
Football Team Tracker System – A Web Application with Agile De-
velopment Methodology

Brahim Hadi

Bachelor Thesis

DP in Business Information Technology

2009

1

Author
Brahim Hadi

Group

The title of the thesis
Football Team Tracker System - A Web Application with Agile Develop-

ment Methodology.

Number of pages
and appendices
28 + 4

Supervisor
Juhani Välimäki

Often, amateur sport teams try to find an inexpensive way on how they can effectively track

and manage their team. FC Tigers football team is one of them. This team has about 30

players working in the same company. The managers of this team needed a practical system

to help them keeping track of players available for playing a football game every Thursday

evening.

The objective of this thesis consists of two parts: the practical part and the theoretical part.

The practical part focuses on building a Football Team Tracker (FTT) System which is a

Web Application implemented using Ruby on Rails language and Agile Development Meth-

odology. This application aims mainly to solve the problems with managing a football team.

The theoretical part focuses on testing the Feature Driven Development (FDD) Agile meth-

odology against what it has been said about its benefits such as detecting bugs earlier, aims

for minimizing documentation, saves you time, iterative approach and so on.

The FTT application provides the basic and the most important features. Due to the lack of

time the nice-to-have features and usability are left for the other developers who would like

to enhance this system in the future. However, open sourcing this web application and the

way this application is designed provide high scalability. So, it can be re-used for any kind of

sport which requires a team commitment. One can change the banner’s text of this web

application and he is ready to go.

As a result for the theoretical part of this project, it has been found that the features of the

FDD method tested reflect, nevertheless, what has been said about its benefits. It also fits

well within a small Rails project with even two developers.

Key words
Ruby on Rails, Agile Development Methodology, Feature Driven development, VMC
model

2

1 INTRODUCTION ..4

1.1 OBJECTIVES OF THE THESIS..4

1.2 STRUCTURE OF THE THESIS ..4

2 AGILE SOFTWARE DEVELOPMENT ...5

2.1 EXTREME PROGRAMMING (XP) ...5

2.1.1 Practices...5

2.1.2 XP process..7

2.2 SCRUM...7

2.3 DYNAMIC SYSTEM DEVELOPMENT METHOD ...8

2.4 FEATURE-DRIVEN DEVELOPMENT (FDD)..9

2.4.1 Practices...10

2.4.2 Process ...10

2.5 COMPARING THE AGILE METHODS AND CHOOSING THE METHOD FOR THIS PROJECT11

3 CASE: FOOTBALL TEAM TRACKER APPLICATION ..13

3.1 INTRODUCTION ..13

3.2 BACKGROUND ...13

3.3 DEVELOPMENT PROCESS..14

3.3.1 Developing an overall model ...14

3.3.2 Identifying the feature list...14

3.3.3 Plan by feature ...14

3.3.4 Design and build by feature ...15

3.4 DEVELOPMENT ENVIRONMENT ..15

3.4.1 Ruby on Rails ...15

3.4.2 Ruby ...15

3.4.3 Aptana Studio ...16

3.4.4 TortoiseSVN ...16

3.5 IMPLEMENTATION..16

3.5.1 Model view controller (MVC) ..16

3.5.2 Admin and player views ...17

3.5.3 Lay out page and CSS ..18

3.5.4 Database migration..19

3.5.5 Action mailer..21

3.6 PROJECT SUCCESS ..23

4 RESULTS AND DISCUSSION...24

4.1 RECOMMENDATION FOR FUTURE RESEARCH..26

5 CONCLUSION ...26

6 KEY TERMS AND ACRONYMS ..27

3

7 BIBLIOGRAPHY...28

8 APPENDICES...29

8.1 REQUIREMENTS’ LIST...29

8.2 CHANGE REQUESTS..29

8.3 FTT DATABASE MODEL..30

8.4 RUBY ON RAILS DEVELOPING ENVIRONMENT GUIDE FOR WINDOWS ..30

8.5 BACKLOG TEMPLATE ...31

8.6 SAMPLES FROM THE FTT SYSTEM..32

4

1 Introduction

FC Tigers football team has about 30 players working at Accenture Ltd. However, depending

on their schedule, not all the players are available to play football every week. And sending

ping-pong email or calling each player and asking him if he is coming next week to play is

costly and time prone. So, the managers of this football team were thinking how they can step

over these issues, hence the idea of building the Football Team Tracker (FTT) system came

up.

1.1 Objectives of the thesis

A system will be build for the FC Tigers team Managers in order to help them with managing

the team. At the same time the Feature Driven Development Agile Methodology is used dur-

ing the implementation process and tested against the statements that had been said about its

benefits.

1.2 Structure of the thesis

This thesis consists of two parts, theoretical and practical. At the beginning of the theoretical

part a short briefing will be provided about agile software development methodology in gen-

eral. Then, some of the most used agile methods and practices will be introduced.

The practical part of the thesis will describe the development process and the implementation

of the FTT application. Based on the analysis mentioned in the theoretical part, some of the

agile practices will be selected and used in the development process of the FTT application.

After accomplishing the FTT system, the results concerning the agile methods and practices

are analyzed and recommendations are given for software developers who would like to use

these methods. At the end, a conclusion is given concerning the FTT application and the use

of agile methods in small Rails projects.

5

2 Agile Software Development

Agile software development was introduced for the first time in February 2001 in a manifesto

signed by 17 software developers when they were in a ski station in the Wasatach mountains

of Utah. (Highsmith, 2001). Since this date the word agile started to become fashion among

software architects and developers.

Agile development methodology is well defined in the Agile manifesto as a set of best prac-

tices which aim to rapidly adapt to changes along the project processes. At the same time it

aims to develop high quality defect-free software and rather focus on coding than on the

documentation (Hunt, 2006, 9-12). It is iterative, incremental, documentation minimizing, self-

organizing team, doing just what it’s supposed to do and enables the knowledge sharing within

the team members (Holcombe, 2008, 330).

The most commonly used agile methods are:

2.1 Extreme Programming (XP)

It is the most commonly used agile methodology. Unlike the other agile methods XP is the

only agile method which focuses mostly on the programming side. Therefore, almost every

member involved in an XP project is programmer. XP is a testing –centric agile method. Even

though other agile methods also use the testing component, XP defines how the testing

should be done in an XP project. Further more XP is based on communication, simplicity,

feedback, and courage (Schuh, 2005.).

2.1.1 Practices

XP includes 12 known practices which can be described as follow:

The Planning Game consists of a close collaboration between the customer and the devel-

opers. During the planning game, for each iteration, the customer decides what system feature

need to be prioritized and the developers determine the feasibility and the necessary effort

needed for building the functionality.

6

Small releases aim to build a set of features which can be implemented in a period of two

weeks. The benefit of the small release is that it can be easily demonstrated to the customer

and give a better idea on the project progression.

Test-driven development aims to test before start coding. ” Advocates of TDD argue that

writing tests before writing code ensures that the programmer knows what code he wants to

write, how he wants to use it, and how he will be able to test it.” (Schuh, 2005).

XP enquires the commitment of the whole team. This means that the customer, the devel-

opment team and the management should work in the same workspace in order to facilitate

the communication process.

Pair programming is specific for XP. It involves two programmers working at the same

work station. They analyze, design and write the code together. New pieces of code are added

to the code base as soon as they get ready (Schuh, 2005).Whenever a new piece of code is

ready it is integrated to the code-base after being tested.

In XP the code is regularly refactored in order to avoid any code duplicate or to simplify any

confusion. So the code is always kept simple and clean to ensure the flexibility and accessibil-

ity by other programmers.

The design should be kept as simple as possible to avoid complexity and extra code. This

enables the code of the system to work today and in the future because the future might

change against the project plan.

In XP a Metaphor is a sort of a user guide of the system created by the customer and the

development team. It defines what the system does and how it does it.

In an XP project the code is collectively owned by the whole team. This means that every

team member can work on any part of the code at any time in order to complete the task as-

signed to him.

Coding standard ensures consistency and makes the code easy to be understood by any

other developer.

Sustainable pace: sometimes it’s called as 40-hours workweek. It focuses on preventing

doing over time and working too hard. Instead it encourages the team members to work when

they are in a good mood and let them rest when they are tired.

7

2.1.2 XP process

An XP project consists of a set of iterations. Each iteration takes approximately 1 - 4 weeks.

Starting an iteration requires three steps which are: writing stories by the customer and esti-

mating them by the team, planning game and iteration planning game as shown in the figure 1.

Figure 1: XP process (Schuh, 2005)

During an iteration the developers implements a prioritized feature list. The implementation

includes writing test, design, program and code refactoring. When the iteration is complete the

team delivers a fully tested, functional release and worth to be in production (Schuh, 2005).

2.2 Scrum

Unlike other agile software development methods Scrum is a management process which can

be applied in different activities where the commitment of a team work is required.

Within the rules of this method a project is divided into features which are prioritized and

categorized into sprint backlogs.

A daily scrum meeting of about 15 minutes is held. During this meeting every team member

should mention what he has achieved so far, any problems that had emerged and what he is

going to do next. The purpose of these short meetings is to monitor the progress and react to

any potential problems or changes as fast as possible.

8

After each sprint a review meeting is kept in order to focus on the quality of the features im-

plemented. Among the actors involved during the process of this method are: the product

owner, the scrum master, and the team members (Holcombe, 2008).

2.3 Dynamic System Development Method

The Dynamic System Development Method is an approach which focuses more on how to

build a software system than on how to manage a software project (Koch, 2005.).

It consists of involving the users in the project life cycle so that decisions can be made as ac-

curately as possible. The incremental iterations are based on prototyping (Holcombe, 2008.).

There are nine principals which define this method:

1- Active user involvement is imperative.

2- DSDM teams must be empowered to make decisions.

3- The focus is on frequent delivery of products.

4- Fitness for business purpose is the essential criterion for acceptance of deliverables.

5- Iterative and incremental development is necessary to converge on an accurate business
solution.

6- All changes during development are reversible.

7- Requirements are baselined at a high level.

8- Testing is integrated throughout the life cycle.

9- A collaborative and cooperative approach between all stakeholders is essential (Koch,
2005.).

The process of this method includes four components: Feasibility and business study, func-

tional model, design and build and Implementation as shown in figure 2 (Koch, 2005.).

9

Figure 2: DSDM process diagram (Koch, 2005.).

2.4 Feature-Driven Development (FDD)

Before starting to enter into details of this method let’s try to define what is a feature?

A feature is the concept of a piece of functionality that:

- Represents a customer experience within the system

- Once completed, will be accessible to and usable by the customer (notwithstanding the completion of

any other features that it might be dependent upon)

- Can be estimated by the project team

- Does not take more than a few weeks to complete (Schuh, 2005, 168).

Feature-driven development (sometimes called feature-driven design) sees a software devel-

opment project as a set of features which are implemented incrementally one by one. Com-

pared to the other agile methods, FDD starts by creating a domain object model which is

used as the main document within the communication process. The domain object model is

created by the developers in collaboration with the domain expert. This document is also used

to identify the features list. On the other hand, it provides an effective monitoring mechanism

for reporting the project progress against the project plan. (Holcombe, 2008.). According to

Schuh (2005, 26), an FDD project is highly iterative and involves the customer in every itera-

tion, through out the whole life cycle of the project.

10

2.4.1 Practices

FDD provides eight best practices which are:

Domain object modeling: As discussed earlier, it is the starting point of an FDD project. A

domain object model is a general roadmap of the whole system. “It consists of a handful of

high-level diagrams that depict the relationship between classes and sequence diagrams that

demonstrate behavior” (Schuh, 2005, 26.).

Develop by feature: In every agile project the software to be developed is seen as a set of

features which are built one by one.

Class ownership: Each class of the system is owned by a specific programmer while in XP

the code is collectively owned by the whole team.

Feature teams: Since features usually involve many classes, feature teams are necessary to

design and implement in FDD. Feature teams are usually small teams formed dynamically.

Inspections: It focuses on detecting defects without trying to intimidate the programmer.

This includes improved knowledge sharing among the developers.

Regular build schedule: The entire system is built regularly in order to make it available for

testing or for the client demos. Depending on the need, the system might be build hourly,

daily or weekly.

Configuration management: Using a versioning tool the code is stored and versioned de-

pending on the need of the team.

Reporting/visibility of results: The results and the updates of the project status are regularly

reported in order to keep the stakeholders aware of the current situation. This is very impor-

tant for the stakeholders so that they can react accordingly. (Schuh, 2005, 26-27).

2.4.2 Process

The process of this agile method consists of five components as mentioned in the following

figure:

11

Figure 3: Feature-driven development process (Holcombe, 2008.)

Since FDD method is used in the practical part of this thesis the details of its process is given

later in the development process chapter.

2.5 Comparing the agile methods and choosing the method for this project

The following table shows the most common characteristics of the above mentioned agile

methods and the difference between them.

12

Table 1: Summary of the Features of the Agile Methodologies (adapted from Mike Hol-

combe, 2008)

Feature DSDM FDD XP SCRUM

Feature centric + + + +

Clear business focus + + + +

Strong quality/testing focus ? − + ?

Handles changing requirements + + ? +

Human-centered philosophy ? ? ? ?

Support for maintenance ? − − −

User/customer-centered approach + + + ?

Encourages good communications + ? + +

Minimum bureaucracy ? ? ? −

Support for planning + + + +

It is common to all agile methods that they tend to complete the software project by feature as

they tend to handle unexpected changes instead of avoiding them. However, they are different

in some aspects as it’s shown in the previous table.

After reviewing and examining the agile methods it has been concluded so that the FDD

method is the most suitable method for this project due to its smallness, simplicity and the

small amount of developers committed. Besides, it has been decided so that it won’t be any

extensive testing for the software. Hence, the FDD method has been chosen as a candidate

agile method to be tested in this project with some tailoring and adjustments.

13

3 Case: Football Team Tracker Application

3.1 Introduction

This practical part of this thesis will be devoted for the development process of the Football

Team Tracker Application (FTT). This application is build using Ruby on Rails (RoR) lan-

guage. In the implementation phase the book titled Agile Development with Rails (Thomas &

Heinemeier Hansson, 2006, 719 pages) is used as a reference and a guide. As this language is

relatively new for the developers of the FTT application some component of RoR and the

implementation of most important features will be explained.

During the development process the FDD agile method is chosen as it seems to be the most

suitable agile method for a small project.

The steering group of this project is quite small and consists of only: Sponsor, project man-

ager, two developers and the advisor.

The main goal of this thesis is to build the FTT system and at the same time the FDD agile

method will be used and tested in order to find out whether it provides the benefits claimed

and fits well within a small Rails project. The best practices of the other agile methods will be

used only if necessary.

At the end of this thesis a discussion about this method will be provided.

3.2 Background

Football Team Tracker (FTT) System is a free open-sourced web application, coded using

Ruby on Rails (RoR), which is supposed to act as a helping hand in tracking and managing the

football players of FC Tigers Team.

This system will help managers of this team to find available players (10-15 players) to play a

football game every Thursday at 07:00 PM. So, no more time wasted calling or emailing peo-

ple.

FTT system should offer the possibility of keeping track of attendance, automatic confirma-

tion emails before the game, cost tracking and billing function (to pay for sport venue rental,

equipments, tournament inscriptions and other such payments).

The application is made easy to use. Only the players and the managers of the FC Tigers team

can log into the system and use its functionalities.

14

There are two views depending on the type of users. The admin view has most important

functionalities that a system administrator would need, such as Delete, Add and Update re-

cords. However, the player view is limited and allows only what a player needs to do.

3.3 Development process

During the development process mainly the FDD method is used. However some best prac-

tices of the other methods are used whenever necessary with some tailoring.

3.3.1 Developing an overall model

During the kick-off meeting of the FTT project the domain experts who consisted of the

managers of the FC Tigers team explained the issues which were facing with the team man-

agement and gave an over-all idea on what the FTT system should do. The FTT project man-

ager collected the maximum of data during that meeting. One week after, a prototype version

of the FTT system was released using Microsoft Powerpoint slides. This prototype was modi-

fied a couple of times in order to fit the customer’s requirements.

3.3.2 Identifying the feature list

Based on the prototype, a list of 20 features was identified. This list contained the most client

valued functions of the FTT system. This features list was reviewed by the sponsors and users

of the FTT system in order to make sure the list is complete and valid. This features list is

attached further in the appendices section.

3.3.3 Plan by feature

At this stage the most complicated features were divided into small sub-features so that the

implementation can be easier for the developers. The features list was prioritized so that the

must-to-have features are of priority one, should-be-there features of priority 2 and nice-to-

be-there with priority 3. The target was so that at least the first two feature categories are im-

plemented. However, the third one can be implemented only if there will be time for it.

Based on this list the skills and resources were identified and the schedule was set to the Pro-

ject.

15

3.3.4 Design and build by feature

Every Sunday, a backlog was set and published with prioritized sub-features. These sub-

features were assigned to the developers based on the required skill. The developers put the

hours needed for the tasks assigned to them and start working on for a maximum period of 7

days. The testing of new functionalities was done simultaneously in the local environment in

order to detect any potential bugs as earlier as possible.

Whenever a feature or a sub feature is implemented it is promptly uploaded to the Google

code’s subversion repository at: http://code.google.com/p/sport-team-tracker/ so that it

can be immediately tested by the stakeholders and come up with feedback if any.

On the top of that the customer could ask for any change request at any stage of this project.

The bugs were fixed during the following backlog. However, the change requests were first

discussed with the customer and then validated as soon as possible so that they could be in-

cluded in the feature list and start working on them.

3.4 Development environment

In this project every component of the development environment is open sourced.

3.4.1 Ruby on Rails

Ruby on Rails (sometimes shortened as Rails or RoR) is a web application development

framework made using ruby programming language.

It has been said that Rails itself is agile because it favors interaction between individual across

processes, working software, customer collaboration through contract negotiation, use of

comprehensive and trivial documentation, and responding to changes along a project plan.

Rails doesn’t require heavy tools, or a complex configurations. Instead there are small teams

of developers, their favorite IDE/editor and pieces of Ruby code (Thomas & Heinemeier

Hansson, 2006, 3.).

3.4.2 Ruby

The FTT application is written using Ruby language. So what is this language?

It is a dynamic object programming language invented for the first time in Japan by Yukihiro

Matsumoto during the mid-1990s. Ruby language is classified as a scripting language. This

http://code.google.com/p/sport-team-tracker/

16

means that the Ruby code is not compiled in order to be run. However, the code is converted

by the interpreter into a format that the computer can execute at run time.

It is an open source project and continuously growing in popularity among developers com-

munity (Fisher, 2008, 15-18).

3.4.3 Aptana Studio

In this project Aptana Studio has been used as an Integrated Development Environment

(IDE). It is created by Aptana company, based on Eclipse project.

The features of Ruby on Rails are packaged as plug-ins, just like in Eclipse. It also supports

CSS, html and java script. In another word, if someone is familiar with Eclipse then he

shouldn’t have any problem to use Aptana Studio.

3.4.4 TortoiseSVN

As a version control, TortoiseSVN has been used in this project. It can be used in any envi-

ronment, easy to use and free of charge. It enables storing the source code and gives the pos-

sibility to undo mistakes and daily monitor the changes. So, it has been used as a tool to moni-

tor the project status as well.

The FTT application source code is freely available in Google code’s subversion repository at:

http://code.google.com/p/sport-team-tracker/ .

Downloading the code requires a subversion tool which can be found at:

http://tortoisesvn.net/downloads/

3.5 Implementation

In this part, a brief description will be provided on how the most important components of

RoR and how some FTT features have been implemented.

3.5.1 Model view controller (MVC)

The VMC model is an architecture introduced for the first time in 1979 by Trygve Reenskaug.

In this model an application is divided into three separate components: models, views and

controllers (Thomas & Heinemeier Hansson, 2006, 11.).

http://code.google.com/p/sport-team-tracker/
http://tortoisesvn.net/downloads/

17

The Model represents the database part of the system and handles the business rules. The

view’s task is to display the user interface to the end user mainly based on the model compo-

nent. So, the view fetches indirectly the data requested by the user from the model component

and renders it back to the user. The controller component plays the role of a connector, a

communication facilitator between the two other components. The controller first gets events

from a client, communicates with the model component and gets the necessary data from it.

Then it invokes the appropriate view which formats the collected data in order to be rendered

to the client, as shown in figure 4.

Figure 4: The Model-View-Controller Architecture (Thomas & Heinemeier Hansson, 2006,

12.)

The use of the MVC model makes the code of an application easier to write and maintain.

Since the user interface is isolated from the business logic a programmer can modify the user

interface component without affecting the business logic and vice versa.

Ruby on Rails works according to the VMC model. The three components are well isolated

from each other. However, these three components are combined together as the program

executes. One of the most advantages of RoR is that the combining mechanism is done auto-

matically and does not require any separate configuration (Thomas & Heinemeier Hansson,

2006, 13.).

3.5.2 Admin and player views

The FTT system consists of two main views: the admin view and the player view. The dedi-

cated database contains a table called ”users” which has a column named ”role”. The value of

18

this role can be ”0” for admin and ”1” for a player. Depending on the user trying to log in, the

system checks whether the user is an admin or a player.

The admin user has full control of the FTT system. However, a player is restricted to perform

certain tasks such as editing, creating or deleting items. This is done by a simple checking of

the current session object using an if-statement. The following piece of code shows how the

views are checked when they are requested by an active session:

<%if session[:role] == 0 %>

.

.

.

<td><%= link_to 'Show', :action => 'show', :id => event %></td>

<td><%= link_to 'Edit', :action => 'edit', :id => event %></td>

<td><%= link_to 'Delete', { :action => 'destroy', :id => event },

:confirm => 'Are you sure?', :method => :post %></td>

<td><%= link_to 'Enroll', { :action => 'enroll', :id => event },

:method => :post %></td>

 .

 .

 .

<%else%>

.

.

.

<td><%= link_to 'Enroll', { :action => 'enroll', :id => event },

:method => :post %></td>

 .

 .

 .

<% end %>

So, if the role session object equals to ”0” then the user is an admin and he is given full rights

to the whole system. Otherwise the user is a player and then he is prevented from critical tasks

such as delete, update and add.

3.5.3 Lay out page and CSS

The layout is part of the views written in pure XHTML. It’s used by all the other pages as a

template. It holds the left side bar and the banner. The content is filled by the appropriate

view depending on the page requested by the user.

19

The mechanism of how the layout works is pretty simple. A declaration is put in the top of

each controller is enough to call the layout to hold the view related to that particular control-

ler.

CSS is used to have control on the layout page. The CSS file resides in the public folder and it

is called only once in the layout by using a link.

3.5.4 Database migration

First Ruby on Rails developers had some difficulties with updating the database using complex

SQL queries throughout multiple version of the application being developed. The database

migration came as a solution for this problem. It enables you to create the database schema in

a Ruby class (extended from ActiveRecord class) using simple ruby code instead of using

complex SQL queries.

In this project all the data models have been created using the migration. In order to explain

the migration the table users from FTT application is used.

The migration process consists of two simple steps:

1- Creating the migrate file

This can be done in two ways:

a) The migration file (class) can be created while the model is created (unless -- skip-
migration is specified) using the following command:

ftt> ruby script/generate model user
As a result the following files are generated:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/player.rb

create test/unit/player_test.rb

create test/fixtures/players.yml

exists db/migrate

create db/migrate/002_create_users.rb

20

So the model user is created and at the same time the 002_create_users.rb migration

class is created as well. This class contains two methods, one for dropping the table if

it exists already and the other one is for creating the table itself as it’s shown below:

class CreateUsers < ActiveRecord::Migration

 def self.up

 create_table :users do |t|

 end

 end

 def self.down

 drop_table :users

 end

end

Columns can be added at any time. For example a user_name column with a string
data type is added by running the following command:

ftt>ruby script/generate migration add_user_name_column
The previous command generates a file like ###_add_user_name_column.rb in the

/db/migrate folder. This file contains the up and down class methods which need to

be filled manually with add_column and remove_column methods respectively as

shown bellow:

class AddUserNameColumn < ActiveRecord::Migration

 def self.up

add_column :users, :user_name, :string

 end

 end

 def self.down

remove_column :users, :user_name

 end

End

b) The migration file (class) can be created separately on its own using the following

command:

ftt> ruby script/generate migration user
As a result the following files will be generated:

exists db/migrate
create db/migrate/002_users.rb

21

2- Running the migrations

Migrations can be run using the db:migrate Rake task. For example to run the the migra-

tion of the FTT we run: ftt>rake db:migrate. Running the migration will create all the

necessary tables with all the necessary columns and data types as long as the necessary mi-

gration files (classes) are created before hand.

This was a very handy procedure in the FTT software especially when at any time a devel-

oper created a new table or modified the data model. In order to synchronize the data

model, all what the other developer needed to do was to upload the latest code (using tor-

toiseSvn version control) and run the migration using rake db:migrate command. After

that he was ready to continue coding his tasks assigned to him during a particular sprint.

3.5.5 Action mailer

Action mailer is a component of Rails which allows a rails application sending out and receiv-

ing emails. The implementation is simple and consists of three parts:

1- Creating a mailer:

The action mailer can be created using the following script:

./script/generate mailer user_mailer

The script generates a bunch of files spread over the folders of the application. The most im-

portant file is the UserMailer class placed in the Models folder.

This class holds two methods: the register method which is responsible for setting up the en-

vironment for sending an email to a newly created account for a new player and the method

invite is responsible for setting up the environment for sending a broadcast email to all the

players when a new event is created. The following code shows the UserMailer class and its

methods:

class UserMailer < ActionMailer::Base

 def register(user)

 @subject = 'sport team tracker welcomes you'

 @body ["user"] = user

mailto:@subject

22

 @recipients = user.email

 @from = 'sttracker@fakemail.com'

 @sent_on = Time.now

 end

 def invite(user)

 @subject = 'come drible'

 @body ["user"] = user

 @recipients = user.email

 @from = 'sttracker@fakemail.com'

 @sent_on = Time.now

 end

end

2- Email configuring

The e mail configuration is done in the development.rb in the config/environments directory.

In this file we have to specify how the email should be delivered and where to find the SMTP

server to handle the outgoing email (Thomas & Heinemeier Hansson, 2006, 567.).

config.action_mailer.delivery_method = :smtp

config.action_mailer.server_settings = {

 :tls => true,

 :address => "smtp.gmail.com",

 :port => 587,

 :domain => "sttracker.com",

 :authentication => :plain,

:user_name => player@gmail.com",

:password => "diffPw"

}

3- Email templates

The email templates are created automatically when the action mailer is created. These tem-

plates are part of the View component. The number of templates is the same as the number of

the methods existing in the UserMailer class. These templates can be accessed and modified

accordingly depending on the context.

mailto:@body
mailto:@recipients
mailto:@from
mailto:sttracker@fakemail.com
mailto:@sent_on
mailto:@subject
mailto:@body
mailto:@recipients
mailto:@from
mailto:sttracker@fakemail.com
mailto:@sent_on
mailto:player@gmail.com

23

3.6 Project success

A functional Football Team Tracker application has been implemented successfully with basic

features. The customer already tested it locally and planned to put it into production environ-

ment starting from next season. So, the target of this project has been reached successfully.

The implementation phase did not go as planned because Ruby language was more challeng-

ing to learn than expected. The developers were learning by doing, since learning Ruby was

one of the preoccupations of the team. Asking the Ruby community was a big help in learning

and stepping over some of the barriers faced. As a result the team benefited a lot of knowl-

edge sharing and gained a good base of this new language to them.

Managing the time was a bit problematic due to some personal issues. As a fixture an over

time work was required time to time in order to catch the time lost.

The face to face communication has helped the team a lot. It saved them time and avoided

misunderstandings between team members.

24

4 Results and Discussion

As a concrete result of this project a working Football Team Tracker application is imple-

mented and ready to use. During the development process there were some minor problems

with managing the time due to some unexpected personal life issues such as sickness. As a

lesson learned in this project it has been found out that the project plan could be a bit looser.

In another word, when planning the timetable for a project one should not plan it to be too

strict time wise but instead plan some time for facing possible problems and solving them.

This issue was considered in the project plan but no time was assigned to it.

After applying the Test Driven Development Agile methodology in the development phase of

this project many ideas and questions have been raised up. Team members of this project real-

ized that building by feature is a funny way to work. Developers were well committed in the

project and strongly felt like they have a regular duty to achieve every week.

Due to the small amount of people involved in this small project it was not possible to meas-

ure the communication effectiveness of FDD methods. Mainly emails and wiki page was used

as a communication mean and no misunderstanding was notified within the team members of

the project and the stake holders. If the size of the project was big, the planning game or

scrum meeting would be the best in this case as stated in the chapter 2.1.1 and 1.2.

During this project only two change requests (CR) have been received from the customer.

With only two CRs it was not possible to state an objective opinion on how the FDD handles

change requests.

Team members of this project did not feel the need of high level documentation in this small

project. They rather used face to face communication and emails. However, using Microsoft

Powerpoint, a prototype document has been produced instead of producing an upfront

model. At the early stage this prototype document was likely to be incomplete, but still it

helped the developers focus on how actions should be sequenced. So, no 500-pages specifica-

tion was used like in traditional projects.

The project manager did not feel the need of Test Driven Development or an intensive func-

tional testing. However, after each build the new functionalities were tested locally first by the

developers and then by the customer after uploading the code of new features to the shared

25

repository. This opinion match perfectly with what it has been stated the in table 1 about test-

ing.

Team members of this project realized that the approach of building by feature gives an accu-

rate way to monitor the progress of the project. Monitoring the FTT project started since the

features had been identified.

The FTT project has been broken down into 20 features. Each feature included a set of sub

features. A backlog has been set on weekly basis and each backlog included about two features

depending on how difficult the feature was to implement and on the availability of the devel-

opers during a particular week.

As said earlier, only two CRs have been received during the development phase. The CRs

were immediately discussed with the customer, agreed on and then included to the features list

accordingly. Those CRs did not cause any slow down of the progress of the project since

those CRs were about minor sub features. However, personal issues like illness did cause a

delay of the project during the week 15-16 and 23. As a recovery from this delay an overtime

work was needed time to time. The graph 1 summarizes the progress of the FTT project.

Graph 1: FTT project progress over time.

- A: Warming up and setting the development environment

- B: Normal rhythm of the project

- C: Illness

26

- D: Overtime work

- E: Serious sickness of one member of the family

- F: Freezing the development part and switching to the theoretical part of the thesis.

As shown in the previous graph, after each build the project progress can be precisely moni-

tored based on how many features have been implemented and how many features are still

pending. If any unexpected risk which might slow down the project progress occurs, it can be

easily detected and analyzed. Thus, the stakeholders could continuously be informed about the

status of the project progress.

4.1 Recommendation for future research

Integrating the FTT software with a banking system is left for further implementation. As the

FTT is an open source one could implement an online payment system within it. This could

be very useful, especially if the team committed in a particular sport game is big. There are

ready solutions available for integrating a payment gateway in a website such as Paypal

(www.paypal.com) internationally or Suomen Verkkomaksut (www.verkkomaksut.fi) in

Finland so it is more a question of cost.

The FTT application could also be customized depending on the need of the team. The FTT

system itself is easy to customize via CSS to suit the needs of a particular sport team.

Concerning agile methodologies, other methods could be tested as well so that an objective

comparison could be concluded. The FDD methods could be tested in more projects because

only one project is not a representative sample to state a complete and an ccurate opinion

about it. One could also test all these agile methodologies mentioned in the chapter 2 and

combine their best practices into one agile method with some tailoring and customization.

5 Conclusion

The main objective of this thesis was to build the FTT web application for the FCT football

team. The objective has been reached with minor problems as in any development project.

The acceptance testing has been executed locally and the customer was satisfied with the solu-

tion. The customer decided to put it into production environment and start using in it starting

from next season.

www.paypal.com
www.verkkomaksut.fi

27

At the same time the Feature Driven Development agile method was tested. However, it is

quite difficult to be objective and make an accurate statement about a particular feature of the

agile method because projects are unique. But still it was found that the features of the FDD

method tested reflect, nevertheless, what it has been said about its benefits. Also, it has been

found out that the FDD method suits well for a small development project as it has been

claimed in the chapter 1.4.

Due to the small size of this project not all the practices have been tested such as the commu-

nication effectiveness between developers and stakeholder.

On the other hand, it has clearly been noticed that no heavy documentation was needed in the

development process but just trivial and comprehensive one like a prototype document, data-

base model and the requirements’ list. This result reflects exactly what agile methods look at

the use of heavy documentation. As mentioned in the chapter 1.4.3, Rails itself is agile and use

only trivial and comprehensive documentation.

Building by feature has worked very well in this project. Every week a backlog was created

with prioritized features. In this research it has been concluded that building by feature gives a

concrete and a measurable way to monitor the project progress.

6 Key terms and acronyms
Aptana Studio - A complete web development environment which allows you to develop,

deploy and manage your application in one place.

CR - Change request

FDD - Feature Driven Development Agile method

FTT - Football Team Tracker

Gem - A package format of the Ruby programming language library.

MVC - Model View Controller

Open Source – Software whose source code is freely available and can be modified and redis-

tributed freely.

Rake - is a software build tool written in Ruby programming language

Ruby on Rails (RoR) - is an open source web application framework for the Ruby pro-

gramming language.

XP - Extreme Programming

28

7 Bibliography

Fisher, T. 2008. Ruby on Rails Bible. John Wiley & Sons.

Highsmith, J. 2001. History: The Agile Manifesto. http://agilemanifesto.org/history.html.

Quoted 23.5.2009.

Holcombe, M. 2008. Running an Agile Software Development Project. John Wiley & Sons.

Hunt , J. 2006. Agile Software Construction. Springer. USA

Koch, Alan S. 2005. Agile Software Development: Evaluating the Methods for Your Organi-

zation. Artech House.

Schuh, P. 2005. Integrating Agile Development in the Real World. Cengage Charles River

Media.

Thomas, D., Heinemeier Hansson, D. 2006 Agile Web Development with Rails. 2nd Edition.

The Pragmatic Bookshelf. USA.

http://agilemanifesto.org/history.html

29

8 Appendices

8.1 Requirements’ list

#01: The admin view should give full access to the FTT system. This includes sensitive opera-

tion such as create, modify and delete.

#02: All users shall log into the system via a login page

#03: The admin user should be able to create a new event

#04: The admin user should be able to delete an event

#05: The admin user should be able to edit an modify an event

#06: The admin should be able to enroll to an event

#07: An automatic broadcast email should be sent to all players when a new event is created,

modified or cancelled.

#08: The admin user should be able to create news

#09: The admin user should be able to modify news

#10: The admin user should be able to delete news

#11: The admin user should be able to create a new player

#12: The admin user should be able to edit and modify a player’s data

#13: The admin user should be able to delete a player

#14: An automatic email should be sent to the newly created players informing him about his

credentials and the link of the FTT application

#15: All users (admin and players) should be able to view their previous participations in

which they should be able to see to which event they have participated, how much money

they should have paid so far.

#16: All users should be able to quit the FTT system using a logout link

#17: The player view should prevent non admin users (players) to perform sensitive opera-

tion such as create, modify and delete.

#18: A logged player should be able to display events and enroll to suitable one (s).

#19: A logged player should be able to display news, list of players and their contact informa-

tion.

#20: Every 16th of each month, a bill should be sent to each player via an automatic email.

8.2 Change requests
CR #01: Events view should include the fees of each event

CR #02: The logged user should be able to see the total fees that should be paid so far.

30

8.3 FTT database model

8.4 Ruby on Rails developing environment guide for windows

This guide can be downloaded at: http://sport-team-

tracker.googlecode.com/files/RoR_Environment_guide.doc

http://sport-team-

31

8.5 Backlog template

32

8.6 Samples from the FTT system

Admin’s view.

Player’s view.

