
 

 

Giang Pham 

Develop maintainable animated  
Android applications 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Information Technology 

Bachelor’s Thesis 

24 April 2021 



 Abstract 

 

Author 
Title 
 
Number of Pages 
Date 

Giang Pham 
Develop maintainable animated Android applications 
 
59 pages 
24 April 2021 

Degree Bachelor of Engineering 

Degree Programme Information Technology 

Professional Major Mobile Solutions 

Instructors 
 

Kari Salo, Principal Lecturer 
 

Animations are indispensable in Android applications due to their many benefits. They not 
only bring a quality look and feel to the software but also deliver useful messages to end-
users. Even though the animations are visually pleasing to end users, the code that creates 
them sometimes is not pleasant to software engineers. This thesis aims to discuss how to 
develop highly animated Android applications and make the source code maintainable at 
the same time. 

To make the discussion objective, an animation-centric Android application is taken as a 
reference. In this study, the most complicated animations of the software are analyzed and 
mimicked programmatically by using the Android SDK, the Kotlin language, and the theory 
of clean code. Essentially, software conventions are followed to enhance the program’s 
comprehensiveness.  

While those animations are successfully recreated as a result of this study, the project also 
leaves reusable animation components and a logically magnificent codebase.  

When the project grows, new animation components can easily be built on top of existing 
components easily. This is achievable if the developer focuses on the code structure before 
writing the actual implementation. 

Keywords Android, mobile application, animation, transition, clean code, 
maintainable code 



 

 

 

Contents 

List of Abbreviations 

1 INTRODUCTION ......................................................................................... 1 

2 THEORETICAL BACKGROUND ................................................................ 3 

2.1 Animations in mobile applications ............................................................................... 3 

2.2 Animation components ................................................................................................. 4 

2.3 Android UI components ................................................................................................ 8 

2.4 Android animation APIs .............................................................................................. 14 

2.5 Maintainable code ........................................................................................................ 21 

3 IMPLEMENTATION .................................................................................. 27 

3.1 Implementation approach ........................................................................................... 27 

3.2 Software architecture .................................................................................................. 28 

3.3 Onboarding animation ................................................................................................. 30 

3.4 Transition between tabs .............................................................................................. 35 

3.5 Venue detail page scrolling behavior ......................................................................... 41 

4 ANALYSIS ................................................................................................. 49 

5 CONCLUSION ........................................................................................... 53 

REFERENCES ................................................................................................. 54 

 



 

 

List of Abbreviations 

UI User interface. The visual display where interactions between humans and 

machines happen. 

UX User experience. The feeling of a person about using a specific product or 

service. 

SDK Software development kit. A set of tools for software development under 

the form of an installable package. 

API Application programming interface. A contract of software that requires 

other parts of that software or external software to respect. 

XML Extensible markup language. A self-descriptive markup language that is 

used to store and transport data. In Android development, it is used to 

define application resources.



1 

  

 

1 Introduction 

Animation is the transformation of a UI element property, such as its color, position, or 

size, over time (Hashimi et al., 2010). Adding animations properly could bring a polished 

look and a professional feeling to users. Even though Google gives Android developers 

multiple ways of creating beautiful animation for their applications, it is still challenging 

to write maintainable animation code (Android Developers, 2019). It is usual to encounter 

gigantic blocks of animation code in Android development. The following script was taken 

from a popular repository with more than 3500 stars on Github. 

Animator 
        anim = ViewAnimationUtils.createCircularReveal(view, cx, cy, 0, finalRadius); 
anim.setDuration(durationMills); 
anim.addListener(new AnimatorListenerAdapter() { 
    @Override 
    public void onAnimationEnd(Animator animation) { 
        super.onAnimationEnd(animation); 
 
        if (requestCode == null) { 
            thisActivity.startActivity(intent); 
        } else if (bundle == null) { 
            thisActivity.startActivityForResult(intent, requestCode); 
        } else { 
            thisActivity.startActivityForResult(intent, requestCode, bundle); 
        } 
 
        thisActivity.overridePendingTransition(android.R.anim.fade_in, 
android.R.anim.fade_out); 
 
        triggerView.postDelayed(new Runnable() { 
            @Override 
            public void run() { 
 
                Animator anim = 
                        ViewAnimationUtils.createCircularReveal(view, cx, cy, 
finalRadius, 0); 
                anim.setDuration(durationMills); 
                anim.addListener(new AnimatorListenerAdapter() { 
                    @Override 
                    public void onAnimationEnd(Animator animation) { 
                        super.onAnimationEnd(animation); 
                        try { 
                            decorView.removeView(view); 
                        } catch (Exception e) { 
                            e.printStackTrace(); 
                        } 
                    } 
                }); 
                anim.start(); 
 
            } 
        }, 1000); 
 
 
    } 
}); 
anim.start(); 
 
Script 1. An example of a long block of animation code (Hugo, 2017). 



2 

  

 

Despite being widely recognized by the open-source community, there still exists lengthy 

and incomprehensible animation code with multiple levels of indentation inside the 

project. The author also makes a few mistakes when writing the animation, but it will be 

discussed later. This happens when developers do not take into account the 

maintainability of their code. It leads to code reviewing difficulties within the team and a 

time-consuming test cycle due to the unreliable codebase, thus, delaying the release 

plan that means to deliver new experiences to end-consumer. This thesis studies 

different methods to solve that challenge. 

This thesis focuses on creating utility code that could be used to make animation code 

more readable and maintainable. The implementation of this project highlights the 

demand for maintainable animation code in an Android application.  

In order to benchmark and illustrate the practicality of the utility code, it is reasonable to 

reproduce some animations from a real-life world-class project such as Wolt. Wolt 

Enterprises Oy is a food delivery company based in Helsinki, Finland. The company 

provides its users with native mobile applications, which received several satisfied 

reviews about UI and UX on respective platform stores (Wolt Enterprises Oy, 2015a; 

Wolt Enterprises Oy, 2015b). A part of that success comes from the appropriate usage 

of animations. 



3 

  

 

2 Theoretical background 

2.1 Animations in mobile applications 

Animation is the transformation of a UI element property, such as its color, position, or 

size, over time (Hashimi et al., 2010). A modern mobile phone user experiences an 

unlimited number of visual effects on the device. Almost every interaction leads to UI 

changes. The user might miss tiny changes, whereas a huge amount of changes might 

lead to confusion. However, when animations are used reasonably, they serve 

meaningful purposes. (Mathis, 2016.) 

Animations make the application self-explanatory, especially when the state of the 

application changes (Android Developers, 2019a). Figure 1 illustrates a circular reveal 

transition in the application Whim. The second screen gradually expands its circular 

bounds around the button W until it covers the whole space. The transition looks natural 

and connects the two screens over a short period. It creates visual continuity when the 

second screen appears. (Android Developers, 2019d.) This is just one of the infinite 

transition implementations that mobile users have seen. 

 

Figure 1. Timeline of the circular-reveal transition in the application Whim. Screenshot (MaaS 
Global, 2011) 

Sometimes, animation is used to draw users' attention and direct them to the next 

application flow. In the material design system, this technique is called user education. 



4 

  

 

(Material design, 2020b.) Figure 2 shows the incoming call screen of a OnePlus device. 

Under the caller image, there is a circle button with a phone icon inside. It expands and 

shrinks periodically. At the same time, the red arrow and the green arrow repeatedly slide 

out of that button. This combination teaches the user to take the desired action by holding 

the circle button and sliding it towards one of the directions. In this case, while the red 

arrow indicates declining action, sliding the button towards the opposite way means 

accepting the call. 

 

Figure 2. Timeline of the animation for an incoming call in a OnePlus 8 Pro smartphone. 

Moreover, animations are added for other particular goals. Some designers leverage 

their morphing effect to make their applications look vivid and polished (Android 

Developers, 2019a). Others decide to include animated graphical UI for branding 

purposes (Andreas et al., 2019).  

2.2 Animation components 

2.2.1 Animated element 

Animated element refers to a UI element whose attributes are changed continuously over 

a period to form an animation. Specifically, these attributes are size, opacity, color, 

rotation, position, and shape of the animated element (Kantola, 2017). They are visual 

targets of an animation. 



5 

  

 

2.2.2 Easing curve 

Easing curve, or easing function, represents acceleration, the rate of change in 

something’s speed. In the real world, an object does not always maintain a constant 

speed or instantaneously changes its velocity. Physically, it has to be changed gradually 

by acceleration. (Penner, 2002.) It is worth mentioning that velocity does not only refer 

to how fast a movement is. In motion design, easing curves also control how fast an 

attribute of an element changes its value. In other words, they are interpolation formulas 

for attributes. (Yuen, 2017.) 

Figure 3 presents graphs of some common easing functions. While the horizontal axis 

of the graph denotes the timeline of an animation, the vertical axis indicates the value of 

a UI element’s attribute at a specific time. 

 

Figure 3. Graphs of common easing functions. Copied from PROTOIO Inc (2014). 

The linear easing curve maintains the velocity at a constant value during an animation. 

That means the velocity abruptly switches from 0 (zero) to that value at the beginning of 

the animation and again instantaneously changes from that value to 0 (zero) at the end. 

As mentioned, it is physically impossible because the acceleration becomes infinite. 

Therefore, linear motion usually feels unnatural. (Penner, 2002.) 

Numerous researchers highly recommend using the ease-in-out curve for animation 

because it brings the most natural feeling in most cases. According to them, the curve 

reveals how an object moves in the real world, accelerating from the static state and 

slowing down before stopping completely at the destination. (Dragicevic et al., 2011; 

Izdebski et al., 2016; Penner, 2002.) 



6 

  

 

However, ease-in-out is not the answer for every case, and linear easing is not always 

discouraged. For example, material design, a recommended design system for the 

Android platform, gives specific use cases for certain curves such as spring curve and 

overshooting curve (Material Design, 2020a). Occasionally, designers choose not to 

follow these recommendations for unusual situations. They attempt to customize their 

curves. One popular way to create these curves is using Bézier curves of degree 3, also 

called cubic Bézier equation: 

𝐵(𝑡) = (1 − 𝑡)!𝑃0 + 3(1 − 𝑡)"𝑡𝑃1 + 3(1 − 𝑡)𝑡"𝑃2 + 𝑡!𝑃3															0 ≤ t ≤ 1 (1) 

In formula (1), P0, P1, P2, and P3 are control points. Their x-coordinates must always be 

between 0 and 1. Mathematically, these are all the restrictions for the formula. However, 

in motion design, P0 and P3 always stay respectively at (0, 0) and (1, 1). (Izdebski and 

Sawicki, 2016.) Figure 4 illustrates the graph of a cubic Bézier that has P1 and P2 at (0.48, 

0.05) and (0.07, 0.87). By adjusting the position of P1 and P2, numerous curves are 

created and used not only in Android applications but also in consumer-facing 

applications in general. 

 

Figure 4. An example of a cubic Bézier graph 

In general, the easing function is the most complicated yet significant component of 

animation. It carries the animation’s vibe that effectively connects the motion of a UI 

element to users’ subconsciousness and orients their feelings (Barclay, 2019). 



7 

  

 

2.2.3 Duration 

Unless the motion depends on other factors, every animation takes time. Without it, 

easing functions become useless because intermediate steps of a transition are not 

rendered in any frame. To ensure the user experience, the timing of an animation must 

be reasonable. Microsoft advises making the animation neither too slow nor too fast. A 

slow animation decreases user productivity and becomes cumbersome when users are 

familiar with application flows. In contrast, an animation, which takes less than 50 

milliseconds (ms), is not comprehensible and considered a jarring experience. 

(Microsoft, 2018.) 

To obtain the full benefit of animations, finding the perfect duration is crucial. Even 

though it is not a strict rule, optimal animations usually take between 150ms and 350ms 

(Klimczak, 2013). In the Android design system, it often depends on the size of the 

animated area. For instance, a full-screen transition might take up to 300ms whereas the 

number is 100ms for a small switch animation. (Material Design, 2020a.) The duration 

might be longer on tablets as their screens are bigger. 

An exception for a long animation is network-loading animation, which depends on how 

fast the data is transferred over the Internet. It could take a few seconds when the signal 

is weak. In this case, it does not reduce productivity because the user needs to wait 

before interacting with the application anyway (Microsoft, 2018). 

2.2.4 Delay 

Various animations involve multiple animating items. They move either at the same time 
or with small offset timing. (Nielsen Norman Group, 2020). Usually, that small offset 
indicates the separateness of the animated elements. That is useful when the designer 
wants to emphasize those elements have different functionalities even before the user 
realizes that. (Willenskomer, 2017.) 

 



8 

  

 

 

Figure 5. Timeline of a floating action menu. Screenshot (Kiat, 2019). 

FabMenu, a library written by Kiat (2019), works as shown in Figure 5. This is an 

implementation using delays. When the pink button is clicked, at first, its icon transforms 

from (+) sign into (x) sign. After that, three small yellow buttons sequentially appear with 

small delays between them. These buttons serve distinctive purposes in the application, 

which is a suitable case to apply the delay technique. 

2.3 Android UI components 

Before using any animation frameworks, a consumer-facing-application developer needs 

to understand the basic components that form the UI. It is a prerequisite. In Android 

development, these components are activities, fragments, and views.  

2.3.1 Activity 

Activity is a class that creates a window to display UI elements via setContentView 

method. All activities that need to be visually shown must have a corresponding 

<activity> tag declaration in AndroidManifest.xml. (Android Developers, 2020a.) 

# ./app/src/main/java/MainActivity.kt 
 
internal class MainActivity : AppCompatActivity() { 
 
    override fun onCreate(savedInstanceState: Bundle?) { 
        super.onCreate(savedInstanceState) 
        setContentView(R.layout.activity_main) 
    } 
} 
 
 
# activity_main.xml 
 



9 

  

 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent"> 
 
    <com.google.android.material.button.MaterialButton 
        android:id="@+id/btnTabsTransition" 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:backgroundTint="@color/colorPrimary" 
        android:text="Tabs transition" 
        android:textAllCaps="false" 
        android:textColor="@android:color/white" 
        tools:ignore="HardcodedText" /> 
 
</LinearLayout> 
 
# AndroidManifest.xml 
 
<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
    package="la.me.leo.animatedapp"> 
 
    <application 
        android:allowBackup="true" 
        android:icon="@mipmap/ic_launcher" 
        android:label="@string/app_name" 
        android:theme="@style/AppTheme"> 
        <activity android:name=".MainActivity"> 
            <intent-filter> 
                <action android:name="android.intent.action.MAIN" /> 
 
                <category android:name="android.intent.category.LAUNCHER" /> 
            </intent-filter> 
        </activity> 
    </application> 
 
</manifest> 
 
Script 2. Declaration of an activity and its layout file. 

In script 2, MainActivity is declared in AndroidManifest.xml. It extends 

AppCompatActivity, which is a standard activity in Android development nowadays. 

During its creation, setContentView is called to guide the activity to use the correct layout 

file, activity_main.xml. The layout file has a few views such as a LinearLayout or a 

MaterialButton. They can be referenced in Kotlin code if necessary. Views will be 

discussed later in the following sections. 

Interestingly, an activity has its lifecycle. Figure 6 presents the basic lifecycle of activity 

without taking into account the device resource consumption due to its insignificance for 

this thesis. An activity exists between the invocations of onCreate and onDestroy. 

However, it is only tangible when onStart is called and stays visible until onStop happens. 

Between onResume and onPause, the activity is considered in the foreground state, 

which means that users are able to interact with the activity. If a popup dialog appears 



10 

  

 

on top of the activity, that activity is still considered (partly) visible but is not in the 

foreground state. (Android Developers, 2020.)  

 

Figure 6. A simple version of the activity lifecycle. 

Animations, most of the time, run in the foreground state of an activity unless it is the 

transition animation between one activity to another. All of the mentioned lifecycle 

methods are completely managed by the system (Android Developers, 2020a). 

Therefore, having a basic understanding of the activity lifecycle helps developers respect 

the system and avoid animation crashes due to illegal states. For example, animating an 

element after onDestroy is called results in a memory leak (Spitsin, 2017), an issue 

where the application uses up memory resources and eventually crashes. 

2.3.2 Fragment 

A Fragment is considered as a sub-activity. There are two reasons for that 

consideration. Firstly, it is a set of UI elements represented to users. Secondly, a 

developer can combine multiple fragments and control their lifecycle within a single 

activity. Interestingly, a fragment can be reused in different activities or even be hosted 

in another fragment. (Android Developers, 2019c.) 

Similar to activity, a fragment has its layout defined in an XML file. The layout is inflated 

in the onCreateView lifecycle method as described in script 3. 

# ./app/src/main/res/layout/fragment_main.xml 
 
<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent"> 
 



11 

  

 

    <com.google.android.material.button.MaterialButton 
        android:id="@+id/btnTabsTransition" 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:backgroundTint="@color/colorPrimary" 
        android:text="Tabs transition" 
        android:textAllCaps="false" 
        android:textColor="@android:color/white" 
        tools:ignore="HardcodedText" /> 
 
</LinearLayout> 
 
 
# ./app/src/main/java/MainFragment.kt 
 
class MainFragment : Fragment() { 
 
    override fun onCreateView( 
        inflater: LayoutInflater, 
        container: ViewGroup?, 
        savedInstanceState: Bundle? 
    ): View { 
        return inflater.inflate(R.layout.fragment_main, container, false) 
    } 
} 

Script 3. Declaration of a fragment and its layout file. 

A fragment has its lifecycle. That lifecycle works closely with the lifecycle of the activity 

hosting the fragment. In addition to methods of the activity lifecycle, there are a few more 

callbacks as shown in Figure 7. onAttach happens when the fragment is attached to or 

associated with the hosting activity. In contrast, onDetach is called when the association 

is no longer needed. As mentioned, onCreateView is in charge of creating the UI 

elements hierarchy from the XML layout file for the fragment. onDestroyView, on the 

other hand, is called when that hierarchy is removed. (Android Developers, 2019c.) 

A developer should remember not to access any view after onDestroyView is invoked. 

Otherwise, it leads to a crash because the accessed view is removed from the hierarchy. 

This applies when an animation is still running on an element after it is removed. 

 

Figure 7. A simple version of the fragment lifecycle. 



12 

  

 

In the future, it is recommended to have only one activity per application so that 

developers work mostly with fragments (Lake, 2018). There are rational reasons why 

Android creators suggest that pattern, but they will be discussed in an upcoming section. 

Because of this development tendency, understanding the fragment lifecycle is essential. 

The most common way to manage a fragment inside a parent (an activity or a parent 

fragment) is to use FragmentManager. It requires a container ViewGroup, usually a 

FrameLayout, inside the parent layout to host those fragments. A developer is capable 

of adding, removing, or replacing fragments inside a container. These actions must be 

done in a transaction. 

On occasion, a transaction has to be reverted when a user presses the back button on 

the device. A typical case for this is demonstrated in Figure 8. When the user presses a 

button in fragment A, the application navigates to fragment B. Pressing the back button 

should bring that user to fragment A. 

 

Figure 8. An example of fragment navigation 

In that case, not only the transaction when the blue button is clicked should remove 

fragment A and add fragment B, but it also needs to be added to the back stack before 

committing the transaction as shown in script 4. 

# layout of the parent that host fragment A and fragment B 
 
<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent"> 
 



13 

  

 

    <FrameLayout 
        android:id="@+id/fragment_container" 
        android:layout_width="match_parent" 
        android:layout_height="match_parent" /> 
 
</LinearLayout> 
 
 
# executed code when the button in fragment A is clicked 
 
 
// begin the transaction 
val transaction = supportFragmentManager.beginTransaction() 
// remove fragmentA from container if it exists 
transaction.remove(fragmentA) 
// add fragmentB to container with id of fragment_container 
transaction.add(R.id.fragment_container, fragmentB) 
// add the transaction to a back stack so that it can be reverted 
transaction.addToBackStack(null) 
// commit the transaction to take effect 
transaction.commit() 

Script 4. An example of adding a transaction to the back stack. 

A fragment transaction, most of the time, results in a transition between scenes. In 

animated applications, designers might want to introduce their custom transitions instead 

of using the default effect from the system. With the Android framework, it is possible to 

achieve that goal. This matter will be explained later in this paper. 

2.3.3 View 

Any subclass of View represents a UI component. Its bound is a rectangular area where 

it is drawn on the screen and intercept interaction events such as tapping, holding, or 

scrolling. (Android Developers, 2020g.) 

A ViewGroup is a special view that acts as a container for other views and controls the 

position relations of these views (Android Developers, 2020g). In script 5, the ImageView 

is held within a LinearLayout, which is a subclass of ViewGroup. Some regular view 

groups are ConstraintLayout, LinearLayout, and FrameLayout. They have different 

mechanisms to layout their child-views. 

In layout files, every XML tag corresponds to an instance of a view such as buttons, 

labels, or containers. These views can be referenced in Kotlin/Java code using the 

method findViewById. In script 5, the ImageView with identifier ivArticle is referenced in 

a Kotlin class. (Android Developers, 2020g.) 



14 

  

 

# layout file 
 
<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout  
    xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent"> 
 
    <ImageView 
        android:id="@+id/ivArticle" 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" /> 
 
</LinearLayout> 
 
 
# reference a view in Kotlin code 
 
val ivArticle = findViewById<ImageView>(R.id.ivArticle) 
 

Script 5. An example of referencing a view from XML layout to Kotlin code. 

In general, a referenced view could safely be an animated element of an animation as 

long as it exists in the view hierarchy. 

2.4 Android animation APIs 

2.4.1 Animator 

Animator is a modern animation system for Android development. Animators allow 

developers to change the properties of any Kotlin/Java object over time. There are 

multiple types of animators. They are ObjectAnimator, ValueAnimator, and 

AnimatorSet. Although ViewPropertyAnimator is not classified as an animator, it is 

based on ValueAnimator. (Liu et al., 2018.)  

They all gradually adjust one or more properties from one value to another value during 

a period. All of them allow developers to delay the starting point of the animation and 

specify the easing curve for the animation using the Interpolator. Sometimes, they bring 

similar effects, which confuses developers (Elye, 2020). Understanding each type helps 

them make a better decision on which animator should be used. 

First and foremost, ViewPropertyAnimator is used when the developer does not intend 

to control the animation after it starts. Unlike subclasses of Animator, 
ViewPropertyAnimator does not support animation coordination or repeating because 



15 

  

 

it does not inherit from Animator. However, it is slightly more efficient according to Liu 

(2018). The API of ViewPropertyAnimator is simple. For example, script 6 is used to 

change the opacity (alpha channel) of a view to 1 in 200 milliseconds. 

view.animate() 
    .alpha(1f) 
    .setDuration(200) 

Script 6. Change the opacity of a view in Kotlin code. 

Second, ObjectAnimator’s capability is to move the value of a property in a range of 

integers or floats. This does not only apply to view specifically but to any Kotlin/Java 

object in general. As long as the property has getter and setter, ObjectAnimator controls 

it using Java reflection. Due to reflection usage, it is less performant than 

ViewPropertyAnimator. (Liu et al., 2018.) Script 7 shows how to rotate a view around 

the horizontal axis. The property here is called rotationX. This may also be achieved with 

ViewPropertyAnimator which is more optimized as mentioned. Nevertheless, since 

ObjectAnimator inherits from Animator, it provides more control over the animation. 

For example, it is possible to cancel this animation later if the developer wishes to. 

val animator = ObjectAnimator.ofFloat(view, View.ROTATION_X, 0f, -90f) 
    .setDuration(400) 
animator.start() 

Script 7. Rotate a view around the horizontal axis in Kotlin code. 

Thirdly, ValueAnimator animates values such as colors or numbers and applies the 

animated values to one or more targets. It is mostly used for custom animations, but 

confusingly, in specific cases, it also brings the same effects as ObjectAnimator. (Liu 

et al., 2018.) A simple explanation for this is that ObjectAnimator inherits from 

ValueAnimator. While ObjectAnimator focuses deeply on animating an object’s 

property, ValueAnimator’s usage is more generic. In figure 9, a rare animation is 

introduced. After the text “Setting up your account”, there are three dots that appear 

sequentially. One simply should not use ObjectAnimator in this case because the 

property’s value is not an integer or a float but a string. In the code, a ValueAnimator 
animates a value from 0 to 4 and it is the developer's job to map it to the number of dots 

displayed. 



16 

  

 

 

Figure 9. An implementation of animation using ValueAnimator. Screenshot (Liu et al., 2018). 

Last but not least, AnimatorSet is a special animator because it does not animate 

anything on its own. It combines other animators and coordinates them. (Liu et al., 2018.) 

Figure 10 shows a transition between two views. They display 2 texts, which are “Hang 

on. Setting up your account” and “Oh no! Something went wrong”. When the transition 

happens, the first text fades out before the second text fades in and is scaled at the same 

time. From the implementation, the API of AnimatorSet is self-descriptive and close to 

human language. The animatorSet plays the fadeInText animation with the scaleText 

animation after the fadeOutText animation. 

 

Figure 10. A usage of AnimatorSet. Screenshot (Liu et al., 2018). 

Referring back to the example in the introduction section (script 1), the author starts the 

second animator after the first animator by listening to its end event. It is a misusage as 

the proper way is to play them sequentially in an animator set. Another mistake is that 



17 

  

 

the author delays an animator by calling postDelay on a view while using setDelay 

directly on the animator is a cleaner approach. 

There is another animation system in Android development. It is called ViewAnimation. 

However, this system is ancient. Nick Butcher also states that Animator provides most 

of the features that ViewAnimation has. Because of its versatility, Android developers 

should consider Animator over ViewAnimation. (Liu et al., 2018). 

2.4.2 Transition 

In Android development, transitions are divided into several types. Enter transition 

happens on views of a scene when that scene appears. Exit transition, on the other hand, 

occurs on views of a scene when that scene is replaced or hidden by an appearing 

scene. A shared element transition refers to the motion where a UI element on the 

disappearing scene transforms into another element on the appearing scene. (Android 

Developers, 2020f). Figure 11 illustrates a shared transition where an item inside the list 

from one screen transforms into a big image inside another screen. 

 

Figure 11. A shared transition between two screens. Screenshot (Android Developers, 2020d.) 

Normally, a transition is represented by an instance of the class Transition. To create a 

custom transition, a developer simply writes a subclass of that class and overrides 



18 

  

 

createAnimator, captureStartValues, and captureEndValues methods. The latter two 

methods capture a snapshot of a view before and after then transition while the first 

method creates the actual animator for the transition based on the two snapshots. Some 

ordinary built-in transitions are Fade, ChangeBounds, and Slide. (Android Developers, 

2019b.) 

For the shared element transition case, different situations require different declarations.  

2.4.3 Activity transition 

Activity transition refers to the transformation effects that happen when the application 

navigates between activities. To use activity transition in Android, developers have to 

enable windowActivityTransitions in the application theme. They need to either specify 

the enter, exit, or shared element transitions in that theme XML declaration or 

programmatically set them using Kotlin code. (Android Developers, 2020f). Script 8 

shows how to specify them using the former way. 

 
<style name="BaseAppTheme" parent="android:Theme.Material"> 
    <!-- enable window content transitions --> 
    <item name="android:windowActivityTransitions">true</item> 
 
    <!-- specify enter and exit transitions --> 
    <item name="android:windowEnterTransition">@transition/explode</item> 
    <item name="android:windowExitTransition">@transition/explode</item> 
 
    <!-- specify shared element transitions --> 
    <item name="android:windowSharedElementEnterTransition"> 
        @transition/change_image_transform 
    </item> 
    <item name="android:windowSharedElementExitTransition"> 
        @transition/change_image_transform 
    </item> 
</style> 
 

Script 8. Specify activity transitions in the application theme (Android Developers, 2020f.) 

The Android documentation gives an impression of a simple API. However, in reality, 

using activity transition is usually painful. In Android Dev Summit event, Lake (2018), an 

engineer at Google, says that the API works differently across devices and Android 

versions. According to him, developers have to check for the device version in their code 

before using Fade and exclude the status bar and navigation bar from the transition if 

the version is higher than Lollipop (Android 5.0). Otherwise, it visually breaks the 



19 

  

 

transition. Lake argues that introducing such checks in UI code makes the code 

unreliable. This is one of several cases. 

2.4.4 Fragment transition 

Similar to activity transition, fragment transition means the motion effect that visually links 

fragments when navigating between them. The APIs of enter transition and exit transition 

for fragment are fairly simple. The developer has to call setEnterTransition and 

setExitTransition. (Android Developers, 2020d.) 

For shared transition, it is more complicated as there are several required steps to 

achieve the transition. Firstly, the shared views from the disappearing fragment and 

appearing fragment need unique transition names. Those views and their transition 

names are then supplied to the FragmentTransaction when the navigation logic starts. 

Last but not least, the transition must be set to the destination fragment via 

setSharedElementEnterTransition. (Android Developers, 2020d.) 

2.4.5 Layout transition 

Modifying the elements in the view hierarchy of an activity or a fragment results in visual 

changes. The transition that connects the hierarchy changes, in this case, is called layout 

transition. (Android Developers, 2020b.) 

The framework works by storing the initial state and the final state of the view hierarchy 

and animating the changes between these states. To help the framework store the initial 

state, the developer has to call TransitionManager.beginDelayedTransition method and 

provide the view containing all the views that may be animated and an instance of the 

desired transition. (Android Developers, 2020b.) 

Script 9 demonstrates the usage of this API. It uses AutoTransition to animate the 

layout after adding a CheckBox to the hierarchy of the view root. 

val transition = AutoTransition() 
TransitionManager.beginDelayedTransition(root, transition) 
root.addView(CheckBox(activity)) 



20 

  

 

Script 9. Using layout transition in Android development 

This API is powerful since it only requires one method call to achieve decent animation 

before modifying the UI. Of course, in case a custom transition is required, programmers 

need to implement the transition themselves instead of using built-in ones such as 

AutoTransition. 

2.4.6 Lottie 

With the contribution of the open-source community, there are many Android libraries 

that assist developers to build magnificent animations. Unfortunately, most of them are 

built for particular purposes. For instance, paper-onboarding-android is a library used to 

create one animation for the onboarding screen of an application (Ramotion, 2020). 

Therefore, it is hardly reused in any other places of that application. Normally, a team 

should not introduce a third-party library that serves only one purpose but write the code 

themselves because a library may drastically increase the size of the application 

(Android Developers, 2021b). However, it is not the case with Lottie. 

Lottie is not included in Android SDK. It is a library written by Airbnb developers. Lottie 

allows developers to render Adobe After Effects animations natively not only on Android 

phones but also on iOS devices and web browsers. (Airbnb.io, 2020.) 

In case developers want to control the movement of UI elements, Lottie is not an option. 

Android animator APIs or transition APIs should be used instead. Lottie should be used 

when developers need to show cartoon-like animations in a specific area on the screen.  

 

Figure 12. Frames of a cartoon-like animation. Screenshot (Airbnb.io, 2020). 



21 

  

 

The library APIs are straightforward. First, designers need to export their animations in 

JSON format using Adobe After Effects program and Bodymovin extension. The JSON 

file’s size depends on how long and complex the animation is. It may take up to more 

than 1MB if the animation contains multiple image layers. That JSON file is then included 

in the source code as a raw asset in the res directory. To show it on a screen, the 

developer just adds LottieAnimationView to the layout and passes the file to the 

setAnimation method as shown in script 10. (Airbnb.io, 2020.) 

# ./app/src/main/res/raw/onboarding.json 
{ 
    // lottie json content 
} 
 
# ./app/src/main/java/OnboardingFragment.kt 
 
val lottieView = findViewById<LottieAnimationView>(R.id.lottieView) 
lottieView.setAnimation(R.raw.onboarding) 

Script 10. Using Lottie to show animation 

Lottie also provides more control over the animation. For example, developers can set 

the frame range to be played with setMinFrame and setMaxFrame methods or listen to 

the progress of the animation with addAnimatorListener. This is possible because Lottie 

translates the JSON file into an Android animator. (Arbnb.io, 2020.) 

Interestingly, there are many use cases where designers want to show cartoon-like 

animations. If it is introduced in the application once, soon, there is likely more to be 

added. Therefore, developers can reuse Lottie in a codebase. It is a fair trade-off as the 

library adds less than 290kB (uncompressed) but reduces the drawing work for 

developers in several places (Arbnb.io, 2020). 

2.5 Maintainable code 

Maintainability refers to how easy to modify code in a system. It is one criterion to 

determine the quality of software. It affects the business tremendously. When the 

codebase is easily maintained, the cost and time for the maintenance job decrease. It 

means that there is more time for other meaningful tasks like developing new functions. 

Thus, the product is delivered to the market fast. More importantly, maintainability is a 

prerequisite for certain other quality characteristics. Improving software in any aspect 



22 

  

 

requires modifications, which is either tiny or huge. In any case, a more maintainable 

system makes these changes easier for engineers. (Visser et al., 2016.) 

2.5.1 Simplicity 

Primarily, developers need to write short and simple units of code (Visser et al., 2016). 

Writing long and complicated code does not only take more time to write and test but 

also makes it more difficult to analyze and modify in the future (Carullo, 2020). Robert C. 

Martin (2010), as known as Uncle Bob, also suggests those code units should hold single 

responsibility and do not cause side effects. Visser and his colleagues (2016) 

recommends the audience to limit the code unit’s length to only 15 lines and limit the 

condition branches to 4 for each unit. This way, the code can be fully covered by tests; 

and the chance to forget edge cases is lessened. 

2.5.2 Reusability 

Simplicity helps developers avoid duplicating logic in different places. Duplicated code is 

considered bad practice because a change in one place leads to changes in all other 

places. Reusability is a principle that all software engineers should follow. It saves time 

and effort since the code is written once and reused by other components. It reduces 

redundancy to a minimum level. (Carullo, 2020.) One mistake that most beginners make 

is that they use a string multiple times in the codebase. If a string is used the second 

time, extract it to a constant and use the constant instead. It reduces typo mistakes when 

typing the string again. 

2.5.3 Readability 

Readability can be measured by how fast the code can be understood (Carullo, 2020). 

Software is often developed by a team instead of a single person. Therefore, it is 

important that other developers easily understand the code of one team member. Even 

if there is only one member in the team, which is rare, his/her brain may also forget what 

it created after a certain period and need to read again to remember what the code does. 

In either case, readability is essential. 



23 

  

 

There are different methods to increase readability. The most basic approach is 

formatting. Engineers agree with each other on how to format their source code. 

Formatting must be consistent in a team. (Martin, 2010.) For example, if the team 

decided to use 4-space indentation, no one should commit a line with 2-space 

indentation. 

The second method is using meaningful names in the code. Ambiguous names must be 

avoided in all circumstances. It does not matter if the name is short or long. The important 

thing is that readers know their meaning and purpose without difficulties. (Carullo, 2020.) 

Martin (2010) says that consistent naming conventions should be used across different 

components to prevent mental mapping. For instance, if ‘delivery location’ refers to a 

place that users want something to be sent to and exist in the codebase, a developer 

should not introduce the term ‘address’. 

2.5.4 Modularity 

Modularity is about achieving loose coupling between components of the software. Tight 

coupling leads to maintenance problems as modifying one dependency may lead to 

modifying other components. In contrast, loosely coupled modules isolate parts of the 

codebase and reduce the impact on other parts when modifying one part. (Visser et al., 

2016.) 

Each separated module should be cohesive. It contains only code that serves a defined 

function. In other words, a module encapsulates a function implementation, hides it from 

other modules, and only exposes that functionality. (Carullo, 2020.) 

Gradle module in Android developments 

Projects that use the Gradle build system, especially the majority of Android projects, 

splitting code into library modules is highly recommended.  

The first benefit is cleaner third-party dependencies management using a special 

module. That module is called buildSrc. It is compiled first and will be visible to all other 

modules. Module buildSrc will be placed in the root of the project and declares necessary 

libraries in Kotlin files. It also requires a build script so that Gradle understands it is a 



24 

  

 

part of the build process. The build script name is build.gradle.kts (Edwards, 2018.) Script 

11 demonstrates how to manage dependencies in the buildSrc module and use them in 

the app module. 

# ./buildSrc/build.gradle.kts 
 
plugins { 
    `kotlin-dsl` 
} 
 
repositories { 
    jcenter() 
} 
 
# ./buildSrc/src/main/java/Dependencies.kt 
 
object Versions { 
    const val transition = "1.4.0-beta01" 
    const val androidX = "1.1.0" 
    ... 
} 
 
object Dependencies { 
    const val transition = "androidx.transition:transition-ktx:${Versions.transition}" 
 
    const val appCompat = "androidx.appcompat:appcompat:${Versions.androidX}" 
    ... 
} 
 
# ./app/build.gradle.kts 
 
plugins { ... } 
 
android { ... } 
 
dependencies { 
    implementation(Dependencies.appCompat)  
    implementation(Dependencies.transition) 
} 
 

Script 11. Declare third-party dependencies in buildSrc to reuse in other modules. 

With buildSrc, updating a dependency is fast because developers only need to modify 

the version of that dependency in the Versions object. 

Secondly, separating modules makes compilation time faster compared to a single 

module project because they are built simultaneously. Moreover, modifying code in one 

module only requires that module to be rebuilt before running the program. Build files of 

untouched modules are cached for optimization. (Android Developers, 2020e.) In large 

projects which involve multiple development teams, this separation makes the ownership 

of each team and the dependencies between teams clearer. Ideally, one module is only 

owned by one team so that it does not require tight collaboration across teams to change 



25 

  

 

code in that module. For instance, if team A depends on team B, and both rely on team 

C, each team can simply have their modules inside the project and declares these 

dependencies. They are visualized in figure 13. 

 

Figure 13. Module dependency graph 

To implement this dependency in the project, developers need to follow a few steps. 

Similar to buildSrc, normal modules must have their build scripts. Unlike buildSrc, a 

module must be included in settings.gradle.kts file and cannot use other modules’ 

exposed code without declaring them as in script 12. (Gradle.org, 2020.) 

 
# ./settings.gradle.kts 
 
include(":module-team-a", ":module-team-b",":module-team-c") 
rootProject.name = "Animated App" 
 
# module-team-a/build.gradle.kts 
 
plugins { 
    id("com.android.library") 
    id("kotlin-android") 
} 
 
android { ... } 
 
dependencies {  
   implementation(project(":module-team-b")) 
   implementation(project(":module-team-c")) 
} 
 
# module-team-b/build.gradle.kts 
 
plugins { 
    id("com.android.library") 
    id("kotlin-android") 
} 
 
android { ...} 
 
dependencies {  
   implementation(project(":module-team-c")) 
} 
 
 
# module-team-c/build.gradle.kts 
 



26 

  

 

plugins { 
    id("com.android.library") 
    id("kotlin-android") 
} 
 
android { ... } 
 
dependencies { 
    ... 
} 
 

Script 12. Declare a module and use it in another module via Gradle. 

Even if the whole codebase is owned by one team only, it is better to have multiple 

modules to encapsulate functions and reduce exposing unnecessary code. It is also 

easier to introduce multiple teams into the project as it grows in the future. 



27 

  

 

3 Implementation 

3.1 Implementation approach 

To create snippets of code that create beautiful animations and ease the future 

maintaining work, it is objective to write them while building a real-world example of 

highly animated Android applications. Writing these components independently causes 

difficulties when integrating them into a project later as it is impossible to foresee the 

requirements of that project. 

Wolt: Food delivery is among the most animated applications on Play Store and App 

Store. It is a food-delivery application developed by a Finnish startup called Wolt 

Enterprises Oy and published in 2015. Since then, Wolt has been entitled to several 

awards related to design such as Vuoden Huiput’s Golden Awards for two categories 

Digital Design and Product Design in 2016 (Grafia.fi, 2016).  

One big contribution to these great achievements is introducing proper motions in the UI. 

As discussed in section 2.1, animations increase the emotional connection and usability 

part of the user flow. They lead users to their goals faster with less friction and less 

overload. Using Wolt, users may realize the application contains many motion effects. 

The demonstrated project for this paper will mimic a few effects from this world-class 

mobile application and extract the core code for producing these effects into a 

component so that it can be reused, maintained, and extended in the future. 

The selected animations for the project are the onboarding animations, the transition 

between tabs, and the the scrolling behavior in the venue detail page. These three are 

chosen because they are different in terms of attributes and implementation. Therefore, 

building those increases the coverage of animating techniques in Android development 

and the completion of the component. 

Java used to be the official language for Android development. However, Google 

announces Kotlin becomes the new successor of Java in this area due to its 

expressiveness, conciseness, and safeness (Android Developers, 2021a). Therefore, 

the programming language chosen for this project is Kotlin. 



28 

  

 

3.2 Software architecture 

3.2.1 UI architecture 

Even though there is a new engine to build Android UI, Jetpack Compose, a declarative 

UI framework developed by Google, is still in the alpha stage and is not stable for 

production usage (Android Developers, 2020c). Therefore, the most common way to 

build UI elements in Android projects is to use Android native views.  

To host views, developers have to use fragments and activities. They can use only 

activities because fragments are optional. However, activity’s behavior such as its default 

enter transition depends on the manufacturer, OS version, and user’s selected theme. 

Although Google provides APIs that allow developers to override the default behavior, 

the APIs do not work gracefully for all devices and may bring negative side effects as 

mentioned in section 2.4.3. Lake (2018) even argues that even if Google fixes the issue 

in the newer Android API level, it is still difficult to support backward compatibility. For an 

animated application, customized transitions are used frequently. It would be impossible 

to test if they behave correctly in thousands of devices. To reduce the flakiness of 

transition, this project will minimize the usage of activity and follow what Lake suggests 

in Android Dev Summit 2018 event, embracing single-activity pattern. 

Single-activity pattern implies in one Android project, there should only be one activity 

acting as the entry point of the application. All UI elements of the application are hosted 

inside fragments, which are managed by that single activity. (Lake, 2018.)  

In the end, a fragment is considered as a sub-activity. It has the full capability to replace 

an activity. 

3.2.2 Modules architecture 

As described in section 2.5.4, modularity is one factor for a maintainable project. Splitting 

a project into multiple modules brings tremendous advantages for Android developers. 

First and foremost, this implementation undoubtedly leverages the advantages of the 

buildSrc module to manage third-party libraries.  



29 

  

 

Secondly, the shared code for animation that is used throughout the project can be 

encapsulated in one module, called core-animation. This module is the heart of this 

project because it contains the purpose of this implementation, APIs for writing 

maintainable animation code. It hides the complex code inside and only exposes short 

and simple APIs to dependent modules so that the animation code in those modules is 

cleaner. 

Resource files such as Lottie JSON files stay in one module, called app-resource.  

Since the three animations presented in this project happens on three different screens, 

namely the onboarding screen, the tabs screen, and the venue detail page, three Android 

modules are created for each of them. They will depend on core-animation and app-
resource.  

The previous section states that this project follows the single-activity approach. 

Therefore, it is sensible to have one module to host that entry activity of the application. 

By default, that module is named app when a new project is created with Android Studio. 

The activity controls the fragments inside it, meaning that this module needs the three 

screen-modules. Moreover, if the module app needs to use resource files or animation 

code, it requires both core-animation and app-resource.  

The architecture of this project is shown in figure 14. 

 

Figure 14. Module dependency graph 



30 

  

 

3.3 Onboarding animation 

3.3.1 Specification 

Figure 15 visualizes how the animations in the onboarding screen should look like. 

 

Figure 15. Onboarding screen animation specification. 

According to the specification, two main animations are happening on the screen.  

The first one is Lottie animation, which has 4 main scenes. The first scene only appears 

once before the other three takes turn to be shown. In other words, the frames between 



31 

  

 

frame 0 and frame 227 of the Lottie animation are only rendered once while the frames 

between frame 228 and frame 972 are rendered repeatedly in order. 

The second animation runs after the first one has started for 2180 milliseconds, and it is 

a combination of 8 smaller motions. The time graph in the specification indicates their 

components. For example, the motion (1) runs on the title view, which is marked in the 

reddish-orange box, and changes its alpha (opacity) from 0 to 1 in 300 milliseconds 

without any delay. 

3.3.2 Implementation 

A fragment called OnboardingFragment, defined in the onboarding module, presents 

the onboarding screen. When the screen is shown, the texts, the button, and the divider 

are hidden. Therefore, the implementation should prepare the UI before the animation 

happens. It is enough to make those views transparent and disable the button, as the 

users should not be able to click before it is visible. This can be done with script 13. 

private fun prepareUiBeforeAnimation() { 
    btnDone.isClickable = false 
    tvTitle.alpha = 0f 
    tvDescription.alpha = 0f 
    vDivider.alpha = 0f 
    btnDone.alpha = 0f 
} 

Script 13. Implementation of prepareUiBeforeAnimation. 

The animations for the views at the bottom of the UI can be performed in a group by 

using AnimatorSet. Because there are several animations created, it is a good practice 

to create a function, called constructAnimator, that is responsible for the creation. Its 

implementation is placed in the core-animation module as in script 14. 

# core-animation/src/main/java/.../animator/AnimatorFactory.kt 
 
fun constructAnimator( 
    duration: Int, interpolator: Interpolator? = null, delay: Long = 0, 
    onUpdate: (Float) -> (Unit), onStart: (() -> (Unit))? = null,  
    onEnd: (() -> (Unit))? = null 
): ValueAnimator { 
    val animator = ValueAnimator.ofFloat(0f, 1f) 
        .setDuration(duration.toLong()) 
    interpolator?.let { animator.interpolator = it } 
    animator.addUpdateListener { onUpdate(it.animatedFraction) } 
    if (onStart != null || onEnd != null) { 
        animator.addListener(object : AnimatorListenerAdapter() { 



32 

  

 

            override fun onAnimationStart(animation: Animator?) { 
                onStart?.invoke() 
            } 
 
            override fun onAnimationEnd(animation: Animator?) { 
                onEnd?.invoke() 
            } 
        }) 
    } 
    animator.startDelay = delay 
    return animator 
} 
 

Script 14. Implementation of constructAnimator. 

In this case, the function should return an animator so that it can be added to an 

AnimatorSet. That means ViewPropertyAnimator should not be used because it is not 

a subclass of Animator. The output of the function should be either ObjectAnimator or 

ValueAnimator. It is mentioned in section 2.4.1 that ValueAnimator is a superclass of 

ObjectAnimator, and it is capable of replacing ObjectAnimator as well as creating 

more customized animations. Another advantage of ValueAnimator is that it allows 

developers to animate multiple properties of different views as long as their motions 

possess the same duration, delay, and easing curves. Therefore, the superclass is 

preferred. The function takes 3 components of animation, duration, easing curve 

(interpolator), and delay, as inputs. It also provides additional callbacks. onUpdate is a 

mandatory callback, which is called whenever the progress value of the ValueAnimator 
changes. The progress value is between 0 to 1. Typically, the API consumer calculates 

the value of the animated property based on the progress value and adjusts UI elements 

in this callback. onStart and onEnd are optional callbacks that give the developer the 

ability to take actions when the animation starts or ends. With the implemented 

constructAnimator function, it is straightforward to implement the animations for those 

views at the bottom follow the specifications as shown in script 15. 

private fun createBottomViewsAnimatorSet(): AnimatorSet { 
 
    val animations = listOf( 
        constructAnimator(300, LinearInterpolator(), 
            onUpdate = { tvTitle.alpha = it }                   // motion (1) 
        ), 
        constructAnimator(300, DecelerateInterpolator(), 
            onUpdate = { tvTitle.translationY = 16 * (1 - it) } // motion (2) 
        ),  
        constructAnimator(300, LinearInterpolator(), delay = 50, 
            onUpdate = { 
                tvDescription.alpha = it                        // motion (3) 
                vDivider.alpha = it                             // motion (5) 
            } 
        ), 
        constructAnimator(300, DecelerateInterpolator(), delay = 50, 



33 

  

 

            onUpdate = { 
                tvDescription.translationY = 16 * (1 - it)      // motion (4) 
                vDivider.translationY = 16 * (1 - it)           // motion (6) 
            } 
        ),  
        constructAnimator(300, LinearInterpolator(), delay = 100, 
            onUpdate = { btnDone.alpha = it },                  // motion (7) 
            onEnd = { btnDone.isClickable = true } 
        ), 
        constructAnimator(300, OvershootInterpolator(), delay = 100, 
            onUpdate = { btnDone.translationY = 16 * (1 - it) } // motion (8) 
        ) 
    ) 
 
    val animatorSet = AnimatorSet() 
    animatorSet.playTogether(animations) 
    animatorSet.startDelay = 2180 
    return animatorSet 
} 

Script 15. Implementation of createBottomViewsAnimatorSet. 

The function createBottomViewsAnimatorSet belongs to OnboardingFragment. It 

creates all the animations according to the given specification. Even though there are 8 

motions according to the requirement, there are only 6 animators created because the 

description text and the divider have the same motions. Therefore, motion (3) and motion 

(5) can be created with only one animator while another one achieves motion (4) and 

motion (6). All of the created animators are played together under an AnimatorSet. It 
also adds a delay of 2180 milliseconds to the returned animator. One important thing is 

that the button is re-enabled after it is fully visible by using the onEnd callback. 

The next step is to show the Lottie animation on the UI. Needless to say, the Lottie JSON 

file, onboarding.json, has to be placed in the app-resource module. After the resource 

file is ready, the function that prepares the configuration for the Lottie view is written in 

OnboardingFragment as in script 16. 

private fun setupLottieAnimation(bottomAnimation: Animator) {  
    lottieView.setAnimation(R.raw.onboarding) 
    lottieView.setRepeatCount(INFINITE) 
    lottieView.setMaxFrame(972) 
    lottieView.addAnimatorListener(object : AnimatorListenerAdapter() { 
 
        override fun onAnimationStart(animation: Animator?) = bottomAnimation.start() 
 
        override fun onAnimationRepeat(animation: Animator?) = 
lottieView.setMinFrame(228) 
 
    }) 
} 

Script 16. Implementation of setupLottieAnimation. 



34 

  

 

In the requirement, the frames within frame 0 and frame 227 are shown once before the 

frames between 228 and 972 are looped. Therefore, setMinFrame is called when the 

animation repeats to prevent the view from replaying scene 1. The animations of bottom 

views are also played when the Lottie animation starts. 

The last preparation is to cancel the animator when the fragment is destroyed. This is 

important because uncleared animators may cause memory leaks. This action may 

happen in another place because an application has multiple fragments, and some of 

those fragments may also have animators running.  Therefore, creating a function to stop 

an animator in the core-animation module for reusable purpose is necessary. 

fun Lifecycle.cancelAnimatorOnDestroy(animator: Animator) { 
    addObserver(object : LifecycleObserver { 
        @OnLifecycleEvent(Lifecycle.Event.ON_DESTROY) 
        fun onDestroyed() { 
            removeObserver(this) 
            animator.cancel() 
        } 
    }) 
} 

Script 17. Implementation of cancelAnimatorOnDestroy. 

In script 17, cancelAnimatorOnDestroy is an extension function of the Lifecycle class. It 

attaches an observer to the lifecycle (of a fragment or an activity) to determine when it is 

destroyed and cancel the animator accordingly. 

The final step is to start those created animators after the fragment’s view hierarchy is 

created as in script 18. 

override fun onViewCreated(view: View, savedInstanceState: Bundle?) { 
    super.onViewCreated(view, savedInstanceState)  
    prepareUiBeforeAnimation() 
    val bottomAnimator = createBottomViewsAnimatorSet() 
    lifecycle.cancelAnimatorOnDestroy(bottomAnimator) 
    setupLottieAnimation(bottomAnimator) 
    lottieView.playAnimation() 
} 

Script 18. Start onboarding animation. 

From this implementation, it is noticeable that the animations of the texts, the divider, 

and the button are dependent on the Lottie animation. One may argue that these 

dependencies between those animations are not needed because the animations for the 



35 

  

 

views at the bottom of the UI can start immediately after the screen is loaded with a delay 

of 2180 milliseconds. However, that argument is invalid because it does not count the 

Lottie animation loading time. With that approach, the motions of the texts and buttons 

are not synchronized with the Lottie animation and appear earlier than expected as the 

loading time may take up to 0.3 seconds to 0.5 seconds on weak devices. 

After accomplishing the first animation, the core-animation module has its first two 

methods constructAnimator and cancelAnimatorOnDestroy. They lay the first foundation 

for this project’s future. Without constructAnimator, the implementation of 

createBottomViewsAnimatorSet will be gigantic, and so will the future animations. 

3.4 Transition between tabs 

3.4.1 Specification 

In the application, there is a screen that has a bottom navigation bar that allows users to 

switch the content on the screen by selecting one of the icons in it. Each of those icons 

is called a tab. For simplicity purpose, this project only shows only two tabs on the screen. 

They are the discovery tab and the deliver tab. When the user switches to a new tab, the 

content also changes. To reduce friction for that change, a transition is needed. Its 

specification is described in figure 16. 

According to it, both disappearing and appearing contents are animated. While the 

disappearing content only fades out gradually in 300 milliseconds, the appearing content 

has three motions in total. Unlike the onboarding animation, where the motions have 

constants for their animated values, the animation for the appearing area is screen-size-

specific, meaning that the animated values differ between screen sizes. For example, 

while the translationX motion requires x, the bounds circular reveal motion depends on 

three dynamic parameters x, y, and d. Those three values are calculated at runtime. The 

specification defines x as the distance between the left bound of the screen to the center 

point of the tab, y as the distance between the top bound to that same point, and d as 

the distance between the top-left corner of the screen and the tab’s center. 



36 

  

 

 

Figure 16. Specification of the transition between tabs. 

3.4.2 Implementation 

The whole UI of this screen, including the bottom navigation bar and the content, can be 

hosted inside a fragment, TabsFragment that belongs to the tabs module. The content 

of each tab can be encapsulated into child fragments to reduce the parent’s 

responsibility. All tabs may be hosted under TabsFragment, but it is not scalable 

because, in the future, there might be more tabs introduced. Having all logic under one 

fragment makes the code less comprehensive and less maintainable. 

Since each tab’s content is under one fragment, it is reasonable to use fragment 

transition APIs in this case. The first transition is the disappearing tab’s exit transition 

whereas the other three can be the appearing tab’s enter transition. In reality, one project 



37 

  

 

is likely to have several fragment transitions. Therefore, creating a base class for 

fragment transition in core-animation is necessary. Script 19 is the implementation of 

that abstract class. 

# ./core-animation/src/main/.../core_animation/transition/FragmentTransition.kt 
abstract class FragmentTransition : Transition() { 
 
    protected lateinit var fragment: Fragment 
 
    override fun captureEndValues(transitionValues: TransitionValues) {} 
    override fun captureStartValues(transitionValues: TransitionValues) {} 
 
    override fun isTransitionRequired(startValues: TransitionValues?, endValues: 
TransitionValues?) = true 
 
    @CallSuper override fun createAnimator(sceneRoot: ViewGroup, startValues: 
TransitionValues?, endValues: TransitionValues?): Animator? { 
        val fragmentRoot = fragment.view 
        return fragmentRoot?.let { createFragmentAnimator(it) } ?: return null 
    } 
 
    abstract fun createFragmentAnimator(fragmentRoot: View): Animator 
 
    @CallSuper 
    open fun integrateWithFragment(fragment: Fragment) { 
        this.fragment = fragment 
    }  
 
} 

Script 19. Implementation of FragmentTransition. 

By default, a fragment transition does not require any value capturing. Thus, the 

implementations of captureEndValues and captureStartValues are empty. The subclass 

may change this if necessary. However, because of those empty functions, the Android 

system may understand that the transition can be skipped. As a result, the transition 

does not visually happen. FragmentTransition can prevent that behavior by enforcing 

isTransitionRequired to always return true. The createAnimator function will create the 

animator that runs when the transition happens. It passes the root view of the fragment 

to createFragmentAnimator, which is overridden by subclasses. This function is essential 

for creating customized transitions. Last but not least, integrateWithFragment is an open 

function that determines the relation between the transition and the fragment. The default 

implementation is simply setting the fragment as a property of the transition. 

Since enter transition and exit transition have distinctive characteristics, it is also possible 

to create base classes for them in the core-animation module. They should directly 

inherit from FragmentTransition as shown in script 20. 



38 

  

 

# ./core-animation/src/main/.../core_animation/transition/FragmentEnterTransition.kt 
abstract class FragmentEnterTransition : FragmentTransition() { 
    override fun createAnimator(sceneRoot: ViewGroup, startValues: TransitionValues?, 
        endValues: TransitionValues?): Animator? { 
        val animator = super.createAnimator(sceneRoot, startValues, endValues) ?: return 
null 
        animator.addListener( 
            onStart = { fragment.view?.bringToFront() }, 
            onEnd = { fragment.enterTransition = null } 
        ) 
        return animator 
    } 
 
    @CallSuper override fun integrateWithFragment(fragment: Fragment) { 
        super.integrateWithFragment(fragment) 
        fragment.enterTransition = this 
    } 
} 
 
# ./core-animation/src/main/.../core_animation/transition/FragmentExitTransition.kt 
abstract class FragmentExitTransition : FragmentTransition() { 
    override fun createAnimator(sceneRoot: ViewGroup, startValues: TransitionValues?, 
        endValues: TransitionValues?): Animator? { 
        val animator = super.createAnimator(sceneRoot, startValues, endValues) ?: return 
null 
        animator.addListener( 
            onStart = { fragment.view?.isVisible = true }, 
            onEnd = { fragment.exitTransition = null } 
        ) 
        return animator 
    } 
 
    @CallSuper override fun integrateWithFragment(fragment: Fragment) { 
        super.integrateWithFragment(fragment) 
        fragment.exitTransition = this 
    } 
} 

Script 20. Implementation of FragmentEnterTransition and FragmentExitTransition. 

Both classes override integrateWithFragment to set up the transition for the fragment 

and override createAnimator to add certain callbacks to the animator. For 

FragmentEnterTransition, it brings the fragment’s root to the front so that the 

disappearing fragment does not overlap the appearing fragment. It also clears the enter 

transition of the fragment after the transition finished to prevent memory leak due to cyclic 

reference between the transition and the fragment. On the other hand, 

FragmentExitTransition forces the fragment’s root view to be visible before running the 

animation. By default, it is hidden by the fragment manager.  

At this stage, the code for switching between tabs’ fragments is still not ready. This block 

of code is another candidate to go to core-animation because it applies transitions to 

fragments and can be reutilized. An extension function on FragmentManager is rational 

in this case. 



39 

  

 

# ./core-animation/src/main/.../core_animation/fragment/FragmentNavigationHelper.kt 
fun FragmentManager.navigateToTab( 
    tag: String,IdRes rootId: Int, appearingFragmentFactory: () -> Fragment, 
    enterTransition: FragmentEnterTransition, exitTransition: FragmentExitTransition 
) { 
    val (appearingFragment, newlyCreated) = findFragmentByTag(tag)?.let { it to false } 
        ?: enterFragmentFactory() to true 
    enterTransition.integrateWithFragment(appearingFragment)  
    val disappearingFragment = fragments.firstOrNull { it.isVisible } 
    if (disappearingFragment != null)  
        exitTransition.integrateWithFragment(disappearingFragment) 
    commit { 
        if (newlyCreated) add(rootId, appearingFragment, tag)  
        else show(appearingFragment)  
        disappearingFragment?.let { hide(it) } 
    } 
} 

Script 21. Implementation of navigateToTab. 

The function takes a tag as a parameter to determine if the appearingFragment exists or 

not. If it does not, it is created using the appearingFragmentFactory callback and added 

to the view with the id of rootId. Otherwise, the fragment manager can just show the 

existing fragment instead of creating a new one. In either case, the enterTransition is 

applied to the appearingFragment. About the disappearingFragment, it is easily found 

because it is the only visible fragment before the transition happens. The extension 

function integrates the exitTransition to the disappearingFragment and simply hides it. It 

is important to hide the fragment instead of removing it because hiding the fragment 

helps the fragment manager find and reuse it while removing enforces creating a new 

tab’s fragment every time the user switches back to that tab, which is wasteful. 

With the implementation of base classes in place, it is straight forward to create custom 

transitions by inheriting the correct class. For example, the exit transition of the 

disappearing’s tab can be written and placed in the tabs module as in script 22. 

# ./tabs/src/main/java/la/me/leo/tabs/transition/MainTabsPopTransition.kt 
internal class MainTabsPopTransition : FragmentExitTransition() { 
 
    override fun createFragmentAnimator(fragmentRoot: View): Animator { 
        val animator = constructAnimator( 
            duration = 300, 
            onUpdate = { fragmentRoot.alpha = 1f - it }, 
            onEnd = { fragmentRoot.alpha = 1f } 
        ) 
        fragment.lifecycle.cancelAnimatorOnDestroy(animator) 
        return animator 
    } 
} 

Script 22. Implementation of MainTabsPopTransition. 



40 

  

 

However, the enter transition for the appearing tab is more complicated because it has 

dynamic parameters. The parameters x and y should be provided by the TabsFragment 
as it has information of the tab’s position. The parameter d can be calculated in the 

transition class by applying the Pythagorean Theorem: 𝑑 = 	1𝑥" + 𝑦". When all 

parameters are resolved, three motions are written and played together using 

AnimatorSet. 

# ./tabs/src/main/java/la/me/leo/tabs/transition/MainTabsPushTransition.kt 
internal class MainTabsPushTransition(private val x: Int, private val y: Int) :  
 FragmentEnterTransition() { 
    override fun createFragmentAnimator(fragmentRoot: View): Animator { 
        val animator1 = createCircularRevealAnimator(fragmentRoot) 
        val animator2 = createTranslationAnimator(fragmentRoot) 
        val animatorSet = AnimatorSet() 
        animatorSet.playTogether(animator1, animator2) 
        animatorSet.interpolator = PathInterpolatorCompat.create(0.25f, 0.1f, 0.25f, 1f) 
        fragment.lifecycle.cancelAnimatorOnDestroy(animatorSet) 
        return animatorSet 
    } 
 
    private fun createCircularRevealAnimator(fragmentRoot: View): Animator { 
        val d = sqrt(fragmentRoot.height.toFloat().pow(2f) + x.toFloat().pow(2f)) 
        return ViewAnimationUtils.createCircularReveal(fragmentRoot, x, y, 0f, d) 
            .setDuration(300L) 
    } 
 
    private fun createTranslationAnimator(fragmentRoot: View): Animator { 
        return constructAnimator( 
            duration = 300, 
            onUpdate = { animatedValue -> 
                with(fragmentRoot) { 
                    translationX = (1 - animatedValue) * x 
                    translationY = (1 - animatedValue) * 16f 
                } 
            } 
        ) 
    } 
} 

Script 23. Implementation of MainTabsPushTransition. 

Finally, the TabsFragment utilizes navigateToTab and the created transitions to bring 

the desired animations to consumers. As mentioned, it only needs to calculate the x and 

y values for the MainTabsPushTransition, and those calculations are clearly shown in 

the following script. 

# ./tabs/src/main/java/la/me/leo/tabs/TabsFragment.kt 
private fun setUpTabs() { 
    bottomNavigationView.setOnNavigationItemSelectedListener f@{ 
        when (it.itemId) { 
            R.id.item_discovery -> { 
                showFragment(TAG_DISCOVERY, 0) { DiscoveryFragment() } 
                return@f true 
            } 
            R.id.item_deliver -> { 
                showFragment(TAG_PROFILE, 1) { DeliveryFragment() } 



41 

  

 

                return@f true 
            } 
        } 
        return@f false 
    } 
} 
 
private fun showFragment(tag: String, tabIndex: Int, fragmentFactory: () -> Fragment) {  
    val tabCount = bottomNavigationView.menu.size() 
    val x = ((tabIndex + 0.5f) / tabCount * bottomNavigationView.width).toInt() 
    val y = (bottomNavigationView.bottom + bottomNavigationView.top) / 2 
    childFragmentManager.navigateToTab( 
        tag, R.id.fragmentRoot, fragmentFactory,  
        MainTabsPushTransition(x, y), MainTabsPopTransition() 
    ) 
} 

Script 23. Tabs transition usage in TabsFragment. 

By extracting the navigation code into a function in the core-animation module, the code 

in TabsFragment looks shorter and more self-descriptive. More valuable, all future 

screens with tabs take the same benefit and take less time to implement. 

After finishing this transition, core-animation has abstract code related to fragment 

transition. It might take much effort at first to write all these base classes, but as the 

project grows, it helps to add custom transitions seamlessly and reliably because all 

necessary setup work is bundled inside the developed base classes. Developers only 

focus on the animation and transition logic inside the sub-classes. On rare occasions, 

when they need extra setup work for the transitions, they simply add more code to the 

base classes and all existing animations shall remain the same. 

3.5 Venue detail page scrolling behavior 

3.5.1 Specification 

Figure 17 demonstrates the scrolling process of the venue detail page. When being 

scrolled, the UI elements inside the header moves to form a united visual effect. This 

process is complex and is divided into 6 phases. In each phase, there are different 

motions that happen simultaneously. Some motions even happen across multiple 

phases. Therefore, it is essential to write the behavior with carefulness so that it is easy 

to follow. 



42 

  

 

 

Figure 17. Specification of scrolling behavior in venue page detail. 

The first phase and the last phase are self-descriptive. In the expanded phase, the 

scrolling process has not started, thus, none of the motions run at this phase. During the 

collapsed phase, the header is fully collapsed, the positions of UI elements settle, thus, 

the only motion that exists is the moving content. 

The four middle phases involve multiple motions. Phase one takes place before the 

scrolling position reaches half of the image’s height. Phase two occurs right after phase 



43 

  

 

one until the content is scrolled up by exactly the whole image’s height. Phase three 

immediately starts after phase two is finished until the big title of the page meets the 

toolbar bottom. Last but not least, phase four ends when the big title is completely hidden.  

From the technical implementation perspective, it might be easier to analyze the 

specification based on each motion than analyze it based on each phase. There are 

exactly 10 motions that can be taken from the requirement: 

The image’s opacity changes from 1 to 0 during phase 1 and phase 2 (1). 

The image’s scale changes from 1.1 to 1 during phase 1 and phase 2 (2). 

The background color of toolbar icons (back icon, search icon, and more info icon) 

changes from #B8FFFFFF to #14202125 during phase 1 and phase 2 (3). 

The more info icon’s scale changes from 1 to 0 during phase 2 (4). 

The more info icon’s opacity changes from 1 to 0 during phase 2 (5). 

The search icon moves to the right and takes the more info icon’s position during phase 

2 (6). 

The toolbar background’s opacity changes from 0 to 1 during phase 3 (7). 

The toolbar title’s opacity changes from 0 to 1 during phase 3 and phase 4 (8). 

The toolbar title moves up by 8dp during phase 3 and phase 4 (9). 

The big title’s opacity changes from 1 to 0 during phase 3 and phase 4 (10). 

3.5.2 Implementation 

This visual effect is special since it does not have a duration. Its appearance completely 

depends on the scrolling position of the content. Because of that reason, it is impossible 

to use Android Animator and Transition APIs to achieve the goal. However, the Android 



44 

  

 

framework allows developers to subscribe to the change in position of scrolling content. 

It helps render the elements correctly based on the scrolling position. A simple solution 

is to write the custom header view by inheriting the class View and subscribe to the 

position change inside the implementation. However, browsing the original Wolt 

application shows that there are several collapsing elements with different graphical 

effects; it is wiser to create a base class for all collapsing elements. Script 24 contains 

the simple implementation of that base class called CollapsingWidget. This class, of 

course, belongs to the core-animation module for reusability. 

# ./core-animation/src/main/.../core_animation/CollapsingWidget.kt 
abstract class CollapsingWidget(context: Context, attrs: AttributeSet) 
 : ConstraintLayout(context, attrs) { 
 
    protected lateinit var scrollView: NestedScrollView 
 
 
    fun bind(scrollView: NestedScrollView) {  
        this.scrollView = scrollView 
        scrollView.setOnScrollChangeListener { _, _, scrollY, _, _ -> 
            onScrollPositionChanged(scrollY.toFloat()) 
        } 
    } 
 
    protected abstract fun onScrollPositionChanged(scrollY: Float) 
} 

Script 24. Implementation of CollapsingWidget. 

The bind function is exposed so that an activity or a fragment can tell the collapsing view, 

which scroll view’s scrolling position, is interested and react accordingly. The function 

also stores the scroll view as a property of the CollapsingWidget in case subclasses 

need to access it. 

The base class also has one abstract function that requires all children to override called 

onScrollPostionChanged. This function determines how the elements transform for a 

particular scrolling position as CollapsingWidget attached it to the scrollView’s listener. 

At this point, the developer can start implementing the custom header element to achieve 

the required scrolling behavior. In this example, it is called 

VenueCollapsingImageWidget, a class that inherits CollapsingWidget. Its skeleton is 

included in script 25. Since this view is only used in the venue detail page, it should be 

placed in the venue-detail-page module. 



45 

  

 

# ./venue-detail-page/src/.../venue_detail_page/widget/VenueCollapsingImageWidget.kt 

internal class VenueCollapsingImageWidget(context: Context, attrs: AttributeSet)  

 : CollapsingWidget(context, attrs) {  

    
    private var currentPhase: Phase = Phase.EXPANDED 
 
     
    override fun onScrollPositionChanged(scrollY: Float) { 
        val collapsingDistance = calcCollapsingDistance() 
        determineCurrentPhase(scrollY, collapsingDistance) 
        renderImage(scrollY, collapsingDistance) 
        renderIconBackground(scrollY, collapsingDistance) 
        renderMoreInfoIconSize(scrollY, collapsingDistance) 
        renderSearchIconPosition(scrollY, collapsingDistance) 
        renderTitles(scrollY, collapsingDistance) 
        renderToolbarBackground(scrollY, collapsingDistance) 
    } 
 
    private fun determineCurrentPhase(scrollY: Float, collapsingDistance: Float) {} 
 
    // Handle motion (1) and (2) 
    private fun renderImage(scrollY: Float, collapsingDistance: Float) {} 
 
    // Handle motion (3) 
    private fun renderIconBackground(scrollY: Float, collapsingDistance: Float) {} 
 
    // Handle motion (4) and (5) 
    private fun renderMoreInfoIconSize(scrollY: Float, collapsingDistance: Float) {} 
 
    // Handle motion (6) 
    private fun renderSearchIconPosition(scrollY: Float, collapsingDistance: Float) {} 
 
    // Handle motion (7) 
    private fun renderToolbarBackground(scrollY: Float, collapsingDistance: Float) {} 
 
    // Handle motion (8), (9) and (10) 
    private fun renderTitles(scrollY: Float, collapsingDistance: Float) {} 
 
    enum class Phase { EXPANDED, ONE, TWO, THREE, FOUR, COLLAPSED } 
 
} 

Script 25. Structure of VenueCollapsingImageWidget. 

Inside the class, there is an enum class defined, Phase. It represents the phases in the 

specifications and is stored inside the view under the property currentPhase. As 

mentioned, since VenueCollapsingImageWidget is a subclass of CollapsingWidget, 
it has to override onScrollPositionChanged and adjust its element inside the 

implementation of the function. Basically, what happens there is that the view tries to 

determine the current phase based on the scrolling position and the collapsing distance, 

or the image’s height, by calling determineCurrentPhase function. After that step, it 

renders the elements based on that phase, the scrolling position, and the collapsing 

distance by calling all render methods. Each render method will handle the motions that 



46 

  

 

are related to at least one element. For instance, renderImage handles motion (1) and 

motion (2) because they both require changes in the image element. 

The most important logic inside this view is determining phase logic. If the phase is 

wrongly determined, the elements are all rendered incorrectly. That logic is written in 

script 26 following the specification analysis in the previous section. 

private fun determineCurrentPhase(scrollY: Float, collapsingDistance: Float) { 
    val phase3ScrollRange = context.getDimen(R.dimen.u3) 
    currentPhase = when { 
        scrollY == 0f -> Phase.EXPANDED 
        scrollY < collapsingDistance / 2 -> Phase.ONE 
        scrollY < collapsingDistance -> Phase.TWO 
        scrollY < collapsingDistance + phase3ScrollRange -> Phase.THREE 
        scrollY < collapsingDistance + phase3ScrollRange + (bigTitle?.height ?: 0) -> 
Phase.FOUR 
        else -> Phase.COLLAPSED 
    } 
} 

Script 26. Determining phase logic for VenueCollapsingImageWidget. 

Thanks to Kotlin when expression, the function looks short and precise. If the project is 

written in Java, there will be many if-else chains, which reduce readability. 

The last step in this implementation is to write the code for rendering UI elements inside 

the header based on phase and scrolling position. With the specification analysis step, 

this becomes relatively straight-forward. Script 27 shows how to follow the design 

requirements for those elements. 

// Handle motion (1) and (2) 
private fun renderImage(scrollY: Float, collapsingDistance: Float) { 
    val progress = when(currentPhase) { 
        Phase.EXPANDED -> 0f 
        Phase.ONE, Phase.TWO -> scrollY / collapsingDistance 
        else -> 1f 
    } 
    val ivImageScale0 = 1.1f 
    val ivImageScale1 = 1.0f 
    val ivImageScale = (ivImageScale0 - ivImageScale1) * (1f - progress) + ivImageScale1 
    binding.ivImage.scaleX = ivImageScale 
    binding.ivImage.scaleY = ivImageScale 
    binding.ivImage.alpha = 1f - progress 
} 
 
// Handle motion (3) 
private fun renderIconBackground(scrollY: Float, collapsingDistance: Float) { 
    val bgProgress = when(currentPhase) { 
        Phase.EXPANDED -> 0f 
        Phase.ONE, Phase.TWO -> scrollY / collapsingDistance 
        else -> 1f 
    } 
    val iconBgColor = 



47 

  

 

        argbEvaluator.evaluate(bgProgress, expandedIconBgColor, collapsedIconBgColor) as 
Int 
    binding.leftIconWidget.backgroundCircleColor = iconBgColor 
    binding.rightIconWidget1.backgroundCircleColor = iconBgColor 
    binding.rightIconWidget2.backgroundCircleColor = iconBgColor 
} 
 
// Handle motion (4) and (5) 
private fun renderMoreInfoIconSize(scrollY: Float, collapsingDistance: Float) { 
    val progress = when(currentPhase) { 
        Phase.EXPANDED, Phase.ONE -> 1f 
        Phase.TWO -> 1 - (scrollY - collapsingDistance / 2) / (collapsingDistance / 2) 
        else -> 0f 
    } 
    binding.rightIconWidget1.alpha = progress 
    binding.rightIconWidget1.size = (binding.rightIconWidget2.size * progress).toInt() 
} 
 
// Handle motion (6) 
private fun renderSearchIconPosition(scrollY: Float, collapsingDistance: Float) { 
    val progress = when(currentPhase) { 
        Phase.EXPANDED, Phase.ONE -> 1f 
        Phase.TWO -> 1 - (scrollY - collapsingDistance / 2) / (collapsingDistance / 2) 
        else -> 0f 
    } 
    val marginEnd0 = context.getDimen(R.dimen.u8) 
    val marginEnd1 = context.getDimen(R.dimen.u2) 
    val marginEnd = (marginEnd0 - marginEnd1) * progress + marginEnd1 
    binding.rightIconWidget2.updateLayoutParams<LayoutParams> { 
        updateMarginsRelative(end = marginEnd.toInt()) 
    } 
} 
 
// Handle motion (7) 
private fun renderToolbarBackground(scrollY: Float, collapsingDistance: Float) { 
    val alpha = when(currentPhase) { 
        Phase.EXPANDED, Phase.ONE, Phase.TWO -> 0f 
        Phase.THREE -> (scrollY - collapsingDistance) / context.getDimen(R.dimen.u3) 
        else -> 1f 
    } 
    binding.flToolbarBgContainer.alpha = alpha 
} 
 
// Handle motion (8), (9) and (10) 
private fun renderTitles(scrollY: Float, collapsingDistance: Float) { 
    val progress = when(currentPhase) { 
        Phase.EXPANDED, Phase.ONE, Phase.TWO -> 0f 
        Phase.THREE, Phase.FOUR -> (scrollY - collapsingDistance) / phase34ScrollRange 
        Phase.COLLAPSED -> 1f 
    } 
    val translationY0 = context.getDimen(R.dimen.u1) 
    val translationY = (1f - progress) * translationY0 
    binding.tvTitle.translationY = translationY 
    binding.tvTitle.alpha = progress 
    bigTitle?.alpha = 1f - progress 
} 

Script 27. Render elements logic for VenueCollapsingImageWidget. 

The code that renders elements are well-structured and split into small functions. 

Complex calculations become understandable by using meaningful variable names. 

These actions are done so that future adjustments in this class can be done fast. The 

implementation of this custom view is done at this point. There is still code that is used 



48 

  

 

to assign the image to render, the venue’s title, or click listeners for the icons, but they 

are minor and out of scope as this paper focuses mainly on animation code.  

This class is used in VenueDetailPageFragment as shown in script 28. 

# venue-detail-page/src/main/java/la/me/leo/venue_detail_page/VenueDetailPageFragment.kt 
class VenueDetailPageFragment : Fragment() { 
 
    override fun onViewCreated(view: View, savedInstanceState: Bundle?) { 
        super.onViewCreated(view, savedInstanceState) 
        setupToolbar() 
    } 
 
    private fun setupToolbar() = venueCollapsingImageWidget.bind(scrollView) 
} 

Script 28. A usage of VenueCollapsingImageWidget. 

By exercising this scrolling behavior, core-animation gains an abstract class for creating 

collapsing views, which is common in mobile applications. The current implementation 

is only compatible with NestedScrollView. Whenever needed, the developer should 

extend the functionality to also support RecyclerView, which is another view with 

scrolling behavior in Android development. 

 



49 

  

 

4 Analysis 

After the implementation, the repository gains a special module, core-animation that 

helps writing animations easier and cleaner. It acts as a base of all animation code in the 

project. Nevertheless, a perfect codebase does not exist. Therefore, it is worth analyzing 

the result from different aspects to benchmark it precisely. 

The result shows several benefits. As mentioned, reusable animation components are 

created and encapsulated inside core-animation. These components may take time to 

implement at first, but once they are finished, it is possible to reuse them across the 

repository. In a company with some mobile applications, the module can also be reused 

across different projects. The module is technically reliable since it is tested before; it 

saves time and effort to create similar animations for both the development process and 

the testing process in the future. Reusability also brings another advantage for 

engineers. They write shorter code, which is more readable and more comprehensible. 

It is significant especially when others review the code or adjust the code later. Thirdly, 

this module is also extendable. In section 3.4, when building the transition, a hierarchy 

tree of transition classes is created. Starting at the root is the FragmentTransition, the 

superclass of two direct children, FragmentEnterTransition and 

FragmentExitTransition. They are two abstract ancestors of 

MainTabsPushTransition, MainTabsPopTransition, and other transitions that will be 

introduced. However, in the future, if the two ancestors cannot satisfy a requirement, for 

example, reenter transition, a transition happens on the previous screen when the user 

goes back from the current screen, it is simple to introduce another superclass in core-
animation, called FragmentReenterTransition that extends FragmentTransition and 

fulfill the use case as shown in figure 18. 



50 

  

 

 

Figure 18. Visualized diagram that describes the extendability of FragmentTransition. 

The last benefit of encapsulating the base animation code inside a dedicated module is 

that it can be a candidate for an open-source project. Exposing the module to the 

community means the code gains the attention of interested developers. With more 

contributors, bugs are spotted more effortlessly and faster. They also add more features 

to the repository and enhances its completeness. 

On the contrary, there exist minor problems in this approach. Firstly, when new members 

join the team, it takes time for them to familiarize themselves with the module core-
animation and its feature. Even though the module is built on top of Android animator 

APIs and transition APIs, it is still not a standard Android API that is widely known among 

the developers. One possible solution is having short but precise documentation for the 

module so that it is neither overwhelming to absorb nor useless to understand. The 

document needs to be updated whenever a developer adds a new function or updates a 

function inside the module. Secondly, having common functions in core-animation does 

not guarantee a completely maintainable codebase. It is only the prerequisite for such a 

codebase as it simplifies and shortens the creation of animations and the control of their 

callbacks. Nevertheless, developers are required to organize their code tidily in the call 

sites. In the example of onboarding animation (section 3.3), 

createBottomViewsAnimatorSet and setupLottieAnimation still stays in a specific 



51 

  

 

fragment. Those functions are ones that require engineers to construct nicely at the UI 

level. 

Occasionally, difficulties arise when attempting to generalize code or wrap the existing 

animation API inside a simpler programming contract. In the case of venue detail page 

scrolling behavior (section 3.5), the developer needs to perform perplexing calculations 

to determine different phases of the motion. This is unavoidable because animation is 

partly based on mathematics. Those calculations are intricate that they make the code 

less understandable. During the implementation of that behavior, the motion is divided 

into as small as possible phases so that the mathematic formulas are found easier. The 

code is also broken into corresponding phases to increase the obviousness. Another 

challenge comes when navigateToTab (section 3.4) is implemented. The function is 

designed to take enter transition and exit transition as parameters; otherwise, all call 

sites need to assign the transitions to fragment, which is error-prone when a developer 

forgets to do that. Therefore, FragmentTransition class is introduced to build 

transitions. Its instances are directly passed to navigateToTab. However, to build the 

necessary animator, it needs to know the fundamental component of animation, the 

animated element. In this case, it is the fragment. Giving a fragment’s reference to the 

transition is manageable, but the problem is that the fragment also has the reference of 

the transition. In Kotlin, this is called a circular reference, which caused memory leaks 

(Dehghani, 2020). Technically, this is unacceptable for any application. To overcome this 

bug, the transition’s reference in the fragment is removed after the animation finishes by 

using the animator’s callback in FragmentTransition’s direct children. 

 

Figure 19. References between Fragment and FragmentTransition throughout animation 
lifecycle. 



52 

  

 

Despite the existence of minor issues, the approach significantly helps to achieve the 

goal of building a constructive and maintainable project. The source code is simple, 

reusable, understandable, and divided into specialized modules. In addition to that 

cleanliness, the biggest success is that all three complex animations are replicated, 

which proves the usefulness and practicality of the method in the Android development 

area. Ultimately, the outcome meets the goal of the project. 

 



53 

  

 

5 Conclusion 

The priority of the project is to build an Android codebase from scratch that highly 

supports customized and maintainable animations. By recreating a few animations from 

a real-life application, Wolt: Delivery Food, this thesis has shown how animation code 

can be written efficiently and cleanly to achieve motion designer’s requests and decrease 

later difficulties in maintenance work. The work covers numerous native Android 

animation APIs’ usages and other ways to construct animations. Most importantly, after 

these animations are rebuilt, they leave the project with convenient functionalities in the 

core-animation module to accelerate the development of incoming animations in the 

project and a perspicuous animation codebase for collaborators. 

Although the three animations require the application of multiple techniques, it is 

impossible to achieve 100% coverage for all kinds of animations because the imagination 

and the creativity of humans do not have any limitations. It is normal if the existing code 

cannot fulfill a specification afterward. When that time comes, the engineer has to think 

of another way.  

Even if animating UI elements in Android is hard due to the framework’s 11 years of 

evolution, the basic understanding of Android animations APIs is a prerequisite. When 

the vital core is mastered, it is recommended to evaluate maintainability thoroughly, and 

the concrete implementation can come later. Code that might be reused should be 

extracted to a common module, similar to core-animation in this project. Not only does 

it apply to animation work, but that attitude should also be considered in the daily work 

of a software engineer. It strengthens software-designing skills and helps developers 

transform complex logic such as animation logic into comprehensible source code.  



54 

  

 

References 

Airbnb.io. (2020). Lottie Docs. [online] Available at: https://airbnb.io/lottie/ [Accessed 9 

Dec. 2020].  

Andreas, B., Tor-Morten, G. & Ghinea, G. (2019). Animations in Cross-Platform Mobile 

Applications: An Evaluation of Tools, Metrics and Performance. Sensors (Basel, 

Switzerland), 19.  

Android Developers. (2019a). Animations and Transitions. [online] Available at: 

https://developer.android.com/training/animation [Accessed 23 September 2020].  

Android Developers. (2019b). Create a custom transition animation. [online] Available 

at: https://developer.android.com/training/transitions/custom-transitions [Accessed 17 

Nov. 2020].  

Android Developers. (2019c). Fragments. [online] Available at: 

https://developer.android.com/guide/componentsb/fragments [Accessed 7 Nov. 2020].  

Android Developers. (2019d). Reveal or Hide a View Using Animation. [online] 

Available at: https://developer.android.com/training/animation/reveal-or-hide-view 

[Accessed 1 October 2020].  

Android Developers. (2020a). Activity. [online] Available at: 

https://developer.android.com/reference/android/app/Activity [Accessed 11 Oct. 2020].   

Android Developers. (2020b). Animate layout changes using a transition. [online] 

Available at: https://developer.android.com/training/transitions [Accessed 21 Nov. 

2020].  

Android Developers. (2020c). Jetpack Compose. [online] Available at: 

https://developer.android.com/jetpack/compose [Accessed 6 Dec. 2020].  



55 

  

 

Android Developers. (2020d). Navigate between fragments using animations. [online] 

Available at: https://developer.android.com/training/basics/fragments/animate 

[Accessed 21 Nov. 2020].  

Android Developers. (2020e). Optimize Your Build Speed. [online] Available at: 

https://developer.android.com/studio/build/optimize-your-build#optimize [Accessed 3 

Dec. 2020].  

Android Developers. (2020f). Start an activity using an animation. [online] Available at: 

https://developer.android.com/training/transitions/start-activity [Accessed 16 Nov. 

2020].  

Android Developers. (2020g). View. [online] Available at: 

https://developer.android.com/reference/android/view/View?hl=en [Accessed 7 Nov. 

2020].  

Android Developers. (2021a). Kotlin and Android. [online] Available at: 

https://developer.android.com/kotlin [Accessed 16 Jan. 2021].  

Android Developers. (2021b). Reduce your app size. [online] Available at: 

https://developer.android.com/topic/performance/reduce-apk-size [Accessed 13 Mar. 

2021].  

Barclay, C. (2019). 5 Steps for Systematizing Motion Design. [online] 

DesignSystems.com. Available at: https://www.designsystems.com/5-steps-for-

including-motion-design-in-your-system/ [Accessed 6 October 2020].  

Carullo, G. (2020). Implementing Effective Code Reviews : How to Build and Maintain 

Clean Code. Apress.  

Dehghani, A. (2020). Garbage Collection and Cyclic References in Java | Baeldung. 

[online] Baeldung. Available at: https://www.baeldung.com/java-gc-cyclic-references 

[Accessed 16 Mar. 2021].  



56 

  

 

Dragicevic, P., Bezerianos, A., Javed, W., Elmqvist, N. & Fekete, J.-D. (2011). 

Temporal distortion for animated transitions. Proceedings of the 2011 annual 

conference on Human factors in computing systems - CHI ’11.  

Edwards, S. (2018). Gradle Dependency Management: Using Kotlin and buildSrc for 

build.gradle Autocomplete in Android Studio. [online] Caster.io. Available at: 

https://caster.io/lessons/gradle-dependency-management-using-kotlin-and-buildsrc-for-

buildgradle-autocomplete-in-android-studio [Accessed 5 Dec. 2020].  

Elye (2020). Which Android Animator to Use? - Mobile App Development Publication - 

Medium. [online] Medium. Available at: https://medium.com/mobile-app-development-

publication/which-android-animator-to-use-ced54e21d317 [Accessed 8 Nov. 2020].  

Gradle.org. (2020). Declaring Dependencies between Subprojects. [online] Available 

at: 

https://docs.gradle.org/current/userguide/declaring_dependencies_between_subproject

s.html [Accessed 10 Dec. 2020].  

Grafia.fi. (2015). Vuoden Huiput 2015 on valittu - Grafia. [online] Available at: 

https://www.grafia.fi/ajankohtaista/vuoden-huiput-2015-on-valittu/ [Accessed 12 Dec. 

2020].  

Hashimi, S. Y., Komatineni, S. & McLean, D. (2010). Pro Android 2. California: Apress.  

Hugo (2017). SeeWeather. [online] GitHub. Available at: 

https://github.com/xcc3641/SeeWeather [Accessed 19 Jan. 2021].  

Izdebski, Ł. & Sawicki, D. (2016). Easing Functions in the New Form Based on Bézier 

Curves. Computer Vision and Graphics, pp.37–48.  

Kantola, T. (2017). Transition animations in mobile applications. Master’s thesis. Aalto 

University. Available at: https://tuukka.is/static/sci_2017_tuukka_kantola.pdf [Accessed 

03 October 2020]. 



57 

  

 

Kiat, H.C. (2019). FabMenu. [online] GitHub. Available at: 

https://github.com/cheekiat/FabMenu [Accessed 7 Oct. 2020].  

Klimczak, E. (2013). Design for Software. New York: John Wiley & Sons Inc.  

Lake, I. (2018). Single Activity: Why, When, and How (Android Dev Summit ’18). 

[online] YouTube. Available at: https://www.youtube.com/watch?v=2k8x8V77CrU 

[Accessed 7 Nov. 2020].  

Liu, D., Butcher, N., Roard, N. & Hoford, J. (2018). Get Animated (Android Dev Summit 

’18). YouTube. Available at: 

https://www.youtube.com/watch?v=N_x7SV3I3P0&list=PLmEM3-

F7iVMlm936VEVxlITwdn60XJQX0&t=337s [Accessed 8 Nov. 2020].  

Material Design (2020a). Speed. [online] Material Design. Available at: 

https://material.io/design/motion/speed.html [Accessed 5 October 2020].  

Material Design (2020b). Understanding Motion. [online] Material Design. Available at: 

https://material.io/design/motion/understanding-motion.html [Accessed 30 September 

2020].  

Martin, R.C. (2010). Clean Code a Handbook of Agile Software Craftsmanship. Upper 

Saddle River [Etc.] Prentice-Hall.  

Mathis, L. (2016). Designed for Use, 2nd ed. Texas: The Pragmatic Bookshelf.  

Microsoft (2018). Animations and Transitions - Win32 apps. [online] Microsoft.com. 

Available at: https://docs.microsoft.com/en-us/windows/win32/uxguide/vis-animations 

[Accessed 6 October 2020].  

Nielsen Norman Group. (2020). Executing UX Animations: Duration and Motion 

Characteristics. [online] Available at: https://www.nngroup.com/articles/animation-

duration/ [Accessed 7 Oct. 2020].  



58 

  

 

Penner, R.C. (2002). Robert Penner’s Programming Macromedia Flash MX. New York: 

McGraw-Hill/Osborne.  

PROTOIO Inc. (2014). Easings. [online] Available at: https://support.proto.io/hc/en-

us/articles/115001466372-Easings [Accessed 3 October 2020].  

Spitsin, M. (2017). How simple animation can be a big problem. [online] Medium. 

Available at: https://programmerr47.medium.com/how-simple-animation-can-be-a-big-

problem-ca206f6a8059 [Accessed 7 Nov. 2020].  

MaaS Global (2011). Whim - All your journeys. [application] Google Play Store. 

Available at: https://play.google.com/store/apps/details?id=global.maas.whim 

[Accessed 7 Oct. 2020].  

Ramotion (2020). paper-onboarding-android. [online] GitHub. Available at: 

https://github.com/Ramotion/paper-onboarding-android [Accessed 13 Mar. 2021].  

Visser, J., Rigal, S., van der Leek, R., Wijnholds, G. & van Eck, P. (2016). Building 

Maintainable Software, Java Edition: Ten Guidelines for Future-proof Code. O'Reilly.  

Willenskomer, I. (2017). Creating Usability with Motion: The UX in Motion Manifesto. 

[online] Medium. Available at: https://medium.com/ux-in-motion/creating-usability-with-

motion-the-ux-in-motion-manifesto-a87a4584ddc [Accessed 7 Oct. 2020].  

Wolt Enterprises Oy (2015a). Wolt: Food delivery. [application] App Store. Available at: 

https://apps.apple.com/us/app/wolt-food-delivery/id943905271 [Accessed 24 

September 2020].  

Wolt Enterprises Oy (2015b). Wolt: Food delivery. [application] Google Play Store. 

Available at: https://play.google.com/store/apps/details?id=com.wolt.android [Accessed 

24 September 2020].  

Yuen, S. (2017). Mastering Windows Presentation Foundation. Packt Publishing.  



59 

  

 

Zalando SE (2011). Zalando Lounge - Shopping Club. [application] Google Play Store. 

Available at: https://play.google.com/store/apps/details?id=de.zalando.lounge 

[Accessed 7 Oct. 2020].  

 


