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Abstract—The escalation of the Internet of Things applications 
has put on display the different sensor data processing methods. 
The sensor data compression is one of the fundamental methods to 
reduce the amount of data needed to transmit from the sensor 
node which is often battery powered and operates wirelessly. 
Reducing the amount of data in wireless transmission is an 
effective way to reduce overall energy consumption in wireless 
sensor nodes. The methods presented and tested are suitable for 
constrained sensor nodes with limited computational power and 
limited energy resources. The methods presented are compared 
with each other using compression ratio and inherent latency. 
Latency is an important parameter in on-line applications. The 
improved variation of the linear regression-based method called 
RT-LRbTC is tested and it has proved to be a potential method to 
be used in a wireless sensor node with a fixed and predictable 
latency. The compression efficiency of the compression algorithms 
is tested with real measurement data sets. 

Keywords—edge computing, internet of things, sensor data, 
compression algorithm 

I. INTRODUCTION 
Simple linearity-based compression methods are not a new 

research topic; however, they have gained a great amount of 
attention recently due to the growing interest in the Internet of 
Things and wireless sensor networks. That kind of compression 
methods have been available already for decades. Most of these 
methods are based on analyzing the data stream retrospectively 
when all or at least a significant amount of the data need to be 
already available [1]. Thus, these methods are not well suitable 
for compressing the data stream in real-time or even near real-
time. 

Applications using some sensor data in control could benefit 
from effective real-time compression methods based on data 
linearity; in particular if the measured magnitude were some 
environmental magnitude which behaves quite linearly in short 
time window. These kinds of rather slowly changing and thus 
linearly behaving magnitudes are for example temperature, air 
pressure, humidity and wind speed. These kinds of 
measurements are typical in agricultural applications and in 
many other different IoT applications [2]. 

Using some simple and computationally light compression 
method can be a very effective way to save in energy 
consumption and thus lengthen the lifetime of battery powered 
sensor nodes which often operate wirelessly [3]. 

II. LINEARITY BASED COMPRESSION ALGORITHMS AND 
THEIR SUITABILITY FOR REAL-TIME OPERATIONS 

As mentioned in the Introduction, many linearity-based 
compression methods analyzes the data retrospectively when the 
data is already available. It is easy to test and find the best 
possible compression algorithm if the data set is already 
available. This kind of approach is useful and suitable in 
Periodic Sensor Networks (PSN) [4]. In PSNs the node sends 
the data periodically to the sink [5]. This kind of measurement 
network does not work in real-time; however, the latency is 
known and can be adjusted by adjusting the sending period 
(frequency). There are many methods and protocols for PSNs to 
achieve longer battery lifetime by reducing the energy 
consumption with data aggregation and the amount of data 
needed to transmit wirelessly. Some methods are very simple 
based on constant approximation and some methods are slightly 
more complex [4]. Very simple methods suitable for constrained 
sensor nodes in PSNs are for example Piecewise Constant 
Approximation (PCA), Adaptive Piecewise Constant 
Approximation (APCA), Poor man’s compression and 
Piecewise Linear Histogram (PWLH) [6][7][8][9][10][11]. 
These methods are so called model-based methods [1]. 

PCA is a very simple on-line algorithm which divides the 
data stream to constant linear segments. It guarantees that the 
compressed data satisfies the error bound (maximum allowed 
deviation between original data and linear model) requirements 
compared to the original raw data [11]. PCA divides the data set 
in to fixed lengths linear segments called as windows. PCA 
method first takes the number of window size of sensor signals 
and calculates the difference between maximum value and  
minimum value. If the difference is smaller than the error bound 
accepted, then all the data points in that segment (window) are 
represented with a constant value which is the middle point of 
the maximum value and minimum value.  This is not the most 
effective method for compression, however, it is a very simple 



and computationally light method. It also has a fixed latency 
which is set by the window length [1][11]. 

APCA’s functionality is very close to PCA. It varies from 
PCA thus that constant value segments vary in length. The 
length of the constant value segment is as long as it still meets 
the demands of the error bound. As a result of APCA’s 
compression, there are constant segments of varying length. 
Each segment is represented by two values, the median value of 
the data points and the end time stamp of the segment [1][7]. If 
this model is applied to the sensor node, then the sensor node 
transmits two values after each segment to the sink (receiver). 
Because the segments vary in length, the latency is not known 
in advance, and the latency also varies depending on the length 
of the segments. The more stable the data values remain, the 
longer the segments are (higher compression ratio) which results 
in higher latency. 

PWLH has similarities to APCA but the linear segments 
need not have constant values. Thus, the linear segments can be 
represented with lines the slope of which can be other than zero 
[1]. This method suffers also from the unknown length of the 
linear segments, and thus the latency cannot be anticipated.  

These model-based methods are not well suited for the real-
time operations with tight requirements for the latency. The 
benefits in these model-based methods are that they are simple 
and computationally very light. Thus, these methods are well 
suited for the battery powered computationally constrained 
devices. 

There are also compression methods suitable to be used 
directly for the data stream. One very effective linearity-based 
compression method is called Lightweight Temporal 
Compression (LTC) [12]. It is a lossy method like all the other 
methods presented in this paper, and it is suitable to be 
implemented in constrained sensor node due to its 
computational simplicity. It is very effective and has a high 
compression ratio for the linearly behaving environmental data 
[2]. The significant drawback in this method is the latency; 
hence, it is not well suited for real-time applications [13]. The 
sensor node utilizing LTC algorithm sends the starting point of 
the linear segment to the receiver; however, the receiver does 
not know anything until the sensor node sends the end point of 
the linear section to the receiver. Between that there is no 
information available on the receiver side. The receiver does not 
know if the value is in average rising, staying at the same level 
or lowering, and after receiving the end point of the linear 
segment (which is at the same time the starting point of the next 
linear section), there is no information in which direction the 
values are changing after that. 

There are also various linear regression-based algorithms 
available and presented in the field of the research. One method 
is called Piecewise Linear Approximation (PLA). It uses the 
linear regression to model data stream with a certain error bound 
allowed from the linear segment. Each linear segment is 
represented by the start and end time stamps and the line 
parameters (base and slope) or by the linear segment starting 
point (time stamp and value) and end point (time stamp and 
value) [10]. If the data set or a part of it is already available, it is 
possible to find the best amount of values to be used to calculate 
a regression line which determines the longest linear segment 

which still meets the error bound requirement to the data. This 
kind of approach is not well suited for real-time operations. 

The linear regression can be calculated from the minimum 
of three data values; however, also more values can be used. 
This kind of approach is presented in [2] by the authors and the 
algorithm is called Linear Regression based Temporal 
Compression (LRbTC). In [2] 3, 4 and 5 values are used to 
calculate the regression line and have been tested to compress 
some environmental data (temperature, air pressure and wind 
speed). For near linearly behaving sensor data like temperature, 
there is a slight improvement in compression ratio if 4 or 5 
values have been used to calculate the regression line. The 
disadvantage in  LRbTC method is that the latency is not known 
in advance. The latency depends on how well the data is suited 
to the linear model. When the data behaves very linearly, it leads 
to a higher compression ratio but also higher latency at the same 
time. In this paper the authors present a modification for  LRbTC 
method towards more real-time operation with known and fixed 
latency. 

III. LINEAR REGRESSION BASED COMPRESSION ALGORITHMS 
TOWARDS REAL-TIME OPERATION 

LRbTC as presented in [2] is a very simple compression 
algorithm. In basic form it is presented as a flow chart in Fig. 1. 
This method is based on linear regression of the N measured 
samples and the line calculated predicts future values allowing 
a certain error bound ±ε from the line. If the data is behaving 
linearly, the regression line gives quite a good prediction for the 
future values. 

Fig. 1. LRbTC algorithm. 

As mentioned, this kind of algorithm in this form does not 
present a constant latency. Step 5 in Fig. 1. happens when the 
value is out of the regression line more than an error bound. 
When that happens depends on the measured values and cannot 
be predicted.  

Model parameters: The raw data of sensor signal can be 
presented as S = ‹(v1,t1), (v2,t2),… (vn,tn)›, where vi (𝑖𝑖 ∈ ℕ) is the 
measured value and ti is the time stamp (moment). From the 
compression algorithm the compressed data stream consists of 
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the starting points and the end points of the linear segments 
(ci,τi), where ci is the compressed value (start or end point of the 
linear regression line) and τi is the time stamp for that value. 
Thus, the output is LRbTC(S) = ‹(c1,τ1), (c2,τ2),… (cn,τn)›. 

One weakness in this basic version of  LRbTC is in the first 
step where N values are used to calculate the regression line. The 
values used to calculate the new regression line can be more than 
an error bound away from the calculated line. In [2] the modified 
version M-LRbTC has been introduced, and its functionality can 
be seen in Fig. 2. 

Fig. 2. Modified LRbTC (M-LRbTC). 

In M-LRbTC version, after calculating the regression line, 
the distance of the values used to calculate the regression line 
are compared to the line. If the difference is bigger than the error 
bound, then the first two data points ‹(v1,t1),(v2,t2)› are stored 
and/or sent to the sink, and the next N values are used to 
calculate the new regression line. This version has the same 
limitations as the original version for the real-time operations 
due to unknown latency. 

One improvement for this kind of linear regression-based 
compression algorithm would be to send the regression line 
parameters (slope a and base b, as the line formula is c = at + b, 
where c is the value achieved from the linear model at the given 
time stamp t) with the starting point time stamp of the line to the 
sink (receiver). Thus, the latency would be the time of achieving 
N samples (N-1 sampling steps Δt), and the receiving part would 
know that the values follow the known line as long as the end 
point of the line is received. Thus, if the N is 3, then the latency 
is two times the measurement interval (2 x Δt) when the new 
regression line is calculated. The latency in the linear section 
(values following the regression line) is one measurement 
interval Δt. When the measurement value goes off the segment 

(more than error bound), then the last point of the line (which 
was one interval Δt before) is sent to the sink. This is a 
significant improvement compared to the most model-based 
piecewise approximation methods presented before and also 
compared to the LTC method. As a result from the compression 
the data is: ‹(a1,b1,τ1),(c2,τ2),(a3,b3,τ3),(c4,τ4),… (an-1,bn-1,τn-1), 
(cn,τn)›. 

A. Towards real-time operations with predicted and constant 
latency 
This LRbTC (M-LRbTC) method can be developed further 

to achieve an even shorter latency. When the measured value 
falls off from the allowed area (line with error bound), then the 
already measured values can be used to calculate the new 
regression line. Then the latency is only one measurement 
interval long (Δt). Only at the beginning of the measurement, 
when the first regression line is calculated, the latency is N - 1 
intervals long. Simplified flow-chart of this kind of version is 
presented in Fig. 3. It is named here as Real-Time LRbTC (RT-
LRbTC). 

Fig. 3. Real-time LRbTC (RT-LRbTC). 

The raw data of sensor signal is S = ‹(v1,t1),(v2,t2),… (vn,tn)›. 
At the beginning of the algorithm the first N (N = 3, for example) 
value pairs are used to calculate the regression line. Thus, the 
values ‹(v1,t1),(v2,t2),(v3,t3)› are used to calculate the regression 
line (c1 = a1t + b1) parameters a1 and b1. Three values are sent 
to the sink (a1,b1,τ1) at time moment t3 (plus the latency from the 
computational time), where τ1 = t1. Thus, the algorithm latency 
at the beginning is t3 - t1 = 2 x Δt. After that, the algorithm 
compares the following measured values to the regression line 
at the time of the value (step 3 in Fig. 3). When the measured 
value falls out more than the error bound from the regression 
line, then the new regression line (a2,b2,τ2) is calculated from the 
last N values and sent to the sink. τ2 is the time stamp of the value 
which fell out from the linear section. The receiving side knows 
that the previous regression line ended one measurement 
interval before (τ2 – Δt), thus the latency from the algorithm 
itself is one measurement interval Δt. 

This basic version of RT-LRbTC has the same drawback as 
the original LRbTC when values used to calculate regression 
line can be more than an error bound away from the regression 
line. The version which corrects this problem is presented in Fig. 
4. 
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Fig. 4. Improved RT-LRbTC. 

Fig. 4. shows in step 2 the comparison between the 
regression line and the values used to calculate that regression 
line. If the distance from the line is more than the error bound, 
then first two values (‹(v1,t1),(v2,t2)›) are stored/sent and the new 
line is calculated from the following values ‹(v3,t3),(v4,t4),(v5,t5)›. 
If and when the difference is at an  accepted level, then in step 6 
the regression line parameters and starting time stamp of the line 
(a1,b1,τ1) are stored and sent to the receiver. In that point the 
latency is N – 1 time steps (measurement interval) long as in the 
basic version of RT-LRbTC. In step 7 the next measured values 
are compared to the line and if the difference is less or equal to 
the error bound (step 8), the comparison continues with the next 
value. As long as this continues, there is no need to send 
anything to the sink. In the sink the receiver knows that the 
values measured one time step (measurement interval, Δt) 
before are within error bound from the regression line as long as 
no new line is received.  

There is one measurement interval time latency because 
when the measured value falls out from the linear section, then 
the new line is calculated using the last N values and the new 
line starts. The values sent to the sink are (a2,b2,τ2). The previous 
line is ended one time step before (τ2 – Δt); however, the 
information of that is achieved only when the next value falls 
out from the line more than error bound ±ε. Thus, in this method 
only one sending period is needed for each linear section and 
thus the amount of the sending periods is only half compared to 
most other linear regression based methods and LTC method. In 
basic form of linear regression-based methods and also in LTC 
method, there is a needed to send starting point value with time 
stamp and end point value with time stamp for each linear 
section. 

In Fig. 5. the comparison of M-LRbTC and RT-LRbTC 
shows the difference between these algorithms. Both algorithms 
use N = 3 values to calculate (time stamps 1,2 and 3) the 
regression line at time stamp 3, thus at the beginning both 
algorithms get the same line (a1,b1). M-LRbTC sends the 

regression line starting value (line value c1 at time τ1 = t1) to the 
sink at time stamp 3. RT-LRbTC sends the line parameters with 
the starting point of the line (a1,b1,τ1), where the τ1 = t1 to the 
sink at time stamp 3. At time stamp 11 the measured value falls 
out from the regression line. Thus, M-LRbTC sends the 
regression line end value (c2, τ2), where τ2 = t10, and calculates 
the new regression line from the measured values at time stamps 
11, 12 and 13. M-LRbTC sends the new regression line starting 
value c3 and line starting time stamp τ3 = t11 at time moment 13 
when the new line is calculated. At time stamp 11, RT-LRbTC 
calculates the new regression line from the values at time stamps 
9, 10 and 11. When the receiver gets the new line parameters 
(a2,b2,τ2), where τ2 = t11 it knows that the previous line ended at 
time τ2 – Δt = t10. 

Fig. 5. Comparison of M-LRbTC and RT-LRbTC. 

B. Compression efficiency of RT-LRbTC to compress 
environmental data 
RT-LRbTC algorithm’s compression efficiency was tested 

with the same data sets as the authors have used in [2] and with 
similar newer data sets. The Naruska measurement station data 
sets from 2018 and 2019 were achieved from the Finnish 
Meterological Institute’s open data service [14]. The data sets 
used were temperature, air pressure and wind speed from the 
whole years 2018 and 2019 with a 10-minute measurement 
interval. For each magnitude there were 51,961 values in year 
2018 data set and 52,463 values in year 2019 data set. The 
compression algorithm’s ability to compress those data sets was 
tested with different error bounds from 0.1 to 2.0. RT-LRbTC 
method was compared to the original M-LRbTC method, which 
is presented and tested in [2], and LTC method which has been 
the best algorithm in [2] when comparing the compression 
ratios. The algorithms have been programmed in MATLAB. M-
LRbTC, and LTC algorithms are exactly the same algorithms as 
in [2]. RT-LRbTC is a modification of M-LRbTC algorithm. M-
LRbTC and RT-LRbTC used three values to calculate the 
regression line. 

M-LRbTC method sends the starting point and ending point 
of each linear regression line segment. In RT-LRbTC only the 
line parameters and the time stamp for the line starting point are 
sent, thus the transmitting periods needed are reduced to half 
compared to the original method. In M-LRbTC method the two 
values (value and time) are sent twice for each linear segment 
compared to three values (line parameters a and b and time) 
needed to send once for each linear section in RT-LRbTC. 

The compression ratio (CR) is calculated by dividing the 
amount of original data by the amount of compressed data. 
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The results for the temperature data can be seen in Fig. 6. 
The results are very similar for both data sets (2018 and 2019). 
The LTC is superior compared to the other two algorithms. RT-
LRbTC benefits from the fact that there is only needed to send 
parameters once for each regression line. Actually, there are 
more regression lines needed in RT-LRbTC and in that way it is 
less efficient compared to M-LRbTC. 

Fig. 6. Comparison on the algorithms with temperature data. 

Similar comparison in compression ratios was done with air 
pressure data sets. The results for 2018 and 2019 data sets can 
be seen in Fig. 7. 

Fig. 7. Comparison of the algorithms with air pressure data. 

LTC algorithm is again superior compared to the other two 
and the compression ratios are generally remarkably higher than 

with temperature data. This is an indication that air pressure data 
in general is changing quite slowly and behaves quasi linearly. 
The error bounds with temperature data are not fully comparable 
because temperature is in Celsius degrees and air pressure in 
hectopascals (hPa). 

Fig. 8. Illustrates the comparison between algorithms to 
compress the wind speed data. The wind speed data is measured 
with 10-minute average value [14].  

Fig. 8. Comparison of the algorithms with wind speed data. 

Even with 10-minute average measurement the wind speed 
remains rather long periods in zero; however, on the other hand, 
it is also changing rapidly in other moments. Thus, it is not 
behaving that linearly and changing as slowly as the temperature 
and air pressure. The results in compression ratios are quite close 
compared to the temperature data. That is because of the rather 
long periods with consecutive measurements with zero value for 
wind speed. 

IV. RESULTS 
The results of compression ratios comparison for LTC and 

M-LRbTC are similar as in [2] also for 2019 data. RT-LRbTC 
suffers from the amount of the regression line calculations but 
benefits more from the fact that only one transmitting period is 
needed for each regression line compared with the two 
transmitting periods with M-LRbTC. 

 TABLE I presents the results as compression ratios when the 
error bound is 0.5 °C for temperature, 0.5 hPa for air pressure 
data and 0.5 m/s for wind speed data. These are realistic error 
bounds which could be used in real application. It can be seen 
that the compression ratios are similar for both data sets (2018 
and 2019) for each algorithm and each magnitude in 
comparison. Anyway, the compression ratios are slightly higher 
for 2019 data except M-LRbTC for air pressure data. The 
average change is the absolute average change between two 
consecutive values in the whole data set for given magnitude. 
For temperature data and wind speed data the average change is 

 
 

 

 
 

 



slightly smaller for 2019 data and it can indicate that the data is 
behaving slightly more linearly and thus resulting in a better 
compression ratio. 

TABLE I.  COMPARISON OF COMPRESSION RATIOS 

Data set 
Average 
change 

Compression Algorithms’ Compression 
Ratios 

LTC M-LRbTC RT-LRbTC 
Temperature 2018 0.223 9.49 3.90 5.65 

Temperature 2019 0.208 10.17 4.02 5.96 

Air pressure 2018 0,086 28.22 8.94 14.09 

Air pressure 2019 0,086 29.56 8.84 14.99 

Wind speed 2018 0,302 5.09 2.62 3.68 

Wind speed 2019 0,284 5.54 2.74 3.87 
 

TABLE II presents the comparison of the latencies in different 
phases of the algorithm operation. Only the algorithm’s inherent 
latency is taken into account, not the latency from the 
computational delay or from the data transmission. Only M-
LRbTC (2) and RT-LRbTC algorithms can present a predictable 
latency. RT-LRbTC presents the shortest latency in operation 
and it is dependent on the measurement interval. 

TABLE II.  COMPARISON OF LATENCIES 

Latency 
Compression Algorithm 

LTC M-LRbTC 
(1) 

M-LRbTC 
(2) RT-LRbTC 

At the 
beginning 

0 (N -1) x Δt (N -1) x Δt (N -1) x Δt 

In linear 
section 

length of the 
linear section 

length of 
the linear 
section 

Δt Δt 

Calculating 
new line not applicable N x Δt N x Δt Δt 

M-LRbTC (1): The linear regression line start point and end 
point values are sent. 

M-LRbTC (2): The linear regression line parameters are sent 
with the starting time stamp. 

V. CONCLUSIONS 
Different versions of linearity-based sensor data 

compression algorithms were presented and tested in this paper. 
The main focus was on compression ratio and the inherent 
latency from the algorithm itself. Many linearity-based 
compression algorithms presented in the field of research are 
model based methods demanding a set of data already available 
to be implemented. Those methods are not well suited for 
analyzing the sensor data stream in on-line mode if there are 
requirements for the latency. 

The presented and tested methods can be used in on-line 
mode for the sensor data stream; however, only the new 
variation RT-LRbTC can represent rather short and fixed 
latency. Its general compression efficiency is rather low with the 
tested data sets, but it benefits from the fact that only one 
transmitting period is needed for each linear segment. The 
wireless transmission is known to be the most energy consuming 
operation in wireless sensor nodes. The linearity-based methods 

presented benefits from the fact that environmental magnitudes 
behave rather linearly in a short time window.  

The next step will be to implement these linearity-based 
methods in an embedded edge device such as a wireless sensor 
node and test the methods in on-line mode for the data stream. 
The actual effect on energy consumption will be tested and 
measured and the computational complexity of different 
methods will be taken into account and analyzed in detail. 
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