

Mary Nyamor

Publishing Multimedia on the Web

Manipulating video in real-time

Helsinki Metropolia University of Applied Sciences
Bachelor’s Thesis
Bachelor of Media Engineering
Thesis
Date: 5 December 2011

Author(s)
Title

Number of Pages
Date

Mary Nyamor
Publishing multimedia on the web

76 pages + 2 appendices
5 December 2011

Degree Bachelor of Engineering

Degree Programme Bachelor of Media Engineering

Specialisation option Printing and Multi-Channel Publishing

Instructor(s)

Pyry Ahlfors, Project Manager
Kari Aaltonen, Principal Lecturer

The purpose of this thesis was to explore the different ways of publishing multimedia con-

tent on the web using HTML5 to allow an easier and more effective implementation of the

dynamic content on the web.

A brief history and overview of HTML and its progression are covered to show how

HTML5’s development came about. HTML5 features are discussed focusing mainly on

HTML5 video, audio and canvas. The practical part of the project includes the develop-

ment of a custom player that is implemented using HTML5, JavaScript and cascading style

sheets.

With the help of this thesis, one would be able to build a custom video player that would

allow easier customization with JavaScript and cascading style sheets, depending on the

developer’s competence. It would also allow the developer to develop the application fur-

ther as the basics are provided in this thesis. The results of the project were tested on

different devices and browsers in order to see how they were supported. This provided us

with excellent results that allowed us to stream clips across different browsers considering

it was a demo application. It is however important to keep in mind that the standards of

HTML 5 are still under development and may therefore be changed at any time.

Keywords HTML5, DOM, video, JavaScript, CSS3, CSS, Canvas, XHTML,

HTML4, API, RIA, multimedia, web applications

Contents

1  Introduction 1 

2  Background of multimedia content on the web 2 

2.1  Brief history of web trends 3 

2.2  Current state of web trends 7 

2.3  HTML5 as a Rich Internet Application 8 

3  HTML5 Multimedia in depth 10 

3.1  Anatomy of the video element 11 

3.2  Anatomy of the audio element 14 

3.3  Video codecs and containers 15 

3.4  Browser support 18 

4  Canvas and Styling 21 

4.1  Drawing using the canvas 22 

4.2  Canvas browser support 26 

4.3  Styling webpages 28 

5  Design and Implementation 35 

5.1  JavaScript API 36 

5.2  Implementing the video player 38 

5.3  Video editing using the Chroma key 49 

6  Testing and Results 51 

6.1  Methodology 53 

6.2  Results 54 

7  Conclusion 57 

References 58 

Appendices

Appendix 1. Questionnaires

Appendix 2. Source Code

Abbreviations and Terms

API Application Programming Interface, a convention for accessing the

 functionality provided by a program module.

RFC Request for Comments, a numbered memorandum published by the IETF

CSS Cascading Style Sheets, the style sheet language of the Web.

HTML HyperText Markup Language

RIA Rich Internet Applications

UX User Experience

SGML Standard Generalized Markup Language

WHATWG Web Hypertext Application Technology Working Group

DTD Document Type Definition

PDF Portable Document Format

MIME Multipurpose Internet Mail Extensions

DOM Document Object Model

SVG Scalable Vector Graphics

SMIL Synchronized Multimedia Integration Language

1

1 Introduction

The goal of this bachelor’s thesis is to provide a custom HTML5 video player that works

in today’s web browsers. This would aid in creating a solid foundation that would allow

video publishers who, with the rapid growth of mobile web, face a fragmented envi-

ronment in which they can no longer reach their desired audience using flash player

alone. The solution will provide web users with an optimal video experience across web

browsers and portable devices such as ipad. Additionally, it tries to define a common

ground, if one exists, and define how far standardization has come.

This project was done for a company called ZAAZ. It is a full service interactive agency

that focuses on strategy, design, development, UX, web analytics, optimization, social

networking and search marketing. They were in need of a video solution that would

deliver content accordingly by helping them achieve a seamless support of both flash

and HTML5. The introduction of HTML5 has made this possible due to the introduction

of the <video> tag whereby developers no longer have to rely on Adobe Flash Media

player to play H.264 video as a cross platform solution. However, since the most recent

version is still very much under development, the implementations of the standard are

expected to vary across browsers. A test project was therefore done to find out if the

current specifications were sufficient enough to stream videos across different

browsers and devices.

This study gives developers possible ways on where to start when they want to use

existing API’S for their video content streaming. It also focuses on helping developers

get a clear understanding of the background and importance of multimedia on the

web. Flash having been the most used Internet standard for video delivery in the pre-

vious years, has allowed this new markup to pave way and it is now possible to stream

videos not only generically but also natively. Additionally, with Google having made a

decision early this year to remove H.264 from Chrome, it will be beneficial for publish-

ers and developers when it comes to selecting the right video format for online distri-

bution.

2

2 Background of multimedia content on the web

“Every time your web browser requests a page, the web server sends a number of

headers before it sends’ the actual page markup” [22]. These headers are important,

because they tell your browser how to interpret markup and render a particular re-

source. An example of how this works can be seen in figure 1 below. Early web servers

did not transmit the Content-Type header, because they did not exist. However, on the

webpage’s, scripts, multimedia content and anything with a URL was served to the

user with a specific MIME type in the Content-Type header. In order to understand the

history of HTML5 and the motivations behind it, the need to understand the technicali-

ties specifically, Multipurpose Internet Mail Extensions (MIME) type is necessary [22].

Figure 1. Client - server communication.

This chapter reviews a brief history of Hypertext Markup Language (HTML), which, in

principle, is the basic building block of webpage’s that uses semantic markup language

to describe webpage’s. That is, it emphasizes the meaning of the encoded information

over its presentation. It goes on and further gives a general overview of what is new,

what is the same and what has been removed from the previous versions that make it

HTML5. The chapter will focus more on the new markup since it builds upon the previ-

ous versions and its aim is not to explain in depth what HTML is but rather to give an

understanding of the new HTML5 multimedia.

3

2.1 Brief history of web trends

Web history dates back in the early 90’s when a man called Tim Berners-Lee invented

the web with HTML as its publishing language [4]. This was based on Standard Gener-

alized Mark-up (SGML), an internationally recognized method for marking up texts. A

year later, Tim Berners-Lee released the first version of his browser [4]. During that

time, the language was very limiting and therefore developers could only write simple

text to the web. It was not long before Dave Ragget, from Hewlett-Packards Labs,

published a draft specification for HTML+, which included the IMG tag that allowed not

only text but also images to be included on the web pages [5]. Figure 2 below displays

different browsers rendering content in early 90’s.

Figure 2. Browsers rendering text and images

Attempts to make some additional improvements on the web later followed and this

led to the publication of a new version, HTML 2.0. This included ideas from former

versions and also included a Document Type Definition (DTD) but was of no use to

browsers. Later, it became RFC proposed standard and was seen as the base standard

by which all browsers were measured until HTML 3.2. The specification stated that: -

4

HTML is an application of ISO Standard 8879:1986 Information Processing Text
and Office Systems; Standard Generalized Markup Language (SGML). [25]

Its properties defined the basic performance of almost all current browsers. The mo-

mentum picked up quickly and soon there was a need to enhance the look and feel of

websites. Soon HTML 3.0 was released and thus allowed the use of cascading style

sheets to be adopted [6]. This led to the introduction of the STYLE element and the

CLASS attribute, which lived on in HTML 4 [4].

Trouble later started when Netscape decided to introduce new tags and attributes into

their browsers that forced developers to replicate tags and this led to confusion [4].

This version did not match what was being implemented in browsers and was there-

fore abandoned [4]. Microsoft later released Internet Explorer as the interest of the

Internet was expanding. Through the next few years, W3C published the specification

for HTML 3.2 [4], [7]. The specification stated: -

HTML 3.2 aims to capture recommended practice as of early ’96 and as such to
be used as a replacement for HTML 2.0 [25].

Relative to version 2.0, Added features such as text flow around images; tables, app-

lets, superscripts and subscripts were widely deployed [25]. This aided in improvement

of multimedia content display on web pages.

As the standards were evolving pretty steadily, a new version, HTML 4.0 was published

as a W3C recommendation [4]. This allowed better development of websites as more

additional features were introduced. Some of these features included more multimedia

options, scripting languages, better printing facilities, style sheets and documents that

were more accessible to users with disabilities. It was then revised without increment-

ing the version number and adopted the model proposed in the experimental RFC on

HTML tables dropping a few presentational attributes [29], [9], [8].

Around the late 90’s, the document was again revised and named HTML 4.0.1 [10].

Improvements could be seen and developers were now able to enjoy a wider range or

target media. They could markup a test description of an included object, better tables

that included captions, column groups and mechanisms that facilitated non-visual ren-

dering, better forms and better distinction between document structure and presenta-

5

tion. Multimedia features allowed users to play videos and audio and even download

them [30]. This became one of the successful versions of HTML after a long period of

versioning. It has since been used and is still being used by developers. Support across

browsers has been good so far, [8], [9], [10].

At the end of the same year, an interim specification that simply reformulated HTML in

XML without adding any new elements or attributes was drafted. This specification

became known as XHTML 1.0, which stands for Extensible HyperText Markup Lan-

guage [27]. This was a stricter and cleaner version of the markup. It defined a new

MIME type for XHTML documents, application/xhtml+xml. Beginning the following

year, XHTML became a W3C recommendation. Later in May 2001, the first edition of

XHTML 1.1 was published, which added a few minor features on top of the previous

version.

Figure 3 below shows the times when these transitions occurred.

Figure 3. Web trends

As seen from Figure 3 above, the world's first public web page went online in 1991 at

CERN, the European Laboratory for Practicle Physics in Geneva Switzerland [1] and a

later copy of it was archived by the World Wide Web Consortium (W3C). Since then, it

has cultivated many web-oriented standards such as the HTML, XHTML, SVG and PNG

file formats. Starting in mid-2000, another version was launched by W3C group. Their

purpose was to do away with this markup and introduce the world to a whole new

markup language called XHTML2, which was XML, based. Since the idea was a disas-

ter, a group independent of W3C called the Web HyperText Application Technology

6

Working Group (WHATWG) continued evolving HTML with a focus on web applications

[13]. Later in the late 2000’s Mozilla, Opera and Apple requested that the W3C ad-

opted the work under the HTML working group as HTML5. It is now the current and

latest version.

The term HTML5 denotes the abstract hypertext markup language that can be written

in both HTML and XHTML syntax, as described by its specification [31]. Although it’s

not a web standard yet, latest versions of web browsers have started to implement

essential parts of HTML5. It defines HTML syntax that is compatible with HTML4 and

XHTML1 documents [33]. It is however not compatible with the obscure SGML features

of HTML4, such as processing instructions and shorthand markup as these are not

supported by most user agents. Its development aims to allow better error handling,

reduce need for external plug-in, have more markup that will replace scripting and

introduce new features based on CSS, DOM, JavaScript and HTML.

When intending to code using this new markup, the first thing you notice is that the

new markup has its DOCTYPE simplified compared to the traditional HTML. An example

of this can be seen below.

Figure 4. Differences between traditional DOCTYPE and the latest DOCTYPE

HTML5 specification has also included a series of new semantic elements that used to

give meaning to various parts of a web page. The new features that have been intro-

duced include the canvas element that is used for drawing, video and audio for media

7

playback, new content specific elements such as header, nav, footer, article and sec-

tion; better support for local storage and new form controls like date, calendar, time,

url, email and search. All these features aid in developing web application with the use

of individual API’S. It should be noted that HTML5 is currently not an official standard

and therefore no browser supports it fully.

2.2 Current state of web trends

In the rapidly growing online industry, web technologies are constantly developing

forcing content and application providers to constantly add new layers of functionality

to their products. This has resulted to the birth of new techniques and applications.

HTML, for instance, was primarily created to statically display images and text on web

pages and not designed for high interactivity. Today, however, a clear trend can be

seen where more frameworks for creating rich user experiences appear [39]. More-

over, it has transitioned into a widely and highly visible platform for delivering rich me-

dia experiences.

As previously mentioned, multimedia content was first published when the tag

was introduced. Integration of such content, in particular motion picture, followed the

same way, but much later. In the absence of a standard way to include clips on a

webpage, video publishers have mostly been dependent on third-party plug-ins such as

Apple QuickTime, Adobe Flash Player or Silverlight. Only when Synchronized Multi-

media Integration Language (SMIL) introduced multimedia elements could web docu-

ments really include continuous media. SMIL was followed in this direction by Scalable

Vector Graphics (SVG) and more recently by HTML5.

Rich Internet Applications (RIA) such as Java, Adobe Flash, Silverlight and Adobe Flex

have been used to host multimedia content and have in turn represented the transition

in development of web applications. For a long time, they have provided richness and

interactivity that lacked in the previous web applications. As with any new technology,

they have provided opportunities as well as challenges. As web users needs grow in

complexity, their need to incorporate rich interactive features of web applications in a

simpler and more effective way arises. Challenges such as lack of a common standard,

accessibility and security concerns have forced web trends to continue evolving. This

8

has in turn led to evolvement of HTML leading to us having a more interactive, simpler

and richer HTML version known as HTML5.

Today we talk about Web Applications and Rich Internet Applications (RIA), which

have naturally used proprietary technologies because they offer new possibilities [38].

A paradigm shift could be happening now that open web standards are beginning to

gain the lead that other technologies have had. For instance, multimedia and interac-

tive graphic capabilities are now added to the mix making HTML5 the main topic for

many developers and designers today. With the new improvements, we are able to see

that web applications are in a sense easy to upgrade since they come from a central

platform unlike installed computer programs. It is however, not yet possible to make

web applications look and behave like installed programs due to disputes to do with

graphics, performance, client side storage and geo-positioning [33].

2.3 HTML5 as a Rich Internet Application

Over the years, rich Internet application platforms have been adopted since they have

been seen to manifest clear benefits such as improved customer satisfaction and re-

duced application maintenance costs. As technologies like AJAX and JavaScript libraries

flourish, the potential of HTML and JavaScript have become more apparent. As a re-

sult, HTML 5 has promised to provide all the benefits of RIA by building upon open

standards instead of using these third party technologies [36]. Continued advancement

of these web standards has enabled web developers to build almost anything with

HTML, CSS and JavaScript. With HTML5 still under development, new features such as

canvas, video and audio elements have already allowed easier rendering of web con-

tent by making it possible for developers to include motion pictures on web pages with

a single line of code and without the need of a plug-in based solutions such as Adobe

flash, Microsoft Silverlight or Sun JavaFX.

9

Figure 5. Rich Internet Applications

As can be seen from the above figure, there's no specific outline that can clearly iden-

tify and determine what is a Rich Internet Application and what is not. While it’s pos-

sible that in the long run, HTML 5 will become an acceptable alternative of some types

of RIA, it’s not yet there [37]. This is mainly because it’s still under development thus

the specification is deemed to change at any time. Meaning, concerns such as connec-

tivity, user experience and web response time are still a major challenge as improve-

ments are being made to solve them. Before it becomes a ratified standard, browser

vendors will rely on partial support as the current expectation of when the standard

will be fully approved as a W3C standard will be about ten years from now. In the long

run, it will have a significant impact on how Web applications are built; but as a com-

plementary technology to leading RIA platforms, not a replacement [35], [36].

Currently HTML5 is seen to be one of Adobe’s competitor as it posses a threat to the

company. This is due to the fact that it tries to minimize or do away with the use of

proprietary technologies such as Flash; which has for a long time been the main source

of streaming multimedia content. Lucky for Adobe, HTML5 is still under development

and is currently only supporting the latest browsers hence still needing help from flash

to stream content in older browser versions. In the near future, however, the state of

publishing multimedia content on the web might be possible, as users will no longer

have to rely on these technologies.

10

3 HTML5 Multimedia in depth

Publishing of video on the web has become fairly simple since the introduction of

HTML5. Motion pictures and other forms of multimedia are quickly governing the user

experience by adding value to all businesses simply because users are reading less and

watching more. This is mainly because web design and development has gone beyond

traditional definition. With new trends evolving, HTML5 has allowed code minimalism

using few elements as possible to achieve an easier to read and less congested code

whilst still providing full functional software. In addition, content providers such as

YouTube are now able to seamlessly integrate HTML5 content and even allow video

manipulation using JavaScript and cascading style sheets thus allowing consistency and

interactivity around web pages [20].

Web users are now able to stream clips from anywhere thanks to continual increase of

bandwidth and technologies for multimedia content. So far, many browsers have inte-

grated HTML5 support in order to break the restrictions imposed by proprietary

browser plug-ins. Its development has allowed open technologies to deliver high

quality user experience to stream multimedia content. Its introduction has also enabled

iphone and ipad users to stream videos since these devices lack flash support. At the

same time, it has enabled browser stability as plug-ins can cause instability and create

worry to some users when prompted to download and install newer versions.

HTML 5 aims to move the web away from proprietary technologies such as plug-in

based RIA frameworks. It is currently competing with Flex, Silverlight and JavaFX, and

could make such plug-ins appear unnecessary. It will however take time for HTML 5 to

get equipped and penetrate the market. At the time of writing, experts at both

Microsoft and Adobe thought that a major breakthrough lies five to ten years into the

future [19], [39].

This chapter focuses more on the multimedia elements in particular, the video element.

It goes on and further talks about its composition, some of the available formats as

well as browser support. The chapter will also touch on the audio element but will not

go deeper on it.

11

3.1 Anatomy of the video element

In recent years, developers in need of embedding clips on web pages have been using

the <object > element. The use of this element, which is a generic container for “for-

eign objects,” also required the need to use the previously unfounded <embed> ele-

ment and duplicate many parameters due to browser inconsistencies. This resulted in

code that looked much like this: [14].

Figure 6. Object Embed code

Today however, developers are able to include motion pictures on the web with a sim-

ple line of code thanks to the new markup. HTML5 specification has defined a standard

way of including them on web pages through the introduction of a new element called

the <video> element. This element enables browsers to natively playback video with-

out the need to install any additional plug-ins like Flash, Silverlight, or QuickTime. In

addition, a set of standard JavaScript APIs has been provided to allow developers to

create their own playback controls, should they wish to do so [15]. An example of the

new video code is shown below.

12

Figure 7. Simple video code

From the figure above, the .ogg file extension is used to an Ogg Theora video while

the src indicated is an attribute that defines its URL or path. A key issue with this ele-

ment, however, is that the file formats supported by each browser are dependent on

patents whereby some browsers have restriction to other patents. More of this will be

discussed later in the chapter.

When talking about anatomy of this element, we are basically talking about its compo-

sition. Inside the element, there are several attributes, each with a specific function.

These attributes allow the video to perform certain functions. These attributes can be

grouped either as display attributes such as src and controls or they can be grouped as

playback attributes such as currentTime, duration, paused, loop, seeking and ended.

These attributes can further be grouped as read-only for example duration and ended

while other such as currentTime and volume can be read and written. [21]

Each of the attributes mentioned has a value that aid in giving a detailed description to

the video regarding its performance. Accessing of these attributes is done either

through inclusion in the video tag as shown in figure 7 or through JavaScript. An ex-

ample of how these attributes can be made to function using JavaScript is shown in

figure 8.

Figure 8. Using JavaScript to perform an event

What the code is basically doing here is that it sets the initial value of mute to false

before the video starts playing. That means, the video will have sound and will only go

on mute once the mute button is clicked. More attributes that can be included in the

video tag are discussed briefly explained in table 1 below.

13

Table 1. Video attributes

In addition to these attributes, the element also can include more information such as

buffering, playback time and error messages. A detailed code showing the video ele-

ment with different attributes can be seen below.

<video width="320px" height="240px" autobuffer="autobuffer" autoplay="autoplay"

 loop="loop" controls="controls" poster="/_img/videoPoster.jpg">

 <source src='video.mp4' type='video/mp4; codecs="amp4v.20.8, mp4a.40.2"'>

 <source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

</video>

As seen from the code above, different formats can be included in the source element,

which currently supports around four different formats with flash included.

Attribute Usage

Autoplay Allows the video to automatically start playing once loaded. It is a Boolean

value that is either true or false to allow video playback automatically.

Controls Allows the developer to set a control bar below the video with the play,

pause and stop buttons. This is a Boolean attribute.

Height Sets the height value of the video.

Loop Can either true or false and this in turn states if the video plays over and

over or not.

Buffered An object of ranges which are already buffered

Preload Controls whether the video is preloaded into the element usually taking

three values; auto – lets browser decide if it preloads, none – no preload-

ing required and metadata which tells the browser that detecting meta-

data of the video is a good idea.

Poster Holds the URL of an image if the video is unavailable.

Src Holds the URL or path of the video.

Width Sets the width of the video.

14

3.2 Anatomy of the audio element

The audio element is meant for playing sounds or streaming audio files using the

<audio> tag. It also uses a single line of code to include an audio file on a webpage

and has limited formats that play across browsers. Formats that are supported include

MP3, WAV and Ogg Vorbis. The following code shows how audio can be inserted on a

webpage.

<audio src="mymusic.ogg" controls="controls"></audio>

Like the video element, the audio element also has its attributes that play a similar

role. The <audio> shares a lot of markup and functionality with the <video> element,

but lacks the @poster, @width, and @height attributes, since the native representation

of an <audio> element is to not display visually [21]. An example of how audio attrib-

utes can be placed within an element is shown below.

 <audio controls="controls">

<source src="mymusic.ogg" type="audio/ogg">

<source src="mymusic.mp3" type="audio/mpeg">

 </audio>

From the code shown above, it can be seen that the source of the audio files has been

included twice. This has been done so that in case one of the audio formats is not sup-

ported, the browser will check to see if the other format is supported. The browser will

then play the suitable format. Like the video, there is no single encoding format that

will be supported by all the web browsers. Some of the attributes used for the audio

element are shown in the table below.

15

Table 2. Audio attributes

As shown above, it can be seen that these attributes are not so different from the

video attributes. They perform the same function and have the same names. The only

difference comes from the source file, whereby we find that it holds different formats.

Like the video, these attributes can also be controlled through the use of JavaScript.

An example of an audio component created using JavaScript and cascading style

sheets is shown below.

Figure 9. An example of an audio player

The figure above is an example of an audio player, which consists of different audio

controls that aid in playing the loaded audio file. The audio track and artist name has

also been added to make the audio player more interactive.

3.3 Video codecs and containers

Playing a video file entails different things. These include, format interpretation as well

as decoding of the audio and video stream. This video file can be said to be a con-

Attribute Usage

@src

Used to include the audio on the webpage as it fetches the audio file

from a specific location or path where the audio file has been stored.

@autoplay Allows the audio file to start playing automatically as soon as the

browser has downloaded and decoded sufficient audio data

@loop

This is a Boolean attribute. It allows the audio file to play over and over

again making the audio restart each time the playback is complete.

@controls

Used for user interactions. This allows the user to have full control of the

audio.

16

tainer, which is similar to a zip archive that contains a number of files. [17]. These files

within are known as streams or tracks and represent a variety of things including

video, audio and subtitles. According to specifications, there is no specific container or

codec you have to use. One can therefore specify multiple clips and the browser will

play using the first file it identifies. This is because different browsers support different

containers and codecs and there is not one browser that fully supports all these for-

mats. Some examples of containers include: - Flash video (.flv), Audio Video Interleave

(.avi), MPEG 4(.mp4) and Ogg (.ogv).

A codec on the other hand is an algorithm that encodes the video stream. They are

used to encode or decode a particular stream to allow playback. In practice, it would

be when your player decodes the stream depending on the codec, which then displays

a series of images and frames on the screen [22]. Browsers that support the video

element have codecs installed by default, which allows easier playback. As supported

in the book of Bruce and Remy (2011), it can be seen that: -

Early drafts of the HTML5 specification mandated that all browsers should at
least have built-in support for multimedia in two codecs: Ogg Vorbis for audio
and Ogg Theora for movies [14].

These codec’s were abolished after Nokia and Apple objected hence leading to having

no defined codec in the specifications [14]. At the moment, not many formats are sup-

ported. Some of these video formats currently in use include: -

 MPEG4 (with H.264 video codec and AAC audio codec)

 OGG (with Theora video codec and Vorbis audio codec)

 WebM – VP8 +Vorbis (Google’s WebM technology, which is currently supported in

Opera and will be supported in upcoming versions of the Firefox and Chrome

browsers

Firefox, Opera, and Google Chrome have selected the Ogg/Theora codec. Firefox 4

also supports the WebM codec. Safari and Internet Explorer support the MPEG4/H.264

codec. Vorbis audio codec and the Theora video codec are freely available and can be

embedded on any container, while the use of the MPEG-4 and H.264 codecs are pat-

17

ent-encumbered as they are subject to license fees [22]. More about browser support

is discussed later in the chapter.

H.264 also known as MPEG-4 Advanced Video Coding was developed by the MPEG-4

group and standardized in 2003 as a successor to earlier standards such as MPEG-2. It

is currently one of the widely used formats for video compression, recording and distri-

bution of high definition video. It aims to provide single codec for use in high definition

systems as well as low-resolution devices such as mobile phones. H.264 delivers better

visual quality at smaller file sizes, takes longer to encode and require more CPU power

to decode in real-time as compared to MPEG-2 and MPEG-4 (DIVX or XVID). [22]

Theora, on the other hand, evolved from VP3 codec and has subsequently been devel-

oped by Xiph.org Foundation [22]. It is a free, open-standard container format sup-

ported natively by Firefox 3.5+, Google Chrome, Opera and most distributions of Linux.

One can also watch Ogg content on Mac OS X and windows by installing appropriate

codecs. It is a royalty-free codec. Theora video can be embedded within any container

format although it is mostly seen in an Ogg container [3]. Within Ogv container we

usually have the audio tracks known as Theora and video tracks known as Vorbis [3].

Google introduced the WebM video format in May 2010 as a high quality format that is

free for both implementers and publishers. WebM files have the .webm extension and

consist of VP8 video and Ogg Vorbis audio in a container based on Matroska. WebM

represents a significant development in the codec landscape. As far as browsers go, at

least Firefox, Opera, and Chrome will support WebM natively. Opera 10.6 is already

shipping with WebM support. Mozilla and Google have committed to shipping WebM in

the next versions of their browsers [22]. Like Theora, WebM is also a royalty-free co-

dec and can be substituted as .ogv.

Including motion pictures using the <video> tag requires provision of different format.

This is because no single combination of the codec’s works in all browsers. For com-

patibility reasons it is best if all three versions are linked to the element and a fallback

is provided. This helps the users to be able to play the video in one or the other plat-

form.

18

When comparing the quality between the common H.264 and WebM, they both seem

to have the same quality though in H.264 is of better quality. The difference is minimal

such that consumers are most likely not to notice. In order for the web developer to

include all the codecs, separate <source> elements instead of src are used for each

encoding with appropriate type attributes inside the <video> element, which lets the

browser download the format that it can display [14]. The example below shows how

this is done.

<video controls>

 <source src='video.mp4' type='video/mp4; codecs="amp4v.20.8, mp4a.40.2"'>

 <source src='video.mpg' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

 <source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

</video>

The code above shows that it is possible to include many files in the video element

using the source element. This allows extensive browser coverage. From our example,

the first file that is supported by the browser will be rendered. If the browser does not

support the file and attribute is not specified, it should attempt to render the other two

files or try retrieving the media from the server. In addition to the src, the video codec

is also included to the linked source file as it allows the browser to make smart deci-

sion.

3.4 Browser support

Support across browsers requires more than just inclusion of the video or audio tag on

a webpage. In addition to using multiple source tags for codec specification, fallback

options and JavaScript come handy when thinking of for better browser coverage

across different platforms. This allows users visiting your site to play videos regardless

of the platform they are using. Table 3 and 4 below shows how video and audio for-

mats are supported.

19

Table 3. Browser support for HTML5 video

Codec/Container IE Firefox Safari Opera Chrome iPhone Android

Theora+Vorbis +ogg - 3.5+ - 10.5+ 5.0+ - -

H.264+AAC+MP4 9 - 3.0+ - 5.0+ 3.0 2.0+

WebM - 4.0+ - 10.6+ 6.0+ - 2.3+

As seen from table 3 and table 4, none of the browsers fully supports all the formats.

It can also be seen that only the later browsers are supported. Internet explorer is not

supported but maybe newer version such as version 9 could support the video tag.

Table 4. Browser support for HTML5 audio

Browser Wave Ogg Vorbis Mp3

Safari YES NO YES

Chrome YES YES YES

Opera YES YES NO

Firefox YES YES NO

IE NO NO YES

Since not so many formats are supported, the need to convert the videos in the correct

format is necessary should the web publisher lack the needed format. It is however,

recommended that one should convert the video from its source format instead of

using a compressed version as this reduces the quality of the video. There are selective

choices of video converters. Miro video converter is one example that can be used for

both Macintosh and windows that allows conversion of H.264 or Ogg Theora for differ-

ent devices [22]. VLC is also another converter that allows conversion but this is only

available for windows and linux users. In addition to these, users are also able to con-

vert their videos on various Internet archives. In the meantime, however, videos are

still widely streamed through third party plug-in such as flash. However, as the situa-

tion currently stands,

Any video publisher that wants to create web pages with videos that are ex-
pected to universally work with any browser will be required to publish video in
at least two formats: in MP4 H.264/AAC and in either Ogg Theora or WebM [21,
7].

20

A flash fallback will still be required in order to satisfy all the users. This works in a way

such that, if the video were not HTML5 compatible, it would revert to the third party

plug-in. A fallback option for using the source tag helps users be able to play the video

across different browsers. It is usually so that when using flash or Silverlight as your

fallback, H.264 is enough. The example below displays a fallback action.

Figure 10. Video code with flash fallback

The above code tries to show how a developer can include a flash as a fallback patio

for browsers that do not support html5 video. Our example shows that HTML5 video is

first supported; if not, then the “imit.swf” flash option is used. This allows users who

lack support to still view the video in other versions. In addition to flash, other fallback

options that can be used include the use of the Java Applet, which is useful for

browsers that lack Java support and also don’t support HTML5 video.

Our .ogv file extension is used to point to the ogg video. When all fails, a video down-

load link can also be provided for old browsers that do not support the native video as

this enables one to watch the video later from his or her operating system. WebM for-

mat can also be included as part of the source or as alternative to the two mentioned

sources in the figure above.

21

4 Canvas and Styling

A canvas is a rectangle or a two-dimensional grid on a page on which you can use

JavaScript to manipulate or draw things like shapes or display graphics [22]. In other

words, HTML5 canvas element can be said to provide an API for rendering graphics or

visuals. The canvas can better be seen to be described in detail according to Peter

Lubbers, et al. (2010), where they state that: -

The canvas concept was originally introduced by Apple to be used in Mac OS X
WebKit to create dashboard widgets. Before the arrival of canvas, you could only
use drawing APIs in a browser through plugins such as Adobe plugins for Flash
and Scalable Vector Graphics (SVG), Vector Markup Language (VML) only in In-
ternet Explorer, or other clever JavaScript hacks [17].

 It supports the two dimensional drawing operations used across modern frameworks.

Canvas element is simply created by using the code shown below

 <canvas height-”200” width=400” id=”myCanvas”> </canvas>

This code is relatively straightforward. You simply need to specify the width and height

of the canvas element and an ID for referencing it in the JavaScript. The width and the

height indicated are just for example purposes. It should however be known that the

size of the canvas greatly affects how fast an image is drawn on the canvas. So if you

need to draw on a larger surface, one should use scalable vector graphics (SVG), which

usually deals with vector shapes [32]. But since we are dealing with image manipula-

tion, canvas is the better option between the two as it’s easy to implement and it does

not store every objects for every primitive it draws [17] .In order to get the graphics

displaying, JavaScript will be needed.

The element support for browsers is fairly good. However, since the semantic tag is

still new, it should be noted that full support across browsers would not happen in the

immediate future. A substitute for browsers that do not support this element such as

some of the IE versions can be supported by the use of the Silverlight library called

HTML5 canvas or use of excanvas which translates the API to Microsoft VML. Browsers

22

such as Firefox and Webkit have different judgements regarding the opening and clos-

ing tags and whether the canvas element should have separate closing tag between

the opening and closing tags or not. For browsers that do not support the canvas,

JavaScript can be used to display an error message. When it comes to using the can-

vas on the video element, the drawImage() function is used to achieve this.

In my application, you will be able to see how canvas can be used to manipulate video

pixels. This will allow us to see different possibilities the canvas is able to offer and

come up with awesome effects. The Chroma key example uses the canvas element

that allows us to see how video can be edited online.

4.1 Drawing using the canvas

As mentioned earlier, the canvas element is like a painting canvas that allows you to

draw or paint on it. This allows implementation of image processing through manipula-

tion of pixels. An example of a canvas script being accessed through the document

object model (DOM) is shown below.

 <script>

window.onload =function()

{

var canvas= document.getElemetById(“canvas”);

 context = canvas.getContext (“2d”);

 Context.fillRect=(10, 20, 200,100);

}

 </script>

From the script shown above, the window.onload is our onload handler which helps us

draw after the page is fully loaded. We then create a reference to the canvas using the

getElementById to get it from the document object model and create a 2 dimensional

context in order for us to draw. Once this is done, we use the 2D context and draw a

filled rectangle on the canvas. The first two numbers, 10 and 20 indicate the x and y

23

positions of the canvas whilst the last two 200 and 100 give the width and height in

pixels. To retrieve the context, the canvas uses the Document Object Method, getCon-

tex, which has only one parameter, the type of context. The result from this will be a

rectangle with black fill. This is shown in the figure below.

Figure 11. An example of a simple canvas

When colour is not specified, the result will always have a black fill. Whenever we need

to change the colour, we can use the fillStyle attribute and this is usually placed before

we call the context.fill rectangle. This can be done like this.

 var canvas= document.getElemetById(“canvas”);

 context = canvas.getContext (“2d”);

 context.fillStyle= (‘red’);

 Context.fillRect=(...

The resulting colour will be red instead of black. Other styles can also be used when-

ever we want to draw something. One advantage of the canvas over Scalable Vector

Graphics is that once you have created your canvas, you can save it as a bitmap

image. Other properties such as fillRect, strokeRect and clearRect can be used in place

of fillStyle.

Coordinates on canvas are always determined using pixels, the origin usually being at

point “0,0” and the pixel values usually increase as you move along the x and y-axes.

When you want to manipulate pixels on canvas, the getImageData is used [11]. It

24

usually represents the pixel data of the current state of the canvas context. Pixel data

is the pixel array containing the color components of each pixel of the image data hav-

ing the RGBA (red, green, blue and alpha) values each from 0 to 255. In this kind of

manipulation, there are three specific methods used to perform the operations required

[16]. These include: -

 createImageData – Takes two parameters (width and height) and creates trans-

parent black pixels.

 putDataImage - It takes three parameters: the imageData and the x and y coordi-

nates that are used when you need to modify pixels and draw them back on the

canvas context. For example: context.putImageData(imagedata, 0, 0);

 getImageData – Takes four arguments that allow you to take a block of pixels on a

specific region and examine them. For example: context.getImageData(x, y, width,

height);

A representation of the pixels would look something like this.

--------- Pixel I ------- --------- Pixel 2 ------- --------- Pixel 3 -------

R G B A R G B A R G B A

0 1 2 3 4 5 6 7 8 9 10 11

-------------------------------------- -Array Index- --

Table 5. Representation of pixels

 var canvas= document.getElemetById(“canvas”);

 context = canvas.getContext (“2d”);

 var imagedata=context.createImageData (canvas.width, canvas.height);

 var canvasPixelArray = imageData.data;

As you can see from our representation, we call the createImageData the method

takes two arguments, which include the width and height. These will then return the

CanvasPixelArray that contains the RGBA color values. After this, you can now manipu-

late the pixels as much as you like by looping through every pixel on the canvas and

changing its color values [16]. For example

25

for (var i=0;i< pixel.length;i+=4)

 {

var red =pixel[i]; // red channel

var green= pixel[i+1]; // green channel

var blue= pixel[i+2]; // blue channel

var alpha=pixel [i+3]; // alpha channel

}

After this you can invert the color using the color range from 0 to 255.

pixel[i] = 255 -red; // red channel

green= pixel[i+1] = 255 -green; // green channel

blue= pixel[i+2] = 255 -blue; // blue channel

The result from this is an inverted image, which uses the putImageData that allows the

placement of the image data in the same format as it was from the start. This then

updates the image to reflect the new pixel values. An example of this can be seen be-

low.

Figure 12. Pixel manipulation using the canvas

These video pixels above are manipulated using the ImageData object, which, as men-

tioned previously, consists of width, height and the data: which is the pixel array.

26

This process works in a way that allows the image data values representing each pixel

to be calculated. These pixels are seen to be located at any given coordinate (x, y)

whereby the component values are located. An example of how the pixel mapping pro-

cess works is illustrated below [14].

Figure 13. Mapping of a canvas using the drawImage() function

From the above picture, the image is first loaded then the drawImage method is called

which takes the three arguments; image, x and y coordinates for the 2d rendering con-

text. This is then placed inside the image load event [11]. This then creates the image

on the canvas.

4.2 Canvas browser support

Knowledge of browser support is useful as it helps a developer know whether his appli-

cation will be supported or not. All major browsers that support HTML5 support the

canvas element. Like the video tag, a fallback text can be used for browsers that do

not support canvas. It is however advised that, when adding a fallback, going dynamic

is a better option as sometimes, just adding text with the words “your browser doesn’t

support canvas” or whatever words one uses might fail and give you the text even if

27

the browser supports it. This is because sometimes even after matching your canvas, it

might not be accurate hence cause failure to load.

As mentioned before, the use of excanvas script can also be used for Internet explorer.

However,

Explorer Canvas initializes its own fauxcanvas interface automatically whenever
you include the excanvas.js script in your HTML page. But that doesn’t mean that
Internet Explorer is ready to use it immediately. In certain situations, you can
run into a race condition where the faux-canvas interface is almost, but not
quite, ready to use. The primary symptom of this state is that Internet Explorer
will complain, “Object doesn’t support this property or method” whenever you try
to do anything with a <canvas> element, such as get its drawing context [22].

The only solution for this would be to defer all manipulations until the onload event

fires. This is because if you have multimedia elements that need to be loaded, they will

first need to load then once they have finished loading, then the script will perform its

magic. The table below shows how the canvas is supported across browsers.

Table 6. Browser support for canvas

Blackberry IE Firefox Safari Opera Chrome IPhone Android

OS 6.0 9 3.0+ 3.0+ 10.0+ 3.0+ 1.0+ 1.0+

One of the ways we can check for canvas support dynamically can be done like.

 try {

document.createElement("canvas").getContext("2d");

document.getElementById("support").innerHTML =

"HTML5 Canvas is supported in your browser.";

}

 catch (e)

{

document.getElementById("support").innerHTML =

"HTML5 Canvas is not supported in your browser.";

 }

28

From the code above, we try to access the context after creation of our canvas. If the

browser does not support the canvas element, the fallback text will be displayed. It

should however be noted that if your browser supports the canvas element, it doesn’t

necessarily mean that it supports the text API thus that needs to be checked as well.

However, if you don’t want to write your own function for browser support, you can

use open sources or libraries such as modernizer that helps check this. With this, the

only thing you need to do is to include the script in the head section of your document.

This will run automatically without the need to initialize. Accessing of pixels using the

canvas element will therefore require you to be aware of the limitations involved which

will mostly only allow you to access your data in the same domain as the script. If for

some reason accessibility is limited, the need to run the application on a local or a re-

mote web server will be necessary.

For my project, I deliberately did not use the excanvas, as I needed to see if my test

users would be able to notice that canvas was not being supported in older versions of

Internet Explorer. I however encountered the problem whereby my Chroma key part of

the project wouldn’t work outside my local host.

4.3 Styling webpages

One of the powerful technologies responsible of changing the look of how links, text

and images as appear on a web page is known as Cascading Style Sheets (CSS). This

technology combined with HTML allows rendering of beautiful pages. Like HTML, it has

gone through a process of evolvement and has had different variations. It was around

the mid 1990’s when Cascading style sheet first was introduced to the World Wide

Web Consortium [23]. At that time, Html pages were styled within tag attributes.

Whereby, if you needed to make a heading text colour to blue, you would do some-

thing like this.

<h1 color = “blue”>This heading is blue</h1>

29

At first, this was seen to be fairly simple. However, problems arose when the need to

have the same look was needed for all the h1 tags. That would mean having to write

individual styles for each of these tags as the styling was tied to the content itself. That

would then leave us with a code that looked unpleasant to read. However, when Cas-

cading Style Sheets gained popularity, global formatting of styles through the provision

of a presentation layer that allows ease of modification, advanced options of design

such as robust margin and padding possibilities as well as media targeting was made

possible [18].

Regardless of the tremendous support from W3C, Internet Explorer still lacked full

support for style sheets. However, with the introduction of various variations such as

CSS1, CSS2, CSS2.1 and CSS3, versions of Internet Explorer 8+ have allowed full sup-

port of at least CSS2.1 syntax, meaning with time, they might be able to have full sup-

port of CSS3 which has added new capabilities and features as opposed to those de-

fined in previous variations, over preserving backward compatibility [23]. All the new

styles in CSS level 3 can now be applied in HTML5 elements although since it is also

still under development, it has similar complications as HTML5 therefore, fallback use

such as the modernizr: which is a JavaScript library that tests Html5 features can be

used [16]. This allows one to add a combination of styles. An example of how this can

be done is shown below.

/* Settings for browsers that support border-radius. */

.borderradius header {

border: thin #336699 solid;

border-radius: 25px;

}

/* Settings for browsers that don't support border-radius. */

.no-borderradius header {

border: 5px #336699 double;

}

Just having the code above it not enough. You will also need to have the no-js attrib-

ute to the root <html> element, which will generate a class of styles in the root [xx].

30

Types of style sheets

Including style sheets on a web page can be done in three different ways. These can

be either through an external CSS file, locally on a web page or within the HTML ele-

ment. Each of these ways can be used depending on how much content you need to

display. When linking the style sheet from an external file, it is referenced within the

head element as shown below.

 <link href=“style.css” rel=“stylesheet” type=“text/css”/>

With this kind of linking, you can reuse your style sheet as often as you want. A visual

example of how it is done is shown in figure below.

Figure 14. Including external styles on html pages

As seen from the figure above, we have a representation of how we are able to include

all the styles in one single file and then reference them in our HTML file thus saving us

time and eliminating the duplication process of the same code. This also becomes use-

ful when thinking about having to cater for different screen sizes and resolution. With

that, you need to create device specific styles for different device, though you can still

31

have them in one external file. A visual example of you can have multiple pages that

share the same look and feel as indicated previously can be seen below.

Figure 15. Output of pages styled using CSS

Alternatively, when adding styles locally on a page, those styles are seen to be only

specific to that page. Whereby if you need to have the same styles for a different

page, you would have to write those styles to that page. Adding styles locally on the

page is then seen to be necessary when you want to style a specific section that does

not appear on any other page, changing the look of certain elements or when you

have very little content to display that would make having an external file appear un-

necessary. For example having a under construction page that would only need a line

of text and maybe one image. An example of how you can specify styles locally on a

page is shown below

 <style type="text/css">

 #content { width: 350px; border: 2px solid #000; padding: 10px;}

 h1 { font: bold 12px Arial; color: blue;}

 p.justified { text-indent: 25px; text-align: justify; color: red; }

 p.left-aligned { text-align: left; color: green; }

</style>

32

Creating styles for a page using the inline method is whereby you specify the styles

within the HTML tag itself. As the inline style is specified within the tag itself, other

tags on the page will not be affected. An example of this is shown below.

 <p style=”padding: 0px;”>

In this example, if in case you had other styles either externally linked or embedded,

the inline style gets the highest priority and the other two are overridden. Since cas-

cading style sheets are just used for styling purposes in the project and are rather not

necessary for the functioning of our player, I will not go deeper in it as it’s a wide sub-

ject area. I will however mention about some of its syntax and the box model that is

somewhat necessary for the placement of our canvas elements.

Style sheet syntax

Cascading Style sheets are composed of selectors, properties and values. Each of the

syntax is necessary in order to have a fully functional style sheet. The example below

shows how its nomenclature is represented [24].

Figure 16. Anatomy of Cascading Style Sheets rule

Within the curly braces you can include as many declarations as you wish. And this can

be represented as follows.

h1 {color: red; margin: 0; padding: 5px;}

33

Moreover, you can specify multiple selectors for any set of declarations in a comma-

separated list:

h1, h2, h3, h4 { color: red; margin: 0; padding: 5px;}

When representing Cascading style sheets on a webpage, browsers follow a set of im-

plementation guideline principles in CSS such as the cascading, inheritance and the

specificity principle. With this principle, when having two identical rules, the one closest

to the targeted element wins. In the case where we have

 .p { color: red; }

 .p { color: blue; }

The second rule, with the color declaration as blue would take the effect. Nevertheless,

when we talk of the inheritance principle, the rules are based on nested tags like

shown below

body {font-family: Verdana, Arial, Helvetica, sans-serif;}

The above rule uses the body tag as a selector and also sets the font family for every

other text element on the page unless otherwise specified. As for the specificity princi-

ple, a class selector is seen as being more specific than that of a tag selector [23].

The box model

Cascading style sheets tend to treat everything as a box. This box represents the lay-

out and placement of elements. Each of these boxes is separated either by margins,

borders or padding’s. Its implementation is one of the confusing things about CSS as

34

its placement can be really frustrating. With properties such as float, one would have

to ensure the styles are consistent across browsers as this is one of the things can aid

in element placement frustration [23]. This model tells how the elements and its at-

tributes relate to each other. The arrangement of these boxes can be seen below.

Figure 17. The box model

The properties above have assigned units in terms of pixels, ems, a percentage or a

keyword inherit. The margin clears the area around the border while the padding

clears the area around the content of the border. The width and height of elements

greatly affects the spacing within the box model since you need to add the borders,

padding and margins in order for you to calculate the size of a specific element. Fire-

bug is one of the Internet add-on that allows a developer to see how the box is spaced

and what size each element is [23].

Whenever the values of the margin, borders and padding are not declared, the value is

always zero. As for the width, if none is declared and the element is either relatively or

statically positioned, the value is always 100 percent. However, if the width is speci-

fied, then the element is pushed outwards thus making the actual size of the box to

change. Floats and absolute positioning of elements on the other hand have no width

declared and therefore behave in a different way. The content of the floated and abso-

lute positioned element is therefore as big as the content unless a specific width is

declared.

35

5 Design and Implementation

This chapter starts the second part of this thesis which focuses on the software imple-

mented as the experimental part of the thesis project. The integral requirements of

this thesis stated that the final implementation would provide a custom video player

that would stream videos across browsers without the need of a third party plug-in. It

would also have the ability to provide an online web based editor that will use

JavaScript and canvas API to achieve the chroma key.

In order for the project to be easily extended, it was designed in a way that allowed

developers to add their own functions and improve the video player functionalities. The

project consisted of the following:

 HTML5 as our markup language,

 JavaScript API would be used to manipulate the player

 Canvas would be used to for graphics rendering and visual display.

 CSS would also be used for styling purposes.

The solution would allow users to play their videos in devices such as iphone and ipad

that do not support flash due to recent decisions from apple not to support flash. Al-

though the player was intended for use on the ipad and iphone, a flash fallback would

be used to allow other users who were interested in viewing the videos with other de-

vices that lacked browser support.

My main reason for choosing HTML5 video was because this would be an alternative

for any operating system that did not support flash such as that of iphone and also

because HTML5 allows far more customization on the fly than Flash ever could. It’s

accessible, it’s standards compliant, and above all it’s simple. The need to explore the

new features also allowed me to test individual features across browsers.

Implementation of the project would demonstrate how HTML5 is capable of providing a

means of displaying videos in specific formats across the web as well as the ability to

manipulate the video using JavaScript and the canvas element.

36

5.1 JavaScript API

In order for us to implement a custom player, it is necessary to understand how the

JavaScript API works since it is used extensively in the project. Main focus will be on

the controls method in the API as that is what will be mostly required to create the

player. This will help us in developing our player with custom controls. Further on, we

will be able to manipulate the video using canvas to create an online-based video edi-

tor.

JavaScript is known under many names; the formal standard name is ECMAScript and

proprietary variants include JavaScript, LiveScript and JScript [2]. It is known under

many names; the formal standard name is ECMAScript and proprietary variants include

JavaScript, LiveScript and JScript [2]. It is a vastly used programming language and

probably the most popular script language. It is used in web browsers for client-side

programming tasks to execute all kinds of tasks ranging from manipulation to the exe-

cution of an image analysis program. JavaScript overcomes the limitations of HTML

and CSS by providing full flexibility to change anything in the Document Object Model

(DOM) Programmatically. It has its own specified functions and should not be confused

with the DOM API [12], [21].

JavaScript interfaces with HTML through the DOM (Document Object Model). The DOM

is a hierarchical object structure that contains all the elements of a page with its attrib-

ute values and access functions. It represents the hierarchical structure of the HTML

document and allows JavaScript to gain access to the HTML objects [21]. An example

of how this works is shown below.

Figure 18. Document Object Model hierarchical structure representation

37

From the figure above, we can see that; an index.html file is first created then its

loaded to the browser where it encounters the JavaScript and the browser parses the

code and checks for any errors. If successful, JavaScript continues executing using the

DOM to examine the page, change it, receive events from it or ask the browser to re-

trieve other data from the web server.

Features of media Elements

There are some General IDL attributes specific to the media resources that are handy

when it comes to developing a custom control. These are: currentSrc, startTime, dur-

ation, volume, videowidth and videoHeight. Each of these features can be specified

through content attributes either directly on the <audio> or <video> element or the

selected source. More of these features will be seen in our application and how they

are used.

The Media API is responsible for providing such features and it also explains how these

features can be used. Control methods in the API help us know what functions are

available as well as what kind of events can be triggered. Some of the JavaScript con-

trol methods defined in media elements include:

 play()

 canPlayType()

 load()

 pause()

These methods when executed on the media element perform a certain function. For

instance, when the play() is executed, it sets @pause IDL attribute to false and starts

playback of the media resource, downloading and buffering data as required. On the

other hand, if the pause() is executed, the @pause IDL attribute is set to true and

stops playback of the media resource. Each method undergoes a certain sequence of

steps. The load() method when executed will cause all media resources to be sus-

pended while allowing the loading process to be restarted. Nevertheless, the canPlay-

38

Type() will loop through the MIME types to see whether the browser can playback that

MIME type.

The canPlayType() method takes a string as a parameter and is capable of returning

three possible values, which are: -

 Empty string – Occurs when the browser cannot decode the media resource

 Maybe – This is when the browser can or cannot render the media resource.

 Probably – When the browser can decode and render the media resource in a

media element because this implies knowledge about whether the codecs in

a container format are supported by the browser.

Browsers are encouraged to only return “probably” for a MIME type that includes the

codec’s parameter [21]. I will not go into details of how each of the control methods

work but I will instead discuss more of how you can use the API to create the custom

player later in the chapter.

5.2 Implementing the video player

My application involved implementation of a video player that would have a consistent

look and feel across all the browsers and consists of interface elements that aid in

video control. The implementation would demonstrate the feasibility of the chosen ap-

proach and the fundamental idea underlying multimedia usage across browsers. This

would then allow video to be manipulated using JavaScript and cascading style sheets

to achieve a more native player to be treated as an alternative to flash or silverlight.

Tools and Software

Development of the project was mainly done on Macintosh for the fact that my day-to-

day working environment was based on it. Other tools used for development included

a text editor, video converters, which I did not use but could have been used included

converters such as firefogg that converts .mp4, .mov or .flv format into .ogg and

WedM; handbrake that allows conversions of .mov, .mp4 or h.264 and Riva FLV Con-

verter would allow conversion to .flv format. Other converters such as Adobe encoder

39

would require payment of the license or allow trial usage. Different browsers would

also be necessary for video support test purposes. Other requirements included instal-

lation of different browsers for testing purposes as well as a web server to host the

project.

Programming Languages

Having studied a variety of languages, I was now able to extend my knowledge by

using the latest technologies of which I had basic understanding. This would help me

extend my basic Html knowledge to the new HTML5 that has new features as well as

extend my JavaScript knowledge as I had done very little with JavaScript in my previ-

ous courses. The project development revolved around the HTML, HTML5 Video and

canvas, JavaScript and styling using CSS and CSS3. The use of open source and per-

missive license libraries was also considered to avoid inventing the wheel twice as this

would help in speeding up the development process as well as minimize bugs in the

code.

Implementation

The first step is to have our folders ready and our index.html file. I created two fold-

ers. One folder was for the styles and another one for the scripts. The media resources

were put in the same location as the index.html as I had problems loading the videos.

I then downloaded the video files in three different formats: webM, .ogg and .mp4

format. Each of these formats was needed so that the browsers would be able to se-

lect a suitable format to play. A .flv format was used as a flashback however my .flv

file was not the same video as the rest since I just needed it for test purposes. Once I

had all my materials in place, I was able to begin the actual coding process.

First thing I did was to get my index.html file ready and included the necessary files

that were required for the project development. In addition to the index file, I created

an example file, which I used to create a basic video player using pure html5 elements

and tested the video across different browsers to get an idea of how this video would

render. A skeleton code was then created. The figure below shows the results of the

basic video player that used the video tag and attributes to display it.

40

Figure 19. Video Support across browsers

As shown from the figure above, the basic player has different controls depending on

the browser. Cascading style sheets are then seen to be handy when thinking of hav-

ing a consistent look and feel. One this was done, I was now able to start with the

main part of the project. I then opened my blank JavaScript file and defined the global

variables and functions, which would be called when the page was fully loaded. An

example of how these variables were created is shown below.

 var html5VideoPlayer = {

 videoTypes : ['mp4', 'ogg', 'webm'],

 defaultVideo :['oceans-clip', ['mp4', 'ogg', 'webm']],

 mono : false,

 volume : 1.0,

 muted : false,

After the variables are defined, we are then able to initialize the player. For this to

happen, we will create a container to hold the video, the video controls and the canvas

41

element. We will then give a class for the container, as this will be useful when styling.

The script below describes this.

 init: function(params)

{

 var videoContainer = document.createElement("DIV");

 videoContainer.className = 'videoContainer';

 this.videoContainer = videoContainer;

Once we have created those elements, we would then need to check what video for-

mats are supported. And for this to happen, the script loops through each video for-

mats to check whether a specific browser can play a certain type. The video object

would then provide a method called the canPlayType, which will determine what video

format will be played. As previously mentioned, this method returns one of the three

different values: the empty string, the “maybe” or “probably”. The figure below shows

how this works.

Figure 20. Representation of canPlayType control method

Sometimes the canPlayType event does not fire at once or at least when you expect it

to. So another alternative for would be to listen to the loadstart event which is nor-

mally dispatched when the browser begins searching for media data as part of the re-

source. When the browser has paused fetching for media data and the entire resource

has not been fully downloaded, browsers such as Firefox may fire the suspend event.

This helps us to get the events fired from loadstart to loaded data then to the progress

42

after which it checks the canPlayType and when successful, it plays the video. Other

events such as @error are dispatched when an error occurs while media is being

fetched. An example of how the canPlayType method is called is shown below.

 for(var i=0; i < this.videoTypes.length; i++){

 if(videoObject.canPlayType){

 if(videoObject.canPlayType("video/"+this.videoTypes[i]) == 'maybe' ||

 videoObject.canPlayType("video/"+this.videoTypes[i]) == 'perhaps')

 {

 this.videoTypesCanPlay.push(i) …

Once everything is successful, the video will need to have controls. For this, a video

controls container was created to hold all the controls. Once this was in place, different

controls such as play, mute, pause, volume and duration were created. Event handlers

such as “ended” would be called whenever the video ended but not when it was

paused. A reference to the video object which uses conditional statements would also

be created whereby, if say the play button was pressed, the video would play; alterna-

tively when the pause button was pressed, the video object pause method would be

called hence the video would pause. As I progressed, I was also able to style the con-

trols using CSS. The code below shows an example of how the play button control is

created and appended to the control.

 var playButton = document.createElement("DIV");

 playButton.appendChild(document.createTextNode("Play"));

 playButton.addEventListener('click',this.play,false);

 this.playButton = playButton;

 this.buttonsPlay = playButton;

 this.videoControlsContainer.appendChild(playButton);

43

After this, we then need to initialize the start playback function. This allows events to

be fired whether the video is paused or not. From our example below, if the videoOb-

ject is say paused then we need to return the loading status back to the start of the

video.

 startPlayBack: function()

 {

 if(!this.videoObject.readyState) return false;

if(html5VideoPlayer.videoObject.paused) return false

if(this.videoObject.readyState <3 && !this.videoObject.paused)

{ this.bufferUU = true;

}

 if(this.videoObject.readyState >= 3 && this.bufferUU)

{

 this.bufferUU = false;

this.videoObject.play();

}

if(this.videoObject.ended)

{

 (html5VideoPlayer.videoLoop) ? html5VideoPlayer.videoObject.play()

 : clearInterval(html5VideoPlayer.startPlayBackInterval);

 }

We have to keep polling the video until it is ready, otherwise we can not determine the

duration, and hence can't create the seek control. When our video has completed its

buffer or download, we are then able to see how much the video has loaded. This al-

lows us to catch the ready State event. Once the video is fetched or before it’s pro-

cessed, our progress event allows us to know which event is triggered. When this

event is dispatched, we can then update our search control. Our duration indicator will

allow us to know the how much of our media resource has been downloaded. The pic-

ture below shows the result of our video player.

44

Figure 21. Custom video player

Once the video was working, the next step was to process the video in real time in

order to add effects. This was done through manipulating the video’s pixels and alter-

ing them to achieve a desired effect. The canvas element was then used, as it was the

place where we would draw our output video. We’ll start by creating a global variable

named addEffects. This variable is going to hold a function that can take data from the

video, and apply a filter to it. That is, depending on which effect we want, the addEf-

fects variable will hold a function that knows how to process the video data and make

it black and white, or mono, or inverted. An example code of our canvas object with

its class, width and height defined is shown below

 var canvasObject = document.createElement("CANVAS");

 canvasObject.className="manipulate";

 canvasObject.style.width = "720";

 videoObject.style.height = "400";

 this.canvasObject = canvasObject;

45

To begin the manipulation process, the use of the canvas draw pixel requires the direct

access to the pixel buffer. With this, the canvas bounds pixel drawing to JavaScript.

The first step is to retrieve the imageData object from the canvas as shown below

canvasImage = this.canvasObject.getContext("2d");

var imageData = canvasImage.getImageData(0, 0, this.videoWidth, this.videoHeight);

var pixelData = imageData.data;

When it comes to the actual manipulation of our video pixels, what actually happens is

that the video player decodes and plays the video behind the scenes. It is then copied

frame-by-frame into hidden buffer canvas and then processed. We then go over the

buffer pixel by pixel, passing each pixel to our effects function for processing by ma-

nipulating the RGB values in each pixel. This is shown below

 for (var i = 0, n = pixelData.length; i < n; i += 4)

After the frame is processed it is copied into another display canvas to be viewed. An

example of how this works is shown in the figure below.

Figure 22. Processing color to canvas

46

From the figure above, the format of the pixel array returned by the call consists of

four bytes of data, which as mentioned above are the RGBA channels. Each color is an

integer between 0 and 255. These pixels are processed from left to right, top to bot-

tom and start at index 0. In order to have the canvas element positioned properly, we

have to position the video and the canvas on top of each other. The video element will

be positioned at the bottom; the buffer on top of the video and the canvas element will

be positioned on top of the buffer. To have this, we will use cascading style sheets.

The code below shows how this is done.

 .videoContainer .videoObject { position : relative; …

 .videoContainer video { position: absolute; left: 0px; top: 0px;}

As you can see above, the video container is positioned relative to the element it in.

and then from below the video canvas is positioned absolute with respect to the video-

Container. So by placing the canvas element 0px from the top and 0px from the left,

they are exactly in the same position as the video and the video container.

 . videoContainer .manipulate { position: absolute; left: 0px; top: 0px;}

When it comes to the actual implementation of the video processing, we have to first

consider the video element, the buffer canvas and the canvas element, which will dis-

play our final output. Each of these will be placed on top of each other as previously

explained. To process the video, we will use the play event, which is called as soon as

the video starts.

Implementation of the buffer would need us to take the video frame and copy it to the

buffer canvas and then process the data in the frame. The drawImage() method will

then take an image and draw it onto the canvas at position x,y for a given width and

47

height. It then gets the video element by specifying our clip as the source and then the

drawImage() gets one frame as the imageData. This is shown below.

 this.canvasObject.getContext("2d").drawImage

 (document.getElementsByTagName("VIDEO")[0],0,0,

 html5VideoPlayer.videoWidth,html5VideoPlayer.videoHeight);

 this.addEffects();

We then grab the imageData from the canvas context and store it in a variable frame

so that we can process it. By defining the width and height, we show that we want the

all the imageData in the canvas. An example of how this has been done is shown be-

low. [11]

var imageData = canvasImage.getImageData(0, 0, this.videoWidth, this.videoHeight);

Once we have this in place, we are now ready to process the buffer. For this to happen

we will loop through the every single pixel in the frame data and pull out the RGB

values stored in each pixel and then we call the addEffects function. This code explains

how this is achieved.

 var imageData = canvasImage.getImageData(0, 0, this.videoWidth, this.videoHeight);

 var pixelData = imageData.data;

First we find out the size of the frame.data, which is four times larger than the size of

the canvas. Each pixel has red, blue, green and alpha values and this allows us to loop

over the data and get the values for each pixel array. After that, we can grab red from

the first position, green from second and blue from the third. An example of achieving

48

this whilst manipulating the color range to achieve a greyscale effect can be seen from

the code below.

 for (var i = 0, n = pixelData.length; i < n; i += 4)

{

if(this.canvasGrayscale)

{

 var grayscale = Math.floor((pixelData[i]+pixelData[i+1]+pixelData[i+2])/3);

 };

pixelData[i] = (this.canvasGrayscale) ? grayscale : pixelData[i]; // R

pixelData[i+1] = (this.canvasGrayscale) ? grayscale : pixelData[i+1]; // G

pixelData[i+2] = (this.canvasGrayscale) ? grayscale : pixelData[i+2]; // B

After this, we call the addEffects function and pass the position of the pixel, the RGB

values and the frame.data array. The addEffects function then updates the frame.data

array with new pixel values and have them processed according to functioned assigned

to the addEffects. Once this is done, we have the frame.data processed so we use the

context putImageData method to put the data into the display canvas. This method

takes the data in the frame and writes it onto the canvas at the specified position [11].

This is shown below.

canvasImage.putImageData(imageData, 0, 0);

Our output will then look something like this.

Figure 23. Greyscale effect

49

5.3 Video editing using the Chroma key

Online video editing is a relatively new technology. Currently, video editors use soft-

ware such as Adobe flash and HTML5. However, since HTML5 is still new, not so many

people are using it. I decided to create an online-based video editor focusing on the

chroma key by using JavaScript and canvas to manipulate my video. My main aim for

creating this was because there are few video editors available online and also because

we lack web-based video editors that allow users of novice skill level to demonstrate

their ideas visually through a multimedia composition.

Another term for the chroma key is blue screen. It is based on luminance key and

works in a way that selects all the green pixels in the video and replaces them with the

desired image. While previously adding effects to our video, we can use the same prin-

ciple but this time we only pick the green pixels so when we run the effect and click on

the image, the video background changes its background from green and adapts the

image as a background. The chroma key creates color on just one key channel [26].

For this part of the project, I decided to use a separate video. I was able to download

a video with a green background from YouTube so that I would be able to pick the

green pixels and get to see a clear difference. A HTML5 video editor was then created

to test the hypothesis that using an editor without a plug-in is possible.

To begin creating this, I had to research on the different types of online-based editors

to try and understand how the process works. I also had to look into what codecs

would be suitable for carrying out this part of the project. For my project to be a suc-

cess I had to get a video with a green background. This would allow me to replace all

the green pixels with another image easily. Once I had my video, I needed to create

two canvases. One canvas was to be used for the output while the other was used to

display the current frame of the original video.

The Diagram below shows the results of the Chroma key. The image below shows the

video, the actual image and the canvas image on the right. With our Chroma key, you

are able to select any color from our video clip and remove it from the image and this

creates a hole from where the color used to be which will then be replaced with our

canvas image.

50

Figure 24. Chroma key before editing

The next image shows the edited video using the Chroma key effect. Our new image is

played behind the image thus making it visible through this hole. An example of this is

seen on the television whereby the weatherman is giving his nightly news. He or she is

usually standing in front of a green wall and point at different parts of the country on a

virtual map behind them. The video is totally replaced with the canvas image that was

created and not the actual image. For this to take place. I had to click on the created

canvas in order to achieve the results below.

Figure 25. Chroma Key output

My chroma key example would only play on the local host due to some JavaScript se-

curity concerns. Once everything was ready, the video was styled using styles.

51

6 Testing and Results

The test hypothesis is that our HTML5 video player and editor will be a more satisfying

product compared to other players that depend on third party plug-ins to effectively

communicate ideas visually.

The main reasons for carrying out this test included establishing and identifying poten-

tial design concerns as well as user performance. This would allow effective collection

of data and allow me to address any issue that arose. Its objectives were to determine

design conflicts and usability problem areas with potential sources of errors such as

browser support failure as well as provision of user satisfaction.

The main areas that were taken into consideration include:

� Installation of third party plug-ins if needed

� Playing video on different browsers to check browser compatibility

� Differentiation between html video player and other video players

� Support on various devices, in particular, ipad

The method used was expert evaluation according to Nielsen guidelines for conducting

heuristic evaluation and the participants were able to use the following browsers:

• Mozilla Firefox

• Internet Explorer

• Google Chrome

• Opera

• Apple Safari

In this particular test, there were two participants who were required to fill out a com-

parison form based on the two provided players. The tables 7, 8 and 9 below shows

the testing environments used by the participants. Both of the participants tested on all

three mentioned platforms to try out the demo.

52

Table 7 below displays the specifications of Dell platform that was used in this test

Table 7. Specifications for Intel Dell

Computer Platforms (Intel) Dell Pentium 4 CPU, 1.00GB RAM

Screen resolution: 1024 X 768

Operating system: Windows XP,

Connection speed: 100.0Mbps

Table 8 below displays the specifications of Macintosh platform that was used in this

test

Table 8. Specifications for Mac book pro

Computer Platforms (Intel core) Mac book Pro, 2 GB RAM

Screen resolution: 1024 X 800

Operating system: Mac OSX Tiger

Connection speed: 100.0Mbps

Table 9 below displays the specifications of ipad

Table 9. Specifications for Ipad 2

Platform Apple Ipad 2, WI-FI + 3G

Screen resolution: 9.7 inch LED display, 1024 x 768

Operating system: Mac OSX v.10.5.8

Connection speed: 100.0Mbps

Two tests were conducted during the course of this experiment. The orders of the

tests were assigned to each person randomly. The two tests contained identical ma-

terial and required them to perform certain tasks.

53

6.1 Methodology

The method used was expert evaluation according to Nielsen guidelines for conducting

heuristic evaluation. Each participant was first required to fill out the form that was

given to the asking some general questions before proceeding with the usability test.

The test then began by separating the participants individually. Participant A, started

by testing a basic player then went on how the actual demo player functions in com-

parison to plug-in based players such as YouTube across browsers then proceeded on

testing the demo on different platforms. He had to change monitors for this to work.

Since everything was already setup, this saved time and he was therefore able to try

the demo on all the three platforms. While he performed these tasks, I was able to

observe his facial reactions and write down some notes on what I observed.

Once he was done with the first part of the task, he moved to the second one, which

was to try out real-time editing online. For this task, I had free trial of adobe premier,

as I could not afford purchasing one for my demo application. I had a sample video for

which he would use to edit. The task instructed him to try video manipulation. He was

either to add some text on the video or change color. He tried both and once he was

done with the testing. I then interviewed him and asked oral questions as to what he

thought about the tasks in general. When I was done with the questions, I allowed him

to give suggestions to what he thought he would have loved to add or remove in my

demo application. After we were done, the same process was done to participant B

and results were recorded.

Later in the day, I was able to bring together both participants and asked them about

their overall experience and then showed them how the tasks were to be done. I was

also able to tell them what I had concluded and the results that I was able to collect

from this test. It should however be noted that the test results are not fully reliable as

there were some technical problems with the demo application at the time of the test.

All in all, evaluation took about half an hour for each participant and was carried out

two times with one person per test. Both participants did not have knowledge of the

new features of html5 video even though one was familiar with the Internet.

54

6.2 Results

The results in this report were formulated based on notes taken and observation while

executing the test and interviews taken after the test. The table below shows a sum-

mary of the problems encountered by the participants.

Table 10. Consistency problem

Consistency Suggestions

It was found that a basic

html5 player lacked con-

sistency of the look and

feel as the controls dif-

fered from browser to

browser.

It was suggested that the use of Cascading style sheets

would help in creating a consistent look similar to the

one provided to the actual demo application.

It was also found that the

styled custom player was

consistent across all

browsers.

It was suggested that styles should always be used as

they help improve the look and feel of the components.

Table 11. Match between system and real world conventions

Problem Suggestions

The controls bar should

disappear when the

mouse is placed over it.

It was suggested that the demo application should follow

real-world conventions, making information appear in a

natural and logical order.

Lack of upload and down-

load function or drag and

drop function

It was suggested that it would be a good idea to have

an upload function in order to be able to edit other

videos of users’ choice and download once they finished

editing them

55

Table 12. Visibility of Status

Browser Support Suggestions

It was found that html5

video is not supported in

older browser versions.

And flash is not sup-

ported on ipad

It was suggested that a download link to be provided for

users who wanted to view the video but lacked flash It

and that publishers should at least publish videos in two

formats. Flash and HTML video. It was also suggested

that a message indicating lack of support would be help-

ful to users who lacked support.

It was also found that

some of the features like

the progress bar was

visible on other browsers

but not on others.

It was suggested that maybe the use of a script or an

open source library would be useful to fix this as that

would allow consistency as well as help the users see

how the video playback is progressing.

The first form that was given to the participants was used to establish their level of

competency when using computers. The information collected was then used to de-

termine whether the participant’s knowledge had any effect with the amount of time it

took for them to complete the tasks. From the data collected, it was evident that the

more interaction a participant had with computers on a day-to-day basis the faster it

was for him or her to completion the given tasks. This becomes relevant when looking

at how users of little or no experience can pick up the software and begin working and

the simplicity of our video editor compared to the other editors, which require training.

When it came to the editing part of the video, the data extracted from this determined

the problems that arose whilst manipulating content. Later on, the participants were

asked to fill out another form and give their feedback. All these data was collected in a

more direct approach to finding what editor that the participants preferred. The par-

ticipants were then asked to indicate their preferred choice of editor, between the

demo application and the adobe premier in terms of functionality and overall ease of

use.

56

It should be noted that changing the order in which the participants took the tests was

less biased and prevalent. In addition, the random order of which test the participants

received and the results from the experiment provided me with neutral information.

The table below shows a summary of results.

Table 13. Summary of results.

Task Result

Overall performance It was easy for the participants to manipulate the demo

video. The Adobe premier was not easy to use and this took

more time for the participants.

Functionality The custom player was seen to be easy and only consisted of

effects. It was suggested that it would be a good idea to

develop the player with more features.

57

7 Conclusion

During the course of the research of this thesis, it was discovered that HTML5 is also

much more stable than Flash and may be a rather large security risk (Jobs, 2010).

Flash is the number one reason for Macs crashing and Symantec gave Adobe Flash one

of the worst security records in 2009 (Jobs, 2010). This may mean that using HTML5

not only provides a more stable platform for web technologies to run off of, but also

lessens the risk that users face when surfing the web. The incompatible codec support

currently makes it harder than using plug-ins to simply embed video in a page and

have it work cross-browser. Regardless of this, I was able to achieve the goal that was

set.

At first, this project was a quite demanding for me, as I was not proficient in JavaScript

and for this, I had to do a lot of reading. I, however, managed to create a fully func-

tion-able player that is supported in all the latest browsers. I can now say that I have

learnt how to program using JavaScript though I would not say that I am a profes-

sional but I am sure I will get there someday. I have also come to learn that one can

create amazing applications using JavaScript, canvas and cascading stylesheets. In

future, I plan to continue developing the project further and have newer functionali-

ties.

This thesis has also allowed me to learn how to use open sources and how they can

aid in workload reduction. Additionally, I have been able to appreciate them as they

help one get an understanding of what happens within a specific script and give you a

lead on where to start if you want to develop a certain application. I can now say that

my application can be used as foundation basis for those who intend to develop the

application further. I have been able to achieve the goal set for this thesis, which was

to provide a functional custom player that would work across the current web browsers

and allow support of newer devices that have lacked support for third party plug-in

such as flash.

The project was interesting and I have enjoyed working on it. I have spent a lot of

time working on it but I believe it is best to try get to get a thorough understanding of

what one is actually doing.

58

References

1. CERN. The Website of the world’s first-ever web server, 2008. Available at:
<http://info.cern.ch/>[Accessed: 13 May 2011].

2. Crockford, D. Douglas Crockford's Wrrrld Wide Web RFC 2396, 2001.
Available at: < http://www.crockford.com/javascript/javascript.html >
[Accessed: 14 September 2011].

3. David, M. 2010. HTML5: designing rich Internet applications. Amsterdam, Focal Press.

4. Dave Ragget, Ragget, Jenny Lam, Ian Alexander and Michael. 4, Addison Wesley
Longman 1998. Available at: <http://www.w3.org/People/4/book4/ch02.html>
[Accessed: 16 February 2011].

5. Dave Ragget, Arnauld Le Hors, and Ian Jacobs, eds. HTML+ (Hypertext markup
format), working draft, HTML+ Discussion Document 8 November 1993
Available at:<http://www.w3.org/MarkUp/5/5_1.html>
[Accessed: 16 February 2011].

6. Dave Ragget, HyperText Markup Language Specification Version 3.0, Internet Draft
<draft-ietf-html-specv3-00.txt>,expired 28 September 1995. Available at:
<http://www.w3.org/MarkUp/html3/CoverPage>. [Accessed: 16 February 2011].

7. Dave Ragget. HTML 3.2 Reference Specification, W3C Recommendation, 1997.
Available at:<http://www.w3.org/TR/REC-7>.[Accessed: 16 February 2011].

8. Dave Ragget, Arnauld Le Hors, and Ian Jacobs, eds. HTML 4.0 Specification, W3C
Recommendation, 24 April 1998.
Available at: <http://www.w3.org/TR/1998/REC-html40-19980424>.
[Accessed: 16 February 2011].

9. Dave Ragget, Arnauld Le Hors, and Ian Jacobs, eds. HTML 4.0 Specification, W3C
Recommendation, 18 December 1997.
Available at: < http://www.w3.org/TR/REC-html40-971218/>.
[Accessed: 16 February 2011].

10. Dave Ragget, Arnauld Le Hors, and Ian Jacobs, eds. HTML 4.01 Specification, W3C
Recommendation, 24 December 1999.
Available at: < http://www.w3.org/TR/1999/REC-html401-19991224/>.
[Accessed: 16 February 2011].

11. Freeman, E and Robson, E. (2011). Head First HTML5 Programming. CA, O'Reilly.

12. Guisset, F. The DOM and JavaScript, Mozilla Developer 2005. Available at:
<https://developer.mozilla.org/en/The_DOM_and_JavaScript>
[Accessed: 23 September 2011].

59

13. Keith, J. (2005). DOM scripting: web design with JavaScript and the Document Object
Model. Berkeley, CA, Friendsof.

14. Lawson, B., & Sharp, R. (2011). Introducing HTML5. Berkeley, CA, New Riders.

15. Lennon, J. (2010). Create Modern Web sites using HTML5 and CSS3. [online]
IBM cooperation. < http://www.ibm.com/developerworks/web/tutorials/wa-html5/wa-
html5-pdf.pdf> [Accessed: 16 February 2011].

16. MacDonald, M. (2011). HTML5 The missing manual, CA, O’Reilly.

17. Lubbers P, Albers B, Salim F. (2010). Pro HTML5 Programming. Berkeley, United States
of America: Springer Science+Business Media: Paul Manning.

18. Lowery J, Fletcher M. (2010). HTML5 24 Hour Training. United States of America:
Wiley publishing Inc

19. Paul, K. (June 16, 2009). HTML 5: Could it kill Flash or Silverlight? | Developer World.
InfoWorld. Available at:
<http://www.infoworld.com/d/application-development/HTML5-could-it-kill-flash-and-
silverlight-291> [Accessed:6 October 2011].

20. Paul, R. (2009). HTML 5 and Web video: freeing rich media from plugin prison.
Available at:<http://arstechnica.com/open-source/news/2009/05/google-dailymotion-
endorse-html-5-and-standards-based-video.ars> [Accessed:12 May 2011].

21. Pfeiffer S. (2010). The Definitive Guide to HTML5 Video, United States of America:
Springer Science+Business Media: Paul Manning.

22. Pilgrim, M. (2010). HTML5: up and running. Sebastopol, CA, O'Reilly.

23. Powers, D. (2009). Getting Started with CSS, CA, Friendsof.

24. Sanders, B. (2011). Smashing HTML5, John Wiley and Sons.

25. T. Berners-Lee, D. Connolly, Hypertext Markup Language - 2.0, RFC 1866, November
1995. Available at: <http://www.ietf.org/rfc/25.txt>
[Accessed: 16 February 2011].

26. Bradford, S, The Blue/ Green Screen, 1995 - 1998. Available at:
<http://www.seanet.com/~bradford/blue_green_screen_visual_effects_1.html>

27. Tim Bray, Jean Paoli and C. M. Sperberg-McQueen, editors. The Annotated XML 1.0
Specification. 1998, O’Reilly Media, Inc., 1998. Available at:
< http://www.xml.com/axml/testaxml.htm>[Accessed: 10 February 2011].

28. WHATWG. WHATWG Wiki - FAQ., 2010.
Available at: <http://wiki.whatwg.org/wiki/FAQ> [Accessed: 16 May 2011].

29. Dave Ragget. HTML5 Tables - FAQ., 1996.

60

Available at: < http://ietf.org/rfc/rfc1942> [Accessed: 16 February 2011].

30. François Yergeau, Gavin Thomas Nicol, Glenn Adams and Martin J. Dü rst. IETF.

Internationalization of the Hypertext Markup Language, 1997. Available at:
<http://ietf.org/rfc/rfc1942> [Accessed: 16 February 2011].

31. Ben Adida, Mark Birbeck, Steven Pemberton. Support for RDF in HTML4 and HTML5,
2011. Available at: < http://dev.w3.org/html5/rdfa/> [Accessed: 28 April 2011].

32. Erik Dahlström, et al., Scalable Vector Graphics (SVG) 1.1 (Second Edition), 2011.
Available at: < http://dev.w3.org/SVG/profiles/1.1F2/publish/> [Accessed: 28 April
2011].

33. Neuberg, B, 2009. Introduction to HTML5. [video online]Available at:
<http://www.youtube.com/watch?v=siOHh0uzcuY> [Accessed: 2 April 2011].

34. Hickson, I, & Hyatt, D, 2010. HTML5, A vocabulary and associated APIs for HTML and
XHTML, W3C Working Draft 4 March 2010. Available at:
<http://www.w3.org/TR/html5/> [Accessed: 10 March 2011].

35. Hammond, J, 2010. Does HTML5 Herald the end of RIA Plug-Ins? Not Really. Available
at:
<https://www.adobe.com/content/dam/Adobe/en/industryinsights/solutions/pdfs/html
_5_ria_plug_ins.pdf > [Accessed: 10 March 2011].

36. Software Product Labs Blog, 2011. The benefits of HTML5 are growing more apparent.
[online]Available at: < http://blog.ness.com/spl/bid/70821/The-Benefits-of-HTML5-Are-
Growing-More-Apparent> [Accessed: 2 December 2011].

37. Schmelzer,R, 2009. The Dissolution of the Rich Internet Application (RIA) Market.
[online]Available at: < http://www.zapthink.com/2009/09/03/the-dissolution-of-the-
rich-internet-application-ria-market/> [Accessed: 27 March 2011].

38. Ottoson,S, 2011. Analyse of Interactive Graphics in HTML5 from view of practical
application Available at:
<http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/huo
vinen_ottosson_stefan_11029.pdf/> [Accessed: 27 November 2011].

39. Granbäck,C, 2009. Rich Internet Applicarions (RIAs).Available at:
<http://publications.lib.chalmers.se/records/fulltext/116839.pdf>
[Accessed: 27 November 2011].

Appendix 1

1 (3)

Appendix

Section A – General Test Questions

Please fill out the pre-survey questions below:

1. Please indicate your gender:

o M

o F

2. On average, what is your daily hourly use of computer or computer related

tasks?

o 1hr or less

o 1-1.9hrs

o 2-3.9hrs

o 4-5.9hrs

o 6hrs+

3. Do you consider emerging web technologies as a personal interest or hobby?

o Y

o N

4. Please list any video editing software you may have used in the past or cur-

rently use (Premiere, Final Cut, etc., or None)

5. Please list any computer graphic related programs you may have used in the

past or currently use (Photoshop, 3D max, AutoCAD, etc., or None):

6. What is your primary browser

o Internet Explorer
o Apple Safari
o Opera
o Google Chrome
o Mozilla Firefox

7. What is your computer operating system

o Mac OSX
o Windows
o Linux

Appendix 1

2 (3)

Section B - Test Tasks

1. You will find that two versions of the player are opened in separate tabs.

 Compare and State their differences and similarities.

 Play the video and test both players in Mozilla Firefox, Google chrome, Internet

Explorer 6+, Opera and Safari. State your findings.

2. Close the video in the first tab. You now have the second video still opened. Open

Adobe premier. Change the effects of our custom player and play with it to achieve

different effects. Click where appropriate. When done, use Adobe Premier editor to

reproduce similar effects you got from the custom player. The necessary files are

already provided for you. You may refer to the “Custom player” as many times as

you would like while editing.

3. Fill out the survey below in reference to the Adobe premier Editor: On a scale of 1

[strong disagree] - 3 [strongly agree])

 Adobe premier was intuitive and easy to learn. 1 2 3 4

 Had a layout that made it difficult to complete some tasks. 1 2 3 4

4. Please indicate which editor was better in the given situation by crossing the editor.

 Overall functionality [] Adobe premier [] Custom Edior

 Overall ease of use [] Adobe premier [] Custom Edior

 You have completed the testing of our custom player. Thank you!

Appendix 1

3 (3)

Section C – Questionnaire after exercise

1. Did you find using the tools as learning aids easy or difficult?

o Very easy
o Moderately easy
o Moderately difficult
o Very difficult

2. Please describe any difficulties that you experienced

...

...

3. Did you have any problems in the tools on certain platforms or in certain locations?

o No problems
o Minor problems
o Major problems.

4 What were the problems that you experienced, if any?

...

...

5. Do you have any suggestions as to how the tools could be made more accessible?

...

..

6. Do you have any other comments, criticisms or suggestions relating to the usability -

ease of use - of the tools?

...

..

Appendix 1

2 (2)

Source Code

var html5VideoPlayer =

{

videoTypes : ['mp4', 'ogg', 'webm'],

videoTypesCanPlay : [],

defaultVideo : ['bbb_trailer', ['mp4', 'ogg', 'webm']],

videoWidth : false,

videoHeight : false,

videoDuration : false,

videoLoop : true,

bufferUU : false,

canvasOpacity : 255,

canvasInvert : false,

canvasGrayscale : false,

mono : false,

volume : 1.0,

muted : false,

controlsFocus : false,

controlsHide : true,

init: function(params)

{

/* Create container for video and controls */

var videoContainer = document.createElement("DIV");

 videoContainer.className = 'videoContainer';

 this.videoContainer = videoContainer;

 /* Create video element */

var videoObject = document.createElement("video");

 this.videoObject = videoObject;

/* Create canvas element */

Appendix 2

2 (9)

var canvasObject = document.createElement("CANVAS");

 canvasObject.className="manipulate";

 this.canvasObject = canvasObject;

 /* Check supported formats */

for(var i=0; i < this.videoTypes.length; i++)

 {

if(videoObject.canPlayType)

 {

 if(videoObject.canPlayType("video/"+this.videoTypes[i]) == 'maybe' ||

 videoObject.canPlayType("video/"+this.videoTypes[i]) == 'perhaps')

 {

 this.videoTypesCanPlay.push(i);

 } }

 }

/* Browser doesn't support any formats */

 if(this.videoTypesCanPlay.length <= 0) return false;

 videoObject.className = 'videoObject';

 videoOject.setAttribute("src",this.defaultVideo[0]+"."

+this.defaultVideo[1][this.videoTypesCanPlay[0]]);

videoObject.setAttribute("autobuffer", "true");

videoContainer.appendChild(videoObject);

videoContainer.appendChild(canvasObject);

document.body.appendChild(videoContainer);

 /* Set up video width and height */

 this.initControlsInterval = setInterval('html5VideoPlayer.initControls()', 100);

},

Appendix 2

3 (9)

initControls: function()

{

if(!this.videoObject.readyState) return false;

clearInterval(this.initControlsInterval);

this.videoWidth = this.videoObject.offsetWidth;

 this.videoHeight = this.videoObject.offsetHeight;

/* Set up canvas width and height */

 this.canvasObject.setAttribute("width",this.videoObject.offsetWidth);

 this.canvasObject.setAttribute("height",this.videoObject.offsetHeight);

 /* Create video controls */

var videoControls = document.createElement("DIV");

 this.videoControlsContainer = videoControls;

videoControls.onmouseover = function()

{

html5VideoPlayer.controlsFocus = true;};

videoControls.onmouseout = function(){

html5VideoPlayer.controlsFocus = false;};

videoControls.className = 'videoControls';

videoControls.style.width = this.videoObject.offsetWidth+ "px";

 this.videoContainer.appendChild(videoControls);

 /* Play/Pause button */

var playButton = document.createElement("DIV");

playButton.appendChild(document.createTextNode("Play"));

 playButton.addEventListener('click',this.play,false);

 this.playButton = playButton;

this.buttonsPlay = playButton;

 this.videoControlsContainer.appendChild(playButton);

 /* Played/Duration */

Appendix 2

4 (9)

var currentTime = document.createElement("DIV");

 this.currentTime = currentTime;

 this.videoControlsContainer.appendChild(currentTime);

/* Set up animations for the controls (hide/show) */

 this.controlsHideTimeOut=

setTimeout("html5VideoPlayer.hideControls()", 5000);

 this.videoContainer.onmousedown= function()

 {

html5VideoPlayer.hideControls(); clear-

Timeout(html5VideoPlayer.controlsHideTimeOut); }

 /* Duration indicator */

var durationIndicator = document.createElement("CANVAS");

 durationIndicator.className = "indicator";

durationIndicator.setAttribute("WIDTH",this.videoObject.offsetWidth);

 durationIndicator.setAttribute("HEIGHT", 10);

 this.durationIndicator = durationIndicator;

durationIndicator.style.background = "rgba(0,0,0,0.5)";

 this.videoControlsContainer.appendChild(durationIndicator);

 this.durationIndicator = this.durationIndicator.getContext("2d");

 durationIndicator.onclick = function(e)

{

if(!e) var e=window.event;

var x = e.pageX;

 html5VideoPlayer.videoObject.currentTime

 =(Math.floor(html5VideoPlayer.videoObject.duration)

 /html5VideoPlayer.videoWidth)*x;

}

this.startPlayBackInterval= setInterval

('html5VideoPlayer.startPlayBack()', 30);

Appendix 2

5 (9)

},

startPlayBack: function()

{

 if(!this.videoObject.readyState) return false;

 if(html5VideoPlayer.videoObject.paused)return false;

 if(this.videoObject.readyState<3&& !this.videoObject.paused)

 {

this.bufferUU = true;

}

if(this.videoObject.readyState >= 3 && this.bufferUU)

{

 this.bufferUU = false;

 this.videoObject.play();

 }

if(this.videoObject.ended)

{

(html5VideoPlayer.videoLoop)?

 html5VideoPlayer.videoObject.play()

:clearInterval(html5VideoPlayer.startPlayBackInterval);

}

this.canvasObject.getContext("2d").drawImage

(document.getElementsByTagName("VIDEO")[0],0,0,

html5VideoPlayer.videoWidth,html5VideoPlayer.videoHeight);

 this.addEffects();

 html5VideoPlayer.currentTime.innerHTML=

this.videoObject.currentTime.toFixed(2) +

" / " + this.videoObject.duration.toFixed(2) + " |

buffer underrun : " + this.bufferUU; //this.videoObject.paused;

// Update progress bar

 this.durationIndicator.clearRect(0,0,this.videoWidth,this.videoHeight);

Appendix 2

6 (9)

 this.durationIndicator.fillStyle = "rgba(255,255,255,0.2)";

 this.durationIndicator.beginPath(); // Update progress bar buffer

 var buf = this.videoObject.buffered.end(0);

this.durationIndicator.fillRect(0,0, (this.videoWidth/

this.videoObject.durati on.toFixed(2))*buf.toFixed(2),10);

 this.durationIndicator.closePath(); // Update progress bar progress

this.durationIndicator.moveTo(0,0);

 this.durationIndicator.fillStyle = "rgba(200,30,220,0.75)";

 this.durationIndicator.beginPath();

var buf = this.videoObject.buffered.end(0);

 this.durationIndicator.fillRect(0,0,(this.videoWidth/

this.videoObject.duration.toFixed(2))*

this.videoObject.currentTime.toFixed(2),10);

 this.durationIndicator.closePath();

},

play: function()

{

 if(html5VideoPlayer.videoObject.paused)

 {

 html5VideoPlayer.videoObject.play();

 html5VideoPlayer.playButton.innerHTML = 'Pause';

 } else{

 html5VideoPlayer.videoObject.pause();

 html5VideoPlayer.playButton.innerHTML = 'Play';

 }

},

addEffects: function()

{

Appendix 2

7 (9)

canvasImage = this.canvasObject.getContext("2d");

var imageData = canvasImage.getImageData(0, 0, this.videoWidth,

this.videoHeight);

var pixelData = imageData.data;

for (var i = 0, n = pixelData.length; i < n; i += 4)

 {

if(this.canvasGrayscale)

{

var grayscale =

Math.floor((pixelData[i]+pixelData[i+1]+pixelData[i+2])/3);

 };

 pixelData[i] = (this.canvasGrayscale) ? grayscale : pixelData[i];

pixelData[i+1] = (this.canvasGrayscale) ? grayscale : pixelData[i+1];

 pixelData[i+2] = (this.canvasGrayscale) ? grayscale : pixelData[i+2];

if (this.mono)

{

var monoColor =

Math.floor((pixelData[i]+pixelData[i+1]+pixelData[i+2])/3);

 monoColor= (monoColor > 128) ? 0 : 255;

 pixelData[i] = pixelData[i+1] = pixelData[i+2] = monoColor;

 };

if(this.canvasInvert)

{

pixelData[i] = 255 - pixelData[i];

 pixelData[i+1] = 255 - pixelData[i+1];

 pixelData[i+2] = 255 - pixelData[i+2];

 };

pixelData[i+3] = this.canvasOpacity;

Appendix 2

8 (9)

pixelData[i+3] = 255-pixelData[i+2];

}

canvasImage.putImageData(imageData, 0, 0);

 },

blackAndWhite: function()

{

this.mono = (!this.mono) ? true : false;

 },

invert: function()

{

this.canvasInvert = (!this.canvasInvert) ? true : false;

 this.addEffects();

},

toggleGrayscale: function()

 {

this.canvasGrayscale = (!this.canvasGrayscale) ? true : false;

 this.addEffects();

},

changeOpacity: function(amount)

 {

 this.canvasOpacity+=(this.canvasOpacity+amount >= 0 &&

this.canvasOpacity+amount <=255) ? amount : 0;

document.getElementById("canvasOpacity").innerHTML =

this.canvasOpacity;

this.addEffects();

},

addjustVolume: function(amount)

 {

var amt = this.volume; //.toFixed(1);

 amt+=(this.volume+amount >= 0 && this.volume+amount <=1) ?

Appendix 2

9 (9)

amount : 0;

this.volume = parseFloat(amt.toFixed(1));

 this.videoObject.volume = this.volume;

document.getElementById("videoVolume").innerHTML =

 this.volume * 100 + "%";

},

mute: function()

{

this.muted = (!this.muted) ? true : false;

 this.videoObject.muted = this.muted;

 }

};

window.onload = function()

{

html5VideoPlayer.init();

}

