

Order Book and Volume Tracking Tool

Andreas Östergårds

Bachelor’s Thesis

Information Technology

Vaasa 2012

BACHELOR’S THESIS

Author: Andreas Östergårds
Degree Programme: Information Technology, Vaasa
Supervisor: Susanne Österholm

Title: Order Book and Volume Tracking tool (OBVTT)
__
Date 30.4.2012 Number of pages 37
__

Abstract

The thesis was done at the request of Wärtsilä Industrial Operations (WIO), a division

within the Wärtsilä Corporation. The task was to create an application through which

employees of WIO would be able via intranet to report delivery and order book data

for different products, as well as track previously stored data and have it presented

to them in a graphical format. The work consisted of planning and programming of

database and application, while creating a stylish and user friendly interface. An SQL

Server database was used for data storage, while the actual application was

programmed in C# and HTML using the ASP.NET platform.

Language: English Key words: order book, volume tracking, reporting,
 ASP.NET, SQL Server

Filed at: Theseus.fi and Tritonia Academic Library, Vaasa

EXAMENSARBETE

Författare: Andreas Östergårds
Utbildningsprogram och ort: Informationsteknik, Vasa
Handledare: Susanne Österholm

Titel: Orderbok- och volymuppföljningsverktyg
__
Datum 30.4.2012 Sidantal 37
__

Abstrakt

Examensarbetet utfördes på begäran av Wärtsilä Industrial Operations (WIO), en

avdelning inom Wärtsilä Abp. Uppgiften var att skapa ett program där anställda inom

WIO skulle, via intranätet, rapportera leverans- och orderbokdata för olika

produkter, samt följa upp tidigare lagrad data och få denna presenterad i grafiskt

format. Arbetet bestod av planering och programmering av databas och applikation,

samt att skapa ett snyggt och användarvänligt gränssnitt. En SQL Server-databas

användes för lagring av information, medan själva applikationen programmerades i

C# och HTML under ASP.NET-plattformen.

Språk: engelska Nyckelord: orderbok, volymuppföljning, rapportering,
 ASP.NET, SQL Server

Förvaras: Theseus.fi och Tritonia, Vasa vetenskapliga bibliotek

OPINNÄYTETYÖ

Tekijä: Andreas Östergårds
Koulutusohjelma ja paikkakunta: Tietotekniikka, Vaasa
Ohjaaja: Susanne Österholm

Nimike: Tilauskirja- ja määräseurantatyökalu
__
Päivämäärä 30.4.2012 Sivumäärä 37
__

Tiivistelmä

Opinnäytetyö annettiin tehtäväksi Wärtsilä Industrial Operationsilta (WIO), joka on

osasto Wärtsilä Oyj:ssä. Tehtävänä oli luoda ohjelma, jossa WIO:n henkilökunta voisi

intranetin kautta ilmoittaa eri tuotteiden toimitus- ja tilauskirjanpitotietoja sekä

seurata aikaisemmin arkistoituja tietoja ja saada ne esiteltyä graafisessa formaatissa.

Työhön sisältyi tietokannan ja applikaation suunnittelu ja ohjelmointi sekä tyylitellyn

ja helppokäyttöisen käyttöliittymän luominen. SQL Server-tietokantaa käytettiin

tiedon varastoimiseen, kun itse applikaatio ohjelmointiin C#:ssa ja HTML:ssä

ASP.NET-alustaa käyttäen.

Kieli: englanti Avainsanat: tilauskirja, määräseuranta, tiedottaminen,
 ASP.NET, SQL Server

Arkistoidaan: Theseus.fi ja Tritonia, Vaasan tiedekirjasto

Contents

Abstract / Abstrakt / Tiivistelmä

1 Introduction ... 1

1.1 About the employer .. 1

1.2 The task ... 2

1.3 Requirements .. 3

2 Development tools .. 4

2.1 Database ... 4

2.1.1 Type and server (Microsoft SQL Server 2008) ... 4

2.1.2 Query language (Transact-SQL) ... 4

2.2 Application .. 5

2.2.1 Application framework (ASP.NET) ... 5

2.2.2 Server side programming language (C#) ... 6

2.2.3 Markup language (HTML) .. 7

2.2.4 Style sheet language (CSS) ... 8

2.3 Other tools and solutions ... 8

2.3.1 Graphics and design (Paint Shop Pro X2) .. 8

2.3.2 Tools and applications used for testing ... 9

3 Concept .. 10

3.1 Project milestones .. 10

3.2 Understanding the production hierarchy ... 11

3.3 Application architecture ... 12

3.4 User interaction .. 13

4 Development ... 14

4.1 Acquiring software .. 14

4.2 Database ... 14

4.2.1 Architecture ... 14

4.2.2 Tables in detail ... 16

4.2.3 Security .. 17

4.3 Application .. 18

4.3.1 Intended functionality ... 18

4.3.2 Connecting to the database .. 19

4.3.3 Classes and interfaces ... 21

4.3.4 Binding data ... 22

4.4 User interface ... 23

4.4.1 Main design ... 23

4.4.2 Navigation .. 24

4.4.3 Presentation of information .. 24

4.5 Testing ... 25

5 The product ... 26

5.1 Main view .. 26

5.2 Account view ... 26

5.2.1 Signing in .. 27

5.2.2 Account management ... 27

5.3 Reporting delivery and order book data .. 27

5.4 Viewing delivery and order book data .. 29

5.5 Help and resources ... 30

5.6 Administrative tools .. 30

5.6.1 Managing users and credentials .. 30

5.6.2 Managing product centers, factories and products 32

5.6.3 Application-specific settings .. 32

5.6.4 Warning system ... 33

6 Discussion and feedback ... 34

6.1 Thoughts on the product .. 34

6.2 Future development ... 34

6.2.1 Connecting the user accounts to Active Directory .. 34

6.2.2 Enhancing the application with Silverlight .. 35

6.3 Reflections .. 35

7 Table of sources ... 36

1

1 Introduction

1.1 About the employer

Wärtsilä, founded in 1834, is a Finnish based company specialized in power solutions for

the marine and energy markets. Its main categories are ship power and power plants and

its product lines include engines, automation equipment, propulsion equipment and

energy efficiency products. The company employs approximately 17,500 employees

worldwide and runs its operations in 160 locations in 70 different countries. Its

headquarters are located in Helsinki. [1]

Fig 1. Wärtsilä headquarters in Helsinki. [2]

The actual employer, Wärtsilä Industrial Operations (WIO), is a division within Wärtsilä

comparable to the sales division or service division. WIO serves Ship Power, Power Plants,

services and licensees, covering the needs of operators, utilities, investors and industry.

WIO interfaces directly with suppliers, licensees and research and development partners

as well as external customers. Although WIO operates worldwide, the place of work was

in Vaasa. [3]

2

1.2 The task

The “Order Book and Volume Tracking Tool”, or the OBVTT for short, is supposed to be a

tool designed to give employees of Wärtsilä Industrial Operations an easy and accessible

way to report and overview delivery and order book data at their respective factories.

Deliveries are defined as actual amounts of a product manufactured and delivered by

Wärtsilä, while orders represent future deliveries. Slot reservations are reserved orders

that can be considered probable and may change before actual orders are placed. The

application should thus consist of two main functionalities: a tool for reporting deliveries,

orders and slot reservations as well as a tracking tool that generates graphical data and

prognoses based on previously stored information.

In addition to the main functionalities there should be administrative tools available for

administrators, such as product editing and account management. In addition to the

ASP.NET based application, an SQL database located on the company server is to be used

for data storage.

Each singular employee should be given an account to which he or she logs on and

reports data. Different credentials will be assigned to each user, limiting users to certain

product centers, factories or products, depending on what data each person should have

access to. Credentials are to be managed by administrators.

3

1.3 Requirements

The main requirement of the project is to create a tool that provides the necessary

functionalities. Necessary functionalities include the ability to read and write product and

order book data and to track this data over time. Once the required items are

implemented and fully functional, there are several optional items that may be

implemented in the future.

A list of requirements:

 The ability to store product information in the database

 The ability to store delivery and order book data for products

 The ability to view and track previously stored delivery and order book data

 The ability to administrate database content, e.g. accounts, factories and products

 A stylish yet simple graphical user interface that is easy to use

 A graphical design that stays true to the Wärtsilä color schemes and templates

 Guaranteed functionality

4

2 Development tools

2.1 Database

2.1.1 Type and server (Microsoft SQL Server 2008)

Microsoft SQL Server 2008 is a relational database server whose primary function is to

read and write data as requested by other software applications running either on the

same computer or on other computers across a network. It was initially developed by

Sybase before being sold to Microsoft, becoming Microsoft’s entry to the enterprise-level

database market. The first release dates back to 1989, while the latest release is SQL

Server 2012 released in 2012. [4]

Since the product involves reading and writing of data, a database would naturally be a

critical element of the project. Wärtsilä operates its own internal SQL server, on which

many of their in-house applications run. Since the database of the application could run

on this server, using an SQL database was the most optimal choice.

During the development process a local SQL Server Express was used on the development

computer. The Express edition is a limited free version of the SQL Server range of

products, providing enough resources for the development of this product. The tool used

to access and manage the database was SQL Server Management Studio, an application

available as a part of the Microsoft SQL Server package. [5]

2.1.2 Query language (Transact-SQL)

Structured Query Language (SQL) is a cross-platform query language used for managing

data in a Relational Database Management System (RDBMS), designed by Donald D.

Chamberlin and Raymond F. Boyce and first introduced in 1974. [6]

Transact-SQL is an extension of SQL. It expands SQL by including features such as

procedural programming, local variables and try/catch logic and is central to the use of

Microsoft SQL Server. [7]

5

To interact with tables within a database, a query language is needed. A query is a

command line that, when executed, may read or write data to or from the database. An

example of some simple query commands can be seen in Code example 1. Since Microsoft

SQL Server was to be used for the project, Transact-SQL automatically became the query

language to be used.

Code example 1. Using SQL query code to create a table, insert two rows into it and then display the
contents of the table.

CREATE TABLE ExampleTable

(

 name VARCHAR(20) PRIMARY KEY,

 age INT

)

INSERT INTO ExampleTable VALUES ('John Doe', 33);

INSERT INTO ExampleTable VALUES ('Jane Doe', 27);

SELECT * FROM ExampleTable;

2.2 Application

For the programming of the application, Microsoft Visual Studio 2010 was used. Visual

Studio is an Integrated Development Environment (IDE) developed by Microsoft that

supports several programming languages such as C#, C++ and VB, and is used to develop

different applications for platforms such as Windows, Windows Phone and the web. [8]

2.2.1 Application framework (ASP.NET)

ASP.NET is a web proprietary application framework developed by Microsoft and first

introduced in January 2002. It allows developers to build dynamic web sites and web

applications combining .NET languages with traditional HTML and CSS. Its latest release is

ASP.NET 4.0, released in 2010. [9]

There were discussions about which platform to use for the graphical user interface. First

of all there was the choice between using a universal web based application that could be

accessed from anywhere within the Wärtsilä network and a stand-alone client that could

be installed on an employee’s laptop or desktop computer. Due to the inconveniences of

keeping a stand-alone client up to date on every machine within the company, it was

decided that a web application would be the most practical solution, since there would be

6

only the one application running on the Wärtsilä server. Secondly, there was the choice of

platform and programming language. Although PHP initially seemed like a logical choice,

ASP.NET (using C#) was later considered the best alternative as previous applications

developed for Wärtsilä had been based on the ASP.NET platform, which allowed analysis

of the source code of other applications during the development process. The only

downside to using ASP.NET instead of PHP was developer experience.

2.2.2 Server side programming language (C#)

C#, pronounced C sharp, is a cross-platform multi-paradigm programming language

developed by Microsoft. Influenced by programming languages such as C++ and Java, it

was first widely distributed in 2000 and is intended to be a simple yet modern

programming language. The most recent version is C# 4.0, which was released on April

12th 2010. Using C#, developers may create software for platforms such as Windows,

Xbox 360 and Windows Phone and the web. [10]

While it had been decided that ASP.NET would be used, there was the choice between

using C# and Visual Basic (VB) as the main programming language. Simply because of

developer experience, C# was considered a better alternative. VB is also quite different

from C based programming languages in the way it is written and would likely have

required some time to fully learn. Code example 2 displays some simple C# code.

Code example 2. A tiny C# console application consisting of a string that is written to the command line.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ExampleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 string exampleString;

 exampleString = "A little example";

 Console.WriteLine(exampleString);
 }
 }
}

7

2.2.3 Markup language (HTML)

HTML, short for Hypertext Markup Language, is the main markup language used for web

pages. The first version of the HTML standard was released in 1995, while the most recent

version (HTML5) was released in 2008.

Elements used in written HTML are the basic building-blocks of a webpage and consist of

tags enclosed within angle brackets as can be seen in Code example 3. Web browsers are

designed to read and visualize web pages by interpreting the written HTML tags,

generating the graphical webpage. [11]

Code example 3. HTML code rendering a webpage with the title “Example” displaying a small piece of text.

<html>
<head>
 <title>Example</title>
</head>
<body>
 <div>
 A tiny example.
 </div>
</body>
</html>

In addition to the regular HTML elements, ASP.NET offers plenty of its own unique

components. These components look similar to regular HTML elements, as can be seen in

Code example 4, and also generate regular HTML code once executed on the server.

Using ASP.NET components saves the developer plenty of time and work, the ASP.NET

Calendar component being a good example. Creating a calendar from scratch using

regular HTML along with some server-side programming language is quite a time

consuming and difficult task, compared to using the ASP.NET component which lets you

easily set up properties while the hard work is done behind the scenes. [12]

Code example 4. ASP.NET components mixed into regular HTML code, rendering a div containing some text
and a button.

<asp:Panel runat="server">
 <h1>Example</h1>
 <p>
 This is an HTML paragraph within an ASP.NET panel
 </p>

 <asp:Button ID="Button" runat="server" OnClick="ButtonEvent" />
</asp:Panel>

8

2.2.4 Style sheet language (CSS)

CSS, short for Cascading Style Sheets, is a style sheet language primarily designed to

separate presentation, such as layout, colors or fonts, from the content of e.g. an HTML

document. By keeping presentation elements separate from content, shared formatting is

enabled and content accessibility is improved. An example of a CSS class can be seen in

Code example 5. [13]

Code example 5. A small CSS class that can be applied to any div element in an HTLM document, turning the
div into a red square of 100 by 100 pixels.

div.css_example
{
 width: 100px;
 height: 100px;

 background-color: Red;
}

To create a visually satisfying user interface, most HTML and ASP.NET elements were

associated with some CSS class implemented within a separate CSS file. One of the main

problems when designing a web page or a web application is keeping the final

appearance as identical as possible on all major web browsers. In an attempt to neutralize

the different anomalies and offsets rendered by some browsers, a separate CSS file was

used to reset all HTML elements to the same values, by assigning a default value to each

element type. Reset files are commonplace in web design and can easily be found online.

2.3 Other tools and solutions

2.3.1 Graphics and design (Paint Shop Pro X2)

Paint Shop Pro, originally developed by Jasc Software, is a series of advanced raster and

vector editing software available for PC and Mac, comparable to software such as the

popular Photoshop series of editing software. The current X series of PSP is being

developed by Corel, to which PSP was sold in 2004. Corel is known for other famous

imaging products such as Corel Draw and Painter. [14]

9

For graphical design that could not be rendered within the solution simply by using CSS

code, Paint Shop Pro X2 was used. Such graphics include pictures, icons and other special

imagery. Certain documentation would also contain graphics created using PSP.

2.3.2 Tools and applications used for testing

Apart from using actual browser applications when testing the application, Microsoft

Expression Web SuperPreview was used. SuperPreview is an application that is included

as a part of Expression Web, which is one of the products available in the Microsoft

Expression range of products. SuperPreview allows the developer to try out his or her

web page or application on a range of different web browsers simultaneously, comparing

the results side by side. This removes the need to install every single browser just for

testing. An example of a SuperPreview comparison can be seen in Figure 2.

Fig 2. Comparing the OBVTT between Internet Explorer and Firefox using SuperPreview.

10

3 Concept

3.1 Project milestones

Milestones were set at the beginning of the project to give people involved a very basic

idea of how the project would progress through different phases. The first phase, the

“Concept” phase, would involve meetings and brainstorming, choosing the proper tools

and solutions to use and so on. The “Prototype” phase would be somewhat of a middle

phase, where the project was not yet finished but had reached a point where one could

present its main design and functionality. The final “Product” phase would be reached

once the product had met its requirements and undergone enough successful testing to

be considered complete. Beyond the “Product” phase there would be the opportunity for

improvements, updates and modifications as seen fit by the employer.

Fig 3. Project milestones.

Initially there were discussions about whether to set target dates for each milestone, but

due to different inconveniences it was considered best to let the development progress at

its own pace.

11

3.2 Understanding the production hierarchy

In order to fully understand how to design the database architecture, a visualized

hierarchy image was created (Figure 4). The production within the company is structured

into three main categories. The product center, which covers a certain set of factories, is

the main category with factories serving as the secondary category. The third category is

the product, which is covered by one or more factories. Credentials are based on these

main categories throughout the application.

Fig 4. Wärtsilä product center hierarchy.

12

3.3 Application architecture

A block architecture image (Figure 5) was created to give a very simple but descriptive

overview of the product. The image displays the three most integral parts of the

application interaction: the user who interacts with the application, the framework

(ASP.NET) on which the graphical user interface and server side application code is based

and the database server (Microsoft SQL Server) where all the report data is stored in a

database.

The user accesses the GUI, where he or she may access the main tools. These tools then

interact with the SQL server database, reading and writing data. Finally the user may be

presented with graphical data or messages, depending on which tools were used,

completing the interaction.

Fig 5. A simple visualization of the application architecture.

13

3.4 User interaction

A flowchart (Figure 6) was created to give a more detailed overview of the interactions of

an individual user. The flowchart demonstrates a user signing in to the application using

his username and password. The user’s credentials are then validated before he or she is

signed in as one of several user types. Depending on user type and credentials the user

may view and/or edit certain factories. Being allowed to view a factory means that the

user may fetch historical data for products belonging to said factory, while being allowed

to edit a factory means that the user may report data for products belonging to said

factory.

Fig 6. Application flowchart.

14

4 Development

4.1 Acquiring software

Most software used during the development process was available through the Academic

Alliance, a web platform maintained by Microsoft from which students belonging to a

member university may freely download software for educational purposes, while others

may use it as an online store to purchase Microsoft products. Other software used during

the development process had either been previously purchased or downloaded under

freeware or trial licenses.

4.2 Database

4.2.1 Architecture

For an application like the OBVTT, the database could be considered the foundation of

the entire project. All actions performed from the graphical user interface interact with

the database in one way or another, thus the application would be rendered useless

without a stable and logical database. Because of this, a great amount of time and

planning was put into creating a database architecture that would certainly cover all

requirements while also being left relatively dynamic, should any alteration be required

during or after the development work.

Several prototypes of a database were created before the final architecture could be

established (Figure 7). The final database architecture is very much based on the items

covered in the “Concept” chapter, having tables reflect the Wärtsilä production hierarchy,

credential management and delivery reporting.

15

Fig 7. OBVTT database architecture. The red areas contain base data tables only editable by
administrators, the green areas contain tables providing bonds between other tables and the yellow
area contains the delivery and order book data tables editable by users. The table “Sectors_1”
represents the self-reference between the SectorID and ParentID values of the “Sectors” table.

16

4.2.2 Tables in detail

The database consists of several categories of tables: one category reflecting the actors

and objects used in the application (Users, Sectors and Products), one category

maintaining credentials and bonds between previously mentioned actors and objects

(SectorCredentials, ProductCredentials and FactoryProducts), one category consisting of

different product types and configurations (Engine, Automation, Propulsion, Ecotech) and

finally the Deliveries and OrderBook tables where the delivery and order book data is

stored.

The Users table naturally stores user information, such as a username and password for

signing in as well as some personal information. It also stores information about the

user’s administrative rights and whether the account is still active.

The Sectors table stores the product centers and factories used within the Wärtsilä

production hierarchy. Since the attributes of these two objects are so similar, it was

decided ideal to use only one table, pointing factories to product centers by using the

“ParentID” column, which references to a “SectorID” within the same table. This

ultimately means that a row missing a “ParentID” value is a product center, while the rest

are factories. The advantage of using only one table is the possibility of adding yet

another layer to the production hierarchy without having to alter the entire database.

The Products table, together with the different product type tables, stores information

about different product configurations. The Products table contains information shared

between all types of products, such as ID and name, while the different type tables

contain further type-specific information.

As mentioned earlier, a row within the FactoryProducts table serves as a bond between a

factory and a product, creating what is called a “FactoryProduct”. The reason for using

such a bond is the fact that one product may be produced in one or more factories and

reports for that product should be filtered based on which factory it was produced in.

Thus rows within the Deliveries table refer to the FactoryProducts table rather than the

Products table, since referring directly to the Products table instead would result in the

merger of report data from different factories.

17

The two last tables, Deliveries and OrderBook, store reported delivery and order book

data for a product produced in a certain factory, referring to the FactoryProducts table.

The reason for using two separate tables is the amount of order book and reservation slot

data compared to the amount of delivery data. Since the delivery data only counts for the

current month while orders range monthly three years ahead, the amount of order book

data becomes 36 times greater than the amount of delivery data. Therefore it was

considered most logical to store every monthly order and slot reservation as one row

separately in the OrderBook table, while referring to the “DeliveryID” of the respective

row in the Deliveries table. In this way one can simply fetch the entire set of delivery,

order book and slot reservation data based solely on the ID of one delivery row.

4.2.3 Security

As is always the case when it comes to confidential database information, security is a key

criterion, but in this case the company servers were already under strong protection, thus

the implementation of any advanced protection for the database alone was not

necessary. It was still considered a good idea to implement some kind of encryption for

the user passwords stored within the database.

When encrypting data, there are several encryption functions built into the SQL language

that can be accessed using the HASHBYTES method. A popular one is the MD5

cryptographic hash function which produces a 128-bit hash value out of any given string

(Code example 6). A password can safely be stored using MD5 as any password string

entered inside the GUI is immediately hashed before stored into the database. It does not

matter that MD5 cannot be decrypted, as the same given string will always generate the

same hash value and thus the hash value of a password string entered in the GUI can be

compared to the stored hash values in the database to verify the user’s credentials. [15]

Code example 6. Two examples showing results of the MD5 function used in PHP. As can be seen, the length
of the given string does not make any difference to the length of the resulting hash string.

MD5("The quick brown fox jumps over the lazy dog")

= 9e107d9d372bb6826bd81d3542a419d6

MD5("")

= d41d8cd98f00b204e9800998ecf8427e

http://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog

18

4.3 Application

4.3.1 Intended functionality

There should essentially be three different types of actors accessing the OBVTT: the

Visitor, the User and the Administrator. The Visitor should be an anonymous person

accessing the application via the Wärtsilä intranet, while the User and the Administrator

should be employees who have signed into the application and acquired certain

permissions. A thorough explanation of each actor’s role follows below, with a use case

diagram visualizing the functionality in Figure 8.

The Visitor’s permissions should be restricted to signing in to the application, requesting a

new password and accessing some of the help contents. Once the visitor has signed in, he

or she should become either a User or an Administrator. Every tool available to the user

should be shared by the Administrator, thus the Administrator could be considered an

extension of the regular user. The shared tools should consist of viewing and editing the

personal account, accessing help and resources, and naturally the ability to sign out

(although a signed-in user should automatically be signed out by the end of a session).

Furthermore both the User and the Administrator should be able to report and view

delivery and order book data, based on the credentials assigned to location and product

for each user.

In addition to the shared tools, the Administrator should obviously have access to unique

administrative tools, which allow him or her to manage every aspect of the application.

These tools should allow the Administrator to manage user accounts, user credentials,

product centers, factories and products, controlling what data each user may access. The

Administrator should also be able to manage the resources available to regular users.

Finally there should be a Database administrator allowed to access the actual database

using special database management tools. Such a user could set up regular backups,

monitor the database if needed and even override some table values in critical situations.

19

Fig 8. OBVTT use case diagram.

4.3.2 Connecting to the database

ASP.NET offers several ways to interact with different types of databases. A popular way

to connect to a database and its tables is using Entity Framework (EF), an ADO.NET based

object-relational mapping framework that eliminates impedance mismatch between data

models that might occur with new versions of ADO.NET. Early versions of the project

contained an Entity Framework Model connected to the database, but due to the

structure of the application it was later decided to switch to manual ADO.NET coding. [16]

A separate class (OBVTT_DB) was created for interaction between the application and the

database, containing all the required methods for reading and writing data, while the

connection string to the database was handled in the constructor. A static instance of the

OBVTT_DB class was made available in the Global file inside the project. In this way the

20

object could be called from any page within the project without the need of defining a

new OBVTT_DB object in every single file.

The OBVTT_DB class contains typical ADO.NET methods for selecting, inserting, updating

and deleting data stored within the database. There are methods for returning all items

of a certain type as well as methods using parameters such as ID to filter the results,

returning only the desired items. The OBVTT_DB also contains methods for verification of

data, server status checking and other database-related interactions.

The methods used in the OBVTT_DB class are very much alike, as most of them simply

execute commands to the database and return some value or objects, while others are

more advanced, using transactions or calling other methods within the method. An

example of such a method can be seen in Code example 7. By including certain

namespaces, different important objects become available, such as the SqlCommand and

SqlDataReader seen in the example. The SqlCommand is assigned an SQL query string,

which may also include different parameters for filtered database interaction if needed.

Once a connection to the database has been opened, an SqlDataReader reads and

gathers the requested data, which is then inserted into the correct type of object, in this

case CUser (explained in subchapter 4.3.3). Finally the connection is closed and the

method returns the entire list of objects.

Code example 7. A simple method using an SqlDataReader to read all data from the Users table in the
OBVTT database.

public List<CUser> GetUsers()
{
 SqlCommand comm = new SqlCommand();
 comm.Connection = conn;
 comm.CommandText = "SELECT * FROM Users ORDER BY lastName";

 conn.Open();

 SqlDataReader reader = comm.ExecuteReader();
 List<CUser> users = new List<CUser>();

 while (reader.Read())
 {
 users.Add(new CUser((int)reader[0], reader[1].ToString(),
 reader[2].ToString(), reader[3].ToString(),
 reader[4].ToString(), Convert.ToBoolean(reader[5])));
 }
 conn.Close();

 return users;
}

21

4.3.3 Classes and interfaces

An ASP.NET application usually contains many classes from scratch, serving for

fundamental parts of a project, such as content pages and global variables. To make the

project properly reflect the database data, additional custom classes were created to

represent rows from each table in the database. Two main classes, CProduct and CSector,

represent rows from the database tables Products and Sectors, while separate child

classes inherited from these two represent related tables in the database. These classes

contain some variables equivalent to most columns, as well as different properties and

methods designed to streamline the application. Due to the many properties of an

engine, a couple of enumerators were added to more easily keep track of certain

attributes. A representation of the application class hierarchy can be seen in Figure 9.

Fig 9. OBVTT class diagram.

A third main class CUser was created to represent a signed-in user. Similarly to other

custom classes in the project, CUser reflects the row of a table within the database, in this

case the table Users. The CUser object could be considered one of the most important

parts of the project, as it represents the user’s identity and credentials, completely

controlling the user’s access within the application. Whenever a user signs in to the

22

application, the object is created based on his or her attributes, and will remain as a

session variable throughout the session, unless the user signs out. Although the CUser

object is the factor deciding the accessibility of the GUI, the user always undergoes

validation (interfacing directly with the database via the OBVTT_DB class) whenever he or

she is about to read or write data. This prevents any kind of credential breach, should the

user somehow have accessed restricted areas of the application.

The final custom class created was CDelivery, which, unlike previous classes, represents

two database tables: Deliveries and OrderBook. This is due to the fact that the two tables

contain very similar data, dates and amounts, easily fitting into one class. In the

application each delivery is represented by one CDelivery object which contains two lists

of yet more CDelivery objects, the orders and reservations that can be accessed as

properties. This allows for a complete package of report data contained in one object.

Two different interfaces (IComparable and IEquatable) were applied to some of the

classes in order to enable the use of certain methods available in the .NET framework.

These interfaces render an object comparable to another, using different methods of

comparison. Using interfaces greatly reduces the amount of code needed as one avoids

having to create methods for every small task required in the code, such as removing

duplicates from an array or a list object, which can be done using the Distinct method

which in turn uses IEquatable for comparison.

4.3.4 Binding data

As the application contains many lists and dropdown boxes, it must naturally somehow

connect the database data to these components. There are many ways to manually

achieve data binding, such as adding a list of objects to the component’s collection array,

but the more practical alternative is to use some type of data source component. For the

OBVTT, object data sources were used to bind data to components.

The object data sources used in the OBVTT are assigned different selection methods.

These are the user created methods available within the OBVTT_DB class, the database

class mentioned earlier in this chapter. When the methods are called, they acquire data

from the database and create lists of objects which are then returned to the data source

23

(Code example 7) and finally to the component, assigning a value and data text field to

each item in the component’s collection. Whenever the user then selects an item, the

selected value can be read and used as a parameter for further data binding or other

uses.

4.4 User interface

4.4.1 Main design

The design is heavily based on previous iterations of Wärtsilä web applications. It consists

mostly of CSS rendered graphics along with different ASP.NET and HTML components. A

few images were also created, mostly to add a little style to the design. The color scheme

is entirely based on the official Wärtsilä color palette, which leans very much towards

gray and orange.

The layout consists of two main parts: an orange header running across the top of the

page, containing the application title and the main menu, as well as the content area

below, in which content is presented within gray panels with rounded corners. Elements

such as panels are all dynamically sized to allow a smooth presentation of the application

whether it is displayed on a huge desktop monitor or on a tiny laptop display. To allow for

dynamic resizing one can simply assign percentual size values to an element using CSS.

Unfortunately some of the design is limited, based on browser versions, as older browsers

are not compatible with newer CSS capabilities.

The CSS classes used throughout the application are stored in a separate CSS file called

“style.css”. The file contains many different custom classes, as well as alterations of HTML

elements. Examples of CSS classes used in the project can be seen in Code example 8.

Code example 8. Two CSS classes, the former being a custom class that can be assigned to any element,
while the latter alters the h1 HTML element.

.content_style{
 padding: 20px 200px 0px 30px;
}

h1{
 font-size: 1.6em;
 padding-bottom: 0px;
}

24

4.4.2 Navigation

As is common in web pages and web applications, a main menu bar is usually always

available somewhere on the page to allow for quick access to the most important

sections of the application. In the OBVTT the menu bar is an <asp:Menu> element that

runs horizontally across the bottom of the page header. Whenever the user clicks on one

of the menu items, he or she then navigates to a new URL.

Each page available from the main menu usually contains one or more menus of its own.

While some of these menus, much like the main menu, transfer the user to a new URL,

others simply enable and/or disable different elements and components on the page

through the use of events.

4.4.3 Presentation of information

When the user navigates to a new page within the application, he or she is always

presented with one or more panels containing some information or components. If the

user interacts with these components, more panels will appear, requesting new input

from the user. This means that only the information that is relevant at the moment is

visible, helping the user navigate through each tool without having to constantly search

for the input to use.

Apart from some common HTML elements such as line breaks, headers and tables, the

code consists mostly of ASP.NET components. A list of the most important and frequently

used components (excluding subcomponents) can be seen below.

 <asp:Button>

 <asp:Content>

 <asp:DropDownList>

 <asp:ListBox>

 <asp:Menu>

 <asp:ObjectDataSource>

 <asp:Panel>

 <asp:TextBox>

25

To notify the user of successful actions, errors or other important information, a

notification bar floating to the left side of the page was added using absolute positioning

in CSS. This bar appears and disappears automatically over time, but may also be hidden

immediately by being clicked on whenever visible.

4.5 Testing

Being a web-based application, SuperPreview, along with a range of browsers, was used

for testing throughout development. The main focus was on Internet Explorer and Google

Chrome, as these browsers were most frequently used within Wärtsilä. However, it was

obviously crucial to have a fully functional and correctly rendered application running on

any type of browser.

The most common deviations noticed between the different browsers were different

layout issues. While some were minor, only causing some cosmetic anomalies, others

would result in non-functioning components or text being offset to the point where it

became undecipherable. All issues regarding functionality were naturally addressed and

fixed, but some of the minor cosmetic issues remain as they only somewhat change the

appearance rather than ruin it.

26

5 The product

5.1 Main view

Whenever a user accesses the web application, he or she is presented with the Main

view. The Main view welcomes the user and may present news or updates regarding the

application or the server, as well as database status. Just like every other view within the

application, the Main view consists of a menu bar at the top of the page, from where the

user can access other views as well as the different tools. Depending on credentials and

whether the user is signed in, different views might be unavailable at the time being.

5.2 Account view

The Account view is first in line of the items accessible from the main menu bar, serving as

both an interface for signing in, as well as a tool for managing the account. Depending on

whether the user is signed in or not, the title of the menu item may change to better

display which user is currently signed in. Figure 10 displays a user signing in.

Fig 10. The Account view of the OBVTT requesting the user to enter his username and password.

27

5.2.1 Signing in

In order to access the actual tools, the user must sign in to the application via the Account

view. The Account view does not initially offer much functionality past the input boxes

used for signing in, apart from the possibility to restore a forgotten password, should the

user need to. Should the user decide to request a new password, an e-mail client is

opened with a password request addressed to administrators for the user to submit.

5.2.2 Account management

Once a user has signed in to the application, the Account view displays account

management instead of tools for signing in. Within the Account view the user is able to

view and edit his or her account. For instance the user may change personal information

or the password associated with the account. Changing passwords obviously requires

input of the current password, which as the standard is when managing personal

credentials.

5.3 Reporting delivery and order book data

The Report deliveries view gives the user access to one of the two main tools available in

the OBVTT. When a user is ready to submit delivery and order book data for one or more

products, he or she may open this view, choose the appropriate product center, factory

and product using dropdown-boxes (Figure 11), and select an input method. The user

may either manually input the data into a table or import an Excel file containing the

delivery data (Figure 12). Depending on the user’s credentials, he or she may only have

access to a few of the product centers, factories and/or products available in the OBVTT

database, limiting his or her options accordingly. Administrators on the other hand may

report data for any product in the database.

28

Fig 11. The user selects the product for which he or she would like to report data, based on location.

Fig 12. Importing an Excel file containing report data. The application verifies the type and content of the
file before accepting it.

When submitting data by importing an Excel file, the user is required to use a certain

template file. The template follows Wärtsilä standards and is available for download via

the Help & Resources view.

29

Once the user has submitted his or her report, the data is immediately stored inside the

OBVTT database and may be reviewed using the View reports tool. Should the user realize

that an error was made while reporting, he or she may edit or completely remove the

report altogether, given that the user is responsible for that data. The data is open for

editing until the user or an administrator decides to lock it.

5.4 Viewing delivery and order book data

The View reports view gives the user access to the other main tool available in the OBVTT.

In order to track and analyze deliveries and order book date for a certain product, the

user may filter data accordingly and receive a presentation based on chosen data. As

mentioned about the Report deliveries tool, the user may only have access to certain data

depending on credentials. Administrators, however, have full access to all stored data.

The delivery and order book data chosen for presentation may consist of both actual data

tracked over a desired timespan and future prognoses. Also depending on whether the

attributes of the product have undergone changes during its lifetime, the user may filter

and access historical data for different configurations. Once the user has rendered the

desired chart image, he or she may either save it as an image file or print it.

Fig 13. Viewing delivery and order book data for a certain product. The user has access to several tools
allowing him or her to filter data and customize the chart.

30

5.5 Help and resources

To ensure that anyone can use the different tools without any type of training, detailed

instructions on how to use every part of the application are available through the Help &

Resources view which, like any other section, can be found in the main menu bar.

In addition to different instructions and help manuals, the Help & Resources view offers

different resources that might prove useful when using the OBVTT. A good example of

such a resource is the Excel template used for reporting delivery and order book data.

Finally the Help & Resources view displays some information about the application itself,

the developer and some help contact details, should the help contents not suffice.

5.6 Administrative tools

Should a signed in user have administrative rights, this user may access the administrative

tools of the OBVTT. The administrative tools allow the administrator to edit base data in

the database, such as user accounts, product attributes, product centers and factories.

5.6.1 Managing users and credentials

An administrator has the rights to add new user accounts, modify existing ones and

deactivate obsolete ones (Figure 14). Once a user has been created, the administrator

may assign different credentials to that user by opening the Manage user credentials tool

and simply selecting which product centers, factories or products the user should have

access to and the type of permissions (Figure 15). The user being managed may gain read

or write permissions for products, factories or entire product centers. Gaining

permissions to edit an entire product center would for instance mean that the user may

edit any product being manufactured in the factories belonging to that product center.

Naturally these permissions can be changed at any time.

31

Fig 14. Adding a new user.

Fig 15. Managing user credentials.

32

5.6.2 Managing product centers, factories and products

Just like an administrator may add and modify user accounts, he or she may also add or

modify product centers, factories and products (Figure 16). However, whenever the

attributes of a product are altered, a new product containing the assigned attributes is

actually added to the database. Meanwhile the modified product is deactivated but left to

remain in the database. The reason why the old product attributes are kept is to maintain

historical data for different products, as the new attributes do not apply to past deliveries

and orders. This allows filtering of historical product specifications when viewing delivery

and order book data.

Fig 16. Adding a factory using the administrative tools of the OBVTT. Since each factory belongs to a
product center, the user must choose which product center the new factory is to belong to.

5.6.3 Application-specific settings

The final tools available to administrators are application specific settings that affect the

GUI rather than the database. These tools allow an administrator to dynamically modify

some of the GUI appearance and manage downloadable resources and information. It

also lets the administrator send messages to the application’s main view, in case users of

the OBVTT should be notified of any changes or other important events.

33

5.6.4 Warning system

Since credentials and bonds between factory and product must be manually assigned, the

risk of leaving some users, products or factories unassigned is fairly high. To avoid this

there are several verification methods run frequently to ensure that everyone and

everything is connected. If an object fails verification, the administrator is alerted by an

“ALERT!” item appearing in the main menu bar. This item directs the administrator to a

page where every located issue is listed (Figure 17), with information on how to solve

each problem. This removes the need to manually verify each object using the different

management tools and works as both an alarm and a time saver.

Fig 17. The warning system displaying detected issues.

34

6 Discussion and feedback

6.1 Thoughts on the product

The product is a functioning tool that allows employees to report and view delivery and

order book data, as was the main requirement. The application has not yet been taken

into use by Wärtsilä Industrial Operations as it is still undergoing testing and optimization

and will also undergo some heavy design updates before being taken into use. It is

targeted for implementation within the year.

Like any application, the OBVTT is naturally prone to the risk of bugs or other errors

showing up unexpectedly in the future despite thorough testing and debugging. It is

naturally possible to backup any important data and quickly locate and repair the

problem. The application should be supported by the developer as long as it remains in

use.

6.2 Future development

Although the product is considered fully functional, there is naturally always room for

improvements and the addition of new features that enhance the application either

visually or practically.

6.2.1 Connecting the user accounts to Active Directory

The application is currently using its own account system, with user accounts being stored

in a database table. It would, however, be a great improvement to connect the user

accounts of the application to the Active Directory accounts used throughout the Wärtsilä

internal network. In this way, users would not have to keep track of many different

accounts and would be able to sign in automatically when accessing the application.

35

6.2.2 Enhancing the application with Silverlight

Currently the application consists exclusively of HTML and ASP.NET components.

Although this provides necessary functionality, implementing some Silverlight plug-ins

would allow for a much more graphically capable user interface, especially when viewing

report data.

Microsoft Silverlight is a free web-browser plug-in similar to Adobe Flash, that enables

different interactive media in the web browser, such as applications, games or videos.

Silverlight works on all major operating systems and all major web browsers, proving to

be a very versatile plug-in. [17]

6.3 Reflections

The OBVTT is probably the most advanced project I have been assigned thus far as a

developer. Not having designed any software for such a large corporation before, I was

rather nervous as to whether I could really handle the task. At first it seemed very

difficult, trying to get a grasp of the ecosystem of Wärtsilä, the role of employees, the

production phases etc. I soon realized that taking detailed notes would be crucial and it

definitely helped me over time to understand how I would have to design this application

to provide desired functionality. The people I got to work together with at Wärtsilä

Industrial Operations were very eager to provide me with the resources I needed during

the development process and I consider the time spent developing the OBVTT a great

experience.

Developing the OBVTT has definitely been very rewarding to me as a developer, as I got

the chance to use all the things I had learned over the years at Novia to create something

advanced and important. As I had not previously developed any ASP.NET applications, it

was also a good opportunity to become familiar with the platform and I soon grew very

fond of its tools and features. Despite having previously developed several web sites and

web applications using PHP, I would definitely prefer using ASP.NET from now on.

36

7 Table of sources

[1] "Wärtsilä," [Online]. Available: http://www.wartsila.com. [Accessed 27 February 2012].

[2] "Wärtsilä on Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/W%C3%A4rtsil%C3%A4. [Accessed 6 April 2012].

[3] "Wärtsilä Industrial Operations Internal Presentation," 2012.

[4] "Microsoft SQL Server on Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/Microsoft_SQL_Server. [Accessed 20 March 2012].

[5] "Free Database Software," [Online]. Available:

http://www.microsoft.com/sqlserver/en/us/editions/express.aspx. [Accessed 6 March 2012].

[6] "SQL on Wikipedia," [Online]. Available: http://en.wikipedia.org/wiki/SQL. [Accessed 20

March 2012].

[7] "Transact-SQL on Wikipedia," [Online]. Available: http://en.wikipedia.org/wiki/Transact-SQL.

[Accessed 29 March 2012].

[8] "Visual Studio Home," [Online]. Available: http://www.microsoft.com/visualstudio/en-us.

[Accessed 28 March 2012].

[9] "ASP.NET on Wikipedia," [Online]. Available: http://en.wikipedia.org/wiki/ASP.NET.

[Accessed 20 March 2012].

[10] "C# Language Specification," [Online]. Available: http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-334.pdf. [Accessed 16 March 2012].

[11] "HTML on Wikipedia," [Online]. Available: http://en.wikipedia.org/wiki/HTML. [Accessed 20

March 2012].

[12] "Web-forms: The Official Microsoft ASP.NET Site," [Online]. Available:

http://www.asp.net/web-forms. [Accessed 26 March 2012].

37

[13] "CSS on Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/Cascading_Style_Sheets. [Accessed 20 Match 2012].

[14] "Paint Shop Pro on Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/Paint_Shop_Pro. [Accessed 29 March 2012].

[15] "What is the MD5 checksum?," [Online]. Available: http://www.fastsum.com/support/md5-

checksum-utility-faq/md5-checksum.php. [Accessed 29 March 2012].

[16] "The ADO.NET Entity Framework Overview," [Online]. Available:

http://msdn.microsoft.com/en-us/library/aa697427%28v=vs.80%29.aspx. [Accessed 29

March 2012].

[17] "About | Microsoft Silverlight," [Online]. Available:

http://www.microsoft.com/silverlight/what-is-silverlight/. [Accessed 29 March 2012].

[18] M. MacDonald, A. Freeman and M. Szpuszta, Pro ASP.NET 4 in C# 2010, 2010.

M. MacDonald, A. Freeman and M. Szpuszta, Pro ASP.NET 4 in C# 2010, 2010.

R. Dewson, Beginning SQL Server 2008 for Developers, 2008.

