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Object detection is one of the primary tasks in computer vision which consists of determining the 
location on the image where certain objects are present, as well as classifying those objects. In 
2015, the YOLO (You Only Look Once) algorithm was born with a new approach, reframing object 
detection as a regression problem and performing in a single neural network. That made the object 
detection field explode and obtained much more remarkable achievements than just a decade ago. 
So far, combining with many of the most innovative ideas coming out of the computer vision 
research community, YOLO has been upgraded to five versions and assessed as one of the 
outstanding object detection algorithms. The 5th generation of YOLO, YOLOv5, is the latest version 
not developed by the original author of YOLO. However, the performance of the YOLOv5 is higher 
than the YOLOv4 in terms of both accuracy and speed. 
 
This thesis investigates the most advanced inventions in the field of computer vision which were 
integrated into YOLOv5 as well as the previous versions. Using the Colab platform to implement 
object detection in the Global Wheat dataset contains 3432 wheat images. Subsequently, the 
YOLOv5 model will be evaluated and configured for improvement based on the results. 
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1 INTRODUCTION 

People glancing at an image, can instantly recognize what the objects are and where they are 

located within the image. The ability to detect objects fast combined with the knowledge of a person 

helps to make an accurate judgment about the nature of the object. A system that simulates the 

ability of the human visual system to detect objects is something that scientists are researching on. 

Fast and accurate are the two prerequisites for which an object detection algorithm is examined. 

 

Object detection is one of the classical problems in computer vision. It not only classifies the object 

in image but also localizes that object. In previous decades, the methods used to address this 

problem consisted of two stages: (1) extract different areas in the image using sliding windows of 

different sizes and (2) apply the classification problem to determine what class the objects belong 

to. These approaches have the disadvantage of demanding a large amount of computation and 

being broken down into multiple stages. That makes the system difficult to be optimized in terms of 

speed. 

 

In 2015, researcher Joseph Redmon and colleagues introduced an object detection system that 

performs all the essential stages to detect an object using a single neural network for the first time, 

YOLO algorithm (the term as You Only Look Once). It reframes the object detection as a single 

regression problem, straight from image pixels to bounding box coordinates and class probabilities. 

This unified model predicts simultaneously multiple bounding boxes and class probabilities for 

those objects covered by boxes. At the time of its release, the YOLO algorithm has produced 

impressive specifications that outstand the premier algorithms in terms of both speed and accuracy 

for detecting and determining object coordinates (Redmon, et al., 2016). 

 

Over the next 5 years, the YOLO algorithm was upgraded to five versions (including the original 

version) with many of the most innovative ideas coming out of the computer vision research com-

munity. The first three versions are researched and developed by the author of the YOLO algorithm, 

Joseph Redmon. However, he announced to discontinue his research in the computer vision field 

after the release of YOLOv3. In early 2020, the official YOLO Github account released the YOLO 

update version 4, YOLOv4, published by Alexey Bochkovskiy, the Russian developer who built the 

first 3 versions of YOLO based on Joseph Redmon's Darknet framework. A month after the launch 

of YOLOv4, researcher Glenn Jocher and his Ultralytics LLC research department, who built YOLO 
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algorithms on the Pytorch framework, published YOLOv5 with a few differences and improvements. 

Although not developed by the team of algorithm authors, YOLOv5 has impressed with outstanding 

performance compared to all four previous versions (Jocher, 2020). 
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2 YOLO – YOU ONLY LOOK ONCE 

YOLO came on the computer vision scene with a paper released in 2015 by Joseph Redmon et al. 

“You Only Look Once: Unified, Real-Time Object Detection,” and immediately got a lot of attention 

from fellow computer vision researchers. Convolutional Neural Networks (CNN) such as Region-

Convolutional Network (R-CNN) used Regions Proposal Networks (RPNs) before YOLO was 

invented, it produces proposal bounding boxes on the input image first, then runs a classifier on 

the bounding boxes and then apply post-processing to remove duplicate detections and refine the 

bounding boxes. It was not suitable for training individual stages of the R-CNN network separately. 

The R-CNN network was both difficult and sluggish to optimize. 

 

The author's motivation is to build a unified model of all phases on a neural network. With the input 

image containing (or not) the objects, after passing forward through a single neural network of 

multiple convolutional networks, the system produces predictive vectors corresponding to each 

object appearing in the image. Instead of iterating the process of classifying different regions on 

the image, the YOLO system computes all the features of the image and makes predictions for all 

objects at the same time. That is the idea of "You Only Look Once". (Redmon, et al., 2016) 

2.1 Concepts 

The main idea of YOLOv1 is to apply a grid cell with the size of 𝑆 × 𝑆 (7 × 7 default) into an 

image. If the center of an object falls into a grid cell, that grid cell is responsible for detecting that 

object (Figure 1). Therefore, all other cells disregard even that appearance of object revealed in 

multiple cells. 

 

In order to implement object detection, each grid cell predicts 𝐵 bounding boxes with their param-

eters and confidence scores for those boxes (Figure 1) (V Thatte, 2020). These confidence score 

reflects the presence or absence of an object in bounding box. The confidence score is defined as:  

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =  𝑝(𝑂𝑏𝑗𝑒𝑐𝑡) ∗  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ 

with 𝑝(𝑂𝑏𝑗𝑒𝑐𝑡) is the probability that there is an object inside the cell and 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ is intersec-

tion over union of prediction box and ground truth box. 𝑝(𝑂𝑏𝑗𝑒𝑐𝑡) is in range 0-1, so the confi-

dence score is close to 0 if no object exists in that cell. Otherwise, the score equal to  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ. 
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Figure 1. YOLO model with 7x7 grid cell was applied on input image. (Redmon, et al., 2016) 

Besides, each bounding box consists of 4 other parameters (𝑥, 𝑦, 𝑤, ℎ) corresponding to 

(𝑐𝑒𝑛𝑡𝑒𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(𝑥, 𝑦), 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) of a bounding box (Figure 2). Combining with the 

confidence score, each bounding box consist of 5 parameters.  

 

Figure 2. Parameters for a bounding box in 3x3 grid cell. (Menegaz, 2018) 



  

10 

The probability of an object predicted for each class in a grid cell denoted 𝑝(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡). 

Probability values for the 𝐶 class will produce 𝐶 output for each grid cell. The 𝐵 bounding box of 

the same grid cell shares a common set of predictions about the object's class, meaning that all 

bounding boxes in the same grid cell have the same class. As shown in Figure 3, for example that 

there are 2 prediction boxes in center cell. They have different parameters 

(𝑥, 𝑦, 𝑤, ℎ, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒). However, they have same 3 prediction classes. 

 

Figure 3. The bounding boxes of same grid cell share the set of prediction class. (Menegaz, 2018) 

Thus, the model has 𝑆 × 𝑆 grid cells for an image. Each cell predicts 𝐵 bounding boxes which 

consist of 5 parameters and share prediction probabilities of 𝐶 classes. The total YOLO output of 

model parameters will be 𝑆 × 𝑆 × (5 ∗ 𝐵 + 𝐶) (Menegaz, 2018). For example, evaluating the 

YOLO model on famous COCO dataset which contains 80 classes and set each cell predicts 2 

bounding boxes, the total output parameters are 7 × 7 × (5 ∗ 2 + 80). 

 

The purpose of the YOLO algorithm is to detect an object by precisely predicting the bounding box 

containing that object and localize the object based on the bounding box coordinates. Therefore, 

predicted bounding box vectors correspond to output vector �̂� and ground truth bounding box 

vectors correspond to vector label 𝑦. Vector label 𝑦 and predicted vector �̂� can be indicated as 

Figure 4 where the purple cell does not have any object, the confidence score of bounding boxes 

in purple cell equal to 0, then all remain parameters will be ignored. 
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Figure 4. Specifying label vector 𝑦 in a YOLO model has 3x3 grid cells and predict object for 3 
classes. (datahacker.rs, 2018) 

Finally, YOLO applies Non-Maximum Suppression (NMS) to clean all bounding boxes which do not 

contain any object or contain the same object as other bounding boxes (Figure 1). By picking a 

threshold value, NMS removes all the overlap bounding boxes which have intersection over union 

(IOU) value higher than the threshold value. (ODSC Science, 2018) 

2.2 YOLOv1 architecture 

The YOLO model is designed to encompass an architecture that processes all image features (the 

authors called it Darknet architecture) and followed by 2 fully connected layers performing bounding 

box prediction for objects (Figure 5). This model was evaluated in the Pascal VOC dataset, where 

the authors used 𝑆 = 7, 𝐵 = 2 and 𝐶 = 20. This explains why the final feature maps are 7 × 7, 

and the output size was (7 × 7 × (2 ∗ 5 + 20)). 

 

Figure 5. Preliminary YOLOv1 architecture. 
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The authors have introduced the fast-YOLO model with 9 CNN layers in Darknet architecture for 

uncomplicated datasets, and the normal-YOLO model with 24 CNN layers in Darknet architecture 

can deal with more complex datasets producing higher accuracy (Figure 6). The sequences of 1x1 

and 3x3 convolutional layers were inspired by the GoogLeNet (Inception) model which helps reduce 

the features space from preceding layers (Menegaz, 2018). The final layer uses a Linear activation 

function instead of Leaky Rectified Linear Unit (leaky ReLU) activation as all other layers: 

𝜙(𝑥) =  {
𝑥, 𝑖𝑓 𝑥 > 0

0.1𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

Figure 6. Normal-YOLOv1 neural network model with 24 CNN layers and 2 fully connected layers 
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2.3 Loss function  

The sum-squared error is the backbone of YOLO’s loss function. There are multiple grid cells that 

do not contain any objects whose confidence score is zero. They overwhelm the gradients of cells 

that contain the objects. To avoid such overwhelming leading to training divergence and model 

instability, YOLO conducts the highest penalty for predictions from bounding boxes containing ob-

jects (𝜆𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest for predictions when no object is present (𝜆𝑛𝑜𝑜𝑏𝑗 = 0.5) (V 

Thatte, 2020). YOLO's loss function is calculated by taking the sum of all bounding box parameters’ 

loss function including (𝑥, 𝑦, 𝑤, ℎ, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒, 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦). 

ℒ =  𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2]

𝐵

𝑗=0

𝑆2

𝑖=0

 

                  +𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

 

                              + ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 

                                               + ∑ 𝕝𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

 

 

The first part of equation computes the loss related to the predicted bounding box position and 

ground truth bounding box position based on coordinates (𝑥𝑐𝑒𝑛𝑡𝑒𝑟 ,  𝑦𝑐𝑒𝑛𝑡𝑒𝑟). 𝕝𝑖𝑗
𝑜𝑏𝑗

 is define as 1 

if object present inside 𝑗𝑡ℎ predicted bounding box in 𝑖𝑡ℎ cell, and 0 for otherwise. The predicted 

bounding box will be “responsible” for predicting an object based on which prediction has the 

highest current IOU with the ground truth. 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)2 + (𝑦𝑖 − �̂�𝑖)

2]

𝐵

𝑗=0

𝑆2

𝑖=0

 

 

The second part of YOLO loss function calculates the error in prediction of bounding box width and 

height similar to first part of equation. However, the magnitude of error in the large boxes affect the 

equation less than in the small boxes. As both width and height are normalized in between 0 and 

1, their square roots increase the differences for smaller values more than the larger values. Hence, 

the square root of the bounding box width and height is used instead of the width and height directly. 
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𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

 

 

The loss of confidence score is computed by both cases whether the object is present in the 

bounding box or not. The loss function only penalizes object confidence error if that predictor is 

responsible for the ground truth box. 𝕝𝑖𝑗
𝑜𝑏𝑗

 is equal to 1 when there is an object in the cell, and 0 

otherwise. 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 is the opposite. 

∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

 

 

The last part of the loss function is similar to the normal classification loss which computes the loss 

of class probability, except for the 𝕝𝑖𝑗
𝑜𝑏𝑗

 term. This term is used because YOLO does not penalize 

classification errors even when there are no objects present in the cell. 

∑ 𝕝𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0
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3 EVOLUTIONARY HIGHLIGHTS 

There have been five versions of YOLO published (including the original version) until now. Each 

version has been upgraded and integrated with the most advanced ideas coming out of the 

computer vision research community. Besides, some ideas have been also removed due to the 

inability to reach the required performance and accuracy of the algorithm. That makes YOLO even 

more powerful as one of today's top object detection algorithms. Before applying the state-of-the-

art YOLOv5 model, discovering the remarkable improvements in the four previous versions is 

necessary for understanding the YOLOv5 algorithm. 

3.1 YOLOv2 

3.1.1 Add Batch Normalization 

Batch normalization is one of the most popular methods of normalization in the deep learning 

model. It allows faster and more stable training of deep neural networks by stabilizing the 

distribution of the input layers during training (Ioffe , et al., 2015). The goal of this approach is to 

normalize the features (the output of each layer after passing activation) to a zero-mean state with 

a standard deviation of 1. 

𝑀𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑚𝑒𝑎𝑛: 𝜇 =
1

𝑚
∑ 𝑧(𝑖)

𝑚

𝑖=1

 

𝑀𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎2 =
1

𝑚
∑(𝑧(𝑖) − 𝜇)

2
𝑚

𝑖=1

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: 𝑧𝑛𝑜𝑟𝑚
(𝑖)

=
𝑧(𝑖) − 𝜇

√𝜎2 + 𝜀
 

𝑆𝑐𝑎𝑙𝑒 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡: �̃�(𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽 

 

By applying batch normalization followed by all YOLOv2's convolution layers. This technique not 

only reduces training time but also increases the generalization of the network. In YOLOv2, batch 

normalization increased mAP (mean average precision) by about 2% (Redmon, et al., 2016). The 

network also does not need to use additional Dropouts to avoid overfitting. 
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3.1.2 High Resolution classifier 

In the original YOLO (YOLOv1), the first 20 convolution layers (in YOLOv1 architecture) were used 

to train feature extractor (classification network) with 224 × 224 input image. Then the remaining 

4 convolution layers and 2 fully connected layers were added, the resolution of the input image was 

simultaneously increased to 448 × 448 to be used as object detector. (Kamal, 2019) 

 

Whereas at YOLOv2, after completing the training phase of the feature extractor with the 

224 × 224 input image, the model continued to train the feature extractor for more 10 epochs 

with 448 × 448 input image before using the architecture for training object detector. That help 

the model “adapt” to a large resolution of 448 × 448 instead of suddenly increasing the image 

size when the feature extractor training phase moves to the object detector training phase. This 

high-resolution classification network gives an increase of almost 4% mAP. 

3.1.3 Convolutional with anchor box 

The idea of YOLOv1 is to use a grid cell to be responsible for detecting an object which has the 

center inside that grid cell. So, when two or more objects which have the center inside the same 

grid cell, the prediction may be flawed. To solve this problem, the author tried to allow a grid cell to 

predict more than one object. In YOLOv2, the author introduced an anchor box architecture to 

predict bounding boxes instead of using fully connected layers as in YOLOv1 (Redmon, et al., 

2016). Anchor box is a list of predefined boxes that best match the desired objects. The bounding 

boxes were not only predicted based on ground truth boxes but also predefined 𝑘 anchor boxes. 

 

Figure 7. For each grid cell (red), model predict 5 bounding boxes based on 5 anchor boxes (yellow) 
with different shapes. 
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Instead of manually picking out the best-fit anchor boxes, the k-means clustering algorithm was 

used on the training set bounding boxes (including all the ground truth boxes) to cluster the 

bounding boxes which have similar shapes, then plot the average IOU with the closest centroid 

(Figure 8). But instead of using Euclidean distance, the author used IOU between the bounding 

box and the centroid. With various choices for 𝑘, 𝑘 =  5 gives a good tradeoff for recall vs. 

complexity of the model. As shown in Figure 8, the author experimented in VOC and COCO 

dataset, the right image shows the trade-off between recall and model complexity based on number 

of clusters (k). The right image shows 5 centroids (be used as anchor boxes) in both datasets. 

(Redmon, et al., 2016) 

 

Figure 8. The k-mean clustering algorithm was used to choose best-fit anchor boxes. (Redmon, et 
al., 2016) 

YOLOv1 has no restrictions on predicting the bounding position of box. When parameters are 

randomly initialized, the bounding box can be predicted anywhere in the image. This makes the 

model unstable in the early epochs of training. The position of bounding box can be distant from 

the grid cell responsible for predicting that bounding box. 

 

Each grid cell in YOLO is specified in a scale of 0-1, the coordinate of the top-left point is (0, 0) 

and the bottom-right is (1, 1) as in Figure 9. Therefore, YOLOv2 used the sigmoid function (𝜎) to 

restrict the value of the bounding box center in range 0-1, which in turn can set the bounding box 

predictions around the grid cell. 

 



  

18 

As shown in Figure 9, YOLOv2 assigns the bounding box (blue box) not only to the grid cell but 

also to one of the anchor boxes (dot box) which has the highest IOU with the ground truth box. The 

center coordinates of the box were predicted relative to the location of the filter application using a 

sigmoid (𝜎) function. (Redmon, et al., 2016) 

 

Figure 9. The sigmoid activation function was used to control the position of predicted bounding 
boxes. (Redmon, et al., 2016) 

The model predicts 5 parameter values (𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ, 𝑡𝑜) corresponding to (x, y, width, height, 

confidence score) for each bounding box as shown in the original YOLO. However, these 

parameters will be recalculated based on the correlation with the predefined anchor box (Figure 9). 

If the cell is offset from the top left corner of the image by (𝑐𝑥, 𝑐𝑦) and the given anchor box has 

width and height (𝑝𝑤, 𝑝ℎ), then the predictions were calculated as: 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤  

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ  

𝜎(𝑡𝑜) = 𝑝(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈(𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡) 

 

(0, 0) 

(1, 1) 
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Therefore, the final predicted bounding box will be (𝑏𝑥, 𝑏𝑦, 𝑏𝑤, 𝑏ℎ, 𝜎(𝑡𝑜)). Since the model con-

strains the location prediction, the parametrization is easier to learn, making the network more 

stable. YOLOv2 has improved by almost 5% mAp with anchor boxes. (Redmon, et al., 2016) 

3.2 YOLOv3 

3.2.1 Bigger network with ResNet 

YOLO v2 used a custom deep 30-convolutional layers for Darknet architecture, more than YOLOv1 

11 layers. For deep neural networks, more layers mean more accuracy. However, the input image 

was downsampled when forwarding to deeper layers leading to losing fine-grained features. That 

is why YOLOv2 often struggled with small object detections. ResNet brought the idea of skip 

connections to help the activations to propagate through deeper layers without gradient vanishing 

(Figure 10) (He , et al., 2015). 

 

Figure 10. ResNet skip connection architecture. 

YOLOv3 came up with a better architecture where the feature extractor used was a hybrid of 

YOLOv2, Darknet-53 (53 convolutional layers), and Residual networks (ResNet) (Redmon, et al., 

2018). The network is built with the bottleneck structure (1𝑥1 followed by 3𝑥3 convolution layers) 

inside each residual block plus a skip connection (Figure 11).  
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Thanks to residual blocks of ResNet, overlaying layers will not degrade network performance. 

Furthermore, the deeper layers get more information directly from the shallower layers, so it will 

not lose the mass of fine-grained features. 

 

 

Figure 11. Darknet-53 architecture with 5 residual blocks (square box) containing bottle neck 
structure (1x1 followed by 3x3 convolutional layers). (Yanjia LiYanjia Li, 2019) 
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The model used Darknet-53 architecture which originally has the 53-layer network for training 

feature extractor. After that, 53 more layers were stacked for the detection head for training object 

detector, making YOLOv3 a total of 106 layers fully convolutional underlying architecture. 

3.2.2 Multi-scale detector 

In 2 previous versions of YOLO, after training in the feature extractor with Darknet architecture, the 

input was forwarded to some more layers and finally make the predictions in the last layers of object 

detector. However, YOLOv3 appended the prediction layers aside network instead of stacking it at 

the last layers as before (Figure 12). The most notable feature of YOLOv3 is that it makes 

detections at 3 different scales (Redmon, et al., 2018). The features from the last 3 residual blocks 

were used for 3 different scale detectors. 

 

Figure 12. Multi-scale detector was appended aside network to make detection 3 times in 3 different 
scales. (Yanjia LiYanjia Li, 2019) 

More specifically, YOLOv3 makes predictions at 3 scales in layers 82nd, 94th, and 106th, which 

are precisely given by stride of the network (or a layer is defined as the ratio by which it 

downsamples the input) are 32, 16, and 8, respectively (Figure 13). 
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Figure 13. YOLOv3 network architecture combining both feature extractor and object detector. 
(Kathuria, 2018) 

Unlike YOLOv1 where the bounding boxes were predicted by the same grid cell share a set of 

prediction probabilities of 𝐶 classes, making each grid cell responsible for predicting only one 

object, the idea that a grid cell has the ability to predict multiple objects at the same time is initiated 

from YOLOv2, bounding boxes will detect different objects even if they are predicted by the same 

grid cell. Hence, predicted bounding boxes have their own set of prediction probabilities of 𝐶 

classes rather than share it together (Figure 14). The total YOLOv3’s output parameters for each 

different detector will be 𝑆 × 𝑆 × (𝐵 × (5 + 𝐶)). 

 

The first detection is made by the 82nd layer. For ease of interpretation, the author used 

416 × 416 input image as default. After forwarding through the first 81 layers, the input image is 

downsampled by the stride of 32 and the resultant feature map would be of size 13 × 13 

corresponding to 13 × 13 grid cells (Figure 13) (Kathuria, 2018). At each detection layer, the 

detection is done by applying 1 × 1 detection kernels on feature maps. The 1 × 1 kernel is 

responsible for predicting the 𝐵 bounding box for each grid cell of the feature map. YOLOv3 was 

trained on COCO dataset with 𝐵 = 3 (3 bounding boxes for each cell) and 𝐶 = 80 (80 classes), 

82 

103 
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so the kernel size is 1 × 1 × (3 × (5 + 80)) = 1 × 1 × 255. At the first detection layer, the 

final resultant feature map would be 13 × 13 × 255 (Figure 14). 

 

 

Figure 14. YOLOv3 detect an object by applying an 1 × 1 kernel. (Kathuria, 2018) 

The same procedure is repeated. However, before forwarding to 2 other detection layers for making 

predictions, the feature maps at layer 79th and 91st are upsampled. And after downsampling once 

again by the stride of 16 and 8, the feature maps have the size of 26 × 26 and 52 × 52 

corresponding to the detection layer 94th and 106th (Figure 13). (Kathuria, 2018) 
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Moreover, detections at different scale layers help address the issue of detecting small objects, a 

frequent complaint with YOLOv2. The feature map with a larger size is more detailed. Thus, the 

large-scale detection layer (52 × 52) is responsible for detecting small objects, whereas the 

small-scale detection layer (13 × 13) detects larger objects. 

 

By concatenates with the shallowed layers after upsampling in the deeper layer (concatenate with 

layer 61st before reach layer 91st and concatenate with layer 36 before reach layer 103rd as in 

Figure 13), the fine-grained features could be preserved from previous layers which help large-

scale detection layer in detecting small objects. 

3.3 YOLOv4 

The original YOLO algorithm was written by Joseph Redmon, who is also the author of a custom 

framework called Darknet. After 5 years of research and development to the 3rd generation of 

YOLO (YOLOv3), Joseph Redmon announced his withdrawal from the field of computer vision and 

discontinued developing the YOLO algorithm for concern of his research being abused in the 

military applications. However, he does not dispute the continuation of research by any individual 

or organization based on the early ideas of the YOLO algorithm. 

 

In April 2020, Alexey Bochkovsky, a Russian researcher and engineer who built the Darknet 

framework and 3 previous YOLO architecture on C-based on Joseph Redmon's theoretical ideas, 

has cooperated with Chien Yao and Hon-Yuan and published YOLOv4. (Bochkovskiy, 2020) 

3.3.1 Object detection architecture 

Along with the development of YOLO, many object detection algorithms with different approaches 

have achieved remarkable achievements as well. Since then, forming two concepts of architectural 

object detection: One-stage detector and Two-stage detector (Figure 15). 
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Figure 15. Two concepts of architectural object detection. (Solawetz, 2020) 

The common point of all object detection architectures is that the input image features will be 

compressed down through feature extractor (Backbone) and then forwarding to object detector 

(including Detection Neck and Detection Head) as in Figure 15. Detection Neck (or Neck) works as 

a feature aggregation which is tasked to mix and combine the features formed in the Backbone to 

prepare for the detection step in Detection Head (or Head).  

 

The difference appearing here that Head is responsible for making detection including localization 

and classification for each bounding box. The two-stage detector implements these 2 tasks 

separately and combines their results later (Sparse Detection), whereas the one-stage detector 

implements it at the same time (Dense Detection) as in Figure 15 (Solawetz, 2020). YOLO is a 

one-stage detector, therefore, You Only Look Once. 

 

The YOLOv4 author performed a series of experiments with many of the most advanced innovation 

ideas of computer vision for each part of the architecture (Figure 16). (Bochkovskiy, et al., 2020) 

 

Figure 16. Diagrams of the most advanced innovation ideas applied by the author to each part of 
the YOLOv4 architecture. 

Head 

(One-stage) (Two-stage) 
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3.3.2 Backbone – CSPDarknet53 

The backbone (feature extractor) of the YOLOv4 model was considered by the authors among 3 

options: CSPResNext53, CSPDarknet53 and EfficientNet-B3, the most advanced convolutional 

network at that time. Based on theoretical justification and lots of experiments, CSP Darknet53 

neural network was determined to be the most optimal model (Figure 17). 

 

Figure 17. Comparison table of 3 backbone networks. (Huang, et al., 2018) 

The CSPResNext50 and the CSPDarknet53 (CSP stands for Cross Stage Partial) are both derived 

from the DenseNet architecture which uses the previous input and concatenates it with the current 

input before moving into the dense layer (Huang, et al., 2018). DenseNet was designed to connect 

layers in a very deep neural network with the aim of alleviating vanishing gradient problems (as 

ResNet). 

 

Figure 18. DenseNet architecture with 3 Dense blocks. The layers between 2 blocks referred to as 
transition layers. (Huang, et al., 2018) 

To clarify, each stage of DenseNet consist of a dense block and a transition layer (Figure 18), each 

dense block is constructed of 𝑘 dense layers. The input after goes through the dense block will 

come to the transition layer for changing size (downsample or upsample) via convolution and 

pooling (Figure 19). The output of the 𝑖𝑡ℎ dense layer will concatenate with its own input to form 

the input for the next (𝑖 + 1)𝑡ℎ layer. For example, at 1𝑠𝑡  dense layer, the input 𝑥𝑜 after forward 

through convolutional layers has produced the output 𝑥1. Then, the output 𝑥1 concatenate with its 

own input 𝑥0 and that concatenated outcome become the input of 2𝑛𝑑  dense layer (Figure 19). 
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Figure 19. The process of the input processing in a dense block. (Wang, et al., 2019) 

The CSP (Cross Stage Partial) is based on the same principle of the above DenseNet except that 

instead of using the full-size input feature map at the base layer, the input will be separated into 2 

portions. A portion will be forwarded through the dense block as usual and another one will be sent 

straight on to the next stage without processed (Figure 20). This will result in different dense layers 

repeatedly learn copied gradient information. (Wang, et al., 2019) 

 

Figure 20. The process of the input processing in a partial dense block. (Wang, et al., 2019) 

Combining these ideas with Darknet-53 architecture in YOLOv3, the residual blocks were replaced 

by the dense blocks. CSP maintains features through propagation, encourages the network to 

reuse features, and reduces the number of network parameters, helps to preserve fine-grained 

features for forwarding to deeper layers more efficiently. Considering that excessive increase of 

the densely connected convolutional layers may lead to a decrease in detection speed, only the 

last convolutional block which can extract the richer semantic features in the Darknet-53 backbone 

network is improved to be a dense block (Figure 21). (Huang, et al., 2019) 

Convolution 

Pooling 

output 

input 

input 



  

28 

 

Figure 21. Dense block connection and Spatial Pyramid Pooling Based YOLOv2 architecture. 
(Shah, 2020) 

3.3.3 Neck – Additional block – SPP block 

Before forwarding to feature aggregation architecture in the neck, the output feature maps of the 

CSPDarknet53 backbone were sent to an additional block (Spatial Pyramid Pooling block) to 

increase the receptive field and separate out the most important features (Figure 21). 

 

Many CNN-based (convolutional neural network) models contain fully connected layers which only 

accept input images of specific dimensions. SPP was born with the aim of generating a fixed-size 

output irrespective of the input size. Not only that, but SPP also helps to extract important features 

by pooling multi-scale versions of itself. As shown in Figure 22, the input feature maps have been 

duplicated to 𝑛 versions (𝑛 = 3 in this case) where each version was conducted max pooling with 

kernels of different sizes. By doing that, the SPP block simultaneously extracts 𝑛 different types of 

important features. (He, et al., 2015) 

Backbone 

Feature Aggregation 
Additional block 
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Figure 22. Classical SPP block. (Huang, et al., 2019) 

Since fully connected layers were removed from YOLOv2, the YOLO algorithm has become an 

FCN-based (fully convolution network) model which allows the input images of different 

dimensions. Besides, YOLO has to make predictions and localizations about the coordinates of the 

bounding boxes based on the 𝑆 × 𝑆 grid cell drawn on the image. Thus, converting two-

dimensional feature maps into a fixed-size one-dimensional vector is not necessarily desirable. 

 

For that reason, the SPP block has been modified to preserve the output spatial dimension (Figure 

23). The new SPP block was located adjacent to the backbone (Figure 21). For reducing the 

number of input feature maps are sent to the SPP block (from 1024 to 512), a 1 × 1 convolution 

is used between the backbone and the SPP block. After that, then input feature maps are duplicated 

and pooled in different scales based on the same principle of classical SPP block except that the 

padding is used to keep a constant size of the output feature maps, then 3 feature maps will retain 

the sizes of 𝑠𝑖𝑧𝑒𝑓𝑚𝑎𝑝 × 𝑠𝑖𝑧𝑒𝑓𝑚𝑎𝑝 × 512. 

 

Different from the classical SPP block where the feature maps (Figure 22) were converted to a one-

dimensional vector after conducting multi-scale max-pooling, the new SPP block (Figure 23) 

concatenates these 3 feature maps pooled with the sizes of 𝑠𝑖𝑧𝑒𝑓𝑚𝑎𝑝 × 𝑠𝑖𝑧𝑒𝑓𝑚𝑎𝑝 × 512 and 
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including the input feature maps to avoid loss of important features in the case 3-scale max-pooling 

is not enough. Hence, the input not only extracted the important features that made the training 

easier but also kept the spatial dimension. (Wang, et al., 2019) 

 

Figure 23. The new SPP block adapted to YOLO. (Huang, et al., 2019) 

3.3.4 Neck – Feature Aggregation – PANet 

The input image after forwarding through the backbone, the image features are processed into 

semantical features (or learned features). In other words, from the low-level layers, the deeper that 

the input image goes through, the complexity of semantical features will be more increased while 

the spatial resolution of feature maps will be more decreases due to downsampling. This leads to 

a loss of spatial information as well as fine-grained features. In order to preserve these fine-grained 

features, Joseph Redmon applied the idea of Feature Pyramid Network (FPN) architecture for 

YOLOv3's neck.  

 

The FPN architecture implemented a top-down path to transfer the semantical features (from the 

high-level layer) and then concatenate them to fine-grained features (from the low-level layer in the 

backbone) for predicting small objects in the large-scale detector (Figure 24). (Hui, 2020) 
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Figure 24. (a) The original FPN architecture. (b) The modified FPN architecture used in YOLOv3. 
(Gochoo, 2020)  

Path Aggregation Network (PAN) is an advanced version of FPN. Because the flow in FPN 

architecture is the top-down path, hence only the large-scale detector from low-level layers in FPN 

is able to simultaneously receive the semantic features from high-level layers and fine-grained 

features from low-level layers in the lateral backbone (Figure 25a). Currently, the small-scale 

detector from high-level layers in FPN uses only semantic features for detecting objects. To 

improve the performance for the small and medium-scale detector, the idea of concatenating the 

semantic features and fine-grained features at high-level layers was considered. 

 

 

Figure 25. PANet architecture including (a) FPN backbone, (b) bottom-up path augmentation, (c) 
adaptive feature pooling. (Liu, et al., 2018) 

However, for the deep neural network nowadays, the backbone of them contains lots of layers (can 

be more than 100 layers). Therefore, in FPN, the fine-grained features have to take a long path for 

traveling from low-level to high-level layers (the red path in Figure 25 or red path in Figure 26a). 
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The authors of the PAN architecture proposed to add a bottom-up augmentation path beside the 

top-down path used in FPN (Figure 25b). Thereby, a “shortcut” was created to directly connect fine-

grained features from low-level layers to the top ones (green path in Figure 25 or green path in 

Figure 26b). This “shortcut” includes less than 10 layers, allowing ease of information flow (Liu, et 

al., 2018).  

 

As shown in Figure 25, the backbone and FPN architecture are presented the same. But actually, 

the backbone contains lots of layers, the 4 drawn layers represent for the layers which were 

concatenated to multi-scale detectors in FPN architecture, not represent for the entire backbone. 

That the reason why the green path “shortcut” (Figure 25) goes through less than 10 layers although 

longer than the red path in the same picture. 

 

 

Figure 26. (a) FPN architecture. (b) PAN architecture. (c) Connection in bottom-up augmentation 
path. (Solawetz, 2020) 

The bottom-up augmentation path can be witnessed as a replica of the FPN top-down path with 

each stage containing layers that produce feature maps with the same spatial sizes. These feature 

maps are connected to the lateral architecture by the element-wise addition operation (Figure 27a), 

whereas in modified PAN architecture for YOLOv4, the authors replaced it with the concatenation 

operation (Figure 27b). This helps the flow of information missing out on neither FPN features nor 

the bottom-up augmentation path features. 

(c) Lateral connection 
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Figure 27. (a) Original PAN. (b) Modified PAN for YOLOv4. (Bochkovskiy, et al., 2020) 

In FPN, the predictions were made separately and independently at different scale levels (Figure 

24). This may produce duplicated predictions and not utilize information from other feature maps. 

PAN fused all the output feature maps of bottom-up augmentation pyramid by using ROI (Region 

of Interest) Align and fully connected layers with element-wise max operation (Figure 25c and 

Figure 28). So that, all the variabilities of feature maps are aggregated and used for predictions. 

(Liu, et al., 2018) 

 

Figure 28. PAN used ROI Align for adaptive pooling and fully connected layers for fusing features 
from all stages. (Liu, et al., 2018) 

3.3.5 Head – YOLOv3 

In the case of a one-stage detector, the function of the head is to perform dense predictions. The 

dense prediction is the final prediction composed of a vector containing the predicted bounding box 

coordinates (center, height, width), the prediction confidence score, and the probability classes. 

YOLOv4 deploys the identical head as YOLOv3 for detection with the anchor-based detection 

steps, and three levels of detection granularity (Solawetz, 2020). 
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3.3.6 Bag of Freebies  

The authors have experimented and applied a set of marginal optimization methods into YOLOv4 

architecture with the aim of further improving algorithm performance and accuracy. These 

improvements are referred to by the authors by the term "Bag of Freebies" and "Bag of Specials". 

(Kanjee, 2020) 

 

Figure 29. Multiple state-of-the-art optimization methods were experimented for each field. 

"Bag" refers to a set of improvement methods and "Freebies" means that these improvements in 

this "Bag" can help to increase the performance and accuracy of the model without any cost to 

hardware. Hence, essentially the architecture will get more additional performance for free. 

 

Through innumerable experiments and objective evaluation based on detailed statistics, the 

authors of YOLOv4 screened out and determined the following improvement methods for Bag of 

Freebies and applied them to YOLOv4. 

 

For backbone: CutMix and Mosaic data augmentations, DropBlock regularization, Class label 

smoothing. (Bochkovskiy, et al., 2020) 

 

For detector (neck and head): Complete Intersection over Union (CIoU-loss), Cross-mini–Batch 

Norm (CmBN), DropBlock regularization, Mosaic data augmentation, Self-Adversarial Training 

(SAT), Eliminate grid sensitivity, using multiple anchors for a single ground truth, Cosine annealing 

scheduler, Optimal hyper-parameters, Random training shapes. (Bochkovskiy, et al., 2020) 
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3.3.7 Bag of Specials 

Besides Bag of freebies, the authors introduced more another set of improvement method, called 

Bag of Specials. "Specials" here refers to getting something of value at a discount or for cheap. 

That means Bag of Specials includes the most advanced optimization methods which require the 

architecture to pay a small cost for significantly improving the performance accuracy of object 

detection. 

For backbone: Mish activation, Cross-stage partial connections (CSP), Multi-input weighted 

residual connections (MiWRC). (Bochkovskiy, et al., 2020) 

 

For detector (neck and head): Mish activation, Spatial Pyramid Pooling block (SPP-block), Spatial 

Attention Module (SAM-block), Path Aggregation Network (PANet), Distance Intersection over 

Union Non-Maximum Suppression (DIoU-NMS). (Bochkovskiy, et al., 2020) 
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4 5TH GENERATION OF YOLO 

A month after YOLOv4 was released, researcher Glenn and his team published a new version of 

the YOLO family, called YOLOv5 (Jocher, 2020). Glenn Jocher is a researcher and CEO of 

Ultralystics LLC. YOLO models were developed on a custom framework Darknet which is written 

mainly in C by Alexey Bochkovsky. Ultralystic is the company that converts previous versions of 

YOLO on one of the most famous frameworks in the field of deep learning, PyTorch which is written 

in the Python language. 

4.1 Overview of YOLOv5 

Besides, Glenn Jocher is also the inventor of the Mosaic data augmentation and acknowledged by 

Alexey Bochkovsky in the YOLOv4 paper (Bochkovskiy, et al., 2020). However, his YOLOv5 model 

caused lots of controversy in the computer vision community because of its name and 

improvements. 

 

Despite being released a month after YOLOv4, the start of research for YOLOv4 and YOLOv5 was 

quite close (March – April 2020). For avoiding collision, Glenn decided to name his version of 

YOLO, YOLOv5. Thus, basically, both researchers applied the state-of-the-art innovations in the 

field of computer vision at that time. That makes the architecture of YOLOv4 and YOLOv5 very 

similar and it makes many people dissatisfied with the name YOLOv5 (5th generation of YOLO) 

when it does not contain multiple outstanding improvements compared to the previous version 

YOLOv4. Besides, Glenn did not publish any paper for YOLOv5, causing more suspicions about 

YOLOv5. 

 

However, YOLOv5 possessed the advantages in engineering. YOLOv5 is written in Python 

programming language instead of C as in previous versions. That makes installation and integration 

on IoT devices easier. In addition, the PyTorch community is also larger than the Darknet 

community, which means that PyTorch will receive more contributions and growth potential in the 

future. Due to being written in 2 different languages on 2 different frameworks, comparing the 

performance between YOLOv4 and YOLOv5 is difficult to be accurate. But after a while, YOLOv5 
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has proved higher performance than YOLOv4 under certain circumstances and partly gained 

confidence in the computer vision community besides YOLOv4. 

4.2 Notable differences – Adaptive anchor boxes 

As mentioned above, the YOLOv5 architecture has integrated the latest innovations similar to the 

YOLOv4 architecture, thus there are not many brilliant differences in theory. The author did not 

publish a detailed paper, but only launched a repository on Github and updates improvements 

there. By dissecting its structure code in file .yaml, the YOLOv5 model can be summarized as 

follows (Jocher, 2020): 

- Backbone: Focus structure, CSP network 

- Neck: SPP block, PANet 

- Head: YOLOv3 head using GIoU-loss 

 

The remarkable point mentioned by the YOLOv5 author is an engineering difference. Joseph 

Redmon introduced the anchor box structure in YOLOv2 and a procedure for selecting anchor 

boxes of size and shape that closely resemble the ground truth bounding boxes in the training set. 

By using the k-mean clustering algorithm with different 𝑘 values, the authors picked the 5 best-fit 

anchor boxes for the COCO dataset (containing 80 classes) and use them as the default. That 

reduces training time and increases the accuracy of the network. 

 

However, when applying these 5 anchor boxes to a unique dataset (containing a class not belonged 

to 80 classes in the COCO dataset), these anchor boxes cannot quickly adapt to the ground truth 

bounding boxes of this unique dataset. For example, a giraffe dataset prefers the anchor boxes 

with the shape thin and higher than a square box. To address this problem, computer vision 

engineers usually run the k-mean clustering algorithm on the unique dataset to get the best-fit 

anchor boxes for the data first. Then, these parameters will be configurated manually in the YOLO 

architecture.  

 

Glenn Jocher proposed integrating the anchor box selection process into YOLOv5. As a result, the 

network has not to consider any of the datasets to be used as input, it will automatically "learning" 

the best anchor boxes for that dataset and use them during training. (Solawetz, 2020) 
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5 IMPLEMENTING YOLOV5 ALGORITHM 

5.1 Global Wheat Head detection dataset 

Wheat is the most cultivated cereal crop in the world, along with rice and maize. With high nutritional 

value, it is an ingredient used to process a wide variety of foods such as bread, cereals, etc. Its 

popularity as a food and crop makes wheat widely studied. During the cultivation process, farmers 

look at the wheat heads to evaluate health and maturity when making management decisions in 

their fields. But to control all the wheat on the entire enormous field manually is impossible. The 

development of a system that automatically detects wheat heads can give assistance to farmers to 

detect anomalies in their crops in time. 

 

However, accurate wheat head detection in outdoor field images can be visually challenging. There 

is usually an overlap of dense wheat plants, and the wind can blur the photographs. Both make it 

difficult to identify single heads. Additionally, appearances vary due to maturity, color, genotype, 

and head orientation. Finally, because wheat is grown worldwide, different varieties, planting 

densities, patterns, and field conditions must be considered. April 2020, with contributions from 9 

research institutes from 7 countries: The University of Tokyo, Institute national de recherche pour 

l’agriculture, l’alimentation et l’environnement, Arvalis, ETHZ, University of Saskatchewan, 

University of Queensland, Nanjing Agricultural University, and Rothamsted Research. The Global 

Wheat Head Detection (GWHD) was created contains 3,432 high-resolution RGB images and more 

than 140,000 labelled wheat heads collected with a wide range of genotypes. (E. David, 2020) 
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Figure 30. An example of wheat head was labelled with bounding boxes. 

5.2 Environment 

Google Colab (Google Collaboratory) is a free Integrated Development Environment (IDE) from 

Google to support research and learning about Artificial Intelligent (AI). Collaboratory provides a 

code environment as Jupyter Notebook, and it is free to use Graphic Process Unit (GPU) and 

Tensor Process Unit (TPU). Google Colab has pre-installed libraries that are very popular in Deep 

Learning research such as PyTorch, TensorFlow, Keras, and OpenCV. 

 

Due to machine learning/deep learning algorithms require the system to have high speed and 

processing power (usually based on GPU), normal computers are not equipped with GPU. 

Therefore, Colab supplies GPU (Tesla V100) and TPU (TPUv2) on cloud, one of the highest 

performing GPUs at the moment, to give assistance to AI researchers. 
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Colab provides 25GB RAM and 150GB main disk. Checking GPU usage status: 

 

Figure 31. Colab provides Tesla V100-SXM2 GPU on cloud for training deep learning models. 

As with previous versions, the YOLOv5 architecture was built theoretically based and released via 

a repository on GitHub. As mentioned, Ultralystic builds YOLOv5 on the PyTorch framework, one 

of the most popular frameworks in the AI community. However, this is only a preliminary 

architecture, researchers can configure the architecture to give the best results depending on their 

problems such as adding layers, removing blocks, integrating additional image process methods, 

changing the optimization methods or activation functions, etc. 

 

Figure 32. Cloning and installing the YOLOv5 repository. 
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5.3 Preparing the dataset for training 

The Global Wheat Head Detection (GWHD) dataset has been published for use without license. 

Since Colab is a Google service, it allows linking to a personal Google Drive account to get data 

from Drive for use in training the model as well as save the results later.  

 

After the GWHD dataset is downloaded to the personal computer (PC), it is uploaded to Google 

Drive and linked to Colab: 

 

Figure 33. Mounting to the Google Drive. 

Unzip the dataset in Drive to the YOLOv5 folder. This makes it easier to access data for use as 

input, as well as to clean up all data (currently in YOLOv5 folder) after it is completed, to avoid 

wasting usage being provided. 

 

Figure 34. Unzip the dataset to YOLOv5 folder. 

The GWHD dataset contains: 

o train.zip – 3422 outdoor wheat images use for training. 

o test.zip – 10 outdoor wheat images use for test. 

o train.csv – training data. 

 

Read the training data in train.cvs file. Each line represents the data of a bounding box. Due 

to the high density of wheat, each image may contain multiple wheat heads to be detected, so there 

may be multiple bounding boxes in an image. 
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Each column of data respectively corresponds to the unique image id, width, height of image, data 

of bounding box [𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡] (Figure 35). 

 

Figure 35. Reading training data. 

The above data file is a common format for bounding boxes in the object detection dataset. The 

bounding boxes data in YOLO is formatted as [𝑐𝑙𝑎𝑠𝑠, 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡]. The 

difference can be seen in Figure 36. 

 

 

 

Figure 36. The bounding box in YOLO format. 

  

(𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏) 

(𝒙𝒎𝒂𝒙, 𝒚𝒎𝒂𝒙) 

(𝒙𝒄𝒆𝒏𝒕𝒆𝒓, 𝒚𝒄𝒆𝒏𝒕𝒆𝒓) 

(𝟏, 𝟏) 

(𝟎, 𝟎) +𝒙 

+𝒚 
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With minimum point (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), the center point (𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟) can be calculated as follow: 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑥𝑚𝑖𝑛 +
𝑤𝑖𝑑𝑡ℎ

2
 

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 +
ℎ𝑒𝑖𝑔ℎ𝑡

2
 

Because this is the problem of the single object detection that is the wheat head, the authors of the 

GWHD dataset do not label the bounding boxes. However, YOLO needs a label parameter, so the  

bounding boxes need to be labelled corresponding to the classes. Class numbers are zero-indexed 

(start from 0), therefore label '0' represents the wheat head. All bounding boxes are responsible for 

detecting the wheat, so they are all labelled '0'.  

 

As shown in Figure 36, box coordinates must be normalized in the range 0-1. So, 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 and 

𝑤𝑖𝑑𝑡ℎ are divided by image width, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 and ℎ𝑒𝑖𝑔ℎ𝑡 are divided by image height. Redundant 

parameters can be removed now. 

 

Now, each column of data respectively corresponds to the unique image id, class,  𝑥𝑐𝑒𝑛𝑡𝑒𝑟, 

𝑦𝑐𝑒𝑛𝑡𝑒𝑟, width and height of bounding box as in Figure 37. 
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Figure 37. Converting to YOLO format. 

5.3.1 Creating the label text files 

As mentioned previously, each line in data frame df represented for a bounding box. That mean, 

an image can contain multiple boxes.  

 

Figure 38. Extract the image id without duplicates. 

YOLOv5 in PyTorch reads the bounding box data in file text (.txt), not file .csv. So, the data 

of all bounding boxes in the same image should be clustered and written in the same file text 

corresponding to that image. All label text files after writing will be in the GWHD/label directory. 
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Figure 39. Write label text files contain all bounding box data corresponding to each image id. 

The GWHD dataset contain 3422 images, but only images containing objects (i.e., bounding 

boxes) are written in csv files. Meanwhile, images that do not contain or contain near wheat-like 

objects (such as weeds) can be helpful in training the model, preventing the model from being 

fooled by similar objects.  

 

Images containing objects are called positive_images, and images that do not contain 

objects are called negative_images. In order for the YOLOv5 model to access negative 

images and use them during training, there also should be label text files corresponding to those 

negative images. Since these images do not contain any objects, they do not contain any bounding 

boxes. Therefore, their label text files will be empty. 
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Figure 40. Get the list of negative image id. 

 

Figure 41. Create empty label text files for negative images. 

 

Figure 42. Final check number of label files. 3422 label text files corresponding to 3422 images. 

 

5.3.2 Splitting data into training set and validation set 

In order to impartially evaluate the performance of neural network model, a dataset containing the 

same type of object as the trained object is essential. However, collecting another dataset with a 

bunch of images and labels is time-consuming, sometimes impossible for an AI researcher. In this 

case, for example, not all researchers can go to the outdoor wheat field and collect a wheat dataset 
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themselves to evaluate the model after training is complete. So, they usually use the images directly 

from the given dataset. 

 

By dividing it proportionally, the common rate is 80-20, with 80% of the dataset used for training 

and 20% used for evaluation. Thus, model performance will be assessed on 20% of data that was 

not used during training, or in other words, these data is data which the model has never seen 

before. This ensures the review will be equitable. The data used in the training process is called 

the training set and the data used in the model evaluation is called the validation set. 

 

Figure 43. Create training set and validation set folders for images and labels. 

 

Figure 44. Split dataset id into 80% for training and 20% validation set. 

Label text files have the same name as the images. That can ensure the labels are moved along 

with corresponding images to the training set and validation set folders. 
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Figure 45. Move images and corresponding labels to training and validation folders. 

 

Figure 46. Check name and number of files in these folders. 

5.3.3 Creating the data.yaml file 

The YOLOv5 model on PyTorch accesses the images and uses them as input through a yaml file 

containing summary information about the data set. The data.yaml file used in the YOLO 

model has the following structure: 

1. train: ‘training set directory path’ 

2. val: ‘validation set directory path’ 

3.  

4. nc: ‘number of classes’ 

5. names: ‘name of objects’ 
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Because the given dataset does not provide a data.yaml file, it is necessary to initialize it. 

Normally, people write this data.yaml file in Notepad or Notepad ++, then save it in yaml format 

and upload to Drive. But it will be written directly in Colab here. 

 

Figure 47. Create empty data.yaml file. 

To be able to overwrite the empty yaml file, there is a function needed to import from 

iPython.core.magic. 

 

Figure 48. Overwrite the empty yaml file based on the structure. 

 

Figure 49. Check the content of data.yaml file. 
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5.4 Training phase 

5.4.1 Preparing the architecture 

Glenn Jocher also provides some sample YOLOv5 models built on previous theory. The YOLOv5 

model on PyTorch will read these architectures from the yaml file and build it in the train.py 

file. This also makes it easier to configure the architecture depending on the different object 

detection problems. 

 

Figure 50. Sample YOLOv5 architecture provided by Ultralystic. 
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The purpose of this thesis is to evaluate the performance of the YOLOv5 algorithm, so the original 

architecture will be used and will temporarily not configure or add other algorithms and optimization 

methods to the model. 

 

Because this sample YOLOv5 architecture is used to train the COCO dataset, the number of 

classes defined is 80. For the wheat dataset, the number of classes needs to be adjusted. Since 

the anchor box auto-learning has been integrated, the anchor box parameters can be ignored as 

default. 

 

Figure 51. Overwrite the number of classes and save as custom model. 

5.4.2 Training model 

With the command line shown in Figure 52, the model will be trained by compile file train.py 

along with its configurable arguments. 

 

Figure 52. Implement the training process. 

These following arguments represent for: 

o img: define input image size. The original image size is 1024 × 1024, compress to 

smaller size make the training process faster. After many experiments, many computer 
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vision researchers agreed that the size 416 × 416 is the ideal size to use as input without 

losing much detail. 

 

o batch: determine the batch size. The forwarding of thousand images into the neural 

network at the same time makes the number of weights that the model learns in one time 

(one epoch) to increase a lot. Thus, the dataset is usually divided into multiple batches of 

𝑛 images and training batch by batch. The results of each batch are then saved to RAM 

and aggregated after the training for all batches is completed. Because the weights learned 

from the batches are stored in RAM, so the larger the number of batches, the more memory 

consumption will be consumed. 

 

The training set contains 2738 images, with 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 =  32, the number of batches 

will be 2738 ÷ 32 = 86 𝑏𝑎𝑡𝑐ℎ𝑒𝑠. 

 

o epochs: define the number of training epochs. An epoch is responsible for learning all 

input images, in other words, training all input. Since the dataset is split into multiple 

batches, one epoch will be responsible for training all the batches. The number of epochs 

represents the number of times the model trains all the inputs and updates the weights to 

get closer to the ground truth labels. Often chosen based on experience and intuition. The 

number of epochs more than 3000 is normal. 

 

o data: the path to data.yaml file containing the summary of the dataset. The model 

evaluation process is executed immediately after each epoch, so the model will also 

access the validation directory via the path in data.yaml file and use its contents for 

evaluation at that moment. 

 

o cfg: specify our model configuration path. Based on the architecture defined in the model 

yaml file previously, this command line allows the train.py file to compile and build this 

architecture for training input images. 

 

o weights: specify a path to weights. A pretrained weight can be used for saving training 

time. If it is left blank, the model will automatically initialize random weights for training. 
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o name: name of result folder. The model will create a directory containing all the results 

performed during training. 

 

o cache: cache images for training faster. 

 

 

Figure 53. Training progress in 100 epochs. 

For 1 epoch, the average time to perform the training process on 86 batches were 10 seconds and 

for evaluation on 22 batches were 9 seconds. The total execution time was 35 minutes and 41 

seconds for 100 epochs on the dataset containing 3422 images and the mAP of last epoch is 

93.5%. 

 

The weighting result obtained in the last epoch is not always the weight for the highest accuracy. 

Thus, an add-in called TensorBoard was created that clearly visualized the entire training process. 
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Figure 54. Use TensorBoard to load the entire training process saved in runs folder. 

 

Figure 55. The evaluation metrics of the entire 100 epochs were visualized in graphs. 

As shown in Figure 53 and Figure 55, with a dataset containing 3422 images, the model takes 

about 20 seconds to complete one epoch, and only with 100 epochs, the accuracy of model is 

about 93%. This proves that, with the mere original architecture of YOLOv5, the model is not only 

fast, but the accuracy is also high without any optimization methods integrated into it. 

 

Besides, the model saves 2 weighting results as pt file. As shown in Figure 56, last.pt file is 

the weight at the last epoch and best.pt file is the weight at the last epoch for the highest 

accuracy. The size of both files is only 14MB, making it very light to integrate into AI systems (in 

web or mobile application) as a pretrained weight while maintaining 93.5% accuracy. 
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Figure 56. Two result weight files were exported for use later. 

5.5 Inference with trained weight 

Trained weights can be used to identify the wheat head on any image. If the presence of a wheat 

head is detected, a bounding box is drawn to encase the object and display the probability that the 

object is the head of wheat. 

 

The GWHD dataset provides 10 outdoor wheat images which non-duplicated with 3422 images 

that were used in the training. These images are also not labelled the ground truth bounding boxes. 

They can be observed as images of a farmer taken in their field and tested with weights trained 

previously in the wheat head detection model. 

 

The method of performing object detection with trained weights is similar to training the model. 

Using the command shown in Figure 57, detect.py file will be compiled, and it rebuilds the 

architecture used in the training. Trained weights will be used to predict objects and limit boxes for 

them with 93.5% accuracy. 

 

Figure 57. Detect wheat head with trained weight. 
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After the detection is complete, the predicted bounding boxes that cover the objects (wheat heads) 

will be drawn into the image. They will be saved in the same folder containing results from the 

training phase. 

 

Figure 58. Load predicted images as array format for visualization. 

 

Figure 59. Visualize the predicted images by trained weight. 
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Figure 60. Four of ten predicted images were detected by using best trained weight. 

 

As shown in Figure 60, the model gives out extremely impressive predictive results on even the 

images it has not seen before. Although the density of wheat heads in each image is very high, the 

model almost detects that all wheat heads appear in the image. However, because the model's 

accuracy was only 93.5%, some wheat heads were still missing in detection. As can be seen in 

Figure 60, although the wheat heads are correctly predicted, the probability for them is not high. 

 

As mentioned, the model predicts an object based on the probability for that object, if the probability 

is less than a given threshold (here is 0.4) then the model predicts it is not a wheat head. With a 

low prediction probability near the threshold, some wheat heads may have a probability lower than 

the threshold and be predicted not a wheat head. Typically, in one of the 10 predicted images 
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(Figure 61), some of the wheat in the bottom left and center of the image is not predicted to be 

wheat even their presences are clear. 

 

Figure 61. One of ten predicted image which has missing detection. 
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6 CONCLUSION 

Nowadays, there is still a lot of controversy about the name and improvements of YOLOv5 in the 

computer vision community about innovations that have not really made a breakthrough. However, 

the name aside, the performance of YOLOv5 is at least not inferior to the YOLOv4 in both speed 

and accuracy. With the built-in Pytorch framework that is user-friendly and has a larger community 

than the Darknet framework, there is no doubt that YOLOv5 will receive more contributions and 

have more growth potential in the future. 

 

Actually, the field of computer vision, especially object detection, has only exploded in the last 5 

years or so. Therefore, although it has evolved over 5 generations and is one of the outstanding 

object detection algorithms, the YOLO algorithm is still flawed. Therefore, an AI system cannot be 

built from a mere algorithm, it is necessary to integrate more optimization methods and the most 

state-of-the-art ideas in the field of computer vision to help the AI system achieve the best perfor-

mance. 
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