

Tuning light knock limits
on SG engines

Janne Holtti

Bachelor’s thesis
Automation Technology
Vaasa 2012

BACHELOR’S THESIS

Author: Janne Holtti
Degree programme: Electrical Engineering, Vaasa
Specialization: Automation technology
Supervisor: Roger Mäntylä

Title: Tuning light knock limits on SG engines

Date: 25.4.2012
Pages: 41

Abstract
This thesis is about engine knock and knock control in general. The purpose of the
thesis work was to develop a semi-automated program for the WECSplorer Wizard
plug-in using the Python programming language. The program is to aid in the tuning
of the light knock limits on spark ignited gas engines.

This document covers the causes and effects of knocking on an engine and the normal
control procedures associated with keeping the engine out of a knocking state and the
sensors used in measuring the knock levels.

The basics of Python, wxPython and some general programming paradigms and
options have been studied.

The project and its core functionality and development are described. The most
critical functions that affect engine safety, which had stricter specifications, are also
described in the thesis.

Language: English
Keywords: knock, python, wecs, unic, programming

The thesis is available in the web library Theseus.fi or in Tritonia, Academic Library,
Vaasa

EXAMENSARBETE

Författare: Janne Holtti
Utbildningsprogram: Elektroteknik
Inriktningsalternativ: Automationsteknik
Handledare: Roger Mäntylä

Titel: Inställning av de svaga knackningens gränsvärden på gasmotorer

Datum: 25.4.2012
Sidantal: 41

Abstrakt
Detta examensarbete handlar om motorknack och styrning av motorknack i
allmänhet. Målet med examensarbetet var att utveckla ett semi-automatiskt
program i Python som skall användas för att underlätta inställningen av den svaga
knackningens gränsvärden på gasmotorer.

Dokumentet innehåller information om de orsaker som ger upphov till knackning
samt knackningens effekter. Utöver det så tar dokumentet upp de allmänna kontroll
systemen och de sensorer som kan användas i mätning av knack.

Dokumentet tar upp Python och wxPython-programmering och vissa allmänna
tillvägagångssätt som utnyttjats i programmeringen av programmet.

Till sist tar dokumentet upp projektet och dess funktionalitet och utveckling. Specifikt
de kritiska funktioner tas upp som hade specifika krav gällande motorns säkerhet.

Språk: engelska
Nyckelord: knack, python, wecs, unic, programmering

Examensarbetet finns tillgängligt antingen i web biblioteket Theseus.fi eller i Tritonia,
Vetenskapliga bibliotek, Vasa

OPINNÄYTETYÖ

Tekijä: Janne Holtti
Koulutusohjelma: Sähkötekniikka
Suuntautumisvaihtoehto: Automaatiotekniikka
Ohjaaja: Roger Mäntylä

Nimike: Kevyen naukutuksen rajan säätäminen kaasumoottoreilla

Päivamäärä: 25.4.2012
Sivumäärä: 41

Tiivistelmä
Tämä opinnäytetyö käsittelee moottorien nakutusta ja nakutuksen ohjausta yleisesti.
Tavoitteen opinnäytetyössä oli kehittää Pythonissa puoliautomaattinen ohjelma, jota
käytettäisiin apuna kaasumoottoreiden kevyen nakutuksen rajan säätämiseen.

Opinnäytetyöstä löytyy tietoa asioista, jotka voivat aiheuttaa nakutusta moottoreissa
ja niiden vaikutuksista. Sen lisäksi opinnäytetyö kuvaa tavanomaiset
ohjausmenetelmät ja sensorit, joita käytetään nakutuksen mittauksessa.

Opinnäytetyö käy läpi Python- ja wxPython-ohjelmoinnin yleisesti ja tavanomaiset
lähestymistavat, joita käytetään ohjelmoinnissa.

Lopuksi työssä kuvataan projekti ja sen kehitystä ja toiminnallisuutta. Erityisesti
opinnäytetyö käy läpi kriittiset toiminnot, jotka ohjelman täytyy täyttää, jottei
moottorille tapahdu mitään haitallista.

Kieli: englanti
Avainsanat: nakutus, python, wecs, unic, ohjelmointi

Opinnäytetyö on saatavilla joko ammattikorkeakoulujen verkkokirjastossa Theseus.fi
tai Tritoniassa, Vaasan tiedekirjasto.

Contents

1 Introduction 1
1.1 The company in brief . 1

1.1.1 Ship Power . 1
1.1.2 Power Plants . 1
1.1.3 Services . 1
1.1.4 Industrial Operations . 1
1.1.5 Background . 2

1.2 Objectives . 2

2 Knock theory 3
2.1 Causes for knocking . 3
2.2 Effects of knocking . 4
2.3 Knock detection . 5

2.3.1 Knock sensors . 5
2.3.2 UNIC . 7

2.4 Knock control . 9
2.4.1 Signal processing . 10
2.4.2 Detection strategy . 12

3 Python 14
3.1 Typing system . 15
3.2 Interactivity . 16
3.3 Standard library . 18

3.3.1 Extending Python . 18
3.4 wxPython . 18

3.4.1 wxPython architecture . 19
3.4.2 wxPython modules . 19
3.4.3 wxPython inheritance . 20
3.4.4 wxPython events . 20

4 Development and realization 22
4.1 Design . 22

4.1.1 Graphical User Interface . 22

4.1.2 MVC - Model-View-Controller . 23
4.1.3 PEP8 . 24

4.2 Class and module design . 24
4.2.1 API module . 25
4.2.2 Engine class . 26
4.2.3 Cylinder class . 27
4.2.4 Eventhandler, the main class . 27
4.2.5 External data handling . 28
4.2.6 Data visualization . 29

4.3 Critical requirements . 30
4.3.1 Ignition angles . 31
4.3.2 Setting the knock limits . 32
4.3.3 Calculating the light knock limits 32

4.4 Reporting . 34
4.5 Documentation . 34

5 Results 36

6 Discussion 38

Bibliography 40

Abbreviations

UNIC = Unified Control
WECS = Wärtsilä Engine Control System
SG = Spark-ignited Gas
DF = Dual Fuel
FFT = Fast Fourier Transform
DFT = Digital Fourier Transform
DSP = Digital Signal Processing
FIR = Finite Impulse Response
API = Application Programming Interface
STL = Standard Library
PyPI = Python Package Index
PIP = Pip Installs Packages
GUI = Graphical User interface
XML = eXtended Markup Language
MFI = Multi-port fuel injection
RST = reStructuredText

1

1 Introduction

1.1 The company in brief
Wärtsilä is a global company providing complete solutions for the energy and marine
markets. In 2010, Wärtsilä’s net sales totalled EUR 4.6 billion with 17,500 employees. The
company has operations in 160 locations in 70 countries around the world. Wärtsilä can be
divided into four main units working together, Industrial Operations, Ship Power, Power
Plants and Services.

1.1.1 Ship Power
Ship Power supplies its customers with integrated systems, solutions and products ranging
from alarm systems to complete control systems including engine control.

1.1.2 Power Plants
Power Plants is a leading supplier of flexible power plants for the power generation
markets. Wärtsilä offers solutions for base load power generation, grid stability/peaking,
industrial self-generation and for the oil and gas industry.

1.1.3 Services
Services supports Wärtsilä customers throughout the lifecycle of their installations and
products by optimizing efficiency and performance. Services provides a comprehensive
portfolio of services and upgrade products. Services has one of the broadest service
networks in the industry.

1.1.4 Industrial Operations
Industrial operations encompass Wärtsilä factory, research and development, laboratory
and more. Industrial operations is the base of the company supplying the other units with
software, technology and new standard solutions which are adapted to customer needs in
the other units.

2

1.1.5 Background
In the summer of 2011 I was working as a trainee at Wärtsilä/Services/Electrical
and Automation/Product Development. My normal tasks included writing technical
specification, system specifications for various products/upgrades and the occasional
investigation into an idea for a new solution or product.

As the summer vacation months were drawing closer for my coworkers, my supervisor
had an idea for a project for me to work on for the rest of the summer. From there I got in
contact with Technical Service and I was given an introduction to the idea. We suspected
that the work alone could be enough for a Bachelor’s thesis.

1.2 Objectives
The objective or end product for my thesis work is a wizard plug-in for the engine
configuration toolWECSplorerUT (v1.2). Thewizard should automate the process of tuning
the light knock limit on gas engines, specifically the SG engines with UNIC engine control
system. The wizard could be later on be expanded to the WECS engine control system and
DF engines.

The program should have a graphical representation of the incoming knock values so that
the user can determine when a knock occurs and based on the values try to calculate an
appropriate light knock limit. It should beuser configurable in the sense that all the timings
and limits should be configurable inside the program.

While tuning the program should automatically raise the ignition angle of the cylinder.
Because a knock is very hard to detect programmatically with any certainty the program
will require user input based on hearing when the engine is in a knocking state. This will
then trigger the calculation and automatically decrease the ignition angle of the cylinder.

The program should also have a reporting function that creates reports of the tuning done
to the engine.

My work is based on the WECSplorerUT API, which was developed in 2007 following
research done for a Master’s thesis. The API has been mostly unused with the exception of
a configuration tool for the ESM, which was developed alongside the API.

3

2 Knock theory

The term knock is the name given to the noise that is transmitted through the engine
structure when a spontaneous and independent combustion of a proportion of the end-
gases occurs ahead of the propagating flame front traveling through the cylinder initiated
by the spark. [1]

2.1 Causes for knocking
Knocking, a spontaneous combustion, is a result of temperature, pressure and time. If,
for instance, the temperature and the pressure of the end gases reach the threshold for
self-ignition before the flame front initiated by the spark has had time to propagate to the
cylinder walls, a knock will occur.

Knocking creates shock waves and thermal explosions throughout the cylinder leading to
audible and physical effects that affect the consumer and the engine. Various steps can be
taken to decrease an engine’s tendency to knock.

Increased burn rates will allow less time for the end gases to heat up and ignite before
combustion is completed. Colder charge and block temperatures will guarantee more time
for the end gases to reach the threshold temperature of self-ignition, giving the flame
front more time to reach the end gases before knock occurs. Higher octane fuels have a
similar effect on the end gases, by raising the activation energy required to self-ignite. Rich
mixtures burn faster than lean ones, and they heat up the cylinder less for each consecutive
combustion event.

Ignition timing can shift the peak pressure of the combustion event away from top dead
center(when the piston is farthest away from the crankshaft), thus avoiding the dramatic
rise in cylinder pressure (and temperature) when the two are in close proximity relative
to the crank angle [2].

Some of the steps listed above must be addressed in the base engine design, but some can
be utilized in an active cylinder-by-cylinder, cycle-by-cycle knock controller to effectively
reduce knock only in operating conditions where knock is present, thus retaining the
majority of the engine’s potential power whenever possible.

4

2.2 Effects of knocking
Knocking has many adverse effects on an engine. These range frommechanical wear to an
actual damaging effect on different parts on the engine.

Engine efficiency is also something that is directly affected by knocking. Comparing an
engine under normal running conditionswith a heavily knocking engine shows that engine
efficiency drops by around 13% [3].

When a knocking-related ignition occurs, the cylinder pressure is about twice the pressure
at the beginning of normal combustion. The same applies for absolute temperature. This
leads to the fact that the possibility of engine seizure will grow higher. However this
is highly improbable, because the anti polishing ring (APR) and the piston are made of
different materials with different thermal expansion coefficients. Different materials with
different coefficients can lead to the fact that the piston topwill expandmore than the APR
during knocking. It must be stated that the occurrence of this is also very improbable, as
the temperature difference would have to be in the range of 500◦C.

Engine parts may suffer from mechanical deformation because of knocking, due to the
increased pressures inside the cylinder chamber. The compression of the piston and oil
films, a deformation of the gudgeon pin, the intake valves, the exhaust valves and the
connecting rod due to knocking all affect the engine life-span in adverse ways.

5

2.3 Knock detection
Knocking is determined by measuring the levels using one of the methods described in the
following subsection in this thesis and by using signal processing techniques described in
later sections.

First of all the resonance frequency of the cylinder is determined using Drapers
equation [4].

fm,n =
c0 ·

√
T · nm,n

π ·B
(2.1)

where:
fm,n = resonant frequency
nm,n = non-dimensional mode number
c0 = phase velocity constant
T = combustion mixture temperature
B = cylinder bore diameter
m,n = radial and circumferential mode numbers

This frequency is the base for the selection of the sensor (mechanical vibration) and the
signal processing procedures that are applied to the signal before executing the knock
detection strategy.

2.3.1 Knock sensors
There are several ways to measure knock oscillations. The ones used on Wärtsilä engines
are either combustion pressure sensors or mechanical vibration sensors.

Combustion pressure sensor

A direct approach is to measure the combustion pressure. In this approach the sensors
measure the pressure inside the combustion chamber of a running engine. This approach
provides the best signal to analyze and it is used on some Wärtsilä engines. However, the
direct approach is not available on all engines, as the sensor cost is relatively high and each
cylinder requires its own sensors [5].

Mechanical vibration sensors

This type of knock sensor is a piezoelectric vibration sensor in correct terms. It measures
the structure-born vibrations on the cylinder that occur at uncontrolled combustion. As

6

a result of the forces generated by the vibrations in the engine the piezo-elements in the
sensors generate a voltage that can be measured.

These sensors are available in two different types, tuned and broadband. A limitation with
the tuned approach is that a different sensormight be required for each engine type, due to
variations in the characteristic frequency. This results in a need of a wide selection of the
same basic part with slightly different characteristic, which increases the overall cost of a
system. To eliminate that cost, the broadband sensor ismore common as its bandwidth can
bemadewide enough to cover expected variations in the cylinder characteristic frequency.
These sensors’ bandwidth range from 1 to 20 kHz and are no different from the knock
sensors found in a regular car. This type of sensor is also what the end result of the thesis
work is based on.

Figure 1. Bosch knock sensor

Ion current measurement

When using ion current measurement the standard spark plug is the sensor. During the
combustion process electrically charged ions and electrons are generated. The intensity of
the ionization depends on the flame temperature, the air fuel ratio and the fuel quality [6].

The principle of the measurement is actually really simple. The technique is based on
applying a low-voltage DC bias to the spark plug after the ignition coil has discharged. This
bias voltage attracts the ions and electrons created in the combustion process to move in
one direction, which leads to a measurable ionic current being formed between the two
electrodes of the spark plug [7].

The problem with ion current measurement is that it only represents the combustion
intensity in a very small volume around the spark plug. Therefore, when the technique is
used in knock detection, the accuracy heavily depends on the position of the spark plug [8].

7

Figure 2. Principle schematic of the ion current measurement

Light intensity of combustion process

The knock oscillations modulate the intensity of the combustion process. This leads to a
modulation of the light intensity and color in the combustion chamber. Therefore light
measurement is another way of measuring knocking.

A fiber-glass cable is fed through the spark plug from where the light is forwarded to a
photo transistor. The problem with this approach is the buildup of soot, which leads to
inaccuracy and variations in the intensity of the light. These are hard to predict or account
for in the long run.

2.3.2 UNIC
UNIC is the embedded engine control system that through its various modules handles
most of the functionality on a modern Wärtsilä engine including starting and stopping,
safety functions, load control and more.

UNIC is a modular system that can be customized with different number of modules
depending on the engine size and type to get functionality specific to the engine
configuration. Presently there are three different base configurations of UNIC. The first
is the C1, which is the most basic of the UNIC systems and handles for example the starting
and stopping of the engine. After that comes the C2, whichhandles for example the starting
and stopping and the speed/load control. The last of the UNIC base configurations is
the C3, which includes all functionalities of the previous configurations and adds safety
management to the list. UNIC C3 is required for gas powered engines.

UNIC is designed to be on-engine, and as such it is a very robust system that endures high
temperatures and vibrations. Some off-engine versions of UNIC have also been developed
for retrofitting non-portfolio engines.

Communication in the UNIC system is handled over CAN-bus (actually two buses, one for
redundancy) and all information between the modules travels on the network. The rate of
polling the knock values for this thesis was determined to be slow enough in order not to
cause any trouble on the bus network. The usual method for tuning involved polling for
the knock values every 10 ms versus the 30 ms that the developed program is limited to.

8

Figure 3. Schematic of the UNIC engine control system

UNIC modules

The major modules that the UNIC engine control system comprises:

MCM-11 Main Control Module
The MCM is the main module of the engine and it controls among other thing the
starting and stopping of the engine. The MCM also controls many of the other
modules in the UNIC system and acts as themain data gathering point for this thesis.

CCM-20 Cylinder Control Module
As implied by the name, CCM handles functions related to cylinders. It controls fuel
injection and cylinder specific measurements. One CCM can handle injections for up
to three cylinders simultaneously and can act as a backup for another three cylinders.
The CCM is also capable of functioning in limp mode if the CAN buses fail or if the
MCM fails.

IOM-10 Input Output Module
IOM is used for collecting the signals from the various sensors mounted around the
engine and it also handles some logical functions, such aswaste-gate/by-pass control
and others.

ESM-20 Engine Safety Module
The ESM is an important module, if not the most important. It handles functions
related to the safety of the engine. Also related to the engine safety, the module
handles speed measuring and monitoring. Other functions include e.g. monitoring
the lube oil pressure and the cooling water temperature.

9

PDM Power Distribution Module
The PDM name refers to the fact that this module distributes power to the various
modules and electronics on the engine. It is designed with redundancy in mind to
ensure power to the rest of the system and it has two supplies, one primary and
one backup. It has short circuit protection, EMC filtering, earth fault detecting and
detection of over voltages.

LCP Local Control Panel
This panel controls the engine locally and it consists of the following parts.

LDU-20 Local Display Unit
LDU is the operator interface for the UNIC system and this also acts as
communication interface to other networks. It displays sensor data, engine
modes, failures and an event log.

WIP-11 Wärtsilä Instrument Panel
The WIP displays the most important measurements such as the lube oil
pressure, the engine speed and others.

WCP-10 Wärtsilä Control Panel
The WCP contains switches and buttons for starting, stopping and resetting.

2.4 Knock control
The effects of knocking lead to the need of effective knock control. Usually the control
methods involve retarding the ignition angle or limiting the boost pressure on turbo-
charged engines [9]. Thesemethods are executed based on heuristically determined levels.
Determining one of these levels is the wanted end-result of this thesis.

Disregarding the specific adaptation circuitry depending on the measurement used, a
somewhat uniform methodology can be applied in the signal processing stage. The next
subsection will describe the implementation with the mechanical vibration sensor.

The knock detection algorithm must be able to adapt to a number of different variables
to generate the optimum ignition timing close to the knock threshold. The mounting of
the sensor (mechanical) including how clean the sensor is and the design of the engine
affect which frequency modes will be detectable by the sensor. This usually means that
the transfer function between the cylinder and the sensor is different for each cylinder.
This willmake absolute and relativemagnitudes of the vibrationalmodes different for each
cylinder [5].

Another thing that must be accounted for is the non-knocking reference signal amplitude
which changeswith higher RPM. If the engine speed is increased, the background vibration
level will increase.

10

Finally, the engine characteristics will change with time. Parts wear down and tolerances
change between parts, which can lead to changes in themagnitudes detected by the sensor.
Background vibration can also be higher for a given engine speed.

2.4.1 Signal processing
The signal from the sensor must be processed to get the information about the signal
strength in the required frequency range. If a tuned sensor is used with the resonant
peak close to the resonant frequency of the cylinder, no further signal processing will
be needed. In other situations, either some filtering technique (analogue or digital) or a
spectral estimation must be used, which is the norm.

Analogue filtering is a cheap and easy way to process the signal, but because it lacks
precision and because digital processing power is relatively cheap today it is not widely
used. Digital filters are practical and can be shared across engine configurations.

Spectral analysis, e.g. the Fast Fourier Transform or the Discrete Fourier Transform, is
more widely used today as it provides higher frequency resolving powers than a digital
filter.

Below an example of how the signal processing procedures, with broadband knock sensors,
would be implemented usingDFT. The first step of the signal processing startswith theDFT.

X[k] =
N−1∑
n=0

x[n] · e−j2πk[n]/N (2.2)

where:
k = frequency index
n = sample time index
N = sample block length
X[k] = amplitude of sinusiod at frequency index k
x[n] = time domain representation of a signal

As processors cannot easily represent complex exponentials the DFT equation is required
to be represented in a way that can be implemented in a DSP. This is done by leveraging
Euler’s relationship between complex exponentials and sinusoids:

e−jΘ = cosΘ− j sinΘ (2.3)

11

Substitution gives:

X[k] =
N−1∑
n=0

x[n] · cos(2πk[n]/N)− j sin(2πk[n]/N) (2.4)

Finally, separating the real and imaginary part gives two equations that can easily be
programmed:

XR[k] =
N−1∑
n=0

x[n] · cos(2πk[n]/N) (2.5a)

XI [k] =
N−1∑
n=0

x[n] · sin(2πk[n]/N) (2.5b)

The actual form of the difference equation on the DSP:

XR[k] = XR[k] + x[n] · cos(2πk[n]/N) (2.6a)

XI [k] = XI [k] + x[n] · sin(2πk[n]/N) (2.6b)

As the summation of the sample block is completed, the signal strength of every frequency
range is computed as per the standard Pythagorean equation:

X[k]2 = XR[k]
2 +XI [k]

2 (2.7)

The square root is usually not calculated, as it provides no additional information.

The main advantage of the DFT over the FFT is that the calculations are spread out over
the entire sample block. All samples must be stored inmemory before FFT calculations can
be performed whereas the DFT can be calculated one sample at a time, because there is no
linkage between samples. This advantage is negligible when considering the speed of the
DFT compared to the FFT. By using big O notation to express the arithmetical operations
used by the algorithms the reason becomes apparent why the FFT is used. FFT requires
ON ∗ logN) operations while the DFT requires O(N2) operations [10].

The most commonly used FFT algorithm, the Cooley-Turkey algorithm, is in its most
common form (radix-2 decimation-in-time) where the DFT has been rearranged into two
pairs, a sum over the even-numbered indices n = 2m and a sum over odd-numbered
indices n = 2m+ 1:

Xk =

N/2−1∑
m=0

x2me
− 2πi

N
(2m)k +

N/2−1∑
m=0

x2m+1e
− 2πi

N
(2m+1)k. (2.8)

12

from here the common multiplier e− 2πi
N

kis factored out:

Xk =

N/2−1∑
m=0

x2me
− 2πi

N/2
mk

︸ ︷︷ ︸
DFT of even−indexed part of xm

+ e−
2πi
N

k

N/2−1∑
m=0

x2m+1e
− 2πi

N/2
mk

︸ ︷︷ ︸
DFT of odd−indexed part of xm

= Ek + e−
2πi
N

kOk. (2.9)

which leads to:

X(k) =

Ek + e−
2πi
N

·k ·Ok if k < N/2

Ek−N/2 + e−
2πi
N

·k−N/2 ·Ok−N/2 if k ≥ N/2
(2.10)

Without going into too much detail on the algorithm, the implementation basically
expresses the DFT of length N recursively in terms of two DFTs of size N/2, which is
the core of the radix-2 DIT Fast Fourier Transform. The speed gain comes from re-using
intermediate results from previous computations, hence the need for the whole sample
block in memory.

The advantageswith FFT over digital filters, such as a Finite Impulse Response filter, are the
same as with the DFT. Computing one N-tap FIR filter requires N samples and N coefficients
to be stored in memory. N multiplies and N summations are required each sample period.
This limits the frequency ranges and the frequency discrimination in the range for a given
CPU due to the increased computation burden [5].

The actual knock values used in this thesis are the result of some signal processing in the
corresponding CCM module of the cylinder. The samples are collected from the sensor
through a 16-bit A/D converter at a sampling frequency of 25 kHz. Samples are only
collected during a preconfiguredmeasuring window, usually between top-dead center and
50 crank angle degrees.

These signals are offset so the resulting signal is oscillating around zero. After that the
signal is given a preconfigured gain (due to sensor mounting, mechanical variations, etc).
The signal is zero-padded as the FFT requires the number of samples to be the power of two.
The signal is windowed with a Hamming window before the FFT is performed. Magnitudes
are calculated and the magnitudes of the preconfigured frequencies are identified. The
average of these magnitudes is then sent to the application level where the detection
strategy is applied.

2.4.2 Detection strategy
There are several knock detection strategies with varying complexity, sophistication and
computational overhead.

A simple strategy is to use the magnitudes generated by the signal processing for the

13

detection algorithm [11]. More complex strategies can involve rate of change of the
magnitudes used with predictive algorithms or using fuzzy logic as a control strategy.

The simplest strategy involves comparing the magnitudes to predefined reference levels
to indicate knock intensity. Wärtsilä uses three knock levels: none, light and heavy [12].

If the knock status of a cylinder is light knock the ignition timing of that cylinder will be
retarded. The ignition timing is retarded until the knock status is none or until the max
value of the offset is reached. If the cylinder is still in a state of light knock the engine
control system will start retarding the main fuel injection (MFI) duration until the knock
status is changed from light to none.

If the knock status is heavy knock theMFI duration is retarded instantly and for SG engines
the ignition timing is retarded to aminimum instantly. Heavy knocking also involve safety
functions that can start a shutdown of the engine.

In some applications a preventive control strategy might be desirable using the rate of
change of the magnitudes. The predictor can be as simple as to calculate the difference
between the current and the previous measurement. This difference is the one compared
to reference values. This approach is not always optimal as the cycle-by-cycle values
can be quite varied and it would lead to problems when defining reference levels and a
possibly unstable system. A solution to that would be greater time difference between the
measurements but that would lead to slower reaction time in the control system. Changing
the engine speed would have significant effect on the result.

14

3 Python

Python is a general-purpose, dynamic, garbage-collected programming language used in a
wide variety of application domains. Python supports multiple programming paradigms,
primarily object-oriented but the imperative style can be used without extra effort and
supports to a lesser extent a functional style of programming.

Python syntax utilizes whitespace indentation, instead of curly braces, to delimit blocks of
code resulting in readable code by convention.

Python uses duck typing (more details about that later on in the thesis) and has typed
objects but variables are not explicitly typed. In Python everything is an object[13] and
that is one of the cornerstones of the language. Python has a dynamic typing system that
takes care of variable-types and are automatically declared at run-time and can change
during the execution of the program.

The Python programming language has a wide adoption across many domains. There are
specialized libraries formany different things from scientific, numerical and even symbolic
calculations to different Web frameworks.

Python is backed by a large open-source community andmany big corporations around the
world use Python, such as Google, CERN and NASA. Presently the creator of the language,
Guido van Rossum, works for Google and has been named ”BDFL”(Benevolent Dictator For
Life) which means he has the final say on every descision regarding the language.

Python is also used as a backend language for SAGE (mathematical software) which has a
bold goal which the website states:

Creating a viable free open source alternative to Magma, Maple, Mathematica and
Matlab. SAGE motto

SAGE uses nearly 100 libraries with capabilities for high quality plotting and complex
calculations.

In my opinion, one of the drawbacks with Python is that the code is not compiled in the
general sense of the word and no errors, beside indentation and import errors, are caught
before running the program and then only when the erring method is called. This leads

15

to the need of rigorous testing of every single function and class if developing critical
applications, because Python will crash spectacularly when trying to for example add the
integer 1 to a string as shown in the next section. For testing purposes Python includes
modules for unit-testing and these are the recommended way to prove conformity to
specifications.

3.1 Typing system
In Python everything is an object. An object is an entity that has an identity, a value, a type
and one or more bases. This is more easily explained by an example:

>>> two = 2
>>> type(two)
<type ’int’>
>>> type(type(two))
<type ’type’>
>>> type(two).__bases__
(<type ’object’>,)
>>>

Here we give an integer the name two, it has a type of int and we see that the int type is of
the type type. Finally we see that it is based on an object.

Figure 4. Simplified Python type map

Figure 4 shows a basic object map of the Python language. This is again more easily
explained with an example:

16

>>> list
<type ’list’>
>>> list.__class__
<type ’type’>
>>> list.__bases__
(<type ’object’>,)
>>> tuple.__class__, tuple.__bases__
(<type ’type’>, (<type ’object’>,))
>>> dict.__class__, dict.__bases__
(<type ’type’>, (<type ’object’>,))
>>>
>>> mylist = [1,2,3]
>>> mylist.__class__
<type ’list’>
>>>

Here we have the built-in list object which we see is a type of type and is a subclass of object.
This is the same as the tuple and dict. Finally we create an instance of the list class and its
type is list.

Python uses duck typing which is a style of dynamic typing. With duck typing an
object’s attributes determine the valid semantics regarding the type, rather than explicit
relationship to some type object. The name refers to the duck test, which can be phrased
as follows:

When I see a bird that walks like a duck and swims like a duck and quacks like a duck,
I call that bird a duck. James Whitcomb Riley

Duck-typing proponents say that with duck-typing the programmer avoids tests using
type() or isinstance(). Typically this means that Python employs the EAFP (Easier to Ask
Forgiveness than Permission) style of programming. The result of this is shown in the next
section.

3.2 Interactivity
Python comes with a built-in interpreter and is great tool for testing code, running small
calculations or executing Python scripts. Python scripts arewritten as normal textwith the
extension .py. You can write functions beforehand in a normal text editor and import the
file to the interpreterworkspace and execute the functions interactively in the interpreter.
Most of the code developed for this thesis has been run in the interpreter as a stand-alone
function before being implemented in the main program.

17

>>> 2 + 2
4
>>> def sum(a, b):
... return a + b
...
>>> sum(1, 2)
3
>>> sum(1.8, 2.9)
4.7
>>> sum(”hello ”, ”world”)
’hello world’
>>> sum(1, ”hello”)
Traceback (most recent call last):

File ”<stdin>”, line 1, in <module>
File ”<stdin>”, line 2, in sum

TypeError: unsupported operand type(s) for +: ’int’ and ’str’
>>>

The example above shows the simple use of the interpreter, defining (def) of a function and
the duck-typing in effect. The function does not care what types are used with the caveat
that they mix together. The example also shows the traceback of an error when using the
function illegally.

The defined function sum is actually a built-in function of Python and is used for summing
up the contents of a list.

The function defined above could be made somewhat more type-safe by trying to type-
cast the return-values to matching types. This goes against the ”Pythonic” way of doing
things, but has to be used in some cases to ensure that the correct type is returned from a
function/method.

>>> def sum(a, b):
... return int(a) + int(b)
...
>>> sum(1, 2)
3
>>> sum(1, ”2”)
3
>>> sum(1.8, 2.9)
3
>>> sum(1, ”hello”)
Traceback (most recent call last):

File ”<stdin>”, line 1, in <module>
File ”<stdin>”, line 2, in sum

ValueError: invalid literal for int() with base 10: ’hello’
>>>

18

As shown above this would work with strings that can be changed to an integer but would
give incorrect answers when using double, as the double function (everything is an object,
even types) takes the integer part from the input and returns that, although not crashing.
As before you really cannot add an integer, in this case 1 to the string ”hello” in a way that
would make sense.

3.3 Standard library
Python includes a large standard library (STL) and is often jokingly described as a batteries
included Python philosophy, although the STL is not mandatory for using Python. The STL
includes many tools for many different tasks.

The Python STL includes modules for a vast array of different applications ranging
from numerical and mathematical modules to modules for data persistence (databases).
The Python STL is used in this thesis for almost everything beside the graphical user
interface(GUI) even if the STL includes bindings for a GUI toolkit that could have been used
but was not, for reasons discussed in the next section.

3.3.1 Extending Python
Extending Python is easy with the Python Package Index (PyPI). During the writing of this
thesis there were 18212 packages in the package index. Python packages or modules can
be written in either C (Python is written in C), Python or C++. Package managers for the
use of this package index have been written and the one that seemed the most popular at
the time of writing was ”Pip Installs Packages. PIP is easy to use and has a simple syntax
for installing, updating and uninstalling packages from the PyPI.

3.4 wxPython
wxPython is the graphical user interface (GUI) toolkit used in this thesis and it is a wrapper
for the wxWidgets toolkit.

The wxPython toolkit was chosen because it is bundled in the WECSplorer Wizard package
which provides the Python environment used in this thesis. The Python STL includes
bindings for the TK/TCL toolkit but as the toolkit is somewhat cumbersome to use,
especially for complicated programs like the one developed in this thesis, and as there was
a lack of advanced widgets, the decision was made not to use it.

Other notable contenders for the position of the GUI toolkit were Python wrappers for the
Qt-framework (PyQt, PySide). PyGTK was ultimately not even considered because of the
extra dependencies and it would not have any real advantages either. PyQt and PySide
are excellent toolkits for developing GUIs and using the GUI designer Qt-Designer could

19

have notably shortened the development time of the program GUI. PyQt or PySide would
also have been ”future-safe”, as the next version of WECSplorer (UNITool) is based on Qt.
Ultimately it was decided against these to keep the package size down and to simplify
deployment.

In this thesis the GUI is hand-coded although some tools exist that could help in the
designing and which had some functionality for automatic code generation. However they
were not used, as the basis was to learn as much as possible and as the design-tool had a
few shortcomings.

3.4.1 wxPython architecture
wxPython is a Python wrapper for the C++ wxWidgets cross-platform GUI toolkit.
wxWidgets in turn is a wrapper for the platform native libraries using the platform specific
APIs (win32, cocoa, gtk, etc.) to generate windows and widgets as seen in Figure 5.
The native APIs tend to be too cumbersome for general use, hence the wrapper for
an abstraction layer between the programmer and the native libraries [14]. This gives
wxPython a native look on every platform and the same code can be run on different
platforms without any major changes.

Figure 5. Simplified wxPython architecture

3.4.2 wxPython modules
wxPython consists of five basic modules:

Windows Thewindowsmodule consists of variouswindows (panels, dialogues, frames and
more), which form the base of any program.

GDI The Graphics Device Interface is a module with a set of classes that relate to the
manipulation of fonts, colors, images and more.

20

Core The coremodule consists of the base classes used in development e.g. the object class
which is the base class for all other classes in wxPython, sizer classes that control
widget layout, event classes etc.

Misc Miscellaneous classes and functions e.g. logging, system setting etc.

Controls The controls module consists of the common widgets detailed below.

Widgets in wxPython can be divided into some logical groups e.g. base widgets, top level
widgets, containers, dynamic widgets and static widgets. Examples of a few widgets that
could be considered dynamic widgets are buttons, toggle buttons, check boxes, combo
boxes and scrollbars.

3.4.3 wxPython inheritance
In wxPython there is a relation between widgets. This relation is from the inheritance
of the base classes. Inheritance is a part of the object oriented programming paradigm.
Widgets form a hierarchy because a widget can and will inherit functionality from parent
widgets. Using a button as an example of the inheritance:

..wx.Object. wx.EvtHandler. wx.Window. wx.Control. wx.Button

Figure 6. Inhertiance of a button

Figure 6 shows the button widget which inherits functionality from four different base
classes. The closest class is the wx.Control class which consists of methods related to
control. After that the wx.Window class which gives the appearance to the button and the
wx.EvtHandler class gives functionality related to events to the button. The final class is
wx.Object which is the base class of all widgets in wxPython.

Compared to for example a dialogue class, an instance of that class would not have
inherited from the control class as it has no control elements.

3.4.4 wxPython events
Like most GUI toolkits, wxPython is an event-based toolkit which means that every event
on the GUI must have an action bound to it. Events in wxPython are handled differently
compared to its competitors PyQt, PySide and PyGTK. Events in PyQt and its likes are
connected directly to functions/methods via a signal/slot system meaning for example
that all buttons have different signals that are triggered with different actions. These
signals are bound to slots which in turn trigger the methods/functions that are connected
to the slot.

21

wxPython handles events in a more complicated way, which can become confusing at
times. When an action occurs the event is propagated through the originating widget all
the way through its parents until a bound method is found.

The Bind method is used to specify event bindings in wxPython. It tells the system what
kind of event to look for and also where to look for it. For example, in this code where self
is a wx.Frame or another container control,

self.Bind(wx.EVT_BUTTON, self.OnButton, self.button)

the binding tells the system to call self.OnButton when it sees a wx.EVT_BUTTON event
delivered to the frame from self.button. The button may be many layers down in the
hierarchy and hence the event has to propagate through all the layers of the GUI.

The other binding behaves somewhat differently when compared to the first:

self.button.Bind(wx.EVT_BUTTON, self.OnButton)

This bindingmethod tells the system to immediately call self.OnButton for awx.EVT_BUTTON
event that originates from self.button. This then clears the event and no parents have any
possibility to see the event unless themethod Skip() is called. This can be a wanted trait but
sometimes it can be beneficial to have the event propagate through the layers and trigger
different event handlers as with the first binding method.

22

4 Development and realization

This chapter details the implementation of the Knock Tuning Wizard program made
with Python using wxPython as the GUI-framework. The program is executed from the
WECSplorer interface and runs within the built-in Python environment.

4.1 Design
The design principle for the project has been iterative as no base design was ever formally
written. During the writing of this thesis, the source code has had two major rewrites
of most methods and functions, changing the layout of the program and improving the
readability of the code. Adherence to the PEP8 and standard design principles of object
oriented programming formed the basis. However, without experience in object oriented
principles and graphical user interface design, the project has been changed and adapted
to new specifications throughout the process. The program could have been laid out as
a procedural program without the need of any classes, not including the user interface,
but the design was more coherent with classes and provided some encapsulation. The
whole project is loosely based on the MVC design pattern, which has diminished with each
iteration of the program.

A few key points/functions to the program had specific requirements, detailed in later
sections of the thesis, and the other functionality has been added as found necessary.

4.1.1 Graphical User Interface
The design of the GUI was established quite early in the project as the program heavily
depends on interactivity with the user. The initial thought was to follow the standard
layout for a wizard, i.e. one screen after another. However, this paradigm does not really
work when tuning an engine as the user has to see old data and be able to jump from
cylinder to cylinder without a predetermined pattern of tuning.

..start. cylinder 1. cylinder 2. cylinder 20. finish

Figure 7. Wizard paradigm

23

After failed experimentswith thewizardparadigm in the beginning, a newdesign approach
was tried with a base main window that spawns child windows as needed. For example, for
the actual tuning process, a newwindow corresponding to the selected cylinder needs to be
spawned when the actual tuning is to be started. This paradigm is what most users should
be familiar with and be able to use without any extensive training.

A few crude sketches were made and finally coded with wxPython to an easily modifiable
GUI. The GUI is designed so that every widget is inside a sizer which automatically resizes
the widgets and keeps their placement relative to the window.

The wxPython framework contains many different sizers, for example the wx.BoxSizer is
a sizer that depending on a parameter at initialization, will place the containing widgets
horizontally or vertically. Other sizers used in this project were different grid sizers which
put widgets in a grid with spacing defined with parameters. The use of sizers instead of
static placementwill enable the use of the programondifferent screen sizes and full-screen
without misaligned widgets ruining the user interface.

Figure 8. The main window of the program

4.1.2 MVC - Model-View-Controller
The MVC design pattern creates applications that separate different aspects of the
application. This design pattern is excellent for GUI programming and web-pages as the
UI (the view) are separated from the variables (the model) and the logic (the controller) of
the program. The project is based on this as the code for storing most of the variables is
separated from the logic of the main program. This would be the equivalent of the model
in MVC.

The eventhandler which is the main class in the project could be seen as the controller,
because it contains most of the bound functions from the GUI in the project and delegates
information from themodel to the view. TheUI (view) ismostly separated fromeverything
else and contains a minimal amount of functions related to the actual runtime of the

24

program. A few key methods still exist in the UI files but these are mostly methods that
kill the window internally. In this context the model part of the MVC paradigm would be
the engine and cylinder classes, which contain some necessary logic but act mostly as data
storage.

Separating the view from the rest of the code enables future maintainers of the program
to take the logic without any user interface dependencies and with minimal rewriting to
implement another GUI-framework such as PyQT.

Figure 9. The MVC design pattern

4.1.3 PEP8
PEP8 (Python Enhancement Proposal) is the style guide recommended for Python
developers to keep the code clean and readable. The style guide recommends for instance
four spaces for indentation and no tabs to keep the code looking the same on every text
editor. PEP8 also recommends the programmer to keep the line length under 79 characters,
which might seem odd and is a bit restricting considering today’s monitors. Nevertheless
there are instanceswhere this limitationwill be good for everyone thatmight read the code
from somewhere, especially with newer laptops and tablets that do not have the screen
real-estate to read really long lines of code.

4.2 Class and module design
As has been mentioned earlier only a few functions had specific requirements. These are
detailed in the next section and the rest of the requirements were implemented when
considered necessary.

Classes were designed to reflect the physical world, i.e. one class for the engine and one
class for the cylinder. The cylinder class is then instanced according to the amount of
cylinders on the engine at runtime. One main class for the entire program was designed
containing the logic of the program. The API was designed as a module to encourage code-
reuse.

25

..initialize
engine

.user .

select
cylinder

.

tune
cylinder

.

plot values

.

raise
ignition
angle

.

ramp down
ignition

.

ignition
angle over

22?

.

ramp down
ignition

.

knocking?

.

calculate
light knock

limit

.

done?

.

create
report

.

save/quit

.

delay

.

yes

.

no

.

yes

.

no

.

yes

.

no

Figure 10. Flowchart representation of the program

4.2.1 API module
The core of the program is the API. The API connects to the WECSplorerUT application
which connects to the engine for live values. The API uses a COM (Component Object
Model) interface to connect to the WECSplorerUT application.

This requires the connection to be initialized before using the APImethodswith the Python
module win32com, thus no native Python connection exists.

The original API uses a syntax close to this:

function_name(”module_name”, ”dataname_of_symbol”, row, col, amount) and as
such is quite cumbersome to use when called many times. Most of the API methods also
have string values as return types, which may lead to some unwanted behavior in this

26

specific Python application. To simplify thewhole procedure a Pythonwrapper formost of
the API functions was written, with explicit return values depending on the calledmethod.
This goes against the duck-typing feature of Python as string values would be coerced
to integer or float types depending on how the value is used. However, to simplify and
minimize the need for error handling, a stricter type design was used. This design is still
being evaluated and might be changed to a more flexible model which uses duck-typing in
a later version of the program.

The wrapper is also designed with some logic in its initialization method. When initialized
the wrapper determines the used module name for the engine, if an older configuration
should be used and if the engine is using UNIC or WECS. This is done to select the correct
configuration file containing the data-names for the symbols used in the program.

A few examples of the API wrapper methods for fetching an integer either as a single value
or from a matrix:

api.get_integer(”dataname_for_symbol”)

returns an integer through the win32com connection with the row and column values of
zero.

api.get_integer_matrix(”dataname_for_symbol”, row, column)

returns an integer from the matrix at row and column values which are usually
automatically determined by the active cylinder class instance detailed later.

4.2.2 Engine class
The engine class is designed to mostly just contain the data relevant to the engine and to
the program. The class could be designed as a simple dictionary and a few methods in any
other class or a dictionary and a few functions. To keep the naming and design close to the
physical design a class seemed to be a good choice. The overhead of using a class, because
it can be slower in some cases, has no significance because it has no time-critical methods.
The most important method that the class has and which is critical to the functionality
of the rest of the program is initializing the API. The class is one of the first instanced at
startup which in turn will trigger the API to connect to the WECSplorer program.

The methods in this class use the API for simple data gathering of values relating to the
whole engine which are used later when creating the report of the tuning process. The
gathered values include:

• Engine parameters

– Engine nickname

– Engine number

27

– Engine type

– …

• Variables

– Load during test

– Global ignition angle

– Turbocharger speeds

– …

• …

This list is of course not a comprehensive list of variables stored in the class.

4.2.3 Cylinder class
The cylinder class is the controlling class for everything related to cylinders. This includes
the logic for increasing the ignition angles, calculating the light knock limit and more.

One instance is created for every cylinder on the engine. These instances hold data
gathered during the tuning process, e.g. the final ignition angle before calculating knock,
the data names for the knock sensor for the specific cylinder and more.

The most critical function of the class is the calculating of the light knock limit and the
ramp down methods for the ignition angle. The class also has some failsafe methods, such
as writing a small XML file with some relevant data after the cylinder is tuned. This is
so data can be recovered if for some unforeseen reason the program or something else
crashes, which would lead to data loss of everything done to the engine. This check is done
while instancing the classes and, if any data exists that is not over two days old, it will be
recovered and the user can continue tuning the cylinder from where he left off.

This class uses theAPI extensively formanydifferent functions, from simple data gathering
to setting the ignition angle offset for the current cylinder. Even if the engine class is
the one creating the connection for the API, the cylinder class uses the connection most
extensively.

Variable types in this class are enforced in the extension that Python allows for, i.e.
everything is type-casted to ensure the correct type. This is to negate issues relating to
for example the ignition angle, which is used in some methods as a string and in other
methods as a float and even sometimes as an integer.

4.2.4 Eventhandler, the main class
The brains of the program are collected into a single class. This class handles all the
different windows and dialogues in the program, creating the instances, passing the

28

variables to them and finally destroying them when finished. The class also handles the
instancing of the engine and cylinder classes and the main window of the program which
is the parent to all the dialogues and the subwindows and is the bind point for 98% of the
events in the program.

The class is designed procedurally so that the source can be read from top to bottomand the
methods and events should, but do not always, correspond to the execution of the program
itself. Because the class does not have direct access to the API it just acts as amiddle ground
for the events propagating from the user interface that are bound to local methods, which
in turn call on engine or cylinder class methods with API access. The return values from
those calls are usually passed directly or processed and passed to the user interface.

Some critical methods do exist in the class such as the handling of the timers that poll for
the knock value from the engine (these are in the cylinder class but are called from the
eventhandler class). The class also keeps checks on the ignition angle and aborts if the
angle rises to too high a value. Another important function is to consolidate all the data
that gets passed to the functions creating the report. The data is gathered from the engine
instance and the cylinder instances.

4.2.5 External data handling
The program must be able to handle some external data in the form of configuration
files used for setting the variables for the program instead of hard-coding them into the
program. This is to ease the changing of values without diving into the complete code.

The external files are written in XML by a Python STL module elemtree. The configuration
file contains different settings used throughout the program, which can also be modified
during runtime. Other XML files contain data names (the raw path for a variable used in
WECSplorer) for the many symbols used in the program.

The class is mainly designed for parsing the configuration file but it also creates the project
folders if none exists because it is one of the first class instanced. These folders will contain
screen-shots and general cylinder data gathered after calibration and saved for later access.
This data will be used as a failsafe, which means that no data will be lost if the program or
WECSplorer crashes and also on larger tuning projects that can’t be finished in a day. The
data will stay valid for two days, so the user of the program can continue with the tuning
of the engine where he left off, if for instance, the tuning did not finish in one day.

The two day limit is there to minimize the external conditions (temperature, humidity,
etc.) from skewing the tuning process. If the two day limit is exceeded, the program simply
ignores any data saved.

The main configuration file is parsed fully and the contents are divided into dictionaries
according to the element/subelement they are in. These dictionaries are then passed

29

.. Symbols.

General

.

TE517

.

…

.

Knock

.

knocklim

.

…

.

Ignition

.

…

.

MFI

.

…

Figure 11. Node system in the XML files

directly to functions which themselves get the setting/dataname they need. The other
option is to directly access the required setting/dataname key and passing the return value
to the function.

4.2.6 Data visualization
The programhas to have somemeans of visualizing the knock values in real time. Themost
reasonable way was to embed some plotting library into the program. Some alternatives
were tested such as matplotlib and some other alternatives.

Matplotlib produces excellent quality graphics and was the prime contender for the spot,
but it was too slow in plotting values in the time frames that the program requires. This
update-ratemay be under 50ms. The implementationwould also have been less than ideal,
regarding the code needed and integrating it into the user interface.

The final library used was the wxPython built-in wx.Plot which was fast enough for the
program and easy to use and implement in the program. The only issues were that the
WECSplorer Pythondistribution contained an old version of thewx.Plot file. Thiswas solved
by including a replacement in the programand using that instead of the integrated version.

The data that the plotting library has to handle is in the form of list of tuples containing
the sample number and the knock value for that particular sample. This list is extended to
a predefined number of values. After the list has been filled to the limit, the oldest value is
discarded as new values are added to the end of the list. The list can be described as a FILO
list (First In, Last Out).

This data is supplemented with a running average calculated for a predetermined but

30

[(1,400), (2,564), (3,453), (4,537), (. . .) (200,486)] first plot
(1,400), [(2,564), (3,453), (4,537), (5,570), (. . .) (201,510)] second plot

discarded

Figure 12. The data list

configurable window as follows

average =
1

N

N∑
i=0

x(i) (4.1)

where x(i) is the list of tuples and N is the amount configured for averaging. The result
can be seen in Figure 13.

Figure 13. The tuning screen

Finally the calculated light knock limit is appended as a line to the plotted data which is
seen in Figure 14. There is also another line in the same figure indicating the user changed
light knock limit (if the calculated limit for some reason is not correct).

This was implemented because a suitable limit is hard to calculate without assumptions
and sometimes a heuristically determined limit might be more suitable.

4.3 Critical requirements
Theprogramhas few requirements but they are critical for the functionality of theprogram
and for avoiding damage to the engine. The most critical of these is the controlling of the
ignition angle when a knock occurs, which can seriously damage the engine and its parts.

31

Figure 14. Tuning complete

4.3.1 Ignition angles
Ignition angles on an engine cannot be increased more than five degrees at a time because
of the possible issues with the timings on the cylinder as detailed earlier. This is usually
not a problem as the ignition angle is usually incremented in steps of 0.5 degrees. Because
of the small (default) step-size the need for an initial step became apparent. This allows the
users to increment the first step up to four degrees to decrease the time to the knocking
threshold.

When the tuning is done the ignition angle has to be brought down as fast as possible to
the original angle. When the knocking threshold has passed one generally does not want
to stay in that situation. Here these is also the same problem with the limits on the step-
size of the ignition angle. This is avoided by ramping down the ignition angle in a few
iterations, which is done without user interaction and only if the angle is raised more than
five degrees during tuning.

There is a hard coded maximum limit of 22 degrees offset on the ignition angle. If the
engine is not in a knocking state at this angle there is most likely something wrong with
the data gathering from the sensor or knocking will not occur at all.

The reasons for this might be among other things the high quality of fuel or some other
external things. The general consensus is that if no knocking occur before 22 degrees offset
there is no point in increasing it more as the information will be unreliable. At 22 degrees
the tuning will fail with an error message to the user and ramp down the ignition angle.

32

4.3.2 Setting the knock limits
When the engine is initialized for tuning the light knock limits for every cylinder is raised to
1000. This is done to disable the engine control system from disturbing the tuning process,
which requires getting the engine to a knocking state where the engine control system
should activate and try to bring the engine out of the knocking state. If the light knock
limit was not changed the tuning would be impossible.

The values are reverted to the values that were saved before raising the limits when the
program exits, unless the user specifically saves the new tuned values. When saving, the
user is given a dialoguewith the calibrated cylinders to choose from. The choice is to select
which of the revised light knock limits are to be permanently saved in the engine control
system. Even the heavy knock limit must be raised for the duration of the tuning, but this

Figure 15. The saving dialogue

is only done cylinder-wise. This is to prevent accidental shutdown of the engine if the
unaltered heavy knock limit was reached. The engine control system automatically goes
for a shutdown if heavy knock is achieved. This could be considered a catastrophic failure.
A shutdown of the engine is to be avoided at all costs, as it is time consuming to start up an
engine and the engine isn’t really in an uncontrolled state of heavy knocking.

4.3.3 Calculating the light knock limits
The method that does the calculating of the light knock limit suggestion works with the
data available, the saved knock values. The data used for calculating the light knock limit
is the last 30% of the knock values. Those values should hold the value of the knock that
caused the user to stop the tuning process and they should minimize the effect of the
rising mean value which occurs with a raised knock angle. These are values are stored
and accessed from a list of values containing tuples which in their turn contain both the

33

sample number and the knock value. These are accessed with a simple list comprehension
statement.

data = [x[1] for x in self.dataPoints[-(int(0.3· · ·len(self.dataPoints))):]]

This statement takes the values with the index 1 from the last 30% using list slicing. The
values are used to calculate the standard deviation of the knock values with

σ =

√√√√ 1

n

n∑
i=0

(xi − µ)2, where µ =
1

n

n∑
i=0

(xi) (4.2)

The actual code does this in three steps, first by calculating the mean

mean =
n∑

i=0

datai (4.3)

Then the mean value is used with a lambda expression to calculate the variance which is
mapped over the data extracted earlier. Mathematical notation would be

mapped =
n∑

i=0

data(i)−mean2 (4.4)

This result is finally summed up and squared for a standard deviation.

stdev =

√√√√ 1

n

n∑
i=0

mappedi (4.5)

The standard deviation is just used as a fail safe for the actual calculation tries to take all
knock values that have occurred since the last two raises of the ignition angle using list
slices.

These values are sorted in a descending order which means using a sort function and
reversing the output. From these values the highest ones are saved (up to 40 values) and
using the top few (four by default) a mean value is calculated and then multiplied to get a
limit of percentage of the top (90% by default).

result = 1

4

4∑
i=0

topi · 0.9 (4.6)

The failsafe then checks that the result is one and a half standard deviations over themean
value, otherwise the light knock limit suggested will be two and a half times the standard

34

deviation over the mean. This is to ensure that the suggested light knock limit is never
under the standard deviation of the knock values, as that could lead to confusion among
the users and in a worst case scenario a cylinder could be set with a light knock limit that
is too low for efficient running and sooner or later it would require re-tuning.

4.4 Reporting
Reporting for calibrated engines is required. It is generated with the open-source reportlab
package for report generation. The function generating the layout for the report is passed
a dictionary with all the relevant data.

Themain page of the report is designed so that it contains a table with general information
about the engine. Then one or two additional tables containing information about the
calibrated cylinders including old light knock limits, new light knock limits, MFI offsets
and more.

The report also includes detailed pages for every cylinder that has been calibrated on the
engine, including a screen-shot of the final plot which shows the latest knock values and
indicates the selected limit.

The actual layout for the report is handled by three functions. One for laying out the first
page which includes definition for page widths, logo placement and more. The second
function lays out the pages after the first, which uses almost the same parameters as the
first function. Thismeans all pages in the report use the samemargins andwidths. The last
function adds the content which is just appended to a list with different parameters and
the whole list is then parsed by the reportlab.SimpleDocTemplate method which generates
the final PDF file.

4.5 Documentation
Every project needs documentation or at the very least it should have some sort of manual.
For this program a user guide and a developer guide were compiled. The user guide
contains images of the program and a walkthrough of tuning a cylinder. It was compiled
with Sphinx, a Python documentation generator.

The developer’s guide was also compiled using Sphinx. Sphinx uses RST files for content
and supports auto-documentation of source files. Sphinx is capable of generating HTML
pages or PDFs using LATEX.

The auto-documentation functionality parses source files and generates professional
source documentation that includes non-private methods and classes and their respective
doc-strings. Doc-strings are comments directly below the declaration of a function that
usually explain how a method/function works or should be used.

35

An example of the output could look something like this:

Figure 16. Sphinx auto-documentation output

The Sphinx generator eases the source documentation as it parses the actual source
of the program and changes are automatically included on a new compile of the
documentation. The downside with Sphinx, whichmight lead to the need of an alternative
documentation that is essentially a copy of the generated documentation, is the need
of an LATEXenvironment installed on the developer’s computer. This could be an issue
with Wärtsilä computers, as no compiler exists in the standard software allowed on the
computers.

36

5 Results

The result of this thesis is a functional program that complies with the requirements and
goes beyond the requirements in some respects. The resulting code is about 3000 lines of
source code not counting the ReportLab library and the newer wx.plot classes that were
incorporated into the program. Beside the actual program a user guide with basic usage
and developer guide with detailed information about the program implementation have
been written, which are to be included in a more public release. The actual developer’s
guide might be redundant as I will most likely maintain the actual program in the future.

Theprogram is structured in away that the program is split into different files, according to
the functionality of the program. The program could have been written in a single file, but
it would have been quite hard tomaintain in the long run. As an example the user interface
files are in a separate folder and are split to mostly one window per file, and so the folder
has five different files each corresponding to a window in the program. This simplifies the
followingMVC paradigm, which dictates that the logic of the program should be separated
from user interface. This will make the program easier to update to another user interface
framework, as discussed earlier.

The program has not at the time of writing been tested on a live engine. It has only been
tested on a test platform that simulates a running engine. To note about the testing-rig is
that it does not simulate knock (in the version used), which was obviously detrimental to
the testing of the program. This was overcome with randomly generated values that the
program itself generated during runtime. Live knocking was briefly simulated by bashing
a knock sensor against the rig to generate some values that were recorded by the program.
The current implementation of the program is actually without any testing framework at
all but these are to be incorporated in a later version.

The program follows the PEP8 coding standard as far as it was applicable. Some lines,
such as data names, were hard or impossible to implement while keeping the line length
under 79 characters. Long lines can be hard to follow and error prone in Python as code is
delimited by indentation and line breaks.

The actual thesis has been generated with the latex typesetting system, which uses plain
text files as sources with different keywords for sections, subsections andmore. These text
files are used in generating the final output. Latex simplifies writing as the sources for the

37

text usually only contain basic formatting delimiters such as sections and subsections. The
rest of the source files are just content for the actual thesis. This thesis uses multiple files
(one for each chapter) and amain filewhich contain the rules for generating the document.

Both thesis sources and program sources are version controlled by GIT, which is
a distributed version control system. This has lead to easier development and
experimentation, as reverting to previous working revisions is just a few commands away.
The GIT repositories are stored on-line in a private repository and a copy of the repository
has at all times been maintained on three different computers not including the working
code on the work computer (which did not have GIT installed). Thus the measures against
hardware failure in development phase have been followed.

38

6 Discussion

The program has required a lot of time in designing and creating the user interface and the
actual program. The lack of a clear specification lead to some surprises and one complete
rewrite of the program. The rewrite was also based on the awful code I had written
up to that point. By awful code I mean hacks and barely functional code that did what
it should but in a convoluted and non-apparent way. This kind of code was prevalent
in the beginning phases of the project as previous knowledge on GUI programming was
severely lacking on my part. The specifications were discussed and changed throughout
the development of the program. The project started as an idea without any clear vision
on how the implementation should work.

Python was known to me but wxPython and the design process of a somewhat larger scale
program were mostly unknown to me. A huge chunk of the time spent on this project was
on researching wxPython and the Python standard library for suitable functions. The live
plotting was one thing that was especially puzzling to find a suitable framework that could
update with the required speed of the program. Ironically there was a plotting class in
wxPython that is not heavily advertised. It is fast enough but requires many rewrites and
a lot of research to be able to implement it correctly.

Software development can arguably be described as an evolutionary process and is changed
iteration after iteration based on what works and what doesn’t. This has been the way
I have made the program. Starting with a basic idea on how the function should work
and tack on more functionality in iterations after previous goals or ideas have been
implemented and found to work.

The following phase in the evolution of this program would be to include a testing
framework for the critical functions. However, as further optimizations are already
planned, which might change some of the fundamental functions in some way, the
usefulness of unit testing at this stage is debatable. Some optimizations like changing lists
to queues could speed up some parts by a factor of two and allow for larger sets of data
to be collected without any performance decrease. These optimizations are already tested
but not implemented. Other planned changes are refactoring code to improve the general
design of the program and minimize function calls that have a huge overhead in terms of
clock-cycles.

39

This thesis has been extremely educational, on both the theoretical side and the practical
side of the project. I have learned a lot about the engine control system used at Wärtsilä,
the Python programming in general and object oriented programming.

40

Bibliography

[1] H.N. Gupta. Fundamentals of Internal Combustion Engines. PHI Learning, 2006.

[2] Jack Erjavec. Automotive technology: a systems approach. Cengage Learning, 2005.

[3] SeppoMäkinen.The Effects of Knocking on theW34SG engine. Tech. rep.Wärtsilä Finland,
R&D, Calculation & Simulation, 2011. eprint: DBAB409026 (Wärtsilä IDM).

[4] C. S. Draper. Acoustical Analysis of the Pressure Waves Accompanying Detonation in
the Internal-Combustion Engine. Tech. rep. The Journal of the Acoustical Society of
America, 1939.

[5] Thomas G. Horner. Engine Knock Detection Using Spectral Analysis Techniques With a
TMS320 DSP. Tech. rep. Texas Instruments, 1995.

[6] Uwe Kiencke and Lars Nielsen. Automotive Control Systems, For Engine, Driveline, and
Vehicle. 2nd. Springer Berlin Heidelberg New York, 2005.

[7] H. Zhao and N. Ladommatos. “Engine performance monitoring using spark plug
voltage analysis”. In: Proceedings of the Institution of Mechanical Engineers (1997).

[8] H. Johansson J. Auzin and J. Nytomt. Ion-gap sense in misfire detection, knock and engine
control. Tech. rep. Society of Automotive Engineers (SAE), 1995.

[9] Jack Keebler. “Turbocharger with a brain”. In: Popular Science (1982).

[10] Richard G. Lyons. Understanding Digital Signal Processing. Prentice Hall, 2010.

[11] W. H. Nailon Mohamed Anas R. J. Paling and D. R. S. Cumming. Real-time Combustion
Knock Processing Using a Single Instruction Multiple Data Automotive PowerPC System-
on-a-Chip. Tech. rep. Embedded Controller Division, Transportation, Standard
Products Group, Motorola SPS Institute for System Level Integration, an academic
collaborative venture of the Universities of Edinburgh, Glasgow, Heriot-Watt, and
Strathclyde, 1995.

[12] T. Kaas. Knock Control, Functional Description. Software. 2009. eprint: DAAB102405
(Wärtsilä IDM).

[13] Mark Pilgrim. Dive Into Python. 2004. URL: http://www.diveintopython.net (visited
on 01/10/2011–01/11/2011). Published under the GNU Free Documentation License,
orginal author no longer supports website.

41

[14] wxPython API Reference. 2011. URL: http://wxpython.org/docs/api/ (visited on
01/07/2011–01/12/2011).

[15] Mark Lutz. Learning Python. 4th. OReilly Media, Inc., 2009.

[16] Mark Lutz. Programming Python. 4th. OReilly Media, Inc., 2011.

[17] The Python Language Reference. 2011. URL: http://docs.python.org/reference/
index.html (visited on 01/07/2011–01/12/2011).

[18] The Python Standard Library. 2011. URL: http://docs.python.org/library/ (visited
on 01/07/2011–01/12/2011).

[19] Timo Auranen. Knock Control, Application Module Release. Tech. rep. Version 5.1.
Wärtsiä, 2011. eprint: DBAB409026 (Wärtsilä IDM).

