

CONCURRENCY IN ANDROID

JANNE PARVIAINEN

 Thesis

March 2012

Business Information Systems

Software development

Tampere University of Applied Sciences

TIIVISTELMÄ

Tampereen ammattikorkeakoulu

Tietojenkäsittely

Ohjelmistotuotanto

PARVIAINEN, JANNE:

Concurrency in Android

Opinnäytetyö 50 sivua, liitteitä 3 sivua

Maaliskuu 2012

Haltu Oy on suhteellisen nuori toimija yrityksenä, jonka erikoisalaa on web- ja

Android-kehitys. Työtuntien ja aikataulujen kanssa on jokaisessa yrityksessä paineita

eikä varaa ylimääräisiin ja odottamattomiin yllätyksiin monesti ole. Tämän takia

sovelluskehitysprosessin hiominen mahdollisimman tehokkaaksi on erittäin arvokas

voimavara. Haltu nuorena yrityksenä ei myöskään ole vielä kangistunut kaavoihin ja

tiettyihin toimintamalleihin, vaan on avoin ja halukas kehittämään omia mallejaan

työntekijöiden ja yrityksen eduksi.

Android-kehityksessä täytyy ottaa huomioon tietyt mobiilialustan tuomat erityispiirteet

ja vaatimukset, jotka työssä myös käsitellään. Kyseisten vaatimusten sovittaminen

asianmukaisen moniajon rakentamiseen tehokkaasti tarjoaa lähtökohdat tälle työlle, joka

keskittyy tarjoamaan tietoa relevanteista komponenteista ja tekniikoista ja näin ollen

osaltaan tehostamaa koko kehitysprosessia valmiiseen sovellukseen saakka.

Keskeisimmät Javan ja Android-kirjaston komponentit käydään läpi sekä niiden

toimintaa havainnoillistetaan koodiesimerkein ja pohditaan niiden käyttötarkoituksia

yksityiskohtaisesti. Lopuksi esitetään suunnitteluprosessi moniajon toteutuksesta aina

vaatimusmäärittelystä toteutukseen ja lisäksi pohditaan mitä näkökohtia on hyvä ottaa

huomioon, jotta lopputulos on mahdollisimman tarkoituksenmukainen ja tehokas,

tarjoten mahdollisesti koodin uudelleenkäytettävyyttä sekä ylläpitotaakan keventämistä.

Työn tavoite on tutkia ja tuoda esiin syventävää tietoa käytössä olevista komponenteista

sekä esittää mallia prosessista, jonka tuloksena on tehokas ja vaatimukset täyttävä

moniajo. Tällainen moniajo ei tuota ylimääräistä työtä alati muuttuvien vaatimusten ja

ilmenneiden ongelmien johdosta vaan on selkeä ja itsenäinen osa sovelluksen

rakennetta. Tarkoituksena on tehostaa sovelluskehitysprosessia ja tarjota näkemystä

moniajon rakennukseen, jolloin voidaan tehostaa kehitysprosessia ja säästää siihen

käytettäviä resursseja

Käytännön työnä opinnäytetyöhön liittyi turvakamerasovelluksen toteutus, joka

mahdollistaa palveluun kirjautumisen, saatavilla olevien kameroiden kuvien sekä

lokitietojen tarkastelun. Verkkoliikenne web-rajapinnan kanssa toteutettiin moniajona,

jolloin sovelluksen käyttöliittymä pystyi tarjoamaan relevanttia tietoa käyttäjälle

sovelluksen ajankohtaisesta toiminnasta.

Asiasanat: moniajo, säikeistys, android

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Degree Programme in Business Information Systems

Software development

PARVIAINEN, JANNE:

Concurrency in Android

Bachelor's thesis 50 pages, appendices 3 pages

March 2012

Haltu, the thesis client, is fairly young company specializing in Android and web

development. As a young company, Haltu has a natural desire to refine its processes and

working culture, since such resources as time and schedules place constant pressure on

projects and unexpected factors are an issue the company wishes to avoid. This is the

reason why the refinement of software development processes is such a valuable asset

for any company. As a fresh and young company, Haltu has not got stuck with old

models and procedures but instead is open and willing to develop its functions further to

benefit its employees and the company itself.

In Android development, the mobile platform itself presents certain special

characteristics which have to be taken into consideration in addition to the standard

development princples. Bearing this in mind, this thesis concentrates on developing a

design process aiming to build concurrent behavior on Android platform. The essential

Java and Android components provided and their uses are explained in detail and the

functionalities are illustrated by several code snippets. The result is a design process

from the definition of requirements to the actual implementation of the components.

There is also discussion of what different factors need to be considered for the behavior

to be efficient and able to fulfill its purpose without being unnecessarily complicated

and possibly offer code reusability and ease the maintenance efforts in the future.

The goal of this thesis is to research and analyze the available components for concur-

rency and provide a frame for a design process workflow model. The purpose of this

research is to optimize and enhance the whole Android application development process

by providing an additional insight into the possibilities of building concurrent behav-

iour.

As for the practical part, a security camera mobile application was requested where the

end-user logs in with a mobile client and is able to view a user specified set of cameras

and their latest images with log information and other data. This application supports

already existing web application and its services. The network communication with the

web service interface was a clear entity for concurrency, leaving the UI available to

provide the user with appropriate information and responses.

Key words: concurrency, threading, android

4

CONTENTS

1 GLOSSARY .. 5

2 INTRODUCTION ... 6

3 CONCURRENCY ... 9

3.1 What is concurrency? ... 9

3.2 Possible issues with concurrency ... 11

3.3 Threads and processes.. 13

3.4 Thread-safety ... 13

4 THREADING IN JAVA ... 17

4.1 Java standard components.. 17

4.1.1 Thread-class and Runnable-interface .. 17

4.1.2 Callable ... 19

4.1.3 Timertask... 20

4.2 Precautionary mechanisms... 21

5 THREADING IN ANDROID ... 24

5.1 Characteristics .. 24

5.2 Main thread .. 27

5.3 Asynctask ... 29

5.4 Service.. 31

6 DEFINITION AND DESIGN PROCESS ... 34

6.1 Identifying concurrency ... 34

6.2 Defining requirements ... 35

6.3 Designing components ... 36

6.3.1 Inheritance ... 38

6.3.2 Inner classes .. 39

7 SECURITY CAMERA APPLICATION .. 40

8 CONCLUSIONS ... 43

BIBLIOGRAPHY ... 45

APPENDICES... 48

5

1 GLOSSARY

Virtual machine Software interpreting the compiled Java

code and providing a virtual environment

where the code runs.

Thread Miniature process enabling concurrent

behaviour. Basic term of concurrency

discussed in this thesis.

Android Open Handset Alliances‟, which members

several major manufacturers, operating

system based on Linux.

JavaSE Standard edition of Java programming

language. Android libraries extend JavaSE

to support Android system.

JSON Javascript Object Notation. Simple, text-

based, format for transferring data using

key-value-pairs.

6

2 INTRODUCTION

Haltu is a software company located in Tampere, specializing in web and Android

development at the moment. As I have been working for Haltu during my internship

period, I have had the chance to observe professional development of mobile

applications and take part in those projects. As expected, the journey from an idea to an

actual published application is long and complicated, involving a large number of

unknown factors affecting the course of the project. The customer may not be able to

express the desired features properly or the features may change and take longer to

finish than expected. Any improvement to the application‟s design process may help to

save resources and improve the development team‟s output in later stages.

The growing number of mobile devices and their improving capabilities continue to

feed the demand for more applications. Also, the requirements for those applications are

becoming even more challenging while the majority of the device manufacturers see the

third party applications available in the markets as an important marketing theme.

Mobile application is expected to deliver almost the same level of efficiency as a

software running on a desktop computer and be easy to use and highly interactive at the

same time. Furthermore, the booming tablet markets emphasize this effect even further

by closing the gap between a mobile device and a laptop computer.

Markets are flooded with a vast variety of mobile applications from private developers

as well as from different software companies. The simplicity of bringing new

applications to the markets is putting high pressure on developers to build quality

applications swiftly in order to cope with the demand and competition. This emphasizes

the need for a well-rounded design process where the application‟s class structure is

being built as well as possible right from the start in order to save precious resources,

including work hours put into development. Understanding customers‟ needs and

building software requiring the minimal amount of refactoring as the project progresses

are the key factors in building an application from the ground up. Often functionalities

get refined and optimized once the hands-on experience of the first few versions has

been tested. In these kind of situations it is important to have appropriate and clear

structure to provide those functionalities, making is easier to modify and change

7

different, clearly encapsulated, entities. As many of the functionalities in modern mobile

applications require background processing, these guidelines are crucial when building

concurrent guidelines. Hence the workload and costs are kept at the minimum and the

response capability to changing requirements is greatly improved.

Concurrency is usually found in any software with even slightly complex functionalities

and there are numerous ways to implement this behaviour. When it comes to mobile

devices, efficiency is the keyword. As the processing capabilities are not an issue any

longer in modern devices, another issue is surfacing, battery life. The drainage on the

battery may become significant if multitasking is not planned out well and it can waste

computing resources, even if the application‟s state is paused or even stopped,

especially since threads and other concurrent components usually handle quite

demanding background tasks, such as GPS managing and networking.

The main objective of this thesis is to research the advantages and requirements of the

key components of concurrency on an Android based device and analyze their purpose

in-depth in order to present the benefits and shortcomings of different components and

approaches. The research is also supported by a constructive part in which Haltu

requested a security camera application for Android, where the user logs in and is able

to view a specified set of security cameras and their log files and other useful data. This

application will implement appropriate concurrent behaviour which is relevant to its

purpose and is embedded into the application from the beginning of the development.

Other examples will be referenced from various other projects or specially built code

snippets.

The purpose of this thesis on the other hand is to ease and enhance the design process

by providing an additional insight of the available components helping to choose the

appropriate way to implement concurrent behaviour. If the concurrency is not

implemented in the most practical way and it is causing trouble later on in the project.

This thesis will provide an oversight and some guidelines to help evaluating the best

practice to avoid repeating the same mistakes and eventually help save work hours and

money put into the project

8

Concurrency can be implemented in countless different ways depending on the

situation, each with their own benefits and shortcomings. This was the main inspiration

behind this thesis, to help develop a process where the application‟s requirements are

taken into consideration as early as possible when designing a structure for concurrent

behaviour. This way the behaviour can be divided explicitly into different encapsulated

entities and components can be designed especially for these entities, providing the

required functionality without unnecessary compromises.

Other components implemented in the application will not be discussed any further than

what is required in order to explain any implementation aspects of the concurrent

components. This thesis concentrates only in Java techniques and native code, C or

C++, is being excluded. Basic understanding of Java, Android and object-oriented

programming is expected in order to understand the discussed techniques and

paradigms.

9

3 CONCURRENCY

3.1 What is concurrency?

In software development concurrency is the art of executing multiple different

functionalities simultaneously. Cesarini and Thompson (2009, 89) defined concurrency

as the parallel execution of different functions without affecting each other unless

intended to do so. This statement is quite bold, considering the different meanings of

parallelism and concurrency. The term concurrency means that the system or

application is able to maintain two or more actions in progress at the same time and the

system manages the thread scheduling and provides each of these actions computing

time based on their priorities and tasks. Parallel execution on the other hand means

those actions are actually executed at the same time. This, however, requires multiple

processor cores. (Breshears 2009, 3)

The operating system schedules processes for execution with certain parameters, which

depend on what kind of scheduling the operating system is based on. The scheduling

can be preemptive or cooperative (non-preemptive). The preemptive scheduling is

widely used in modern systems, since it is significantly less error-prone and more equal

between tasks, also known as processes, because it is provides some computing time to

each process. Harold explains this by saying: “A preemptive thread scheduler

determines when a thread has had its fair share of CPU time, pauses the thread, and then

hands off the control of the CPU to a different thread”. (Harold 2004, 132) The amount

of time is relational to the tasks‟ priority but at least this approach guarantees some

computing time for other processes instead of concentrating only on high priorities as

cooperative scheduling does. This is why preemptive is more reliable and more stable

against starvation and other unexpected scenarios since other processes or threads may

actually solve and defuse the issue. The non-preemptive scheduling relies mainly on the

logic of processes and expects them to pause and provide computing time for other

processes as well. This makes it very susceptible to errors since a single poorly designed

code block can cause serious problems if the execution is stuck and cannot make any

progress, causing the whole application to become halted until the issue is resolved.

10

The vast majority of modern software implements concurrency of some sort as it is

extremely important for the application‟s overall efficiency and user experience. As a

concrete example, an application may communicate with a web service and exchange

data in the background while the user is editing a text document or pictures are being

downloaded while user is browsing through already existing pictures. Concurrency

enables this kind of multitasking by spawning threads in addition to the main thread
1

handling mainly minor tasks and tasks related to the graphical user interface or GUI.

Even though a process running the application may only possess the mandatory single

thread to start with, concurrency can be achieved quite simply by spawning and

executing own custom-built threads or platform-provided components running in a

separate thread. This enables simultaneous operations to be in progress, which is a

necessary and vital feature for the application to be able to fulfill its purpose efficiently

while delivering satisfying user experience. Furthermore, a constant interference to the

user is one of the aspects developers wish to minimize by using concurrency, since such

actions can easily lead to unexpected inputs or otherwise downgrade the flow of the

application. This is done by assigning tasks, which can be completed without user input,

to the background threads to be executed completely hidden from user. This approach

keeps the main thread‟s overhead at bay and its resources can be focused on its main

purpose, running the user interface smoothly and keeping it responsive.

The older, more traditional, approach to programming is to execute processes

sequentially. This means the user or other functionalities have to wait for the application

to finish its current task before being able to preserve the responsive state or to provide

computing time for other tasks. Comparing the sequential approach to concurrent,

which lets applications execute necessary functions concurrently in the background, it is

obvious why concurrent programming has become an industry standard in almost every

software. Nowadays the sequential approach is taken only in the most trivial

applications due to its limited flexibility and performance.

1
 UI thread or main thread is the thread running the application. Every application has at

least one thread, the main thread. This is discussed in further detail later in chapter 5.2

Main thread.

11

True concurrency is yet to come to mobile world as the processor architecture has its

limitations, especially when it comes to the low-end devices. Most of the devices in

today‟s markets have only one CPU which is the reason why concurrency in mobile

devices is not as powerful as in normal computer systems. In future, as mobile devices

with multiprocessor architecture grow in numbers, concurrency will enhance the actual

performance of the applications and is able to execute truly in parallel. (Mednieks,

Dornin, Blake Meike & Nakamura, 2011, 142)

3.2 Possible issues with concurrency

Each thread runs independently, regardless of the statuses of other threads, unless

programming logic dictates to interact or access the same resources as the other threads,

such as databases or variables. These interactions may lead to various unexpected

events and locks due to logical errors or race conditions between threads if not handled

properly. However, there are various ways to prevent these circumstances. The problem

is that in many cases these precautions may cause some performance issues and add

unnecessary complexity to the structure. This is the reason why careful evaluation and

testing of suitable precautions is highly recommended.

One of the most common issues with threading occurs when threads access shared

resources. Threads may update these resources while others are accessing the same

values, causing inconsistency and possibly leading to a race condition or a deadlock.

One scenario of race condition is a situation where two or more threads are using the

same resource to perform an operation and saving the results. Whichever result is saved

last is the only one preserved, since all other results are written over each time another

thread comes to save its results. Basically, the outcome depends on the timing of events

and may very well be inconsistent (Figure 1). Naturally this can be avoided by building

a protective mechanism for that resource variable to prevent this sort of behaviour. If

implemented carelessly this mechanism may cause further issues in a form of deadlock

which is a situation where two or more threads block each other from performing the

desired operation (Figure 2).

12

FIGURE 1. Race condition where threads use a shared resource for processing.

FIGURE 2. Deadlock.

All in all, concurrent behaviour makes the application‟s structure more complex,

requires much more designing and evaluating and is more error-prone than the

sequential paradigms. Also performance issues may emerge if some scenario is not

handled properly, causing undesired behaviour in the background and consuming

resources.

13

3.3 Threads and processes

Threads and processes are essential parts of any software. It may often seem that these

two terms are overlapping, especially since process can have various different meanings

depending on the context it presents itself. As for the technical definition in software

development in general a process is a container or an environment where the application

is executed. It provides the memory space and other necessities needed for the

application to run.

So what is the definite difference between a process and a thread? Thread could be

defined as sort of miniature process. Threads are located within a process and each

process has at least one thread, the main thread. If additional threads are spawned, they

also will remain within the application‟s process as they are dedicated components of

that specific application. In conclusion, a thread and a process both are containers of

execution but thread is more efficient to create than a completely new process and is

simpler to implement. (Processes and Threads, 2012) From programmer‟s point of view

threads are more likely to be used in everyday development.

3.4 Thread-safety

Thread-safety can be defined as a set of measures to avoid unexpected behaviour and

data inconsistency with concurrent behaviour and could be characterized as a set of

guidelines which lead to certain mechanisms than any actual standardized mechanisms

since each application is different and behaves differently. These measures include

atomicity, locking measures, liveness and variable isolation among others.

Brian Goetz et al (2010, 22) defined atomic operation in their book Java Concurrency in

Practice as follows:

Operations A and B are atomic with respect to each other if, from the

perspective of a thread executing A, when another thread executes B,

either all of B has executed or none of it has. An atomic operation is one

that is atomic with respect to all operations, including itself, that operate

on the same state.

14

In the light of this definition it can be said that atomicity is ensuring data consistency by

isolating the mutual operation from its operators and its principle is that once it is being

executed it will be executed completely. It cannot be interrupted in the middle and any

results following from such operation will be invisible until the whole operation is

finished. This is usually done by various locks or mutex objects (mutual exclusion)

which will be discussed in more detail later on. A non-atomic operation can cause data

inconsistency and various conditions where threads are performing undesired behaviour

because of race conditions and different locks.

Liveness can be described as timing of component‟s executions. Loosely similar to what

the system is doing with thread scheduling but only on more specific level. How threads

time their actions according to other threads or events which define the constraints of

the timing of some action. However, a negative aspect with liveness is a situation where

the constraints are not changing, hence blocking the thread‟s access to a block or a

resource required for the execution to continue, causing a standstill between two or

more threads. Such situation is called a deadlock.

Deadlock is quite hard to identify because it does not manifest itself necessarily. This

does not mean that it would not be possible; much of it depends on the thread

scheduling done by the system and there are numerous factors affecting this scheduling.

There are not any predefined methods to prevent deadlocks as the manifestation is so

uncertain and the reasons leading to the lock are changing, depending on the application

and its actions and the threading situation at that given moment. Minimizing the use of

locks and constraining conditions is minimizing also the chance of deadlock occurring,

but this is not always the most practical way and even though the locks have been

minimized, the few locks left can still cause a deadlock. It is important to identify the

parts in code where there are multiple locks acquired at the same time and check that the

locks are not overlapping.

Intrinsic locks are a way to restrict the access to a synchronized guarded block

preventing race conditions and deadlocks. Once the thread accessing the resource is

finished, it notifies the remaining threads of some event, possibly a changed value in the

conditions affecting the guarded block. After this other threads may try to gain access to

the guarded block and acquire the lock itself. Intrinsic locks have a major downfall with

15

deadlock situation. Once the deadlock has occurred, intrinsic lock will put the threads to

wait until further notice, in other words indefinitely. A viable option for intrinsic

locking is to use a timed lock where the code invalids the lock on behalf of some thread

after a specified timeout has passed. (Goetz et all, 2010, 219) However, the problem

may still remain due to other deadlock situation with different locks. It has to be

carefully analyzed what is the correct manner to handle each locking mechanism.

Semaphores are quite similar to guarded blocks but work as a flag for other threads to

act accordingly. After the resource is no longer accessed, the accessing thread releases

the lock and notifies other threads. Semaphore can be a counting semaphore or works as

a Boolean semaphore. This means that semaphore can grant access to one or more

threads where a Boolean semaphore works as a mutex object (mutual exclusion or

intrinsic lock), restricting the access to only one thread at any given time. The lock can

only be released by the owner of the lock. Semaphores have been implemented into

standard Java components since Java 5.

The previous mechanisms, especially guarded block, may very well be quite inefficient

when it comes to saving processing resources. If the implementation is non-

synchronized the thread waiting for permission to access the guarded block will poll

constantly until the permission is granted. This may very well lead to starvation, a

situation where a thread is using resources needlessly due to being unable to gain access

to the necessary code block. Starvation can however present itself due to various other

reasons, such as incorrect thread priorities or infinite loop or failed termination of an

instance. (Goetz et all, 2010, 218)

Threads can also get caught in a livelock, a lock where a thread is unable to make

progress due to a failure, as demonstrated in figure 3 by the red arrow, or keeps

responding to another threads‟ actions as the gray arrows in figure 3. Adding random

timeouts for the components to wait before retrying can solve a livelock if the threads

are not able to make progress in any other way.

16

FIGURE 3. Two different manifestations of livelock.

17

4 THREADING IN JAVA

Java as a programming language as has been used ever since it was published in the mid

90‟s by Sun Microsystems and has established its place as one of the most popular

programming language in modern day‟s development. It is an object-oriented language

based on various other programming languages, such as C and C++. Java is also

designed to be platform independent by using virtual machines to run the code and this

is one of the main reasons for Java‟s popularity since it can be run securely on any

platform, and add to that the fact that it has a powerful set of components as a standard

for implementation and external libraries can be imported to give even more features

and possibilities.

4.1 Java standard components

JavaSE provides a wide variety of components for concurrency and parallelism. Often

the most effective is the result of the combination of various components; any specific

use-case scenarios are impossible to define as the desired behaviour is rarely final and

requirements differ between different projects and applications. Some guidelines and

instructions for the implementation are, however, possible to draw and be applied to

each development project.

4.1.1 Thread-class and Runnable-interface

Thread is a standard Java class implementing the Runnable interface. It is one of the

most common components of concurrency. According to the Java documentation (Class

Thread, 2011), a thread is a thread of execution in a program. Meaning, a thread itself is

miniature process running concurrently along the side with the main thread of

execution. Each application has at least one thread of execution, the main thread, which

boots and keeps the application running. Other threads are usually spawned at runtime

to execute any background tasks and once fulfilled their purpose, these threads are

18

rendered idle and the Java‟s garbage collector kills and removes them, freeing memory

for other objects.

In JavaSE, new threads can be spawned either by subclassing the Thread class (Figure

4) or by implementing the Runnable-interface and passing the instance to a thread

(Figure 5). The Runnable-interface is implemented by all classes which are intended to

be executed concurrently by a thread and the Thread-class itself implements the

Runnable-interface, therefore the actual secret to concurrency lies within this interface.

(Runnable, 2011) The main difference between a class and an interface is that an

interface forces a class implementing it also to implement its methods as the interface

itself does not have any implementation in its methods, it only declares a set of

methods. Basically an interface is only a list of methods which need to be found from

the class implementing it. From object-oriented point of view, the recommended way to

enable concurrency is to implement the Runnable-interface, as it is quite rare that the

actual Thread-class‟ behaviour need to be modified which would require subclassing it.

(Sierra & Bates, 2005, 500) Another valid reason for using the Runnable interface is

inheritance. Since Java does not support multi-inheritance, extending a class with no

asynchronous behaviour and Thread is not possible, thus leaving interfaces and inner

classes as only options for concurrency. (Magee & Kramer, 2005, 25)

FIGURE 4. Thread-class subclassed and instantiated.

FIGURE 5. Runnable class passed to a thread.

As the Thread may be implemented as an inner class or as a normal class, as can be

seen from appendix 1 depicting the implementation from the security camera

application, it can provide local asynchronous behaviour or an asynchronous class

which may be instantiated and started from several others classes as needed by calling

19

Thread.start(). Once started the Thread will automatically call Runnable’s

run()-method.

Concurrency is also a useful tool when long-running tasks are required, tasks that may

not be confined into a single class or may run continuously, hence any component with

only an inner class implementation may not be sufficient. (Mednieks et al, 2011, 154)

Though it is important to note that thread can only be run once, it cannot be saved into a

variable to be executed again at the later stages as the thread dies once it has filled its

purpose. The object may however remain in the memory for some time but it will not be

able to provide concurrency anymore, just a normal access to its methods. (Sierra &

Bates, 2005, 500)

The most complicated aspect of threading is inter-thread communication, in other words

how to pass data while maintaining the integrity and consistency without causing

performance issues or any other problems. This where synchronization, semaphores and

guarded blocks come in, offering building blocks for controlling the access privileges to

shared resources..

4.1.2 Callable

Callable interface is very similar to Runnable; both interfaces are designed to be

executed in a parallel thread. However, the most crucial difference between these two is

that Callable returns a result and is able to throw an exception. Unlike Runnable,

Callable instance cannot be passed to thread in such manner, which means the paradigm

displayed in figure 8 will not work with Callable. Instead, Callables are usually

passed to ExecutorService, which basically is a service for handling the execution,

termination and tracking of asynchronous tasks. The actual returned results can be

obtained from the FutureTask the instance was passed (Figure 6).

20

FIGURE 6. A snippet displaying the use of Callable-interface and ExecutorService with

relevant prints.

Which one of these interfaces to implement, depends on the use case. If the execution of

the class implementing the interface is aiming clearly to produce results, then the

Callable provides appropriate the means but if the execution, for example, retrieves

data from a web service and saves it to database, there will not necessarily be any need

for resulting object then the Runnable is sufficient.

4.1.3 Timertask

As the Thread-class‟ methods stop() and suspend() have been deprecated and

their use is not recommended, the thread scheduling may not be as straightforward as

one would expect. This is why the timing of continuous executions of one thread should

be accomplished by the use of Timertask instead of looping a regular thread and

creating a new instance after a set period of time. Timertask is a tool designed

explicitly for this kind of looping behaviour, for example polling a web service and

retrieving updates. The concurrency of Timertask comes from the implementation of

the runnable-interface, which was discussed in the chapter 4.3.2. Instead of having

only run()-method, Timertask implements also a get-method for scheduled

execution time and a cancellation method, which cancels the execution and removes it

from the queue. (Timertask, 2011) Timertask has the same issue as the thread and

runnable. It lacks a way to communicate with the UI thread by default. Hence a

handler is needed again to pass the messages back the UI thread if the user interface

needs to be updated accordingly.

Timertask provides an excellent way of reducing the problems related to continuous

looping execution as wait(), stop() and suspend() –methods will not have be

21

used in order to control the timing. These methods are very prone to different locks,

such as deadlocks, and that is the main reason why stop() and suspend() among

others have been deprecated. (Java Thread Primitive Deprecation, 2011) Other benefit

with Timertask is that it does not cause to unnecessary overhead for the Java‟s

garbage collector which it may see an idle thread as unnecessary, causing null pointer

exception if not handled properly. In conclusion, Timertask is an excellent tool for

implementation when a looping behaviour with relatively short looping interval is

needed since the underlying thread, with downtime in between executions, is causing

minimal overhead to the memory and a constant creation of an instance on every pass

through the loop can be avoided.

4.2 Precautionary mechanisms

Precaution mechanisms are quite universal and the spirit and idea remains the same

between different programming languages. Language specific built-in components may

however affect the need for some mechanisms. JavaSE has a semaphore as a standard

component since version 1.5. Semaphores can be implemented in a variety of ways,

such as counting semaphore or a Boolean flag. In figure 7 the semaphore has only a

single permit to be acquired, hence acting as a lock for the inner code block in a same

way as intrinsic lock in figure 8. If the number of permits is increased the semaphore

becomes a counting semaphore, enabling multiple entrances into the protected block.

Semaphores requires to be wrapped in try-catch-structure and it is essential to take into

consideration the fact the if the release of the lock is inside the try-block or outside the

structure the lock may not be released, possible blocking the code from other threads

indefinitely, therefore finally-block is necessary. Necessary semaphores have to be

passed to relevant threads in order for those semaphores to be able to handle the

accessibility.

22

FIGURE 7. Simple use of semaphore.

FIGURE 8. Intrinsic lock.

In figure 9 the code is protected by a guarded block. It puts the current thread to waiting

state until it is notified of some event. However, this event may not affect the lock in

any way, in which case the thread is put back to waiting state. (Guarded blocks, 2012) If

the thread is not put to waiting state, it will loop indefinitely until the conditions are

met. This can lead to serious performance issues, especially when the number of threads

is high.

23

FIGURE 9. Guarded block.

Java programming language offers an alternative to isolating variables behind locks.

Variable can be declared as volatile. This means that a volatile variable can be modified

by multiple threads. Threads are able to communicate in the background when reading

or writing a volatile variable. This way the consistency of that variable is preserved. In

some cases using a simple variable declaration is more efficient than implementing an

actual locking mechanism.

24

5 THREADING IN ANDROID

Android SDK adds all the necessary tools to Eclipse in addition to Java Development

Kit in order to start developing Android applications. For example, there are several

new libraries containing new classes for implementation. This variety of classes offers

also extra tools for building asynchronous functionality and the advantage is that most

of these tools take into consideration many of the known issues in Android

development, such as the activity life cycle and communication towards the UI thread,

and offer built-in mechanisms to avoid possible issues. However, these components

may not always be the best possible solution for the problem. It has to be carefully

evaluated which one to choose or to go with some of the JavaSE‟s standard components

and how to combine different components into an efficient and stable structure.

Android uses standard Java compiler to compile the code for the Dalvik virtual

machine. This ensures that the Java standard edition is supported almost entirely, not

just a smaller portion or a subset, with only minor exceptions, such as

System.print, which are considered to unnecessary. (Burnette, 2011, 277) When it

comes to concurrency, Android supports all the standard components enabling such

behaviour.

5.1 Characteristics

The concept of mobile devices sets certain limitations when it comes to hardware,

which are necessary to be taken into consideration when developing software for these

devices. Android-based devices are a prime example of a fragmented field of various

devices. Some high-end models pack enormous computing power, while at the other

end there are low-end bulk models, which implement the same operating system, and

the users expect the applications to work in these devices just as in those high-end

models. This variety of devices is one of the top reasons why Android development is

so challenging.

25

Not all Android devices‟ characteristics are noteworthy when it comes to concurrency.

For example, screen size is not relevant when designing concurrency. However, some of

these characteristics may be critical, such as battery life and memory capacity and as

this thesis is about concurrency, it will concentrate on the characteristics relevant to the

subject. In many cases threads may execute quite heavy operations in the background or

a background service may be keeping the object in running state, even if the application

itself is not and therefore consume the battery. When it comes to mobile development it

is always a compromise between staying in sync and conserving device‟s resources,

although users often want the application to stay constantly in sync without taking into

consideration the effects it has on the lifespan of the battery. Concurrency, while being

trusted with heavy and demanding operations and the ability to run without user

interference, is in key position here. The whole lifespan of such object has to be implied

in code in order to get the best possible performance to avoid issues with objects being

removed by built-in garbage collector which is expected to destroy and clean the idle

objects stored in memory, including threads and runnables. Unless the thread or any

other runnable component is rendered idle, it will continue to run, or at least remain, in

the background populating memory until interrupted. And if for any reason that

component has been left with a heavy but unnecessary task, such as GPS tracking when

the map is not visible, the effect on battery may be significant. Although it is possible to

create almost any number of concurrent tasks, it is recommended to keep this number as

low as possible to avoid the overuse of the device‟s or the virtual machine‟s resources.

Android activity‟s lifecycle (figure 10) and device‟s orientation changes also need to be

taken into consideration as the activity may cause overlapping objects in course of the

recreation of the activity. Therefore, to avoid unexpected behaviour, there needs to be

thread handling in activity state methods, such as onResume() and onPause().

According to Steele and To in The Android Developer‟s Cookbook the Thread’s

stop()-method is deprecated “because it might leave the application in an

unpredictable state”. They suggest interrupting and nulling the running threads in

activity‟s onStop()-method or setting the thread as daemon. (Steele & To, 2010, 57)

Declaring a thread daemon means the virtual machine considers the daemon threads to

be purely background threads which are to be interrupted and killed immediately if the

application‟s main thread is killed and all the remaining threads are daemons.

26

Another issue with mobile devices may be memory capacity. Although memory

capacities have grown in recent years, it is still possible to run out of memory with

careless coding; besides it is good coding practice to use memory sparingly, especially

since mobile devices usually have several applications in their stack in paused state, in

addition to the one running. The system is making the call which applications it is

keeping in the stack and which ones to kill.

In Android systems each application runs in its own Linux process, which by default

contains all the components of that given application. (Processes and Threads, 2011)

Process is not the same as the application nor is it the same as the activity within the

application. Burnette (2011, 23) explains this as follows; “In Android, an application

can be „alive‟ even if its process has been killed. Put another way, the activity life cycle

is not tied to the process life cycle. Processes are just disposable containers for

activities.”

FIGURE 10. Activity lifecycle. (Activities, 2011)

27

System itself tries to uphold the processes as long as it can, but at some point the old

processes need to be removed in order to maintain sufficient memory resources. This

removal is based on the importance of each process which is determined by the states of

their components. There are five ladders in this importance hierarchy: 1. foreground

process; 2. visible process; 3.service process; 4. background process; and 5. empty

process. The most important process is the foreground process and the empty process

has the lowest importance. (Processes and Threads, 2011)

Activity‟s lifecycle (Figure 10) in Android demonstrates how activities loop from

method to method, depending on their state. This paradigm is extremely useful but there

is a risk of creating unnecessary duplicate objects, for example threads created in

onResume(), especially when orientation change occurs since the activity is then

recreated and the method stack executed all over from the top.

5.2 Main thread

The UI thread or main thread, if there is not graphical user interface, can be found from

every application running on any platform. It is created by the system when the

application is launched. (Painless threading, 2011) This is the thread the process

holding the application is using to actually run the application. Although most of the

code is executed in the main thread its main purpose generally consists of building and

upholding the graphical user interface and publishing updates to it. Most of its tasks are

relatively trivial and only lasts a short period of time.

If the main thread is blocked for several seconds, Android dispatches an alert dialog for

the user informing that the application may not be responding and presenting an option

to force close the application, even though the application may be running normally but

the main thread is just handling some long-running task. Such a dialog will not reflect

positively on user-experience and what kind of impression the application is leaving.

In any application there are few guidelines to assigning tasks for the main thread; 1. Do

not block the UI thread, 2. Android UI toolkit can only be accessed from the UI thread.

(Painless threading, 2011) Therefore, if application is implementing some long-running

28

or otherwise demanding task, it should be offloaded to a different thread and only its

results imported into the main thread if needed.

There are several ways to communicate towards the UI thread in Android. One is to

pass an instance of the activity to the thread, giving an access to

Activity.runOnUiThread(Runnable)-method (figure 11), which means the

runnable given in parameters is executed by the UI thread and therefore this runnable

may also publish results on the graphical user interface. Downside is that if the runnable

is executing some demanding task it can block the UI thread, even though it is an

additional thread. Problem is that this thread is executed by the UI thread. One solution

is to spawn a thread doing the actual processing after which another runnable is

spawned but its duty is only to publish the results on UI thread. This way the effort

required by the UI thread is minimalized. The same logic is valid the View‟s

View.post(Runnable) and View.postInvalidate(Runnable, long)-

methods (figure 11). The downside is also the fact that if the task relatively demanding

the UI thread is again blocked or an additional publishing thread is needed between the

workerthread and the UI thread. This, however, adds futile complexity to the class

structure and logic.

FIGURE 11. Tasks executed on UI thread.

Android provides help for this issue, special classes which are designed to reduce the

complexity and provide a simple gateway between threads. Most important auxiliary

classes are the Asynctask and the Handler. Asynctask is a complete component

which can be used instead of Thread and Runnable, and it is discussed in further

detail in the next chapter. Handler on the other hand is a tool which is used with

Threads and Runnables. Handler is used to send and process Messages, a class

for delivering data values or objects to Handler (Message, 2012), which are able to

carry information between threads. The Handler is bound to the which created it, and

therefore holds is implementation, and adds sent Messages to that thread‟s message

queue. (Handler, 2012) This way the UI thread does not have to run any Runnables

29

in order to publish results, Handler just receives them and acts accordingly. The actual

implementation of Handler is not within the thread, it is always in the receiving end

and only an instance of Handler is passed to the thread, in the case from figure 12 the

variable named handler is passed to the thread from which we want the data to origin to

the UI thread. One example of how to create a Message is shown in getFootage-

method in the appendix 1.

FIGURE 12. Implementation of Handler

5.3 Asynctask

Android imports one outstanding class in its libraries for handling background threads.

This tool is Asynctask and it is the recommended tool for executing background

tasks concurrently. (Painless threading, 2011) Asynctask can be used from API level

3 up, which means that the system itself needs to be in version 1.5 or higher.

Asynctask is an Android system provided Java class designed to enable easy

implementation of asynchronous tasks, hiding many of the threading details. (Mednieks

et all, 2011, 143) Asynctask is designed in a way which requires subclassing as the

class itself is abstract. The instance of Asynctask is created on the UI thread and

provides an easy access for updating the user interface without having to deal with

30

different threads and handlers in order to publish results. This is achieved by

encapsulating the component into methods from which some of them are running on

background thread. (Steele & To, 2010, 209)

Asynctask creates a background thread, so called daemon thread, to run its

doItBackground(datatype…values)-method concurrently. After this method is

executed, publishProgress(datatype…values) is used to invoke

onProgressUpdate(datatype…values), which is used to publish results of the

processing progress on the UI thread. After finishing its tasks, Asynctask calls

onPostExecute(datatype…values) where final codes are executed before

finishing. All the other methods are run in the thread which created the instance except

for the doItBackground(datatype…values). Not only is Asynctask thread-

safe, it is also type-safe, as the types of the final and progress results are defined in the

parameters of the actual subclass of Asynctask. (Mednieks et al, 2011, 148)

Asynctask also provides a cancellation method since the expected parameter passed

for processing is usually an array or other type of iterable. This way it is possible to stop

the execution from any thread after each pass through the

doItBackground(datatype…values). It is vital that Asynctask has this

feature as it takes sets of objects which it processes on one execution, therefore handling

relatively long-running operations.

Mednieks et al (2011, 149) point out an extremely important detail about Asynctask.

Each instance can only be executed once. Calling an execution the second on a single

instance will cause an illegalStateException. Therefore, every execution of

Asynctask requires a new instance, hence it is rarely saved into a variable as it is

unnecessary.

As Asynctask is subclassed and it possesses quite strict constraints in its structure,

any non-thread-safe operations may be conducted quite easily. In the case of being

implemented as an inner class, it could access the outer class‟ variables from the

doItBackground(datatype…values). This is not thread-safe practice as the

method itself is run in a different thread and may lead to inconsistent data values.

Therefore, it is not recommended action to take. Instead required values can be passed

31

as instance parameters and accessed in this manner. However, it is advised that only

immutable objects, such as strings and integer or any other objects which cannot be

changed, are passed to Asynctask. Although, if a mutable object is passed to it

should be made sure that only Asynctask is holding a reference to that given object.

(Mednieks et al, 2011, 151)

In the figure 13 Asynctask’s lifecycle is demonstrated with a simple string

processing example. The execution is commenced by simple instantiating the actual

class and passing it with a set of parameters, in this case strings, as follows; new

At().execute(“FO”, “OB”, “AR”);. Strings are switched to lowercase and

concatenated into a single string which is returned as a result. Progress can be seen from

the logcat prints, located below the actual implementation.

FIGURE 13. Asynctask‟s lifecycle.

5.4 Service

One of the distinguishing features in Android is its ability to execute programs in the

background as services. (Burnette, 2011, 241) Good examples of such situation are a

music player continuing to play music even though the user switches over to other

32

applications or an email application keeps checking for new messages. If such feature is

required, possibly started on device boot, the concurrent class providing this behaviour

could be encapsulated into a Service. Service is an Android library class designed

for long-running operations which do not require a user interface or interference and

activities can bind to it in order to establish a persistent connection. (Services, 2011)

Service itself is not a thread nor is it running on separate thread by default.

Concurrency has to be implemented by the content of the service, such as Asynctask

or Runnable. Every implemented service class has to be extended from the abstract

Service-class or its subclasses. (Steele & To, 2010, 65)

One of the most important benefits with Service is that tasks inside it are not

dependent on activities or their states, therefore Service is able to continue executing

even after the application is put to background, making it useful tool for concurrency in

some occasions. “Tasks that are meaningful to continue even after the component stops

should be done by launching a service. This ensures the operating system is aware

active work is still being done by the process” as Steele and To (2010, 65) describe in

their book on the subject of when and why to use a service. As the Android system

reclaims system resources when needed, reclaiming resources from an instance of

Service is unlikely. (Mednieks et al, 2011, 79)

Service could be characterized to be somewhat similar to Activity when it comes

to different states and therefore offers built-in methods to control its lifecycle, as can be

observed from figure 14. This ensures that the service can be stopped and restarted if

deemed necessary. (Mednieks et al, 2011, 79) Service‟s lifecycle does not

necessarily go along with the application‟s lifecycle since they may be started at

different times. For example, if application has required permissions and the Service

is declared to start on device boot in AndroidManifest.xml (figure 15), it will be running

long before the application is ever started. Service‟s own lifecycle also isolates the

Service from Activity‟s lifecycle event, such as orientation changes. This way the state

of the objects in the Service, for example a running thread, are preserved and no

progress is lost nor duplicate tasks created.

33

FIGURE 14. Service lifecycle (Services, 2011)

FIGURE 15. Declaring a service and a receiver class, extending a broadcastReceiver
1
,

to start on device boot. This action requires a RECEIVE_BOOT_COMPLETED-permission.

1
BroadcastReceiver is an Android provided class for receiving sent intents either locally

or across applications. (BroadcastReceiver, 2011)

34

6 DEFINITION AND DESIGN PROCESS

Every application‟s development process starts with definition of requirements. In other

words, defining what is the purpose of this application and what it is supposed to do.

This is one the most important phases of software development and also one of the most

overlooked. Adding or changing features afterwards can cause unnecessary issues as the

application‟s structure may not be able to accommodate them or some unorthodox

solutions have to be built in order to solve the issues. Neither one of these options is

desired. After the requirements have been defined and the application‟s purpose is clear,

it is time to start outlining the structure of the application. At this point different

components play a critical role as how they function together.

6.1 Identifying concurrency

Once application‟s features have been laid out, separate entities will start to emerge,

such as networking, image processing and database communication. These are the parts

where you might benefit from concurrent behaviour. If changing the order of steps in a

task does not affect the output, performing such tasks concurrently should be

considered. (Concurrency and Application Design, 2011) Usually tasks which are

running for a long period of time and require relatively much computing resources and

do not affect the UI too often should be encapsulated into background tasks and leave

the UI thread available to interact with the user while the tasks are being executed.

Each task identified as concurrent behaviour can be broken down to small and compact

entities and the actual classes designed to accompany these specific needs. This

approach provides flexibility and the class structure is easily expanded to accommodate

possible future features and also, the code readability is preserved since the classes

executing asynchronous tasks have a clear purpose and they are able to provide a natural

gateway to a specific functionality. This adds much to code reusability as the classes

remain generic because the functionality is well encapsulated.

35

6.2 Defining requirements

Concurrent behaviour will be at its best when the behaviour is clearly divided into

separate entities and components designed are designed around those entities. However,

certain individual requirements must be taken into consideration, especially with

Android applications where concurrency components must work together with

activities, which have their own lifecycle and states and they are not able to access each

other‟s variables directly.

Other important detail to notice is whether the component, i.e. a Timertask, needs to

be executing constantly, even if the application itself is not running. Polling a web

service and dispatching notifications might be a good example of this kind of behaviour.

With such functionality, implementing a Service1 is almost mandatory.

Inter-activity communication must also be spoken for. Is a task started in a different

activity than where its results are published? If so, maybe activity inheritance should be

considered or at least handlers receiving the results have to be passed and implemented

properly in order for the correct activity to be able to receive the processed data.

Problematic with this scenario is that the concurrent thread may have pointers pointing

to class, i.e. activity, or class variables in an activity which is in paused or stopped state.

So to ensure thread-safety, it needs to be carefully evaluated which parameters to pass

for the concurrent component as the garbage collector may see objects idle if the

activity‟s state is, for example, stopped. Accessing collected object can cause a

NullPointerException which needs to be handled or the whole application may

crash.

1
 “A Service is an application component representing either an application's desire to

perform a longer-running operation while not interacting with the user or to supply

functionality for other applications to use” (Service, 2011) This class will be discussed

in further details in chapter 6.3.3.

36

In conclusion, once the application‟s requirements have been defined, it is time to start

drafting the structure of the actual application. Identifying the needs for each

requirement is at key position here. For example, displaying data from the web requires

a network access class. From these needs, extract the ones which would benefit from

concurrency, and possibly from parallelism, and consider how they are needed

throughout the application and activity lifecycle and are they accessed from multiple

activities. Only after then the design process of the actual component should be

commenced. First identify the need and its requirements and fit the components to

fulfill that specific need. That way the efficiency is maximized and code is encapsulated

properly to ensure the code reusability.

6.3 Designing components

After entities in need of concurrent behaviour have been identified, it is time to start

evaluating the actual class structure and which classes to use in order to achieve this

behaviour. Almost any class able to run in a separate thread is able to provide the

desired concurrency but the key factor is how these classes fit into Android

application‟s principles and its characteristics and do these classes offer reusability or

are they built for a single purpose and is executed from the same block of code each

time. These are the factors where the right choice of class can make a difference and

make the application more efficient and ease the maintenance efforts. These key

decisions are shown in the figure 16 which also shows the usual course of designing a

component.

In addition to the classes used, standard software design principles help in building

stable and efficient structures, such principles include the use of being inner classes,

interfaces and inheritance, for example. Together with appropriate classes the

concurrency will bring the best of it into the application and give the user the best user

experience possible as the application is running smoothly and efficiently.

37

FIGURE 16. Process diagram of component‟s design process.

Android applications are composed from one or more activities, unless it is only a

service without the need for graphical user interface, and the activity‟s state is changing

constantly, depending on what kind of inputs are coming from the user or how the

system itself sees the activity, meaning is the system considering the activity to be idle

and unnecessary and waiting to be removed from the activity stack. In such occasion if

some concurrent class‟s instance is saved into a variable it might possess pointers to that

given activity or its variables and this may cause unexpected issues if that activity is

killed and its memory space removed.

After the actual implementation process of the class has commenced, according to

Goetz et al (2010) three basic elements should be included; identification of the

variables that form the object‟s state, invariants that constrain the state variables, and

establishing a policy for managing the access to the object‟s current state. Meaning what

type of variables is passed to the object, how they are passed and how are they accessed

and are there some restraints to the object‟s behaviour. Similarly it needs to take into

consideration how the class is supposed to communicate with other threads, including

the UI thread, and if shared resources are used are they confined inside a locking

mechanism or are they declared as final, thus preventing any changes to be made, or

volatile, variable declaration designed for shared variables between threads.

38

6.3.1 Inheritance

JavaSE used in Android does not support any kind of multi-inheritance, though this is

not viewed as a major drawback since multi-inheritance is not recommended to be used

unless it is absolutely necessary. However, classes in Java are able to implement

interfaces while extending a class. So inheritance from a non-concurrent class does not

mean concurrency cannot be implemented. It just has to be done thought interfaces or

inner classes. Inheritance is very useful tool when designing repetitive code; just

encapsulate it into a generic superclass and extend that in subclasses. This way classes

may also access into same variables, although in case of concurrent behaviour thread-

safety needs to be ensured, and methods.

As activity class in Android is one of the most important classes and with a superclass

extending the Activity class, it is a viable class for inheritance and can benefit a

great deal from it. One very useful way of forcing certain behaviour to subclasses

without interfaces is to declare the superclass abstract and implement there only abstract

method stubs. This way all the subclasses have to implement these methods, for

example a handler in superclass can enforce the subclasses to implement a callback

method where the received messages can be rerouted and filtered accordingly. A good

example of a scenario, depicted in figure 11, incorporating reusable code, yet offering

the accuracy to route messages to a specific activity where each of the callback method

filters messages according to an identification number found in Message.what-

attribute (figure 17).

FIGURE 17. Callback method.

Concurrent classes can also inherit superclasses, just as any other class, and extend it to

accommodate more specific purpose while the superclass only offers a generic base to

build on. A good example is a set of background workerthreads, which inherit from a

single superclass extending the actual Thread-class and holding everything in

39

common with these threads and extending it to suit each one‟s specific needs, such as

database interaction or networking.

6.3.2 Inner classes

If extending a superclass is not possible and the behaviour will stay inside a single

activity, nesting an inner class is a useful way to go. Even interfaces, such as Runnable

and Callable, can be instantiated from inner classes. Inner classes cannot be used from

anywhere else than the outer class wrapping it. This and Android activity‟s lifecycle are

the factors to take into consideration when using inner classes.

The inner class is able to access the outer class‟s methods and variables, even those

declared private. (Sierra & Bates, 2005, 376) This combined with concurrent classes is

risking the thread-safety and data consistency. This in mind, the variables required by

the inner class should be passed to it through the constructor, just as with non-nested

classes, to ensure that all the variables are processed in the same thread as they are

created. Inner classes are very handy for short and local tasks, for example

Asynctask can often be seen as an inner class.

40

7 SECURITY CAMERA APPLICATION

As for the constructive part of this thesis, Haltu Ltd requested a security camera

application for Android to support the already existing web based application. The

application requirements included a user login, camera listings and specific data for

each camera, which included five the most recent images from the selected camera, log

data and clearance data for that given security perimeter and naturally an update

possibility for the data being viewed. As for the entities in need for concurrency, clearly

networking can be identified since the user needs to log in and download data.

A tab widget was required to divide the data sets into their own dedicated activities,

accessed easily by different tabs. The activities resemble each other considerably as the

purpose of them all is to show data downloaded from a web service. This is why an

inheritance structure seemed appropriate to avoid duplicate code (figure 18). Another

reason for inheritance was to maintain thread status while switching between activities

in the tabs. As the superclass activity contains all these activities and as the threads

retrieving data are located also in the superclass, switching between subactivities does

not interrupt the thread‟s progress. In other words, if the gallery activity‟s thread has

downloaded two images out of five when the user switches to inspect the log data, the

gallery thread still continues to make progress in the background and when the user

comes back to gallery tab, all of the images may have been downloaded, depending on

the network status.

FIGURE 18. Activity structure in the security camera application

of activities accessing the WorkerThread.

41

The thread start is encapsulated in the abstract BaseActivity-class, which also

contains the Handler from figure 12. WorkerThread sends its results in a

Message which is identified by a constant variable from each activity. The handler

receives those messages and forwards them into the callback method, which is a

protected and abstract method. This enforces the subclasses to implement it. Each

activity identifies messages designated for it by the constant variable mentioned earlier.

The implementation of this can be viewed from figure 19.

FIGURE 19. Callback method in subactivities.

Each data set from the thread, images excluded, would be standard JSON; therefore the

data processing can be completed by a single generic processing method and the return

values dispatched to the UI thread for publishing. Images are only converted into

bitmaps and saved into a temporary cache which is removed after the

GalleryActivity is destroyed.

Benefits of this implementation is a minimal amount of duplicate code as well as the

identification of the message as the calling activity passes the variable for the thread

each it call it. With this scenario, the inheritance combined with the basic

implementation of thread class is working really well, especially since the

BaseActivity-superclass is abstract, forcing the subclasses to implement specific

behaviour.

As an improvement, concurrency could be achieved by using the Runnable-interface

instead of subclassing Thread. Secondly the image processing could be optimized by

encapsulating the input stream processing into its own thread. This would enable

parallel handling of images whereas now images are handled one by one. The amount of

data moved would naturally remain the same, but the time used to handle it would be

decreased. Also the Messages used the transfer data to the UI thread could be created

more efficiently, using Handler.obtainMessage() or Message.obtain() –

42

methods. This way the object itself would be pulled from a pool of recycled objects.

This would reduce the use of memory. As the use of Messages in such a compact

application is minimal, the use of Message’s constructor is not causing any real

issues. It would be just a good programming principle to use the recycle pool instead.

(Message, 2012)

Figure 20 shows the basic graphical interface of the application. Images are pixelated

due to non-disclosure agreement but the idea behind the graphical user interface remains

clear. The left view with the images is the actual security camera view. Upper image

shows the chosen image which is clickable and will open to a viewing activity as large

as possible. Underneath it is a Gallery component, showing all the images with a

horizontal scroll. The right view shows the graphical user interface while the concurrent

download of data is executed in the background. The dialog is shown to inform the user

that the chosen function is being executed and the application is running normally.

FIGURE 20. Screenshots of the security camera application‟s tabviews.

43

8 CONCLUSIONS

It has been established that concurrency is a crucial part of any software development

and it can cause gray hairs if implemented improperly or a need for refactoring emerges.

This is why information on different approaches and tools is crucial and may help to

avoid several issues.

The main objective of this thesis was to analyze and provide an insight to the tools

available for concurrency on Android and present possible issues and means to avoid

them. These aspects will help to improve the whole application development process as

the information found in this thesis should provide a good base for inexperienced

Android developers about the guidelines and possibilities of concurrency in Android

development. More experienced developers are able to reflect their development

methods based on this thesis and possibly cultivate their programming routines into

something more effective. However, the information has to be always applied to each

specific situation individually in order to achieve the desired outcome, as any solid

scenarios or definite solutions are impossible to give because they are always case-

sensitive and are certain to vary. In this light, the thesis is able to achieve its goal.

The purpose of this thesis was to enhance and shape the application‟s design process

and by achieving the set objectives, the purpose is also fulfilled, as the design process‟

workflow model is supporting the given insight of the concurrency in Android. This

way the developers are able to proceed stage by stage on the journey of building

concurrent behaviour from the identification of the need for concurrency to the actual

implementation.

This thesis provided a good and up-to-date basis to learn more about concurrency,

especially since multicore processors are starting to flood the markets. The future

mobile devices will push the requirements of mobile applications even further, yet

offering more tools and possibilities to accommodate the needs. The Android

development is also evolving into something even more challenging with each new

version the operating system, especially since the Android 4 is combining both, tablets

and smart phones, under the same operating system. This emphasizes the need for a

44

good and versatile structure, which can only be achieved through a good and clear

development process.

45

 BIBLIOGRAPHY

Apple, Inc. 2011. Concurrency and Application Design. Updated 19.1.2011. Read

23.12.2011.

http://developer.apple.com/library/ios/#documentation/General/Conceptual/Concurrenc

yProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationD

esign.html

Breshears, C. 2009. The Art of Concurrency. A Thread monkey‟s Guide to Writing

Parallel Applications. 1st edition. USA: O‟Reilly Media, Inc.

Burnette, E. 2010. Hello, Android. Introduction Google‟s Mobile Development

Platform. 3rd edition. USA: Pragmatic Programmers, LLC.

Cesarini, F. & Thompson, S. 2009. Erlang Programming. 1st edition. USA: O‟Reilly

Media, Inc.

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D. & Lea, D. 2008. Java

Concurrency in practice. 6th edition. USA: Pearson Education, Inc.

Google, Inc. 2011. Processes and Threads. Updated 4.11.2011. Read 6.11.2011.

http://developer.android.com/guide/topics/fundamentals/processes-and-threads.html

Google, Inc. 2011. Activities. Read 5.12.2011.

http://developer.android.com/guide/topics/fundamentals/activities.html

Google, Inc. 2011. TimerTask. Read 11.12.2011.

http://developer.android.com/reference/java/util/TimerTask.html

Google, Inc. 2011. Painless Threading. Read 22.12.2011.

http://developer.android.com/resources/articles/painless-threading.html

Google, Inc. 2011. BroadcastReceiver. Read 27.12.2011.

http://developer.android.com/reference/android/content/BroadcastReceiver.html

46

Google, Inc. 2011 Services. Read 27.12.2011.

http://developer.android.com/guide/topics/fundamentals/services.html

Google, Inc. 2012. Handler. Read 5.3.2012.

http://developer.android.com/reference/android/os/Handler.html

Google, Inc. 2012. Message Read 7.3.2012.

http://developer.android.com/reference/android/os/Message.html

Harold, E., 2004, Java Network Programming. 3rd edition. USA: O‟Reilly Media, Inc.

Magee, J. & Kramer, J. 2005. Concurrency, State Models & Java Programs. 5th Edition.

USA: O‟Reilly Media, Inc.

Mednieks, Z., Dornin, L., Blake Meike, G. & Nakamura, M. 2011. Programming

Android. Java Programming for the New Generation of Mobile Devices. 1st edition.

USA: O‟Reilly Media, Inc.

Oracle. 2011. Class Thread. Read 11.11.2011.

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

Oracle, 2012. Guarded Blocks. Read 8.2.2012.

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Oracle, 2012. Processes and Threads. Read 8.2.2012.

http://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html

Oracle. 2011. Interface Runnable. Read 6.12.2011

http://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html

Oracle. 2011. Java Thread Primitive Deprecation. Read 11.12.2011.

http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency/threadPrimitiveDepr

ecation.html

47

Sierra, K & Bates, B. 2005. Head First Java. 2nd edition. USA: O‟Reilly Media, Inc.

Steele, J. & To, N. 2010. The Android Developer‟s Cookbook. Building Applications

with the Android SDK. 1st edition. USA: Pearson Education, Inc.

48

9 APPENDICES

APPENDIX 1: 1 (3)

FIGURE 11. Thread class from the security camera application.

(To be continued)

49

APPENDIX 1: 2 (3)

50

APPENDIX 1: 3 (3)

