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1. INTRODUCTION

Home automation is currently a new growing field in Computer Science: The goal

of this automation is controlling the house elements (lights, heating, air condi-

tioner, ...) in order to save energy and raise the quality of living of the house

inhabitants.

In the figure 4.10 we can see one example house using home automation:

Figure 1.1: Home automation example. Source [17]

One of the main problems applying this new technology is that it is needed to wire

some elements inside of the rooms and between rooms, and this can arise some

difficulties with old buildings. A wireless communication between elements and

rooms would settle effectively the problem.



7

Analyzing the actual market in home automation we found that X-10 [1] (which

is a Power Line Carrier protocol) is the most used option; although, X-10 devices

are expensive and there are not solid neither standards solutions for all scenes.

1.1. Report organization

• Chapter 1: Introduction to the project and report organization.

• Chapter 2: It describes the home automation implementation problem.

• Chapter 3: The solution that came up in with this final thesis.

• Chapter 4: It introduces the technology that has been used to develop and

carry out the project.

• Chapter 5: Programming specifications, protocols, UML diagrams in order

to understand how the project has been developed.

• Chapter 6: Conclusions and future work that can be done in this field.

• Chapter 7: Bibliography
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2. PROBLEM DESCRIPTION

2.1. X-10

When we think about installing our house with home automation and we go to the

market to see what are the technologies that are being used, we found the X-10

protocol as an Home Automation standard protocol. Although this is a propri-

etary protocol, it showed up in 1975 and this made that lot of houses nowadays

use this system, actually, more than 8 millions of houses use X-10 protocol.

X-10 is a Power Line Carrier protocol, that means that it uses the power line

for the frames transmissions, it is flexible and there are a lot of devices that can

”speak” X-10. Most of the devices are plug and play, so the installation is not

really complicated.

There are 4 kind of X-10 devices:

• Transmitters: they only send orders trough the power line. One transmitters

can transmit up to 256 devices at ones and multiples transmitters can send

instruction to the same device.

• Receivers: they can only received information and for example if they are

computers, they can report the status of the home network through a we-

b/desktop interface.

• Transceivers: They can send and receive information from other devices.

• Wireless devices: They use a normal transceiver attached to the power line

and then this transceiver sends the information wireless to other wireless

device. These devices use 433 Mhz in Europe and 310 Mhz in US and they

are not working with medium/long distances, its normal range is 5-10m.

X-10 works at 120 Khz and sends the information just after the zero crossing point

of the electric wave.
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Because X-10 is a proprietary protocol, if you want to used X-10 protocol but

implement your own devices you will have to pay to Power House (TradeMark).

Or you must buy element like PL513 (transceiver, figure 2.1) or TW523 (Receiver)

that allow directly to used their interfaces to send X-10 frames.

Figure 2.1: PL513. Source [16].

2.1.1. X-10 Problems

X-10 does not have any kind of collision detections mechanism, it means that if

some devices are trying to send at the same time, it will come with a frame colli-

sion and in some cases it can cause that some element change its status without

having to.

Later version of X-10 implements CSMA to detect this kind of problems, but the

frame still does not have CRCs or checksum field to detect possible transmission

failures.

Transmitting over the power line using pulse signal in high frequency can be af-

fected by interferences.

Power suppliers and transformers produce electrical interference and we have many

of them in the house, they are in: TVs, DVDs, computers, Microwaves,... When

electric noise can be found in the power line, the transmitted or received signals in
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X-10 devices can be attenuated or blocked. One effect of this electric noise is the

random turn on of a light. This problem can be solved using filters (figure 2.2) to

attenuate this electric noise that is not in 120 Khz frequency, but this approach is

quite expensive.

Figure 2.2: X-10 filter

Also, other of the problem that we found when we want to implement this kind

of protocol is that most of the devices are ready for 120v in order to work in US

and the equivalent device in Europe is much more expensive because they have to

make it compatible with 220v.
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2.2. Wire network, KNX

As we have already seen X-10 is not a good idea for a home automation system

in Europe. So, if we want to look for another solution we will have to wire our

house in order to interconnect the devices that will control our system. Looking

to this approach we find KNX, it is a standard based on network communications

protocol for intelligent buildings. It has severals implementations:

• Twisted pair wiring

• Power line networking, similar to X-10.

• Radio, KNX-RF

• Ethernet

If we implement the power line networking we will find the same problem with the

attenuation thanks to the other devices that we have in the house, and if we used

twisted pair wiring which seems to be the most trusted one, we will have to add

a wire between all the home automation devices that we will install. Sometimes

it is also really complicated, if not impossible without modifying the building

infrastructure, to wire all the devices.
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3. SOLUTION

3.1. Objectives

Due to the problems that we find if we try to use the power line for transmitting

the information to the devices that are controlling the house elements (like lights,

microwave) and the problem that we find if we try to wire a old building, the best

alternative is using a wireless communication.

During the research part of this final thesis, we decide to use Zigbee wireless pro-

tocol to be the communication layer of our home automation system. More details

about Zigbee will be found in the Technology chapter.

Ones we have decided the communications, we need to decide which hardware

can ”talk” with this wireless protocol, after a comparative research, we find that

Microchip company has very cheap and clever solution for Zigbee and that they

have also microcontrollers that have an easy integration with this kind of commu-

nication protocol.

With all the infrastructure ready to send and receive instructions/orders, we

would like to make a Home Automation system that can be easily installed, Open

Source/Hardware, and completely functional for most of the house.

Summarizing:

The objective of this final thesis is developing a Wireless Auto-organized network

library for Microchip microcontrollers using Zigbee technology for Home Automa-

tion. This system will be joined to Mister House Home Automation software.

When the project will be finished we will be able to install Pinguino 32 bits devices

in the points of the house that we want to control (for example lights) and later,

using a Web Interface we will be able for example to turn on or off those lights.
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3.2. Planning

This will be the secuence of goals that will be developed during the project life.

1. Study the Pinguino 32 bit microcontroller platform.

2. State of the art of the low power consumption networks based of Zigbee.

3. Study the auto-organized networks protocols.

4. Make the library and the protocol for connecting a PC with Pinguino using

USB (CDC).

5. Make the library that gives to Pinguino the possibility to create auto-organized

networks.

6. Integrate the library with Mister House in order to close the loop of the

Home automation system.

In the step 4 we will be able to send instructions from a PC (using terminal) to

the Pinguino.

In the step 5 we will be able to send instructions from a PC (using terminal) to

the Pinguino Master and it will resend the instruction to all the other Pinguino

Slaves that are forming the network.

In the step 6 we will change the PC terminal for a web interface through that we

will be able to control any Pinguino in our network.
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4. TECHNOLOGY USED

4.1. Zigbee

Zigbee [2] is a high level wireless protocols set of low power consumption based in

the 802.15.4 IEEE standard. It tries to be the perfect protocol for low bandwidth,

low send rate and secure communications. Zigbee is an alliance of more than 100

companies like LG, Philips, Samsung,... and its goal is helping deploying low price

wireless network.

Zigbee covers the Physical Layer and Data Link Layer, the upper layers should be

implemented by the developers if they need it. It implements solutions for star,

mesh, and tree topologies.

All Zigbee networks need a coordinator (that should be the central one) and its

mission is routing and helping in routing. The coordinator has different names

depending on the topology of the network.

Zigbee, also known as HomeRF lite, is a technology with range of speed from 20

Kb/s to 250 Kb/s and distance range from 10m to 2km. It uses a free wireless

band, 2,4 Ghz, 868 Mhz (in Europe) and 915 Mhz (in US).

A Zigbee network can be composed of 255 nodes and most of the time this

transceivers will be sleeping, looking for saving power. The protocol specifica-

tion wants a transceiver to be on with two AA batteries at least 6 months and up

to 2 years.

4.1.1. Zigbee topologies

• Star topology: there are two kind of devices, the central node and the rest

of nodes. All the nodes are connected to the central node and all the com-

munication flows through it. We can see an example of this kind of network

in the figure 4.1.
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This kind of network represents a risky scenario and the problem is that if

the central node goes down, the network will stop working. Also if someone

is able to replace the central node with a malicious one, it will be able to

read all the data from the network.

Talking about our topic, home automation, it is not a good idea to use this

kind of network. If the central node goes down (that for example is control-

ling the kitchen), we won’t be able to control the rest of the house.

Implementing this network topology means that all the devices can reach

always the central node, and if we are installing zigbee devices in all rooms

it is quite possible that not all of them have connection to the central node.

Figure 4.1: Zigbee star topology. Source [15].

• Tree topology: this topology has a main node called top node and below it

there are branches which connect the different nodes. When a node wants to

send a packet to another node, the packet will go up until the root node that

connects both end nodes. We can see an example of this kind of network in

the figure 4.2.

This approach could be a good idea if we want to connect devices inside of
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a room to a room master device and then this room master device to the

main house device. But it has the same problem that the star topology, if

the central node fails, some areas of the houses are going to be in troubles.

Figure 4.2: Zigbee tree topology. Source [10].

• Mesh topology: this is the more flexible topology that we can implement

using Zigbee technology. In this kind of network all the devices can commu-

nicate with each others.

The network will find the route automatically to deliver the message correctly

and the main advantage of this kind of network is that they are decentral-

ized, if some node has problems, it doesn’t mean that the whole network will

go down like it happens when we use the above topologies.

4.1.2. Comparing Zigbee

Comparing wireless technology, we can find the table 4.1.

It is expected that Zigbee transceivers will be the cheapest wireless transceivers

in the market with a cost around 2 e. They have an integrated antenna and

frequency control.
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Figure 4.3: Zigbee mesh topology. Source [15].

Standard Bandwidth Consumption Advantages

Wi-Fi Up to 100 Mbps 400 mA transmitting,

20 mA sleeping

Big bandwidth

Bluetooth 1 Mbps 40mA transmitting,

0.2 mA sleeping

wireless commu-

nication between

close devices, mostly

phones

Zigbee 250 Kbps 30mA transmitting,

0.3 mA sleeping

low power consump-

tion, low cost

Table 4.1: Wireless technologies comparative table. Source [14].

4.1.3. Security

Security in Zigbee transmission is one of its strength. Zigbee uses Layer 2 with

these security mechanism:

• Access control list, it keeps a list with the trusted devices.

• All the data is encrypted using 128 bits encoding.

• Fresh token in order to know if a frame has been replaced

Zigbee is a high level wireless protocols set of low power consumption
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4.2. Microcontrollers

The microcontroller is going to be the brain of the Home Automation system that

we are going to build and some of the things that we should look for in those small

processors is the flexibility that they will give to the system.

We have a limited time to develop the project so we will try to find the easiest and

cheapest solution in order to satisfy the needs of the system, looking to that we will

try to find a hardware that can be highly compatible with Zigbee communication.

They should have low power consumption and have enough I/O input to control

some elements inside of a room at least.

One of the most important features that we would like to add to the system is that,

it should be completly Open Hardware/Software, so we need a microcontroller that

can be programmed using Open Source Software. Filtering these criteria we will

compare Arduino and Pinguino.

4.2.1. Arduino

Arduino is an open platform based on Open Source and Open Hardware. It consists

of an Atmel microcontroller board and an IDE written in Java. It has a big

community developing libraries and sketch code what makes it a very confident

platform for new hardware developer.

There are several Arduino models depending on the features of the project that

you want to develop. The most interesting one are:

• Arduino Uno: It is the standard Arduino. It uses 8 bit microcontroller,

ATmega328. It has 32 Kb flash memory, 2 Kb RAM, 16 Mhz, 1 Serial port,

6 analog I/O ports, 13 digital ports.

• Arduino Ethernet: It has the same functionality than the normal one but

also includes Ethernet connectivity.



19

Figure 4.4: Arduino Uno. Source [13].

Figure 4.5: Arduino Ethernet. Source [13].

• Arduino BT: It has the same functionality than the normal one but also

includes Bluetooth connectivity.

• Arduino Nano: It has a bit less features but, its great advantage is that is

really small.

• Arduino Mega: It is the big one of the Arduino family, it is based on AT-

mega1280. It has 54 digital input/output pins (of which 14 can be used as

PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16

MHz crystal oscillator.

Arduino can be programmed using Processing language, which is quite close to

C++. It has by default several libraries included in the IDE, such as: Serial,

Wire, I2C, EEPROM, Servo and some more.
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Figure 4.6: Arduino Bluetooth. Source [13].

Figure 4.7: Arduino Nano. Source [13].

The prices depend on the board model, but the standard Arduino Uno is around

20 e.

4.2.2. Pinguino

Pinguino [5] is a fast hardware prototype enviroment based on Open Hardware

and Software project. It is composed of an IDE and a programming board for

Microchip microcontrollers (mostly PIC family).

In addition this platform gives us the possibility to add shields to add new func-

tionalities to the microcontroller.

There are mostly two types of Pinguino boards, 8 bits board and 32 bits board.

• 8 bits board: It is based on PIC18F2550

– It has native USB.

– Digital I/O ports: 19 (2 pwm)

– Analog I/O ports: 10



21

Figure 4.8: Arduino Mega. Source [13].

– Flash memory: 32 Kb

– SRAM: 2 Kb

– EEPROM: 256 Bytes

– Clock rate: 20 Mhz

– The price is around: 13 e

Figure 4.9: Pinguino 8 bits. Source [5]

• 32 bits board: It is based on the 32 bit Microchip microcontroller PIC32MX440F256H.

– It runs at 80 Mhz

– It has OTG (which allow Pinguino to communicate with OTG compat-

ible devices like Android devices).

– It has microSD card for data logging.

– DCDC power supply allow power supply voltage from 9 to 30V DC

thus making possible to take virtually any power supply adapter on the
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market, also enable application which are in industrial power supply

24VDC.

– Li-Ion rechargable battery power supply option with BUILT-IN on

board charger, so when you attach battery it is automatically charged

and kept in this state until the other power source (USB or external

adapter) is removed and it AUTOMATICALLY will power the board.

– UEXT connector which allow many existing modules like RF, ZIGBEE,

GSM, GPS to be connected.

– Allow RTC - Real Time Clock.

– Arduino Shields compatible.

– The price is around: 22 e.

Figure 4.10: Pinguino 32 bits. Source [5]

Pinguino can be programmed with different languages using the IDE:

• Pinguino Language (based on C and compatible with Arduino language)

• C language and Pinguino 32-bit MIPS-elf or 8-bit SDCC/GPutils toolchain

Pinguino Language is compatible with Arduino’s Language and Libraries

4.2.3. Arduino vs Pinguino

This are some of the reasons of why I chose Pinguino to develop the system:
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• I wanted to develop a system which will need fast response in order to make

it usable and secure for everyone. Due to that I chose 32 bits microcontroller

instead of 8 bits one.

• The price of Arduino standard is around 20 eand the 32 bits Pinguino is

around 22 e, there are not a big price difference.

• Zigbee shields ready to use for Arduino costs: 39 eand Pinguino shields

ready to use for Pinguino costs: 15 e.

4.2.4. Zigbee Shield for Pinguino

The Zigbee module that we will be using for the project development is the

MRF24J40MA from Microchip. It cost is around 7 e. It is really powerful and it

implements Zigbee, Miwi and Miwi p2p protocols by default.

The module uses SPI protocol for its control, so a shield to connect this module

pins to the Pinguino pins is needed. For that reason we will use the UEXT con-

nector in the back of Pinguino which contains all the serial interfaces.

In the figure 4.11 we can see the connections.

Figure 4.11: Zigbee Shield. Source [8]

And in the image 4.12 we can see the result of connecting this shield to Pinguino.

The schematic file can be downloaded from the bibliography [11].
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Figure 4.12: Zigbee Shield connected to Pinguino. Source [5]

4.3. Relay shield

For controlling the 220v elements in the house, we need a relay. It is a mechanical

element than can join two wires and close a circuit in order to power an element

or disconnect the two wires and switch off the element that it is controlling.

In the project development we will use this relay board shown in the figure 4.13.

Figure 4.13: Relay shield

The price is around 25 eand has two relays, it also has the possibility to read the

power line and know if a switch is on or off, this is quite important because thanks

to that we can have a home automation system that can work in an ”analog” way
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(using the switches) or with the web based application.

220v pin description:

1. Light phase input

2. Light neutral input

3. Light neutral output

4. 220v phase input

5. Light phase output

Interface shield pin description:

• A: 220v light sensor input

• B: Light turn on

• C: Light turn off

Board power:

• - : GND

• +: 12V

The schema and interconnection is described in the following pages.

4.4. Interface controller board

Normally, the relays can have different voltage inputs but the most common ones

are the 12V relays. Pinguino works at 3.3V so we need to have a intermediate

board that converts this 3.3V to 12V. This is the functionality of the interface

controller board.

Image 4.14 shows the appearance.

Pin description board:



26

Figure 4.14: Interface controller shield

• D2 : Module 1 off

• D3: Module 1 on

• D10 Module 1 sensor

• D4 Module 2 off

• D5 Module 2 on

• D11 Module 2 sensor

• D6 Module 3 off

• D7 Module 3 on

• D12 Module 3 sensor

• D8 Module 4 off

• D9 Module 4 on

• D13 Mod 4 sensor
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Jumper function:

• JP1 relay 24V

• JP2 relay 12V (default)

• JP3 5V microcontroller

• JP4 3.3V microcontroller (default)

The connection needed is shown in the figure 4.15.

Figure 4.15: Interface and relay shield connections
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4.5. Mister House

Mister House [6] is a well known Open Source project for home automation base

on X-10 protocol. It is written in Perl and can work on Windows platforms, Mac

OSx and Linux.

Figure 4.16: Mister House logo. Source [6].

It has the most interesting characteristics talking about home automation:

• The software has a web interface, so all the orders can be done with a mobile

phone, smart phone, internet tablet and in general with every device that

has a web browser.

• Opening the port 8080 (where the web server is listening) in the house router,

allows controlling the system out of the house, it is said, world wide.

• Mister House can communicate with X-10 devices, some KNX devices, and

also it has the possibility to create new modules, so the developers can create

their own devices that can interact with Mister House in the same way that

market products can do.

• It can execute actions based on scheduled (Every morning turn on the bed-

room light).

• It can execute actions based on events (When there is enough sun light turn

off the lights).

In the figure 4.17, we can see the appearance of the web interface.
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Figure 4.17: Mister House web interface 1

5. PROJECT DEVELOPMENT

5.1. Architecture

Figure 5.1: Architecture diagram

The system is composed from 3 different parts:

• Slave firmware: the slaves should be able to discover its master and initialize

a connection with it. Ones it is authenticated, the slave should be ready to

receive instructions from the master, to execute them and to send the new
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status.

Slave devices will be controlling the elements of the house like lights, mi-

crowave, fridge, etc and for that they need to have an interface board and

as many relay shields as elements it is going to control.

• Master firmware: the master will be connected to the computer or the main

station via USB and wireless with Zigbee with the rest of the slaves. It will

be listening to the air looking for zigbee packages that include instructions

(the zigbee instructions will be described in the following subsections) and

also waiting for instructions that Mister House will send using USB.

When the master device receives an action from usb, it firstly searches for

the destination address of this action, if it is for him, it does it. If not, it

will search if it knows the Zigbee address of this device (because before this

device has been authenticated in the system) and will send to it the action.

The master device can also be an slave device in the sense that it can also

control real devices like lights. If this is the scenario that we want to imple-

ment, it should also have the interface board and the relay shield necessaries.

• Mister House library: thanks to the flexibility of the Open Source software,

we will write a library that helps Mister House to control elements inside of

our network, it means that with Mister House (Home Automation system)

we can control the master and also the slave devices.

Mister House will send information to the USB and the master device will

make a decision about what to do with the packet that it has received.

All the devices are identified by an unique identification called ”House Code”.
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Typically this code is a letter and can go from A to Z. Although the letter M is

always reserved for the Master device.

It is very important that every device has a different identification (House Code)

from the rest, because otherwise it won’t be able to be attached to the network.

Every house element that is being controlled by a master or a slave device has to

have also a identification number, this identification is called ”Key Code”. It is

a numeric identification and goes from 1 to 99, it means that one slave/master

cannot control more than 99 elements (sensors, lights,...).

The last parameter needed to understand how the system works is the Actions.

They can have different lengths and they are usually written in capital letters.

Some examples of actions are: ON, OFF. All the elements should response always

to the action: STATUS, which will send back the status of this element. In Light

this status is a 0-255 value meaning that 0 is off and 255 is full bright.

This is a complete example of a frame instruction to the element 4 attached to the

device A, asking the device to turn on:

A04ON
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5.2. Module diagram

Figure 5.2: Low level module diagram
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In the figure 5.2 we can see the low level module diagram of the firmware that are

used in master and slave devices. It is composed of 4 modules: Debug, Hardware,

USB and Zigbee.

5.2.1. Debug

It is one of the most important modules while the system is being developed. It

only contains one function:

void breakpoint(char * Msg);

This function will send the debug information message through serial port or usb,

depending on the system that we were debugging in order to see if the system was

working correctly and if all the information was well received and sent.

5.2.2. Hardware

This module controls the I/O ports of the Microcontroller, all the configuration

needed to success controlling the interfaces are done here, also this module control

the activation and deactivation of the interfaces.

It contains these functions:

• void begin_devices();

It sets up all the the I/O ports of the microcontroller.

The information about what pins it should set as input or output is written

in defines.h header.

• void element_XX_on();

XX means interfaces from 1 to 4, in the future if a new interface board

has more than 4 interfaces, it will be necessary to implement the new ele-

ment XX on functions.

This function is called by default when the element XX of the device receives

the action ”on”. It is said by default because we will see in the following
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subsections that an end-user or developer can create their own drivers for

controlling the interfaces.

The function acts according functionality of the Interface board data sheet

for turning on the light connected to the interface module XX.

• void element_XX_off();

The functionality is exactly the same as element XX on but instead of turn-

ing of the light attach to this interface module, it switches off.

• void element_handler(KeyCode,Action);

This function will decide to which function should call regarding to the input

information. With the Key Code it knows what kind of element is attached.

An example coming to this function could be: KeyCode: 3; Action: ”ON”.

In this case element handler will call to the function element 3 on().

5.2.3. USB

This module manages the communication layer for usb. All the data that come

and goes to usb will be process by this module.

• boolean usb_ready();

This function returns true when usb has received a complete and valid frame

which contains an instruction. Internally this code reads usb buffer and

checks if the frame is complete or it still needs to receive some more infor-

mation. Once the frame is ready it returns true.

• void usb_Send_Message(char Room, short int Element, char * Action);

This procedure will send an action frame to a element controlled by a room.

It will use the utils.c module to create a correct frame structure.

Mostly this function is used by the master device to inform Mister House

about changes in the network (such as light states changes).
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• void reset_Usb;

It clears all the buffer used by usb, it is called when the executing of a frame

has finished or when usb has received an invalid frame.

5.2.4. Zigbee

This function will manage all the incoming and outgoing information using the

wireless protocol. It also contains a list data structure and some function for con-

trol that will be explained above.

It is one of the most important modules of the system. It will create the mesh

network, will attach devices and will track all the packet in order to have a good

quality of service.

• void zigbee_setup();

It initializes all the registers and I/O ports necessaries for Zigbee microchip

board.

• boolean zigbee_find_element(char HouseCode);

This module internally maintains a data structure and it is there where it

stores the addresses corresponding to the House Code of the devices. This

data structure is very important because without it, the device will be un-

available of sending data using Zigbee.

This function is called when the master wants to send a package to a slave.

It is the first step in the procedure, firstly it has to know where it has to send

the package. The function will return true if the master has the address of

the slave in the data structure. False otherwise.

• boolean zigbee_received();

This function is quite similar to usb ready but for Zigbee. It returns true

when Zigbee has received a complete and valid frame which contains an
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instruction. Internally this code reads usb buffer and checks if the frame is

complete or it still needs to receive some more information. Once the frame

is ready it returns true.

• void zigbee_send_message(char Room, short int Element, char * Action);

This function will send a packet using the frame structure defined by our

system to the device that has the House Code equals to Room.

Prior to sending the packet the function searches if it has the address of the

device with the House Code equals to Room, if it has it, it retrieves the

address. Then it composes a frame with the defined structure and it is then

when it is ready to send the packet.

• void zigbee_attach_master(char Room, short int Address);

This function is called when the slave sends a packet to the master indicating

that it wants to be part of the network.

From this packet it will extract the device address and the House Code.

One possible state of this data structure could be this:

A → 0x0001h

B → 0x0003h

D → 0x0004h

• void zigbee_reset();

It will reset all the buffer used for Zigbee communications, it can happen

for 2 reasons, the frame was invalid or the device has finished executing the

instruction.
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Figure 5.3: High level module diagram
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In the figure 5.3 we can see the high level module diagram of the firmware that

are used in master and slave devices. It is composed of 4 modules: Utils, Protocol

and Control.

5.2.5. Utils

This module doesn’t have an specific task but helps to group some functions that

are commons in different modules and it is very important that the functions used

in the different modules have the same, otherwise the protocol could stop working.

Having this function grouped in a single module has one advantage and it is that

if a change in the frame structure is done, we only have to change these functions.

• char * frame(char Room, short int Element, char * Action);

This function will send back after the call a valid frame structure using the

Room code, the Element (KeyCode) code and the action.

• char * frame_confirmation(char Room, short int Element);

It is quite similar to the last one but this function will create a confirmation

frame that are used when an action has been done but one slave. Detail

about how the protocol works will be described in the next subsections.

5.2.6. Protocol

This module is in charge of making the decision about what to do when something

in the device happen, it goes from received a packet to connect to the slave.

All the functionalities about what to do when an scenario shows up is written in

these function.

There are different protocols depending if the device is a master or a slave and in

the master, there are also a protocol for Zigbee and another for USB.

Internally this module has a data structure where it saves the instruction that has

been sent and which it didn’t receive a reply. If the device doesn’t reply during



39

severals tries it can be dropped out of the network.

• void add_packet(char HouseCode, short int KeyCode,

char * Action);

As its name says, it inserts an entry in the data structure telling that a packet

has been sent to the HouseCode device and KeyCode element with an Action.

The data structure is a dynamic linked list, so the list will be growing if we

don’t receive answers from the devices that we send packet.

• void delete_task(char HouseCode, short int KeyCode);

This function deletes all the entries in the linked list related to the device

HouseCode and KeyCode element.

For example if we have sent several packets to the device in the kitchen

(HouseCode : K) telling it that it should turn off the light controlled by the

element 3 (KeyCode: 3), the call function will be like that:

delete_task(’A’,3);

• void delete_task(char * Action);

It is similar to the last one, but this one will delete the entries that contain

the same Action. It is used in an scenario like the following:

We send the instruction turn on to the element 3 in the device A, but we

didn’t receive a confirmation that the action has been done. In this moment,

we decide to turn off this same element in this same device, so what we do

is delete all the instruction with the action ’ON’ to avoid the turning on of

the element. Doing that we avoid the device to turn on and the turn off

immediately.

• void show_pending();
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It was made only for debugging purposes, when it is called it sends back to

the usb the number of packet that hasn’t been delivered yet.

• void slave_protocol(char HouseCode, short int KeyCode,

char * Action);

This is the protocol used by the slave devices.

The scenario that it covers will be described in the following subsections .

• void master_usb_protocol(char HouseCode, short int KeyCode,

char * Action);

This is the protocol used by the master device when an event has raised up

in the USB.

• void master_zigbee_protocol(char HouseCode, short int KeyCode,

char * Action);

This is the protocol used by the master device when an event has raised up

in Zigbee.

5.2.7. Control

• void decompress(char * Frame, char *HouseCode,

short int * KeyCode, char * Action);

This function will receive a valid frame that has arrived from USB or Zigbee

and it will extract the House Code, the Key Code and the Action.

Ones we have this information we can make a decision about what to do.

• void execute(char * Frame);

Receive a frame and execute the action.

• void run_zigbee();
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Check if there is something new in Zigbee, if so, it calls to execute() to make

the execution process.

• void run_usb();

Similar to the last one but in this case it checks if there is something new in

USB.

• void run();

Ask for all the interfaces available in the system (in our case, run usb and

run zigbee). If in the future we implement another communication protocol,

here it will has to appear a run new protocol that will look if something have

been received by this new communication protocol in order to execute it.

5.3. Protocols

5.3.1. Slave protocol

Figure 5.4: Protocol scenario for executing action in the device

• In the figure 5.4 we can see the normal procedure to execute an order that

has been received by Zigbee.
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Note that the confirmation is very important, if we don’t do that, every

timeout is reached by the master device, it will send the same packet again,

this will not cause any action in the slave device because it already has this

state but, the network will have not useful traffic.

Figure 5.5: Protocol scenario for connection successful.

• In the figure 5.5 we can see the message received from the master indicating

that the device is not attached to the network.

It is only done once when the device turns on, it is received after the slave

sends a packet to initialize the authentication in the home network.

• In the figure 5.6 we can see that one slave has received a packet and the House

Code doesn’t match with its HouseCode, so it will search in the internal

memory if it has the address of the device and if it has it, it will send it back

to it.

This function was implemented because some Zigbee devices are not able to

build a mesh network on their own, so this function is needed, but in our

case it is not necessary.
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Figure 5.6: Protocol scenario for retransmitting a packet.

5.3.2. USB master protocol

• In the figure 5.7 we can see the normal procedure to execute an order that

has been received by USB.

• In the figure 5.8 we see the flows of information between the different modules

when from USB, the master device is asked about what devices are attached

to its network.

This information can be used for debugging and also for future jobs that can

be done in the project.

We have to ask from Zigbee protocol about how many devices are connected

because it is the one that track all the connection between the master and

the slaves.
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Figure 5.7: Protocol scenario of executing an action coming from USB.

Figure 5.8: Protocol scenario for retrieving connected slaves.

• In the figure 5.9 we see the scenario for re-transmitting a packet from the

master (that has received it by USB) to a Slave via Zigbee communications.

The packet is added to the linked list once it has been sent and if after a

time it doesn’t receive a confirmation, it will send it again.

5.3.3. Zigbee master protocol

• In the figure 5.10 it is shown the slave connection scenario.
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Figure 5.9: Protocol scenario of re-transmitting information to slaves.

In this step the master could decide if it wants this element to be authenti-

cated, for example it can restrict some devices to enter in the network. Also,

it can detect if this device is already connected in order to detect identity

misappropriate.

With the master response the slave will know that it is ready to send and

receive information.

• This scenario (figure 5.11) should happen every time that the master sends

an instruction to the slave. This is the way that the slave is telling to the

master that it has received the instruction and that it has done it correctly.

After this scenario the master knows the new state of this element in this

device.

• In the figure 5.12 we see the scenario where one slave sends a instruction

that the master should execute.
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Figure 5.10: Protocol scenario of new slave connection.

Figure 5.11: Protocol scenario of ACK.

This option is disable by default because usually it is the master device who

chooses who does an action.

• In the figure 5.13 it is shown how the master receives information via Zigbee

from a slave device and sends the packet back to USB. This is done because

the slave is sending some information about new states or about actions that

should be done in Mister House or in the home automation control system.

5.3.4. Executing action from Web Interface

• In the figure 5.14 it is shown a big picture of what happen when an user click

on the web interface asking for turning on a lamp.
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Figure 5.12: Protocol scenario of executing action in the master device.

Figure 5.13: Protocol scenario of re-transmitting information.

It is supposed that slave has the KeyCode: 3 and that it is already authen-

ticated in the system.

5.4. Network autodiscovering

All the slave devices know the address of the master device so when they start the

first thing that they try to do is authenticate with their master. In order to do

that, they are sending packets to the air pointing to the master.

While they don’t find a master they are useless because they cannot execute any

action.

Thanks that the network is using mesh topology, if the slave Zigbee module doesn’t

have direct connection with the master, their slave partners will help it sending



48

Figure 5.14: Executing action from Web Interface.

its packets to the master.

5.5. Drivers

The drivers of the elements are the components that say what a element has to

do. By default all the drivers are focused on controlling lamps using the Interface

Board and the Relay Board, so, when the driver of a element X is called, it changes

the outputs in order to turn on or off this light that it is controlling.

When the system is being used by default for controlling lamps there is no need to

implement new drivers, but if a developer has created another application for an

interface, he/she may has decided to implement a different driver for this interface.

In that case, it should define the drivers like this:

#define INTERFACE 1

void hw_beginDevices(){

//It defines all the pin mode configuration (INPUT or OUTPUT)

}
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void hw_element0_on(){

//Driver example of the action "on" on the element 0

}

5.6. Mister House library

The library for the connection of Mister House with Pinguino is written in Perl

because Mister House is written in Perl and it was easier to have everything work-

ing.

It is composed of two main functions:

• sub startup {}

This function sets up the serial connection once Mister House has started.

The serial connection is saved in a variable in order that we can re-use it

every time we want without creating a new connection to the serial port

again.

• sub send_X10 {}

This function is the one in charge of sending the instruction that the end

user has order via web interface to the Pinguino Master via USB.

The installation and configuration of Mister House can be found in the project

web page [6].

6. CONCLUSIONS

This project has been really interesting, I have learned a lot of things related with

wireless networks, home automation protocols and now that it is finished I am

glad to say that this system can be implemented in real houses.

At the beginning it was completely surprised about how many things it has been

done for home automation but that they are not really secure or that can bring

with a lot of problems in the future.



50

During the project I have been writing in a blog all the advances that I made and

also I have been publishing the code to get some feedback of possible users. I have

received feedback from people all over the world: Spain, Colombia, Peru.

The stats of the blog has been rising like it can be seen in the figure 6.1.

Figure 6.1: Visits in the Blog

The system has received more than 20K downloads [12] worldwide, what makes

me really proud.

6.1. Licence

All the documentation, libraries, binaries and code examples are publish under

GPL license. It means that everyone can build his/her own system without any

additional cost than the hardware.

6.2. Future work

We could improve this project if we would be able to create a board that include

all: relay, interface, zigbee and Pinguino board. And also that this board could

be incorporate to a wall plug easily. This second part of the development will take

part by a mechanical or industrial engineer.

Relating with home automation, we could develop expert system that could rec-

ognize where the people are inside of the house in every moment and knowing that
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we could shut down lights or turn them automatically without switches.

Having the possibility to control specifics task of elements of the house (microwave,

fridge, doors, ...) would be also a great feature. With our system we can turn them

on or off but we cannot say to the microwave for example turn on running a de-

terminate time/power.

Connection with house cleaning robots would be also really good to improve the

quality of living. We could say to this robot to turn on just when we leave to the

job, and it can be cleaning till we arrive home.
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