
1

Veterinary work management application - MatVet

Matti Nurmikari

 Bachelor’s Thesis

Degree Programme in Business

information technology

 2012

1

Authors
Matti Nurmikari

Group

The title of your thesis

Veterinary work management application - MatVet

Number of
pages and
appendices
27 + 1

Supervisors
Jyri Partanen

 The veterinary sector in finnish business is among the smallest. Only a handful of

veterinarians graduate each year. All these vets need a computer application to manage

their work; clients, patients, medication, timetables, receipts, et cetera. Currently they

have to choose a client management program between old 1990’s style applications

that have (or in the worst case, haven’t) been patched over and over again for 20 years,

and a heavy duty online application, that’s mainly built for multimillion turnover

veterinary practices. There’s no publically available software for this purpose for small,

one or two vet clinics. MatVet is here to fix that deficiency.

MatVet is a web application that helps to store and manage information and

procedures that vets have to deal with every day, and keep track of the patients. The

pages are made by HTML, the database is handled by MySQL, the application logic is

controlled by PHP.

Key words
Vet, Veterinary, work management, PHP, web

Vocabulary

Element

Refers to a HTML document element, like <table>.

Open source

Allows free distribution of the application and its source code.

Owner

In MatVet, owner is the person, who owns a patient.

Patient

In MatVet patient is the animal being treated by the user and owned by owner.

Patient card

List that shows patient details, like age, weight, etc.

SQL injection

SQL injection is a technique that exploits web application security flaws. By injecting

malicious code, the attacker can perform operations on the database that hasn’t been

intended.

Security through obscurity

A way of securing an application by hiding or obscuring some details of it. Not

considered as a valid security feature on itself.

Abbreviations

AJAX Asynchronous JavaScript and XML

CSS Cascading style sheets

DOM Document object model

HTML Hypertext markup language

IDE Integrated development environment

JSON JavaScript object notation

MVC Model-View-Controller

PHP PHP hypertext preprocessor

WAMP Apache MySQL PHP for Windows

XSS Cross site scripting

Table of contents

1 Introduction .. 1

2 Methods and tools ... 3

3 Application overview ... 6

3.1 Features ... 6

3.1.1 Search (haku) ... 6

3.1.2 Time booking (ajanvaraus) .. 7

3.1.3 Print receipt / invoice (kuitti) ... 9

3.1.4 Content management (aineistonhallinta) ... 11

4 Definition and planning .. 12

4.1 Use case diagram .. 13

4.2 Use cases .. 14

4.2.1 Use case: search for a patient .. 14

4.2.2 Use case: View patient card ... 14

4.2.3 Use case: View visit details .. 14

4.2.4 Use case: Book a time for an appointment ... 15

4.2.5 Use case: Print a receipt for a customer .. 15

4.2.6 Use case: Remove medication or procedure from the application 16

4.2.7 Use case: Add medication or a procedure to application 16

4.3 Database planning .. 17

4.4 Database tables ... 19

5 MatVet Information Security ... 25

5.1 Introduction .. 25

5.2 Security through obscurity .. 25

5.3 CodeIgniter’s internal security features ... 25

5.4 Authentication .. 26

5.5 Database backup .. 26

6 File structure ... 27

6.1 Directory structure ... 27

6.2 Files of importance .. 28

7 Summary .. 30

7.1 Conclusions ... 30

7.2 Analysis .. 30

7.3 Further development ... 30

7.3.1 Next iteration, during spring 2012 ... 31

7.3.2 Third iteration, late 2012 ... 31

Bibliography ... 32

1

1 Introduction

The goal of this bachelor’s thesis was to create a tool for my sponsor for managing the

work flow of a veterinarian. There was a need for a light weight application that would

keep track of patients, appointments, procedures and medication and I was assigned to

make this happen. Secondary goal was to teach myself a bit more about CodeIgniter

PHP framework. MatVet is a web based application, the main reason for this approach

was that this was the field of programming that I was the most familiar with. This also

has other advantages, such as the application can be used anywhere, on almost any

system having a web browser, including PDA’s and mobile phones.

The sponsor is Eläinlääkäri Satu Nurmikari, a vet. Sponsor’s contact person is Satu

Nurmikari. It’s a private company or toiminimi working in the area of veterinary. It’s a

small scale smaal animal practice without a real office or business premises. The

sponsor works mostly in dog shows as a vet, and does private house calls. Most

common procedures during dog shows are curing different sorts of accident victims

e.g. bite wounds, checking limping dogs for their entry fee refund and making sure the

participants are healthy and vaccinated according to regulations. House calls are usually

for smaller procedures, such as vaccinations, eye- and ear infections and some

orthopedic consultations. Sometimes house calls might also include home euthanasias

and helping dogs suffering from dystocia. When done, more complicated operations

requiring anesthesia are done at a clinic.

In the second chapter we go through the methods, tools and techniques that were used

developing MatVet.

The third chapter lists all the main features of the application and explains their

functionality in more detail.

Fourth chapter tells about the planning of the project and includes diagrams, use case

scenarios and lists that help the reader to get a better understanding of how the

application works.

2

In fifth chapter we go through the security features of MatVet and information security

in general.

In sixth chapter I’ve listed the important files of the project, and explained what they

do.

In seventh chapter the reader will find the summary, results, conclusions and analysis

of the project, and the plans for future development of MatVet.

3

2 Methods and tools

The application is built using mostly open source development tools for budget

reasons. Following tools and methods were used to create MatVet.

WampServer is a package of programs made for web development. It allows the user

to create web applications with Apache2, PHP and MySQL database. If you would to

install all of the featured applications separately, it would be hard and time consuming,

with WampServer environment, everything’s done with a single click. Also configuring

and managing the installed programs is very easy.

Apache2 is the most popular http server since April 1996 developed by Apache

software foundation (Apache Software foundation).

PHP is a general purpose scripting language, originally designed for the web. PHP code

can be embedded directly in HTML pages (Welling & Thomson 2009, 2). From there

(or from external PHP file) the web server parses the code before sending the page to

the browser, so the user doesn’t actually see any of the code. PHP is used as the

application backend, providing connection to the database, handling the database

queries and formatting data before it’s sent back to JavaScript to be presented.

MatVet uses MySQL (pronounced my es q ell) as its DBMS. MySQL is the most used

open source database management system in the world. It is developed, distributed and

supported by Oracle Corporation. MySQL is a RDBMS. Relational database stores

data in tables, which consist of rows and columns, rather than storing every bit of

information in one place. The SQL part in MySQL is an abbreviation for structured

query language. It is a common query language used to access databases, it’s

standardized and defined by the ANSI/ISO SQL standard. (MySQL 5.1 Reference

manual.) It was chosen for the project because it is open source, easy to use, requires

almost no configuration to start up, and because I am already familiar with it.

Aptana studio 3 is an open source IDE made specifically for web developers. Its most

important extra features for this project are project management, code assist and

highlighting for PHP, CSS, HTML and JavaScript.

4

phpMyAdmin is a software tool written in PHP used in administering MySQL

databases over the web. The main uses for it is to browse and manage databases,

tables, fields, relations, execute SQL commands and import and export data.

(phpMyAdmin.)

MySQL Workbench was used to design the diagrams of the database.

HTML is a markup language that is used to create text documents that are used by web

browsers to present text and graphics as a web page. A HTML document consists of a

set of tags, or elements, like <p> for paragraph, and <h1> for header, that define the

structure of the document (Ragget 2005). In MatVet project, I will use HTML5 syntax,

although I’m not incorporating any of its new features.

Earlier in the history of web, before CSS, the appearance of a HTML document was

defined embedded in html code with tags like <bold> for bold styled text, and

<center> for centered elements, and so on. Later with invention and standardization

of CSS this method has become obsolete. With CSS included in a web page, it is

possible to separate the document structure from its presentational data. The example

styles would been denoted in CSS as element {font-weight: bold;}, and another

element {text-align: center;}.

The CSS syntax for styling an element consists of a selector (element, another

element), and one or more declarations, of which each has a property (font-weight,

text-align), and a value (bold, center) (Powell 2010, 430-433). A CSS declaration ends

with a semicolon.

CSS styles can be included in a web page with 3 different methods: inline, external and

embedded. Inline style is embedded in HTML tags, for example <p color=”red”>, and

it’s the least favorable approach, because the styles aren’t really separated from the

structural markup, which is the whole point of CSS in the first place. Second way of

adding CSS to web pages is to put it in an external file. This requires a <link> tag in

the head section of the HTML document, and it contains a reference to the CSS file,

which in turn, consists only of CSS notation. The last method, embedded, the CSS

styles are placed within a <style> tag in head section of the document (Powell 2010,

434).

5

The front end magic of the application is done by JavaScript. JavaScript is the most

used programming language in web pages (Duckett 2010, 481). It gives developers the

ability to manipulate, move and read elements or text in documents, it performs

mathematical calculations like every other programming language, and it can react to

events, like a mouse click, on a web page.

Not really a programming language or syntax, like all the above, AJAX is a name given

for a group of existing technologies are made work together to take the user experience

of a web page visitor to a whole new level. It allows the sending and receiving of data

from server, without (re-)loading the page.

CodeIgniter is an application development framework, a toolkit for developers who

use PHP to build sites. It provides libraries and helpers for commonly used tasks,

making the coding process faster. CodeIgniter is based on MVC architecture. MVC is

an approach where application presentation is separated from its logic (CodeIgniter

User Guide Version 2.1.0.) CodeIgniter has quite loose approach on MVC, since

Models aren’t really required.

The main reason I included CodeIgniter in the project was to make all the database

queries more readable and more easier editable, because there’s really a lot of them. I

also wanted to deepen my knowledge of the framework in real web project.

jQuery is by definition a light weight, cross browser JavaScript library, which will

simplify the client side scripting process in HTML pages (jQuery Project).

6

3 Application overview

3.1 Features

MatVet is a web site, but it’s not your everyday page. First of all, there’s only a one

HTML page, acting as a canvas, against what all the content is displayed at. AJAX is

widely used, almost every feature uses AJAX in some way.

At this point MatVet has four distinctive main features, each having one to many sub-

functions, plus user management and authentication. The main features are search,

time booking, the ability to print receipts and invoices, and content management. All

of the features are made according to usability first–approach, meaning that everyone

should be able to use the application without, or with as few instructions as possible.

3.1.1 Search (haku)

This view lets the user search database for patients' patient cards or visit details and lets

him change the information in them. The user can also add or remove medication to

patient. There are 9 different search parameters and their search types listed below:

 - owner – text and select

 - patient – text and select

 - breed – text

 - patient min age – text

 - patient max age – text

 - species – select

Whichever search method the user uses, all the other search parameters will be sent

with the query as well.

Using the patient select-search also brings up the patients patient card, which lists all

the information about the patient. These can be edited here. Selecting the visit date

from “Käynnit” list brings up the details of the visit for that date. Also these can be

edited and saved.

7

Figure 1. Screen capture of the search feature with patient card on lower left, and visit

details on right.

3.1.2 Time booking (ajanvaraus)

This is the heart and soul of MatVet. Here the user can book a time for an

appointment, add a patient, and remove an appointment.

Booking a time for an appointment is done by selecting a date from the calendar,

(shows current month and 4 next month in future), then selecting a free time from the

list that shows the appointments for that day, selecting an operation, or use custom

operation name and end time input fields. Then the user can change the operation

durations if needed, from “muuta”-link. The user cannot book an appointment to a

time where there is already a booked time. From here, the user can also add

procedures, patients and owners to the system. These are available from “lisää uusi”

buttons. From add patient and owner view, the user can enter details of the patient.

Required fields are owner name, address, and phone number for owner, and name and

species for the patient. This information is the base for a patient card, listed in search

view, the user can update the information from there after saving the patient/owner

8

info here. The add appointment view also has a search text input field, to limit the

listed patients for those that match the search string.

Figure 2. Screen capture of the time booking feature with 2 booked times for selected

day, and add new appointment view.

Figure 3. Screen capture of the add procedure -view of the time booking feature.

Required fields are marked with an asterisk, and the procedure cannot be added if

those fields aren’t filled.

9

Figure 4. Screen capture of add patient and owner. The owner info will be pre-entered

if an existing owner is selected from dropdown list.

3.1.3 Print receipt / invoice (kuitti)

Here the user can browse all the visits saved in database. Listed are patient number,

name, owner, and date. When a visit is selected by mouse click, the user sees a receipt

on the right, which can be printed to the customer.

10

Figure 5. Screen capture of receipt / invoice.

Figure 6. A ready to be printed invoice looks like this. The grey borders are from

browsers print preview.

11

3.1.4 Content management (aineistonhallinta)

The user can manage, that is add and remove medication and procedures that are

shown in menus and lists everywhere in the application. When deleting content, a

prompt is shown to confirm the deletion, to prevent accidental removal of content.

Figure 7. Screen capture of the content management feature.

12

4 Definition and planning

The application requirements were quite loosely defined. The sponsor wanted a light

program, which would be easy to use, and that would require minimum help from

outside to set up and to use. All the communication between the developer and the

sponsor was done orally, and there is no documentation of any kind of these

conversations aside from this document.

The original required features were patient card view with search, time booking and the

ability to print receipts. Later we agreed to add content management and some extra

search options for the search feature. User login system was included for information

security reasons, even though it wasn’t explicitly required by the sponsor.

Because MatVet is so light code wise, the only real planning I did was the database

structure, the application and its logic was planned on the fly. This was the last time I

will code anything without planning it thoroughly in advance. First of all, I had to

remake the whole application not once, but twice, because I didn’t have any plans to

follow, and some features just couldn’t be created with the approach I chose. Secondly,

it’s unbelievably hard to try to make different main features to work together, if it

hasn’t been planned ahead.

13

4.1 Use case diagram

Figure 8. A use case diagram.

14

4.2 Use cases

4.2.1 Use case: search for a patient

Actor: User

preconditions: The user has to be logged in.

Goal: The user is shown the list of patients matching the search

criteria.

Exceptions If there’s no matches, no results text will be shown.

Includes This use case is a prerequisite for View patient card and view

visit details use cases.

Actor actions:

- The actor uses the input fields to do a search. One to eight of the search criteria

must be used.

4.2.2 Use case: View patient card

Actor: User

preconditions: The user has to be logged in, and a search for patients has to

be done.

Goal: The user is shown the right patient card.

Actor actions:

- The actor selects a patient by name from the “potilas”-list.

4.2.3 Use case: View visit details

Actor: User

preconditions: The user has to be logged in, and a search for patients has to

be done.

Goal: The user is shown the details of a visit.

Actor actions:

- The actor selects a visit entry by date from “käynnit”-list.

15

4.2.4 Use case: Book a time for an appointment

Actor: User

preconditions: The user has to be logged in, and on time booking view.

Selected time cannot be reserved already.

Goal: An appointment is booked for a wanted time.

Exceptions If the user tries to select a time that intersects earlier booked

time, the save button stays disabled and time cannot be

booked.

Actor actions:

- The actor selects a day from calendar.

- The actor selects an hour from the list that is populated.

- The actor selects a procedure from the predefined list or enters a new

procedure from “lisää uusi”-button.

- The actor selects a time

- The actor selects a patient from the list or adds a patient to the system from

“lisää uusi”-button.

- The actor clicks save, and the appointment is booked.

4.2.5 Use case: Print a receipt for a customer

Actor: User

preconditions: The user has to be logged in, and on receipt view.

Goal: A receipt is printed for a customer.

Actor actions:

- The actor selects the wanted visit from the list.

- The actor enters missing details to the receipt

- The actor prints the receipt

16

4.2.6 Use case: Remove medication or procedure from the application

Actor: User

preconditions: The user has to be logged in, and on content management

view.

Goal: Medication is removed from the lists in MatVet. The

medication will not be removed from databases.

Actor actions:

- The actor selects the wanted medication from the list and clicks x

- The medication will be marked as inactive, and it will not show in the

application any more.

4.2.7 Use case: Add medication or a procedure to application

Actor: User

preconditions: The user has to be logged in, and on content management

view.

Goal: Medication or procedure is added to the system.

Exceptions If the user tries to add an item that is already in the system,

an error message will be shown.

Actor actions:

- The actor enters the medication or procedure information to the text boxes.

- The actor clicks add-button

- If all the information is correct, the medication or procedure is added to

database and can be used in the application.

17

4.3 Database planning

The MatVet database was originally planned and designed using pen and paper, and

the final form was constructed with MySQL Workbench and phpMyAdmin. The

application uses one database called matvet, which has 8 tables. I’ve listed the tables,

their descriptions and an EER-diagram of the database below:

Table name Table description

userx Database users information

owner Owner information

patient Patient information

medication List of all the medication that is in use

givenmedication List of medication given to patients

procedures List of all prestored procedures

performedprocedures List of all procedures performed on

patients

visits List of all visits and their details

18

Figure 9. EER diagram of the MatVet database.

19

4.4 Database tables

Owner

This table holds information about owners. Indexed fields are ‘id’ for Primary Key, and

name and address for unique constraint, so same owner can’t be added more than

once.

Field Type Extra Description

id int(11) PK, AI
 Identifying field for owner row. For MatVet

internal use

name varchar(50) Owner name

address varchar(100) Owner home address

phone varchar(30) Owner phone number

email varchar(75) Owner E-mail address

info text Additional info about the owner

List 1. Structure of owner table

20

Patient

This could be considered as the main table in the system, since most of the tables use

this one as a reference. The table holds information about patients. Primary key is

patientNumber and foreign key is owner, which references to owner table id field.

Field Type Extra Description

patientNumber int(11) PK, AI Identifying field

identification varchar(25) kysy

owner int(11) FK (owner.id) Owner id

name varchar(35) Patient name

officialName varchar(100) Patient official name

sex enum('m','f') Patient gender

species varchar(50) Patient species

breed varchar(80) Breed of the patient

DOB int(11)
Patient date of birth in Unix time

stamp

colour varchar(50) Patient colour

registrationNumber varchar(20) Patient registration number

weight varchar(7) Patient Weight in kilos

insurance tinyint(1)
1 if patient has insurance

0 if patient doesn’t have insurance

active tinyint(1)
1 deceased

0 alive

info text Additional info about the patient

List 2. Structure of patient table

21

Visits

This table stores the visit details. The Primary key is field ‘id’, foreign key is patient

field, and it references to patient table, patientNumber field. Date field has a unique

constraint.

Field Type Extra Description

id int(11) PK, AI Identifying field

patient int(11) FK (patient.patientNumber) Patient number

date int(11)
Unix timestamp for start

date of a visit

diagnosis text
What is wrong with the

patient.

anamnesis text
The reason the patient is

brought to the vet.

status text
The current clinical

status of the patient.

therapy text

Given medication,

procedures and plans for

the treatment.

ownersInstructions text
Instructions given to

owner in appointment

labTests text Done laboratory tests

additionalnfo text
Additional info about the

visit for the user

List 3. Structure of visits table.

22

Userx

Table contains the user authentication information.

Field Type Extra Description

id int(11) PK, AI Identifying field, user number

name varchar(20) Username

pwd varchar(32) User password

List 4. Structure of userx table.

Medication

Medication is the main database for all the medication the user has prescribed. The

only index is the name as Primary Key.

Field Type Extra

name varchar(75) PK Medication name

unit enum('tablet','package','ml')
The unit that is used in

measuring this medication

pricePerUnit varchar(10) Price for medication

active tinyint(1)

1 Active, in use

0 Not active, not used in

application

List 5. Structure of medication table.

23

Givenmedication

Givenmedication table is a junction table. It is a list of all medication that has been

prescribed to patients. Indexes are date + name as a Primary Key (composite key), date

as Foreign key referencing a visits date, name also as Foreign Key referencing

medication name.

Field Type Extra Description

patient int(11) FK (patient.patientNumber)
Patient number, target of the

medication given

date int(11)

 PK, FK (visits.date)

Date & name form a

composite Primary key

Unix timestamp when this

medication was given or prescribed

name varchar(50) PK, FK (medication.name) Medication name

amount int(11) Amount of the medicine prescribed.

List 6. Structure of givenmedication table.

Procedures

List of all procedures the user will do. The only index is name as a Primary Key.

Field Type Extra Description

code varchar(20)
Code for the procedure. Shown in lists. Not in

use yet.

name varchar(75) PK Procedure name

price decimal(7,2) Price for the procedure in euros

vat enum('23','16','8','0') Value added tax for the operation

duration int(11) Duration of the operation

type enum('leikkaus','none')
Type of the operation. Is used to differentiate

operations in time booking view.

active tinyint(1)
1 = in use

0 = not in use

List 7. Structure of procedures table

24

Performedprocedures

This table is like givenmedication, but for procedures. All done procedures are listed

here. Indexes are name as Primary Key, name, owner, patient and visitId as foreign

keys.

Field Type Extra

name varchar(75) PK, FK (procedures.name) Procedure name

code varchar(20)
Procedure code (not in

use yet)

owner int(11) FK (owner.id) Owner id

patient int(11) FK (patient.patientNumber) Patient number

visitId int(11) FK (visits.id) Visit id

startDate int(11)
Procedure start date as a

unix timestamp

duration int(11) Procedure duration

List 8. Structure of performedprocedures table.

25

5 MatVet Information Security

5.1 Introduction

Information security is a vital part of every software application. The value of security

is multiplied when it’s about a web service, since the user base isn’t limited to a certain

computers’ users, as is the case with regular desktop software. Information security

isn’t just a feature among others, it has to be part of the development process from

beginning to start (Thomson & Wellington 2009, 362).

5.2 Security through obscurity

Although considered as an invalid technique on its own, security through obscurity has

its uses when applied with other methods. The application itself is hidden from the

most popular search engines by having a file robots.txt in the root folder with content

“User-agent: * Disallow: /”. The user-agent part states that it concerns all robots, and

disallow / means that no page on the site should be indexed (The Web Robots Pages).

Robots are not forced to obey the rule, but some of the most used search engines

(Google, Yahoo) still will.

5.3 CodeIgniter’s internal security features

CodeIgniter comes with a few automatic features that help the developer to boost the

applications security (CodeIgniter User Guide Version 2.1.0).

– URI security. CodeIgniter filters the URI’s passed to the application and accepts

only certain characters. By default, these characters are: any alphanumeric, tilde,

period, colon, underscore and dash. (~.:_-).

– Register_globals. During system initialization all global variables are unset, except

those found in $_GET, $_POST, $_COOKIE arrays.

– Error reporting. Stops PHP’s errors from rendering as output to prevent possible

sensitive information from showing.

– Magic_quotes_runtime. Sets magic_quotes_runtime to false.

– Database queries are automatically escaped.

26

There are also security features that are not automatic, but I have set them on for the

project in CodeIgniter configuration. The first one is XSS filtering, which looks for the

most used techniques to execute cross site scripting, and if malicious code is found, it’s

rendered safe by replacing the illegal characters with character entities. The second one

is cookie encryption, which encrypts the session cookies, so they cannot be tampered

with. The last one is input sanitation through $_GET and $_POST arrays via

CodeIgniter’s input method. This checks for the input variables, and filters all non-

alphanumeric characters. (CodeIgniter User Guide Version 2.1.0).

5.4 Authentication

The first line of defense is authentication. The user needs to be authorized to be able

to use it. If correct user name and password are not entered, the user is shortly noted

for failure in logging in. Currently MatVet only supports one concurrent user, meaning

that one user at the time can use the application. Passwords are stored in the database

as md5 hashes, so they are not visible to anyone as plain text. User sessions are

managed by CodeIgniter’s Session class. Sessions are made to last for 2 hours before

they time out, and the session is terminated. After this, the user has to log in again to

be able to use the application.

5.5 Database backup

Not really a security issue, but important one nonetheless. So far there isn’t any

automatic backing up of the MatVet database. The user has to manually take care for it.

27

6 File structure

6.1 Directory structure

The files in CodeIgniter projects are organized in folders. The directory structure of

MatVet is following:

/matvet3 the main directory, contains all the project files and directories

 /application Application directory, contains all application files

 /config configuration files

 /controller Controller files

 /models Model files

 /views View files

 /css CSS style files

 /js JavaScript files

 /system CodeIgniter system directory, contains core files for CI to work

 /user_guide User guide files

List 9. MatVet directory structure.

28

6.2 Files of importance

The application files in a CodeIgniter project are of three different types, models,

views, or controllers. Views contain the actual HTML code and possibly some PHP to

help iterate through the data provided by a model, Models handle the access to data

sources and controllers act as an intermediary between the models, the views and the

user. Model and controller files contain one model or controller class. MatVet project

has two models, five controllers and a number of views.

Models

User The user authentication is handled by User model

Dbqueries All the rest of the database activity is provided by this model

List 10. MatVet model files.

Controllers

Main All information that’s needed from the

database goes through this controller.

Login Handles the login process.

Navigation Every view is loaded via AJAX, this

handles the top level navigation.

Ajax_navigation All the minor views are loaded by this.

Error Handles error messaging.

List 11. MatVet Controller files.

29

Views

content The basic HTML content structure of

MatVet.

navi Top level navigation.

template The HTML document template including

header and footer.

addpatient Add owner & patient view.

addprocedure Add an appointment view.

contentmanagement Content management main view

(aineistonhallinta).

login The login view.

patientCard Patient card view found in search.

receipt The receipt (kuitti) main view.

receiptDetails The receipt details view. This is what the

printed receipt contains.

schedule A schedule view for a certain day.

search Search (haku) main view.

timebooking Time booking (ajanvaraus) main view.

visits Visit details view in search (haku).

error The error and notice message view

List 12. MatVet View files.

30

7 Summary

7.1 Conclusions

The end product hasn’t yet been delivered to the sponsor, so it’s hard to say what the

exact effects of using an improved work management tool are. The first reaction of the

client to the ready application was positive. My projection is that if the current work

management tool is pen and paper, the most important change is in time saved in

micromanaging time booking and patients’ details and if the tool now used is a

corporate level application, the money saved in software licenses is the most important

factor.

The application is not a hundred percent ready product, but due to the time limitation,

I have to release it with some features still missing from what was planned. There

might be, and there probably is, some minor bugs as well, for the same reason. MatVet

has been accepted by my sponsor, and it will be maintained and updated to a proper

tool for any veterinarian, once the developer team has more resources available.

On personal level the whole process has been very rewarding. It has been a pleasure to

note how much more there was, and still is, to learn about the methods of my choice.

As previously stated in chapter four, I have had to remake the application from the

beginning two times, and if I had to start over once again, it would again look totally

different from this version, just because for the things I’ve learned on my way to this

point.

7.2 Analysis

The chosen methods and tools were noted to be sufficient in projects like this. In the

future I predict a rise in web based applications in general, because of the portable

nature of the technology.

7.3 Further development

After the first iteration, due to a tight schedule the application has only the minimum

features required to make it usable. In future, more features will be applied to MatVet.

31

7.3.1 Next iteration, during spring 2012

Moving fixed variables like calendar dates range (4 months to future now), schedule

hours range (a static 8-19 at the moment) and possibly error messages to an external

file, which can then be included in the application, and can be easily edited. I will

possibly replace my own scheduling feature and start using Google calendar for better

usability and more flexible features. Also adding an edit feature to MatVet content

management, giving an ability to add procedures or medication by hand in print receipt

view, and making it possible to remove patients from the system to extend the user

control over the content even more better.

7.3.2 Third iteration, late 2012

Adding multiuser support and user management view, with the possibility to create,

remove and edit user accounts and their account details. Will add real time updates in

the system: Views refresh automatically every couple of minutes and the user can see

changes to content made by other users. Automatic database backup will be added.

Also planning on extending the browser support.

32

Bibliography

CodeIgniter User Guide. Welcome to CodeIgniter – User guide version 2.1.0 URL:

http://codeigniter.com/user_guide/ . Accessed 12.1.2012.

Duckett, J., Beginning HTML, XHTML, CSS, and Javascript. Wiley Publishing, Inc.

Holdener, A., T., III 2008. Ajax, The Definitive Guide. O’Reilly Media, Inc.

jQuery Project, the. jQuery: The write less – do more, Javascript library. URL:

jquery.com . Accessed 12.1.2012.

MySQL Reference Manual. What is MySQL. URL:

http://dev.mysql.com/doc/refman/5.1/en/what-is-mysql.html . Accessed 12.1.2012.

Raggett, D. 2005. Getting started with HTML. URL:

http://www.w3.org/MarkUp/Guide/ . Accessed 10.1.2012.

phpMyAdmin. About. URL: http://www.phpmyadmin.net/home_page/index.php .

Accessed 18.1.2012.

Powell, T. A. 2010. HTML & CSS: The Complete Reference. 5th Edition. The

McGraw-Hill Companies.

The Web Robots Pages. About /robots.txt. URL:

http://www.robotstxt.org/robotstxt.html . Accessed 25.1.2012.

Welling, L., Thomson, L. 2009. PHP and MySQL Web Development. 4th Edition.

Pearson Educational, Inc.

http://codeigniter.com/user_guide/
http://dev.mysql.com/doc/refman/5.1/en/what-is-mysql.html
http://www.w3.org/MarkUp/Guide/
http://www.phpmyadmin.net/home_page/index.php
http://www.robotstxt.org/robotstxt.html%20.%20Accessed%2025.1.2012

33

