear regression-based method called
RT-LRbTC is tested and it has proved to be a potential method to
be used in a wireless sensor node with a fixed and predictable
latency. The compression efficiency of the compression algorithms
is tested with real measurement data sets.

Keywords—edge computing, internet of things, sensor data,
compression algorithm

I. INTRODUCTION
Simple linearity-based compression methods are not a new

research topic; however, they have gained a great amount of
attention recently due to the growing interest in the Internet of
Things and wireless sensor networks. That kind of compression
methods have been available already for decades. Most of these
methods are based on analyzing the data stream retrospectively
when all or at least a significant amount of the data need to be
already available [1]. Thus, these methods are not well suitable
for compressing the data stream in real-time or even near real-
time.

Applications using some sensor data in control could benefit
from effective real-time compression methods based on data
linearity; in particular if the measured magnitude were some
environmental magnitude which behaves quite linearly in short
time window. These kinds of rather slowly changing and thus
linearly behaving magnitudes are for example temperature, air
pressure, humidity and wind speed. These kinds of
measurements are typical in agricultural applications and in
many other different IoT applications [2].

Using some simple and computationally light compression
method can be a very effective way to save in energy
consumption and thus lengthen the lifetime of battery powered
sensor nodes which often operate wirelessly [3].

II. LINEARITY BASED COMPRESSION ALGORITHMS AND
THEIR SUITABILITY FOR REAL-TIME OPERATIONS

As mentioned in the Introduction, many linearity-based
compression methods analyzes the data retrospectively when the
data is already available. It is easy to test and find the best
possible compression algorithm if the data set is already
available. This kind of approach is useful and suitable in
Periodic Sensor Networks (PSN) [4]. In PSNs the node sends
the data periodically to the sink [5]. This kind of measurement
network does not work in real-time; however, the latency is
known and can be adjusted by adjusting the sending period
(frequency). There are many methods and protocols for PSNs to
achieve longer battery lifetime by reducing the energy
consumption with data aggregation and the amount of data
needed to transmit wirelessly. Some methods are very simple
based on constant approximation and some methods are slightly
more complex [4]. Very simple methods suitable for constrained
sensor nodes in PSNs are for example Piecewise Constant
Approximation (PCA), Adaptive Piecewise Constant
Approximation (APCA), Poor man’s compression and
Piecewise Linear Histogram (PWLH) [6][7][8][9][10][11].
These methods are so called model-based methods [1].

PCA is a very simple on-line algorithm which divides the
data stream to constant linear segments. It guarantees that the
compressed data satisfies the error bound (maximum allowed
deviation between original data and linear model) requirements
compared to the original raw data [11]. PCA divides the data set
in to fixed lengths linear segments called as windows. PCA
method first takes the number of window size of sensor signals
and calculates the difference between maximum value and
minimum value. If the difference is smaller than the error bound
accepted, then all the data points in that segment (window) are
represented with a constant value which is the middle point of
the maximum value and minimum value. This is not the most
effective method for compression, however, it is a very simple

and computationally light method. It also has a fixed latency
which is set by the window length [1][11].

APCA’s functionality is very close to PCA. It varies from
PCA thus that constant value segments vary in length. The
length of the constant value segment is as long as it still meets
the demands of the error bound. As a result of APCA’s
compression, there are constant segments of varying length.
Each segment is represented by two values, the median value of
the data points and the end time stamp of the segment [1][7]. If
this model is applied to the sensor node, then the sensor node
transmits two values after each segment to the sink (receiver).
Because the segments vary in length, the latency is not known
in advance, and the latency also varies depending on the length
of the segments. The more stable the data values remain, the
longer the segments are (higher compression ratio) which results
in higher latency.

PWLH has similarities to APCA but the linear segments
need not have constant values. Thus, the linear segments can be
represented with lines the slope of which can be other than zero
[1]. This method suffers also from the unknown length of the
linear segments, and thus the latency cannot be anticipated.

These model-based methods are not well suited for the real-
time operations with tight requirements for the latency. The
benefits in these model-based methods are that they are simple
and computationally very light. Thus, these methods are well
suited for the battery powered computationally constrained
devices.

There are also compression methods suitable to be used
directly for the data stream. One very effective linearity-based
compression method is called Lightweight Temporal
Compression (LTC) [12]. It is a lossy method like all the other
methods presented in this paper, and it is suitable to be
implemented in constrained sensor node due to its
computational simplicity. It is very effective and has a high
compression ratio for the linearly behaving environmental data
[2]. The significant drawback in this method is the latency;
hence, it is not well suited for real-time applications [13]. The
sensor node utilizing LTC algorithm sends the starting point of
the linear segment to the receiver; however, the receiver does
not know anything until the sensor node sends the end point of
the linear section to the receiver. Between that there is no
information available on the receiver side. The receiver does not
know if the value is in average rising, staying at the same level
or lowering, and after receiving the end point of the linear
segment (which is at the same time the starting point of the next
linear section), there is no information in which direction the
values are changing after that.

There are also various linear regression-based algorithms
available and presented in the field of the research. One method
is called Piecewise Linear Approximation (PLA). It uses the
linear regression to model data stream with a certain error bound
allowed from the linear segment. Each linear segment is
represented by the start and end time stamps and the line
parameters (base and slope) or by the linear segment starting
point (time stamp and value) and end point (time stamp and
value) [10]. If the data set or a part of it is already available, it is
possible to find the best amount of values to be used to calculate
a regression line which determines the longest linear segment

which still meets the error bound requirement to the data. This
kind of approach is not well suited for real-time operations.

The linear regression can be calculated from the minimum
of three data values; however, also more values can be used.
This kind of approach is presented in [2] by the authors and the
algorithm is called Linear Regression based Temporal
Compression (LRbTC). In [2] 3, 4 and 5 values are used to
calculate the regression line and have been tested to compress
some environmental data (temperature, air pressure and wind
speed). For near linearly behaving sensor data like temperature,
there is a slight improvement in compression ratio if 4 or 5
values have been used to calculate the regression line. The
disadvantage in LRbTC method is that the latency is not known
in advance. The latency depends on how well the data is suited
to the linear model. When the data behaves very linearly, it leads
to a higher compression ratio but also higher latency at the same
time. In this paper the authors present a modification for LRbTC
method towards more real-time operation with known and fixed
latency.

III. LINEAR REGRESSION BASED COMPRESSION ALGORITHMS
TOWARDS REAL-TIME OPERATION

LRbTC as presented in [2] is a very simple compression
algorithm. In basic form it is presented as a flow chart in Fig. 1.
This method is based on linear regression of the N measured
samples and the line calculated predicts future values allowing
a certain error bound ±ε from the line. If the data is behaving
linearly, the regression line gives quite a good prediction for the
future values.

Fig. 1. LRbTC algorithm.

As mentioned, this kind of algorithm in this form does not
present a constant latency. Step 5 in Fig. 1. happens when the
value is out of the regression line more than an error bound.
When that happens depends on the measured values and cannot
be predicted.

Model parameters: The raw data of sensor signal can be
presented as S = ‹(v1,t1), (v2,t2),… (vn,tn)›, where vi (𝑖𝑖 ∈ ℕ) is the
measured value and ti is the time stamp (moment). From the
compression algorithm the compressed data stream consists of

1. Get next N
values and

calculate the
regression line.

2 Send the
starting point

of the
regression line.

3. Get next
measured value and

compare it to the
regression line

4. Is the
difference

smaller than
error bound?

5. Send the end
point of the

regression line.

yes

no

the starting points and the end points of the linear segments
(ci,τi), where ci is the compressed value (start or end point of the
linear regression line) and τi is the time stamp for that value.
Thus, the output is LRbTC(S) = ‹(c1,τ1), (c2,τ2),… (cn,τn)›.

One weakness in this basic version of LRbTC is in the first
step where N values are used to calculate the regression line. The
values used to calculate the new regression line can be more than
an error bound away from the calculated line. In [2] the modified
version M-LRbTC has been introduced, and its functionality can
be seen in Fig. 2.

Fig. 2. Modified LRbTC (M-LRbTC).

In M-LRbTC version, after calculating the regression line,
the distance of the values used to calculate the regression line
are compared to the line. If the difference is bigger than the error
bound, then the first two data points ‹(v1,t1),(v2,t2)› are stored
and/or sent to the sink, and the next N values are used to
calculate the new regression line. This version has the same
limitations as the original version for the real-time operations
due to unknown latency.

One improvement for this kind of linear regression-based
compression algorithm would be to send the regression line
parameters (slope a and base b, as the line formula is c = at + b,
where c is the value achieved from the linear model at the given
time stamp t) with the starting point time stamp of the line to the
sink (receiver). Thus, the latency would be the time of achieving
N samples (N-1 sampling steps Δt), and the receiving part would
know that the values follow the known line as long as the end
point of the line is received. Thus, if the N is 3, then the latency
is two times the measurement interval (2 x Δt) when the new
regression line is calculated. The latency in the linear section
(values following the regression line) is one measurement
interval Δt. When the measurement value goes off the segment

(more than error bound), then the last point of the line (which
was one interval Δt before) is sent to the sink. This is a
significant improvement compared to the most model-based
piecewise approximation methods presented before and also
compared to the LTC method. As a result from the compression
the data is: ‹(a1,b1,τ1),(c2,τ2),(a3,b3,τ3),(c4,τ4),… (an-1,bn-1,τn-1),
(cn,τn)›.

A. Towards real-time operations with predicted and constant
latency
This LRbTC (M-LRbTC) method can be developed further

to achieve an even shorter latency. When the measured value
falls off from the allowed area (line with error bound), then the
already measured values can be used to calculate the new
regression line. Then the latency is only one measurement
interval long (Δt). Only at the beginning of the measurement,
when the first regression line is calculated, the latency is N - 1
intervals long. Simplified flow-chart of this kind of version is
presented in Fig. 3. It is named here as Real-Time LRbTC (RT-
LRbTC).

Fig. 3. Real-time LRbTC (RT-LRbTC).

The raw data of sensor signal is S = ‹(v1,t1),(v2,t2),… (vn,tn)›.
At the beginning of the algorithm the first N (N = 3, for example)
value pairs are used to calculate the regression line. Thus, the
values ‹(v1,t1),(v2,t2),(v3,t3)› are used to calculate the regression
line (c1 = a1t + b1) parameters a1 and b1. Three values are sent
to the sink (a1,b1,τ1) at time moment t3 (plus the latency from the
computational time), where τ1 = t1. Thus, the algorithm latency
at the beginning is t3 - t1 = 2 x Δt. After that, the algorithm
compares the following measured values to the regression line
at the time of the value (step 3 in Fig. 3). When the measured
value falls out more than the error bound from the regression
line, then the new regression line (a2,b2,τ2) is calculated from the
last N values and sent to the sink. τ2 is the time stamp of the value
which fell out from the linear section. The receiving side knows
that the previous regression line ended one measurement
interval before (τ2 – Δt), thus the latency from the algorithm
itself is one measurement interval Δt.

This basic version of RT-LRbTC has the same drawback as
the original LRbTC when values used to calculate regression
line can be more than an error bound away from the regression
line. The version which corrects this problem is presented in Fig.
4.

1. Get next N
values and

calculate the
regression line

6. Send the
starting point of
the regression

line

7. Get next
measured value

and compare it to
the regression line

8. Is the
difference

smaller
than error

bound?

9. Send the end
point of the

regression line

yes

no

2. Compare the
regression line and
the values used to
calculate the line.

3. Is the
difference

smaller
than error

bound?

4. Send the first
two data

points and get
the next two

measurement
values

5. Calculate the
regression line from

the last N values

yes

no

1. Get first N values
and calculate the
regression line.

2. Send and store the
regression line

parameters and send
the starting point time

stamp.

3. Get next
measured value and

compare it to the
regression line

4. Is the
difference

smaller than
error bound?

5. Calculate the new
regerssion line from

the last N values yesno

6. Send and store the new
regression line parameters and

the time stamp of the last
measured value used to
calcultate regression line

Fig. 4. Improved RT-LRbTC.

Fig. 4. shows in step 2 the comparison between the
regression line and the values used to calculate that regression
line. If the distance from the line is more than the error bound,
then first two values (‹(v1,t1),(v2,t2)›) are stored/sent and the new
line is calculated from the following values ‹(v3,t3),(v4,t4),(v5,t5)›.
If and when the difference is at an accepted level, then in step 6
the regression line parameters and starting time stamp of the line
(a1,b1,τ1) are stored and sent to the receiver. In that point the
latency is N – 1 time steps (measurement interval) long as in the
basic version of RT-LRbTC. In step 7 the next measured values
are compared to the line and if the difference is less or equal to
the error bound (step 8), the comparison continues with the next
value. As long as this continues, there is no need to send
anything to the sink. In the sink the receiver knows that the
values measured one time step (measurement interval, Δt)
before are within error bound from the regression line as long as
no new line is received.

There is one measurement interval time latency because
when the measured value falls out from the linear section, then
the new line is calculated using the last N values and the new
line starts. The values sent to the sink are (a2,b2,τ2). The previous
line is ended one time step before (τ2 – Δt); however, the
information of that is achieved only when the next value falls
out from the line more than error bound ±ε. Thus, in this method
only one sending period is needed for each linear section and
thus the amount of the sending periods is only half compared to
most other linear regression based methods and LTC method. In
basic form of linear regression-based methods and also in LTC
method, there is a needed to send starting point value with time
stamp and end point value with time stamp for each linear
section.

In Fig. 5. the comparison of M-LRbTC and RT-LRbTC
shows the difference between these algorithms. Both algorithms
use N = 3 values to calculate (time stamps 1,2 and 3) the
regression line at time stamp 3, thus at the beginning both
algorithms get the same line (a1,b1). M-LRbTC sends the

regression line starting value (line value c1 at time τ1 = t1) to the
sink at time stamp 3. RT-LRbTC sends the line parameters with
the starting point of the line (a1,b1,τ1), where the τ1 = t1 to the
sink at time stamp 3. At time stamp 11 the measured value falls
out from the regression line. Thus, M-LRbTC sends the
regression line end value (c2, τ2), where τ2 = t10, and calculates
the new regression line from the measured values at time stamps
11, 12 and 13. M-LRbTC sends the new regression line starting
value c3 and line starting time stamp τ3 = t11 at time moment 13
when the new line is calculated. At time stamp 11, RT-LRbTC
calculates the new regression line from the values at time stamps
9, 10 and 11. When the receiver gets the new line parameters
(a2,b2,τ2), where τ2 = t11 it knows that the previous line ended at
time τ2 – Δt = t10.

Fig. 5. Comparison of M-LRbTC and RT-LRbTC.

B. Compression efficiency of RT-LRbTC to compress
environmental data
RT-LRbTC algorithm’s compression efficiency was tested

with the same data sets as the authors have used in [2] and with
similar newer data sets. The Naruska measurement station data
sets from 2018 and 2019 were achieved from the Finnish
Meterological Institute’s open data service [14]. The data sets
used were temperature, air pressure and wind speed from the
whole years 2018 and 2019 with a 10-minute measurement
interval. For each magnitude there were 51,961 values in year
2018 data set and 52,463 values in year 2019 data set. The
compression algorithm’s ability to compress those data sets was
tested with different error bounds from 0.1 to 2.0. RT-LRbTC
method was compared to the original M-LRbTC method, which
is presented and tested in [2], and LTC method which has been
the best algorithm in [2] when comparing the compression
ratios. The algorithms have been programmed in MATLAB. M-
LRbTC, and LTC algorithms are exactly the same algorithms as
in [2]. RT-LRbTC is a modification of M-LRbTC algorithm. M-
LRbTC and RT-LRbTC used three values to calculate the
regression line.

M-LRbTC method sends the starting point and ending point
of each linear regression line segment. In RT-LRbTC only the
line parameters and the time stamp for the line starting point are
sent, thus the transmitting periods needed are reduced to half
compared to the original method. In M-LRbTC method the two
values (value and time) are sent twice for each linear segment
compared to three values (line parameters a and b and time)
needed to send once for each linear section in RT-LRbTC.

The compression ratio (CR) is calculated by dividing the
amount of original data by the amount of compressed data.

1. Get first N values and
calculate the regression

line.

6. Send and store the
regression line

parameters and send the
starting point time stamp

7. Get next
measured value

and compare it to
the regression line

8. Is the
difference

smaller than
error bound?

9. Calculate the
new regerssion line

from the last N
values yesno

10. Send and store the
new regression line

parameters and the time
stamp of the last

measured value used to
calcultate regression line

2. Compare the
regression line and the

values used to
calculate the line.

3. Is the
difference

smaller
than error

bound?

4. Send the first
two data

points and get the
next two

measured values

5. Calculate the
regression line
from the last N

values

no

yes

The results for the temperature data can be seen in Fig. 6.
The results are very similar for both data sets (2018 and 2019).
The LTC is superior compared to the other two algorithms. RT-
LRbTC benefits from the fact that there is only needed to send
parameters once for each regression line. Actually, there are
more regression lines needed in RT-LRbTC and in that way it is
less efficient compared to M-LRbTC.

Fig. 6. Comparison on the algorithms with temperature data.

Similar comparison in compression ratios was done with air
pressure data sets. The results for 2018 and 2019 data sets can
be seen in Fig. 7.

Fig. 7. Comparison of the algorithms with air pressure data.

LTC algorithm is again superior compared to the other two
and the compression ratios are generally remarkably higher than

with temperature data. This is an indication that air pressure data
in general is changing quite slowly and behaves quasi linearly.
The error bounds with temperature data are not fully comparable
because temperature is in Celsius degrees and air pressure in
hectopascals (hPa).

Fig. 8. Illustrates the comparison between algorithms to
compress the wind speed data. The wind speed data is measured
with 10-minute average value [14].

Fig. 8. Comparison of the algorithms with wind speed data.

Even with 10-minute average measurement the wind speed
remains rather long periods in zero; however, on the other hand,
it is also changing rapidly in other moments. Thus, it is not
behaving that linearly and changing as slowly as the temperature
and air pressure. The results in compression ratios are quite close
compared to the temperature data. That is because of the rather
long periods with consecutive measurements with zero value for
wind speed.

IV. RESULTS
The results of compression ratios comparison for LTC and

M-LRbTC are similar as in [2] also for 2019 data. RT-LRbTC
suffers from the amount of the regression line calculations but
benefits more from the fact that only one transmitting period is
needed for each regression line compared with the two
transmitting periods with M-LRbTC.

 TABLE I presents the results as compression ratios when the
error bound is 0.5 °C for temperature, 0.5 hPa for air pressure
data and 0.5 m/s for wind speed data. These are realistic error
bounds which could be used in real application. It can be seen
that the compression ratios are similar for both data sets (2018
and 2019) for each algorithm and each magnitude in
comparison. Anyway, the compression ratios are slightly higher
for 2019 data except M-LRbTC for air pressure data. The
average change is the absolute average change between two
consecutive values in the whole data set for given magnitude.
For temperature data and wind speed data the average change is

slightly smaller for 2019 data and it can indicate that the data is
behaving slightly more linearly and thus resulting in a better
compression ratio.

TABLE I. COMPARISON OF COMPRESSION RATIOS

Data set
Average
change

Compression Algorithms’ Compression
Ratios

LTC M-LRbTC RT-LRbTC
Temperature 2018 0.223 9.49 3.90 5.65

Temperature 2019 0.208 10.17 4.02 5.96

Air pressure 2018 0,086 28.22 8.94 14.09

Air pressure 2019 0,086 29.56 8.84 14.99

Wind speed 2018 0,302 5.09 2.62 3.68

Wind speed 2019 0,284 5.54 2.74 3.87

TABLE II presents the comparison of the latencies in different
phases of the algorithm operation. Only the algorithm’s inherent
latency is taken into account, not the latency from the
computational delay or from the data transmission. Only M-
LRbTC (2) and RT-LRbTC algorithms can present a predictable
latency. RT-LRbTC presents the shortest latency in operation
and it is dependent on the measurement interval.

TABLE II. COMPARISON OF LATENCIES

Latency
Compression Algorithm

LTC M-LRbTC
(1)

M-LRbTC
(2) RT-LRbTC

At the
beginning

0 (N -1) x Δt (N -1) x Δt (N -1) x Δt

In linear
section

length of the
linear section

length of
the linear
section

Δt Δt

Calculating
new line not applicable N x Δt N x Δt Δt

M-LRbTC (1): The linear regression line start point and end
point values are sent.

M-LRbTC (2): The linear regression line parameters are sent
with the starting time stamp.

V. CONCLUSIONS
Different versions of linearity-based sensor data

compression algorithms were presented and tested in this paper.
The main focus was on compression ratio and the inherent
latency from the algorithm itself. Many linearity-based
compression algorithms presented in the field of research are
model based methods demanding a set of data already available
to be implemented. Those methods are not well suited for
analyzing the sensor data stream in on-line mode if there are
requirements for the latency.

The presented and tested methods can be used in on-line
mode for the sensor data stream; however, only the new
variation RT-LRbTC can represent rather short and fixed
latency. Its general compression efficiency is rather low with the
tested data sets, but it benefits from the fact that only one
transmitting period is needed for each linear segment. The
wireless transmission is known to be the most energy consuming
operation in wireless sensor nodes. The linearity-based methods

presented benefits from the fact that environmental magnitudes
behave rather linearly in a short time window.

The next step will be to implement these linearity-based
methods in an embedded edge device such as a wireless sensor
node and test the methods in on-line mode for the data stream.
The actual effect on energy consumption will be tested and
measured and the computational complexity of different
methods will be taken into account and analyzed in detail.

REFERENCES
[1] N. Q. V. Hung, H. Jeung and K. Aberer, "An Evaluation of Model-Based

Approaches to Sensor Data Compression," in IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 11, pp. 2434-2447, Nov.
2013. doi: 10.1109/TKDE.2012.237

[2] O. Väänänen and T. Hämäläinen, “Compression methods for
microclimate data based on linear approximation of sensor data,” in
NEW2AN 2019: Internet of Things, Smart Spaces, and Next Generation
Networks and Systems: Proceedings of the 19th International Conference
on Next Generation Wired/Wireless Networking, and 12th Conference on
Internet of Things and Smart Spaces, LNCS, 11660. Cham: Springer, 28-
40. doi: 10.1007/978-3-030-30859-9_3

[3] O. Väänänen and T. Hämäläinen, “Requirements for energy efficient edge
computing: a survey,” in: Galinina, O., Andreev, S., Balandin, S.,
Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118,
pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01168-0_1

[4] A. K. M. Al-Qurabat and A. K. Idrees, “Two level data aggregation
protocol for prolonging lifetime of periodic sensor network,” in Wireless
Networks (2019) 25: 3623-3641. https://doi-org/10.1007/s11276-019-
01957-0

[5] A. Makhoul, H. Harb and D. Laiymani, “Residual energy-based adaptive
data collection approach for periodic sensor networks,” in Ad Hoc
Networks, Volume 35, 2015, Pages 149-160, ISSN 1570-8705,
https://doi.org/10.1016/j.adhoc.2015.08.009.

[6] A. Mahbub, F. Haque, H. Bashar and M. R. Huq, "Improved Piecewise
Constant Approximation Method for Compressing Data Streams," 2019
1st International Conference on Advances in Science, Engineering and
Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, pp. 1-6.
doi: 10.1109/ICASERT.2019.8934460

[7] E. Keogh, K. Chakrabarti, S. Mehrotra & M. Pazzani, “Locally adaptive
dimensionality reduction for indexing large time series databases,” in
Sigmod Record, 30(2), 2001, pp. 151-162.

[8] C. Buragohain, N. Shrivastava and S. Suri, "Space Efficient Streaming
Algorithms for the Maximum Error Histogram," 2007 IEEE 23rd
International Conference on Data Engineering, Istanbul, 2007, pp. 1026-
1035. doi: 10.1109/ICDE.2007.368961

[9] C. Wang, C. Yen, W. Yang and J. Wang, "Tree-Structured Linear
Approximation for Data Compression over WSNs," 2016 International
Conference on Distributed Computing in Sensor Systems (DCOSS),
Washington, DC, 2016, pp. 43-51. doi: 10.1109/DCOSS.2016.37

[10] C. C. Aggarwal, Managing and Mining Sensor Data. Springer. 2013. Doi:
10.1007/978-1-4614-6309-2

[11] I. Lazaridis and S. Mehrotra: Capturing Sensor-Generated Time Series
with Quality Guarantees. In: Proc. Int’l Conf. Data Eng. (ICDE), 2003,
pp. 429-440.

[12] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow and D.
Estrin, "Lightweight temporal compression of microclimate datasets
[wireless sensor networks]," 29th Annual IEEE International Conference
on Local Computer Networks, Tampa, FL, USA, 2004, pp. 516-524.
doi: 10.1109/LCN.2004.72

[13] G. Giorgi, “A Combined Approach for Real-Time Data Compression in
Wireless Body Sensor Networks,” in IEEE Sensors Journal, vol. 17, no.
18, pp. 6129-6135, 15 Sept.15, 2017.

[14] Finnish Meteorological Institute’s open data–service.
https://en.ilmatieteenlaitos.fi/opendata

