
Literature review and simulation study of feedback control of

systems with dead time

An analysis of the effects of dead time on various feedback control system techniques

Bachelor’s thesis

Electrical and Automation Engineering, Valkeakoski

Spring 2021

Ioannis Aarno Samuel Kefallinos

1

Electrical and Automation Engineering Abstract

Author Ioannis Aarno Samuel Kefallinos Year 2021

Subject Review of Feedback Control Systems with dead time

Supervisors Juhani Henttonen

In this thesis various common situations in system control with different dead times and

model accuracy are used to test various controller applications to further understand and

write down the effects of measured and unknown dead times on different commonly used

feedback control systems and their tuning methods. This testing of controllers was done in a

Single-Input-Single-Output, First order plus dead time context using Matlab-Simulink to

analyze the effects both with measured and unknown dead time on controller performance.

After multiple tests it could be concluded that reactive controllers were slowed from

measured dead time and these were able to give non-oscillating performance under

compromised conditions. Predictive controllers were able to provide a performance with

less over correction, but they were extremely vulnerable to incorrect evaluations of process

dynamics and dead time errors. Both controllers-types have modifications to combat their

weaknesses at a cost to the overall performance.

Keywords control engineering, feedback control, controller tuning, dead time, simulation

Pages 72 pages and appendices 9 pages

2

Contents

1 INTRODUCTION .. 4

2 BACKGROUND .. 5

2.1 Feedback control systems .. 5

2.2 Dead time ... 5

2.3 Matlab-Simulink ... 6

3 PID-CONTROLLERS .. 7

3.1 Function of a PID-controller ... 7

3.2 General variants of the PID controller ... 9

3.3 Common PID tuning rules .. 11

3.4 Implementation in Matlab-Simulink .. 17

4 BACKGROUND FOR SMITH PREDICTORS .. 19

4.1 Mathematical function of the Smith Predictor .. 20

4.2 Two Degree of Freedom Smith Predictor .. 22

4.3 Tuning of controller module .. 23

4.4 Implementation of the Smith Predictor in Matlab-Simulink 24

5 BACKGROUND FOR MODEL PREDICTIVE CONTROL ... 26

5.1 Function of Model Predictive Control .. 26

5.2 Implementation of Model Predictive Control in Simulink 28

6 SIMULATION ... 30

6.1 Simulation environment 1 ... 31

6.2 Simulation environment 2 ... 38

6.3 Simulation environment 3 ... 44

6.4 Simulation environment 4 ... 52

6.5 Cross-examination ... 60

6.6 Minor tests ... 63

7 RESULTS .. 67

7.1 Measured dead time .. 67

7.2 Unknown dead time ... 68

7.3 Recommended controllers and tunings ... 69

7.4 Conclusion .. 70

3

Appendices

Appendix 1 Controller tuning information

Appendix 2 Unused simulation result information tables

4

1 INTRODUCTION

Feedback controllers have seen use in a large variety of industries and have been a vital part

in the function of processes. This is due to controllers providing consistent and continuous

control needed for the optimal output of various machinery, avoidance of catastrophic

failure, adaptability to unforeseen circumstances and other uncertainties. (Sira-Ramírez,

2014, p. 3)

In many control processes, dead time has been a constant to varying extents. As a result of

this phenomenon’s near omnipresence, the understanding and mitigation of the effects or

complete elimination of delays present in such systems has been a topic of interest and

importance in various fields. This thesis will elaborate on various subjects on the topic and

research and test the various methods used for dead time compensation or control in a

simulated environment.

The purpose of this thesis is to review popular feedback control techniques and evaluate

them based on the results of a set of simulations exhibiting different circumstances of dead

time and input disturbance in a Matlab-Simulink simulation environment. In the last chapter

of this thesis the ideal technique to use based on circumstances is evaluated and a general

outline on what method of feedback control should be used based on the information

available and the intended performance after the general effects of dead time on each

control method are made clear.

5

2 BACKGROUND

Before explaining the tested control methods and the effects of dead time on them, the

definition of the terms and the tools used in this thesis need to be described. This is for the

sake of future proofing and context for any readers that lack fluency in the field of control

engineering.

2.1 Feedback control systems

Closed-loop control systems , or feedback control systems, are process control systems

where a set-point value and current output are used to manage future output. The output is

continuously measured and compared to another value as reference, the system calculates a

discrepancy between the given value and the set point value and an error signal is relayed.

With the appropriate error signal recieved, controller output is adjusted to decrease the

differences between the referential value and the process output value until the difference

is sufficiently lessened or zero. (McGraw-Hill, 2003)

The term includes but is not limited to: Proportional-Integral-Derivative Controllers, Smith

Predictors, Model Predictive Controllers and the combinations and variations of thereof. For

most control systems their values and their functions require different methods of

application or tuning for in different situations. The factors affecting the decision on picking

and tuning of these systems can range from the intended value, the intended behavior, the

expected output values and expected disturbance. One of the factors that need to be taken

into account when tuning a controller is dead time.

2.2 Dead time

Dead time for feedback control systems is the amount of time between the change in

process input and the process output. Dead time can be caused by a variety of reasons like

the placement or sensitivity of the sensor used to detect the output, accumulation of time

lags between multiple systems, the speed of transported mass, processing of input or output

6

and the controller’s method of manipulating the output. (McMillan & Vegas, 2010, pp. 139-

141)

What makes significant unaccounted dead time undesirable is that it can result in the

process producing unpredictable output or other unwanted results. A control system with

that has not been prepared for the appropriate dead time can result in an overshot or

undershot response due to increase in phase shift between the input and output and to

larger extents result in uncontrollable oscillations. Even when taken into account for, dead

time slows reactive controller response by necessity to avoid overcorrection or oscillation.

The need for controllers that maintain speed and stability in large dead time environments

resulted in the creation of various feedback control methods that bypass this necessity for a

slower response through prediction or a separate input.

2.3 Matlab-Simulink

Matlab, formerly known as Matrix Laboratory, is a computing language initially developed by

Cleve Moler and ported over to C by Moler, Jack Little and Steve Bangert (Moler, 2004).It is

an advanced programming language specialized in mathematics, allowing for complex

calculations and simulations of mathematical concepts. This programming language has

seen use as a programming tool, a tool for education, a method of control tuning and a

simulation environment. (Xue & Chen, 2013, pp. 6-7)

Simulink is a Matlab-based graphic-programming environment that is not included in the

default installation of Matlab, it is an sub-application to the default Matlab programming

environment. The purpose of this application is to allow a quick, easily readable and editable

simulations of systems without intimate understanding and memorization of the Matlab

language or commenting of code. Due to the readability of the program, quick access to

various other Matlab-applications such as “ PID tuner” and “MPC Designer”, code

generation without writing code, easy changing between controller variants, compatability

with hardware and the ability to visually represent various systems for the purpose of

readability in simulation environments Simulink has been a popular software for engineering

and simulation. (Xue & Chen, 2013, pp. 145-146)

7

3 PID-CONTROLLERS

The continuous Proportional Integral Derivative controller is the oldest feedback control

method that is still widely used by the time of writing this thesis. It is designed to correct

output using the values of its namesake proportional, integral and derivative elements based

on the error between the set point value and the output value. (Sun09p. 111) It is also the

most widely used process control method, to the point of it composing the majority of

process controllers used in an industrial setting (Samad, 2017)

The PID-controller controller is designed for stability and control, but it is less capable in

systems with large amounts of dead time. They are described as being effective in situations

where exact information regarding the process is complicated to implement or unknown.

3.1 Function of a PID-controller

The PID-controller will adjust the output using three different elements:

 The Proportional element that is proportional to the error at the instant of

correction. It is supposed to be factored as the current error between the set point

value and the actual value.

 The Integral element is the integral to the error up to present time. It is supposed to

account for the cumulative value of error that is used for adjusting smaller frequency

disturbances. It reduces or eliminates remaining error from the P-element.

 The Derivative element is the derivative of the error up to the instant of correction. It

is supposed to account for future errors, preventing changes in the error signal.

The mathematical relationship between these elements of the controller and the output

depend on the form of the PID-controller. While the values of each controllers type’s P-, I-

and D-elements can be converted between them through various equations,meaning they

are interchangable, each system functions differently in their relationship between inputs

and the output. (Altmann, 2005, p. 16) In all the below equations for controller structure and

tunings “Kc” is the process gain,”Ti” is the integral time and “Td” is the derivative gain.

8

Serial PID-controller

In the currently rare serial PID-controller, also known as the classic PID-controller, all the

elements are placed in a linear series. The resulting output is the product of the P-element,

the I-element and the D-element, creating equation 3.1:

𝐶(𝑠) = 𝐾𝑐 ∙

(1 + 𝑇𝑖 ∙ 𝑠)

𝑇𝑖 ∙ 𝑠
∙ (𝑇𝑑 ∙ 𝑠) (3.1)

The classic PID-controller is rarely used due to it being harder to decouple elements than

other variants. (O'Dwyer, 2006, p. 11)

Parallel PID-controller

In the parallel form the PID-controller, where all the elements are parallel to each-other all

of the elements are summed independently together, as shown in equation 3.2:

𝐶(𝑠) = 𝐾𝑐 +

𝐾𝑐

𝑇𝑖 ∙ 𝑠
+ 𝐾𝑐 ∙ 𝑇𝑑 ∙ 𝑠

(3.2)

The main difference between this type and other controllers is how unlike the other

methods, all elements can be decoupled with few complications. (O'Dwyer, 2006, p. 7)

Ideal PID-controller

In the “ideal” form of the PID-controllers, also known as mixed PID-controllers, the I-element

and D-element are parallel to each-other before being multiplied by the P-element, with

resulting output being according to equation 3.3:

𝐶(𝑠) = 𝐾𝑐 ∙ (1 +

1

𝑇𝑖 ∙ 𝑠
+ 𝑇𝑑 ∙ 𝑠)

(3.3)

This method is most popular due to relatively simple tuning, while still easy to decouple

either I- or D- elements from the controller. In this thesis the standard PID-controller is used.

(O'Dwyer, 2006, p. 7)

9

Constraints and Clamping

In the common event that constraints are applied, it is often suggested that an anti-windup

system is used, as the Integrator element can overflow the system or it will take too much

time to change to what it needs to be when limiting output (Silva, Flesch, & Rico, 2018, pp.

948-949). The anti-windup method tested in this thesis is the clamping method.

In the case of an anti-windup system using the clamping method, also known as conditional

integration, software is used to stop the function of the integral element with no

mathematic basis. When the output is exceeding the output limit, the integrator element is

forbidden from resuming function until the integrator output and the input of the block are

of opposite signs. (Mathworks, 2012)

3.2 General variants of the PID controller

The PID-controller has had different modifications for different purposes and trade-offs.

Many of the modifications either added or removed elements to make tuning easier, add

functionality or remove factors that would produce complications once introduced to certain

conditions. The use of these variants and the default controller are not mutually exclusive

and can be combined or stacked in a cascade for further disturbance rejection and better

control overall (Altmann, 2005, pp. 16-17). The aforementioned combinations and cascade

applications are not analyzed, as the focus of this thesis is on individual control method

performance and analysis.

10

PI controller

The PI controller is a PID-controller with the Differential-element is removed, leaving only

the Proportional and Integral elements. These are often used when the noise present in the

system is large enough to cause issues in Derivative control and in dead time-dominant

processes. It is also stated to work better than the default PID-controller within heavily

damped systems where changes are minimal over time and is the most popular PID-

controller variant where an element of the PID-controller is removed. The PI controller is

also the most used PID-controller variant when it is used in conjunction with other systems

such as the Smith Predictor and is usually the best suited for high noise or high Dead time-

to-Time-Constant ratios. (Altmann, 2005, p. 16)

2DOF PID-controller

The two degrees of freedom PID-controller is a PID-controller that has been modified to

have two degrees of freedom by modifying the Proportional and Derivative elements. The

relationship between the inputs, filters or feed-forward mechanism and the output depend

on whether the controller is in parallel or standard form. Equation 3.4 below explains the

conversion between the controller’s inputs and output in the standard form for the 2DOF-

PID-controller:

𝐶(𝑠) = 𝐾𝑐 ∙ ((𝛼 ∙ 𝑟 − 𝑦) +

1

𝑇𝑖 ∙ 𝑠
∙ (𝑟 − 𝑦) + 𝑇𝑑 ∙ 𝑠 ∙ (𝛽 ∙ 𝑟 − 𝑦)) (3.4)

Where the “y” represents the second input while the “r” represents the set-point value. “α”

and “β” are set-point coefficients for the P- and D- elements. This variant permits set point

weighting by directly or indirectly multiplying the reference value by a certain amount to

control how the system responds to disturbances and its rise-time. This can be achieved by

placing a filter or using a feedforward configuration to remove a part of the reference value.

(Sundaravadivu, Sivakumars, & Hariprasad, 2015)

11

3.3 Common PID tuning rules

There is no one true tuning rule that fits all situations for PID,PI or PD controllers, certain

tuning rules for different situations are used for different occasions and purposes. All of the

tuning rules listed below have been made with the intent of managing and dealing with the

slowed flow of information caused by dead time. In all tuning methods halving the Controller

Gain is an option for stabilizing disturbance rejection capabilities, which in this thesis will be

applied to the PID-controller tunings of Ziegler-Nichols and Cohen Coon tuning methods and

the PI-tuning method for Ziegler Nichols.

Ziegler Nichols tuning method

The Ziegler-Nichols tuning method, also known as the ZN tuning method, is the one of the

older popular tuning methods created for PID and PI controllers. The Ziegler-Nichols tuning

rules are designed for situations where the time constant is longer than the dead time to a

significant extent. There are two common ways of tuning a controller using the Ziegler

Nichols method, using process dynamics attained from the “Ultimate Oscillation” method or

doing a step test elaborated in the “Cohen Coon” tuning sub-chapter.

In the “Ultimate Oscillation” method the I-element and the D-element are tuned to 0 and

the P-element is increased until the controller oscillates with stable peaks and wavelengths.

Ultimate gain “Ku” is the most sustained periodic oscillation in the output gained from the P

controller and the ultimate period “Tu” is the time period between the oscillations in the

ultimate gain system (Smith & Corripio, 1985, pp. 304-305).Once these process values have

been attained, the appropriate proportions of the PID-controllers elements are calculated

using table 1 below:

Table 1: Values for Ziegler Nichols PID and PI tuning using data from the Ultimate gain test.

(Smith & Corripio, 1985, p. 306).

ZN Kc Ti Td

PID 0.589∙Ku
𝑇𝑢

2

𝑇𝑢

8

PI 0.45∙Ku
𝑇𝑢

1.2
 -

12

Another method for ZN-tuning is to use FOPDT model-based process dynamics in place of

the ultimate gain method detailed in table 2:

Table 2: Values for Ziegler Nichols PID and PI tuning using data from the Step Test. (O'Dwyer,

2006, pp. 27,154).

ZN Kc Ti Td

PID
1.2 ∙ 𝑇

𝜃 ∙ 𝐾
 2 ∙ 𝜃 0.5 ∙ 𝜃

PI
0.9 ∙ 𝑇

𝜃 ∙ 𝐾
 3.33 ∙ 𝜃 -

One common procedure to attain the above values from an FOPDT-model and an

explanation for the model itself is detailed in later in “Cohen Coon tuning method” below.

When using ultimate oscillation values this method of tuning can harm the equipment used

and the results of the tuning method using either the values itself can be considered slow to

ne usable in dead time systems where dead time is more than half the time constant (Sung,

Jietae, & In-Beum, 2009, p. 154).

Cohen Coon tuning method

The Cohen and Coon method, abbreviated as CC-tuning, is a FOPDT-model based tuning

method that uses three characteristics of the process model: process gain, dead time, and

time constant. A PI controller tuned with this method is quick to respond to errors and can

be expected to reach the set point value faster than other PI-tuning methods listed in this

thesis.

A common first step for this method of tuning is done by performing a step test on the

process to find the processes process gain, time constant and dead time. A step test is done

by having the controller change its output, then measuring different statistic qualities of the

process after measuring the total change in output over a length of time. The process gain of

the process is estimated by dividing the change in process value with the change in

controller output after controller output stops increasing. The dead time is calculated by

13

measuring the time difference between the changes in the controller output and the process

output. The time constant is the difference between the value reaching around 63% of the

total gain of the process and the end of the dead time (Altmann, 2005, p. 7).This procedure

can be summarized in Figure 1:

Figure 1: Figure depicting a step test where the change in process value is the change in

process output, “td” is dead time, ”tau” is the time constant and “CO Change” is the change

in Controller output that will be compared to the change in Process output. (Smuts, 2010)

It is recommended to have the step test be repeated with differing controller output

changes to create averages, as they are not absolute and can change slightly between step-

tests due to human error or slight differences in results.

This is a common way to attain a processes First Order Plus Dead Time-model, abbreviated

as the FOPDT-model. The FOPDT-model is the most popular way to mathematically express

plant behavior and often is used for various controller tuning methods, modifications and

simulations. The general structure of an FOPDT model should be in the form of equation 3.5:

𝑃𝑛 =

𝛫

𝑇𝑠 + 1
∙ 𝑒−𝜃𝑠

(3.5)

14

In equation 3.5 the process dynamics of process gain “Κ”, time constant “T” and dead time

“θ” are often used as a basis to tune the Proportional, Integral and Derivative elements of a

PID-controller. In the case of the Cohen-Coon method, the P-, I- and D- elements are tuned

according to table 3, in which the Cohen-Coon tuning rule values for a PI and a PID-controller

are contained in:

Table 3: Values for a CC-tuning of PID and PI controller values. (O'Dwyer, 2006, pp. 28, 155)

CC Kc Ti Td

PID 1.35 ∙ (
𝑇
𝜃 + 0.0185)

𝐾

2.5 ∙ 𝑡 ∙ (𝑇 + 0.185 ∙ 𝜃)

(𝑇 + 0.611 ∙ 𝜃)

0.37 ∙ 𝜃 ∙ (𝑇 − 0.324 ∙ 𝜃)

(𝑇 + 0.129 ∙ 𝜃)

PI 0.9 ∙ (
𝑇
𝜃) + 0.083)

𝐾

3.33 ∙ 𝑇 ∙ (𝜃 + 0.093093093 ∙ 𝑇)

𝜃 + 2.22 ∙ 𝑇
 -

Skogestad’s suggestion for IMC-based tuning methods

The IMC-based tuning method, also known as Lambda-tuning, is another tuning method

than can use the FOPDT-model to set values for the PI or PID-controller. In this tuning

method the FOPDT-based process dynamics are used for tuning the PID-controller to

emulate an Internal Model Control system. The actual controller value tuning for the PI

controller using this method can be seen in Table 4 below:

Table 4: Values for Lambda tuning of PI-controller values (Smuts, 2010)

IMC Kc Ti

PI
𝑇

𝛫 ∙ (𝜆 + 𝜃)
 MIN(T; (8∙θ))

Where the “λ” is the closed loop time constant desired by the person tuning. In this thesis a

variant of tuning this method known as the SIMC-tuning method will be tested instead.

Skogestad’s suggestion for Internal Model Controller-based tuning, also known as SIMC-

tuning, is a variant of the Lambda-tuning method where in place of having a user picked

variable to add to the dead time as detailed in table 4 above, dead time is instead doubled:

15

Table 5: Values for Skogestad's suggestion for Lambda tuning for PI-controller values.

(O'Dwyer, 2006, p. 48)

SIMC Kc Ti

PI
𝑇

𝛫 ∙ 2 ∙ 𝜃
 MIN(T; (8∙θ))

Using the values in table 5 result in a more consistent method of tuning while still lowering

the proportional element enough to still provide a relatively quick response. This method is

said to provide a speed comparable to the Cohen-Coon method and while providing a better

level of robustness with less overshoot (Smuts, 2010).

Matlab software-based tuning

The Matlab programming environment offers an option of the tuning of the PID-controller

based on response time and amount of correction while offering almost real-time feedback

on the output based on the input of the system if the “Control System Toolbox” is installed,

as it is needed for linearization. This method works on trial and error or by through the

wanted controller results, but is the simplest and often most effective method to implement

with only two elements and real time results being shown in Figure 2 below:

Figure 2: "PID Tuner" program window for a PI controller in Matlab-Simulink version R2020b

16

When in use the controller can be tuned until the wanted form of the output is achieved.

Due to the availability of this tuning method and the other tuning methods being considered

good enough for the majority of industry, analysis of this tuning method will not be as

throughout as it is for the named tuning methods covered in this thesis.

Tuning for 2DOF PID-controllers

The 2DOF-PID controller is tested using two tuning rules, the Hiroi-Terauchi tuning rules

made in 1986 and the Taguchi-Araki tuning rules invented 14 years later (O'Dwyer, 2006, pp.

217-218). The Terauchi tuning rules are simpler with standard filters placed and an overall

simpler equation for each value and tuning for Integral Time and Derivative Time are made

with only dead time in mind. In contrast the Taguchi tuning rules are more complex and

require more than one process dynamic values for all controller variables, including the set-

point coefficients. This difference complexity is fully explained in Table 6:

Table 6: Values for the Terauchi and Taguchi tuning methods of 2DOFPID-controller values.

(O'Dwyer, 2006, pp. 217-218)

2DOF-PID Kc Ti Td α β

Taguchi
and Araki

(0.1415+(1.224
/(T/θ-

0.001582)))/K

T∙(0.01353+
2.2∙(T/θ)-

1.452∙((T/θ)
^2)+0.4824∙

((T/θ)^3))

(0.000278
3+0.4119∙
((T/θ)^2)-
0.04943∙(
T/θ)^3)

0.6656-
0.2786∙(T/

θ)+0.03966∙((T
/ θ)^2)

0.6816-
0.2054∙(T/

θ)+0.03966∙((T
/ θ)^2)

Terauchi
0%

overshoot

0.98 ∙ 𝑇

𝛫 ∙ 𝜃
 𝜃 ∙ 2.38 0.42 ∙ 𝜃 0.6 1

Terauchi
20%

overshoot

1.2 ∙ 𝑇

𝐾 ∙ 𝜃
 2 ∙ 𝜃 0.42 ∙ 𝜃 0.6 1

As seen in table 6 above, the robustness and speed of the Terauchi-tuned controller depend

on whether one opts for a 0% overshoot or a 20% overshoot variant of the tuning method.

The 20% overshoot variant is best suited for slower processes and a faster disturbance

rejection while the 0% overshoot variant should be used in faster processes to avoid

overshoot, as seen with the increase in process gain and decrease in the Integral time.

17

3.4 Implementation in Matlab-Simulink

Matlab-Simulink has a library of function blocks that simulate continuous and discrete-time

dynamical systems. All the PID-controller variants detailed in previous segments already

exist in said library to minimize setup time and fasten the general tuning process and said

PID-controllers can be dragged and dropped from the library to the Simulink simulation

environment (Xue & Chen, 2013, pp. 146-149). The PID-controller testing environment for

this thesis composed in Matlab-Simulink is shown in Figure 3:

Figure 3: General Template for testing PI, PID and 2DOFPID-controllers in Matlab-Simulink

for this thesis.

When using these controllers in a simulation environment, the input u is the error signal that

is made from the difference between the set point value and the output value “y”. Any

result will have the PID-controller eliminate the error accordingly by increasing or decreasing

the output according to the P-, I- and D-elements that are inputted through the block

parameter window of the PID-controller that is shown in Figure 4 below:

18

Figure 4: PID-controller parameter window in Matlab-Simulink for version R2020b.

Among the settings available in the main parameter window is the “PID-tunnner” program,

and the aforementioned P-, I- and D-element fields that can be set to be input externally, to

enable more complex configurations to fit shifting situations. The other point of interest for

this thesis in the properties window is the output saturation segment, where the upper and

lower limits on output for the controller can be applied.

19

4 BACKGROUND FOR SMITH PREDICTORS

The Smith predictor, abbreviated as SP, is a predictor-based dead time compensation

control system that predicts and controls the system according to the estimated process

model output and later adjusting controls to the actual output to combat longer dead times.

The system is composed by a controller part and a predictor part that uses a process model

and a dead time model. The general structure of a SP is illustrated in Figure 5 below:

Figure 5: Figure depicting the general structure of the default Smith Predictor. (Mathworks,

2021)

The main controller of the SP is traditionally a PI controller with a process model “G” to

estimate and directly feed the value of the output without disturbances and a dead time

model, or identified system dead time, in the form of “e^(-ts)”. These two models combine

in the complete prediction model process “Gn”, that in ideal circumstances should be as

shown in equation 4.1 below:

 𝐺(s)∙e-τs=Gn(s), Gn(𝑠) ≈ Pn(𝑠) (4.1)

Where the prediction model should be equal to the process “Pn” or “Plant” under ideal

circumstances. The controller part includes the predictor in its calculations of controlling

output in advance of the dead time, either eliminating dead time completely with complete

model accuracy or minimizing its effects. The Smith Predictor is able to provide quick and

robust corrections to systems with large dead times, but it is vulnerable to major model

miscalculations or changes in the process. (Normey-Rico & Camacho, 2007, pp. 131-133)

20

4.1 Mathematical function of the Smith Predictor

The Smith Predictor will constantly predict and then compare the predicted system output

to the actual output of the system output through the process model and the dead time

variable, then feed it back to the controller in a feedback control system. The ideal result for

this overall procedure is demonstrated in equation 4.2:

𝑆𝑃(𝑡) =

𝐶(𝑠) ∙ 𝑃n(𝑠)

1 + 𝐶(𝑠) ∙ 𝐺n(𝑠)

(4.2)

In which “Pn” is the plant model, “Gn” is the SPs complete prediction model and “C” is the

controller used. (Karimi, 2019, pp. 212-214). In a closed-loop system, the Smith predictor has

three properties that provide its function as a dead time compensator that are listed in the

below segments:

Dead time Compensation

To effectively eliminate dead time, the mathematical relationship between the ideal process

model and the characteristic equation for output should be similar to equation 4.3 when the

error signal is 0 and there is no disturbance (Normey-Rico & Camacho, 2007, p. 132):

1 + 𝐶(𝑠) ∙ 𝐺(𝑠) = 0 (4.3)

Prediction of result

Under the ideal circumstances of non-existent disturbances or miscalculations, the predicted

input of a specific time from the predictive model should be equal to the input with dead

time. This is best explained by the equations 4.4 and 4.5:

 𝑌p(𝑠) = 𝐺(𝑠) ∙ 𝑈(𝑠) = 𝑒𝜃𝑠 ∙ 𝑃𝑛(𝑠) ∙ 𝑈(𝑠) = 𝑒𝜃𝑠 ∙ 𝑌(𝑠)

(4.4)

 𝑦𝑝(𝑡) = 𝑦(𝑡 + 𝜃)

(4.5)

In which the “Yp” and “yp” represent the feedback signal of the process model, “U”

represents controller output and “Y” and “y” represent the actual output of the process. The

variables ”t” and “θ” stand for moments in time and dead time respectively.

21

If there are disturbances or other miscalculations, as there always are in practical usage, the

dynamic between all values is shifted so that the disturbances are taken into account. The

resulting dynamic of this shift should take the form of the equation 4.6 below:

 𝑦p(𝑡) = 𝑦(𝑡 + 𝜃) + 𝑃n[𝑞(𝑡) − 𝑞(𝑡 + 𝜃)]

(4.6)

In which ”q” represents the disturbance introduced into the system before entering the

process. (Normey-Rico & Camacho, 2007, pp. 132-133)

Ideal Dynamic Compensation

The ideal output of the system is achieved by the acknowledgment that an ideal equivalent

controller can exist and that it can be found using the equation 4.7 below for dead time

compensation:

𝐶′(𝑠) =
𝐶(𝑠)

1 + 𝐶(𝑠) ∙ 𝐺(𝑠)
= 𝐺n(𝑠)−1

(4.7)

With the ideal controller found, ideal output of the system can be estimated with

uncertainties taken into account through equation 4.8 below:

𝑦(𝑡) = 𝑟(𝑡 − 𝜃) + 𝑃n(𝑡)[𝑞(𝑡) − 𝑞(𝑡 − 𝜃])]

(4.8)

Where “r” stands for reference value. The above mentioned ideal controller cannot be used

in practice due to there always being minute miscalculations in the time constant, dead time

or process gain. However it does show what a proper Smith Predictor and a controller for it

can do in a system, providing an example to follow for performance. (Normey-Rico &

Camacho, 2007, pp. 133-134)

22

4.2 Two Degree of Freedom Smith Predictor

The Smith predictor in some situations has to be changed to function in a situation it would

otherwise fail catastrophically and to maintain desired performance, this results in

modifications or combinations with other systems seeing use in place of the default Smith

Predictor. One common and relatively simple modification is the Two-Degrees-of-Freedom

Smith Predictor.

 The Two-Degrees-of-Freedom Smith Predictor, abbreviated as 2DOF-SP, is a Smith predictor

that has two-degrees-of-freedom to allow for a larger margin of error. This quality can be

attained through a reference filter placed before the input of the predictor system or a

feedforward function to counteract the effects of a controller deliberately tuned for a faster

response. In this thesis the filter method for will be used. The equation that expresses the

relationship between the input and output of the 2DOF-SP system is similar to the one by

the normal Smith Predictor, but it is also affected by the filter placed before the controller

models input for reference. The output of the 2DOF-SP is explained in equation 4.8 below:

2𝐷𝑂𝐹𝑆𝑃(𝑠) =

𝐶(𝑠) ∙ 𝑃n(𝑠) ∙ 𝐹(𝑠)

1 + 𝐶(𝑠) ∙ 𝐺n(𝑠)

(4.3)

The filter itself is usually a transfer function that uses the de-numerator of the plant with a

numerator designed to better fit the maximum expected difference of set dead time of the

controller, as shown in equation 4.9:

𝐹(𝑠) =

𝛼 ∙ 𝛥𝜃 + 1

𝑇 ∙ 𝑠 + 1

(4.4)

Where ”α” is the 2DOFPID coefficient, which in this thesis is 1.7 during all simulations for the

sake of consistency and maximum robustness, and “Δθ” is the expected range of changes in

dead time. (Normey-Rico & Camacho, 2007, pp. 149-155)

23

4.3 Tuning of controller module

As with the changes brought with the Smith Predictor, the control module must be tuned

accordingly due to changed conditions and the supposed elimination of dead time. This is

due to the fact that the tuning rules elaborated are designed around the FOPDT model to

take the delayed flow of results into account.

Matlab software-based tuning

The PI controller of the Smith Predictor is tuned through the same software as detailed

before in the PID-controller sub-chapter 3.3 “Matlab software-based tuning” above.

Direct Synthesis

Direct synthesis tuning, also known as instantaneous response-tuning, is a PI and PID-

controller tuning method for very low or nonexistent dead time processes such as ones

which the Smith Predictor’s process model is able to provide. The controller values for this

described response are depicted in table 7 below:

Table 7: Direct Synthesis method of tuning for PI controller values in systems with no dead

time. (Smith & Corripio, 1985, p. 340)

DS-
SP

Kc Ti

PI
𝑇

𝛼 ∙ 𝐾
 𝑇

In which “α” is a coefficient has to be chosen, for the purpose of testing it is assumed to be

1.7 throughout all simulation environments for the sake of consistency and maximum

robustness. This tuning rule is designed to respond quickly to any errors by prioritizing

speed, resulting in what is usually the shortest rise time of most PI-based controllers and

settle-time at ideal conditions in long dead time processes, which comes at the cost of being

vulnerable to unknown dead time. (Smith & Corripio, 1985, p. 340)

24

Tuning for 2DOF Smith Predictor

The 2DOF-SP in this thesis will be used with an appropriately tuned PI controller to take

advantage of the filter used. The controller tuning method accompanying this modification

in thesis is the method suggested by Normey-Rico and Camacho detailed in table 8 below:

Table 8: PI tuning values for the controller module used in the 2DOF-SP. (Normey-Rico &

Camacho, 2007, p. 157)

2DOF-SP Kc Ti

PI
𝑇

𝐾 ∙ 𝛼 ∙ 𝛥𝜃
 𝑇

Where the “α” is the 2DOF-SP coefficient used in the filter mentioned above, for which the

value is 1.7 throughout all testing environments for consistency and maximizing robustness.

This is to best make use of the new resistance to changes and take into account the changes

to reference value the filter introduces when tuning the controller.

4.4 Implementation of the Smith Predictor in Matlab-Simulink

Despite there being a readily available Smith Predictor in the function block library, it lacks

many features to be used as wanted, as it lacks readily available variants and their

interchangeability. As a result, a Simulink model recreating a Smith Predictor was made

using other functions available in the Simulink library. The general structure of the Smith

Predictor used in Matlab-Simulink is depicted in Figure 6:

Figure 6: General structure of the tested Smith Predictor in Matlab Simulink.

25

The Smith Predictor structure depicted in Figure 6 above was added on the controller in the

environment depicted in Figure 3 in sub-chapter 3.4, resulting in the testing environment

shown in Figure 7 below:

Figure 7: General Template of the Smith Predictor testing environment in Matlab Simulink.

The PI controller is the controller module of the Smith Predictor, the P(s) transfer function is

the actual process model or plant, transfer function G(s) is the process model, which is

usually a copy of the plant in ideal conditions, and the transport delay is the dead time

model of the prediction process. The controller, dead time input and the transfer functions

were appropriately filled out according to the simulation environment. The filter for the

2DOF-SP was a transfer function placed at the input for the reference value before it was

compared to the output.

26

5 BACKGROUND FOR MODEL PREDICTIVE CONTROL

The model predictive control, abbreviated as MPC, is an advanced control method heavily

based on identified process models and possible knowledge of future disturbances and set-

points for calculating an optimal control of a system. It was initially used for oil refineries and

chemical plants in the 1980s before being implemented to other systems such as heating

and climate control for buildings when capabilities of processing hardware rose while

decreasing in price. As of 2011, it was the most popular advanced control technique used in

a variety of industries. (Haber, 2011, pp. XII-XVI)

The simplicity in setup for general usage while providing possibilities to be tailored for each

specific situation has made it a popular alternative in circumstances where there are a large

number of manipulated and controller variables with shifting objectives. It can also function

in simpler situations just as well, as it allowing the user to impose more constraints and its

use of optimal control law also accommodates a higher level of control than many other

control techniques.

5.1 Function of Model Predictive Control

The model predictive control uses three elements that can be changed to suit the situation.

The system goes in cycles so that future outputs for a defined horizon are first predicted

using known current and past feedback values, with future control signals being calculated

using a determined criterion to fit with the trajectory of future values. The resulting control

signal is then used to control the system before the next control signal is made using

received feedback to repeat the cycle. (Normey-Rico & Camacho, 2007, pp. 273-275)

The consistent steps between all the Model Predictive control modules and most of their

modifications are three: the prediction model, the objective function and obtaining the

control law.

27

Prediction Model

In Matlab, the Prediction model uses a Kalman filter to predict the future behavior of a

process using an estimate of the plant model. This is achieved by converting the processes

input and output variables to a dimensionless form. These input and output variables are

obtained by converting the given model to a linear time-invariant system state-space model.

The LTI-system state-space model is then converted to discrete-time linear time-invariant

system to separate objects using the controller sample time before replacing delay with

discrete time poles. The general equation for the resulting prediction model after conversion

are summarized in the equations 5.1 and 5.2 below:

 𝑥p(𝑘 + 1) = 𝐴p𝑥p(𝑘) + 𝐵pu𝑢(𝑘) + 𝐵pv𝑣(𝑘) + 𝐵pd𝑑(𝑘)

(5.1)

 𝑦p(𝑘) = 𝐶p𝑥p(𝑘) + 𝐷pu𝑢(𝑘) + 𝐷pv𝑣(𝑘) + 𝐷pd𝑑(𝑘)
(5.2)

In which ”xp” is the state vector obtained after delay removal, “yp“ is the vector for

dimensionless plant output, u(k) is the dimensionless vector input for manipulated variables,

v(k) and d(k) are also dimensionless vectors for measured and unmeasured disturbance.

“Ap”, “Bpu”, “Bpv”, “Bpd”,” “Cp”, “Dpu”, “Dpv” and “Dpd” are matrix columns for the input and

output of scale factors obtained from the constant zero-delay state-space matrices from the

delay removal process. (Mathworks, 2021)

 Objective function

The objective function provides a cost function to find the control law used, whilst using

various values in its calculations that would have been dictated by the user. The general

function for picking such a law within a SISO situation is in the form of equation 5.3:

𝐽 = ∑[(𝑦(𝑡 + 𝑗|𝑡) − 𝑦′(𝑡 + 𝑗)

𝑃

𝑗=0

]^2 + ∑ 𝜆𝑢 ∙ [𝛥𝑢2(𝑡 + 𝑗)]

𝐶

𝑗=0

(5.3)

Where “y” is the predicted reference trajectory and “y’” is the predicted output. During the

creation of the cost function for an MPC parameters for minimum, maximum and control

horizons and coefficients must be set with a reference trajectory calculating how changes

will happen in advance. Other values that must be set include the control horizon “C”, the

prediction horizon “P” and maximum and minimum constraints for the picked values of u

and y, as well as weighting values. (Haber, 2011, p. 7)

28

Obtaining Control Law

Quadratic programming for a linear quadratic estimation is used to obtain the ideal control

law that will determine how the system will control the process. This is achieved by

minimizing the objective function of the system and to find and use the ideal output value.

This procedure can be summarized by the heavily simplified version of the cost function in

equation 5.3 in the form of equation 5.4:

 min
𝛥𝑢(𝑡)

𝐽

(5.4)

This control law will dictate the output until a satisfactory new input is attained, where the

MPC will then repeat the process detailed in the above descriptions for each step of the

MPC. (Geyer, 2016, p. 15)

5.2 Implementation of Model Predictive Control in Simulink

Simulink has a library of Model Predictive Controllers available for use and simple

implementation available for download (Xue & Chen, 2013, p. 157). The testing environment

for Model Predictive Controllers in this thesis is displayed in Figure 8 below:

Figure 8: Simulation environment template for MPCs in Matlab-Simulink

The default inputs of the MPC were model output “mo” that was used in a feedback loop

within and the reference value “Ref” of the controller. The controller default output was the

manipulated variable output “mv”, which was the output of the controller.

29

Like the PID-controller function block, the MPC function block has a detailed parameter

window to access and change various controller variables. In the block parameter window

the user can add or change inputs, outputs, parameters, default conditions, weights

constraints, initialization and changing state estimation methods by changing inputs as well

as setting prediction, sample-time and control horizons. The MPC used in Simulink must

have an MPC instance created, designed and ran in a default Matlab workspace before it can

be implemented onto Simulink. The default MPC Block Parameter window in Simulink is

shown in Figure 9 below:

Figure 9: MPC window in Matlab-Simulink for version R2020b.

The user can also make use of the dedicated MPC tuner program “MPC designer” for

detailed and easily accessible MPC tuning. The “MPC designer” program allows for quick

changes in weighting, prediction time, sampling time and it can print the resulting MPC in

Matlab-script for easier storage and faster editing in later use. It can also be used to change

output or input limits and to create a scenario to foresee tuning results. (Mathworks, 2021)

In this thesis project the “MPC designer” software was used to fine-tune the MPC used for

faster State-estimation and robustness.

30

6 SIMULATION

In order to actually test the viability of the control systems used in this thesis project and to

ascertain their actual capabilities as controllers in an economic and repeatable manner, their

performance in a realistic and general environment had to be simulated. The Matlab-

Simulink software can simulate various environments mathematically within an easy-to-use

and set up user interface, with a ready library of various control tools and mathematical

functions.

In whatever simulation environment, the control systems evaluated have been tested to find

the following information for performance alongside general behavior in a SISO context

within processes that can be summarized using a FOPDT-model:

 Rise-time of the controller meeting the desired value with or without unknown dead

time.

 Settling-time, as in the point where the system reaches the reference value with a

deviation of at most 0.01 percent of the first digit of the referential value afterwards

outside of disturbances, within systems with and without unknown dead time.

 Disturbance rejection where the time between the rise or fall of the spike and it

meeting the reference value, or the closest value to it in either circumstance.

The tests for each environment were repeated with dead time different to the initial value

and their relation to the time constant for cross-examination. Each environment for all

controllers was retested with varying miscalculations ranging from -7% to +10% of the

process model in its time constant and process gain along with band-limited white noise for

analyzing controller behavior in more realistic circumstances. Dead time was different in

each Simulation environment to test varying dead times in comparison to the time constant.

The performance of the control systems tested was evaluated by the length of rise-time,

settle-time, disturbance rejection time and degree of overshoot. The results were generally

be measured for the default conditions of the controller and their tuning methods besides

halving the controller gain for ZN-PI, ZN-PID and CC-PID controllers. Modifications like

limiters or the white noise models for MPCs were withheld during these measurements,

31

with the exception of Simulation environment 1 having output limiters applied. The effects

and application of these modifications are detailed in 6.6: “Minor modifications”.

The PID-controller values for these situations formed with tuning methods were based on

the book “PID tuning rules 2nd edition”, these values are included into Appendix 1 in the

form of Windows Excel Sheets along with values used for the Model Predictive Controller

parameters used in each Simulation.

6.1 Simulation environment 1

The first test environment for the control systems was water heater over the course of 600

seconds with an initial intended value of 14° Celsius that was changed to a value of 10 in 5

minutes. The relationship between the controller and the heater is summarized in Figure 10

below:

Figure 10: Diagram of the controller and the heater of Simulation Environment 1 (Normey-

Rico J. E., 2019, p. 40)

The time constant of the process was 13.1 seconds, with a process gain of 18.7° Celsius and a

dead time of 8 seconds that was increased to 10 seconds at 13.1 seconds when changing

dead time, simulating a processing error slowing down the detection of temperature. The

shift was done at that point in time to study the system’s ability to adapt to changing dead

time while it is still reaching for the reference value. (Normey-Rico J. E., 2019, p. 40) The

above dynamics can be used to create an FOPDT-model resembling with equation 6.1:

𝑃𝑛(𝑠) =

18.7

13.1𝑠 + 1
∙ 𝑒−8𝑠

(6.1)

32

The disturbance in this test was a sudden rise in the controller input value of 0.15 at 110

seconds and a disturbance of 0.35 added at 400 seconds to the input of the process,

simulating decay in measurements, pumps or the heating system. Lastly, a higher output

limit of 1 and a lower output limit of 0 were placed on all the controllers for safety.

In table 9 the resulting rise-time, settling-time and disturbance rejection from tests are

registered and then elaborated on individually later in this sub-chapter:

Table 9: Results for simulation environment 1 without model inaccuracy.

The controllers tested in this environment were also been tested with a +3% miscalculation

in process parameters for tuning, the written results were registered without noise due to it

making exact measurements difficult. These measurements are contained in table 10 below:

Table 10: Results for simulation environment 1 with model inaccuracy.

Test 1-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID 48.000 107.138 81.651 88.991 39.000 109.725 75.229 77.982

CC PI 49.500 105.303 29.358 64.220 55.596 271.193 26.248 73.945

CC PID 108.055 108.055 80.734 94.294 106.972 106.972 77.872 86.239

SIMC PI 21.917 55.761 62.275 71.560 20.550 20.550 49.541 58.171

Matlab Softwate tuned PI 132.826 132.826 84.294 100.917 117.982 117.982 42.202 92.661

2DOF PID Taguchi 40.860 - 20.991 55.963 46.422 - - -

2DOF PID Terauchi 20% 72.000 72.000 64.110 77.700 56.100 109.000 27.100 73.945

 2DOF PID Terauchi 0% 114.000 114.000 118.734 128.440 95.229 115.000 105.229 126.606

SP Matlab Software tuned PI 18.800 48.000 80.900 80.900 18.100 108.653 27.979 45.596

SP DS tuning 85.000 85.696 82.990 92.000 - - - -

2DOF SP 104.200 104.200 88.700 100.297 101.000 101.000 82.700 99.300

MPC 19.000 19.000 84.10 96.28 - - - -

Unchanging dead-time Change in dead-time introduced at 13.1s

Test 1-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise TimeSettle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 49.400 125.043 26.400 78.783 23.400 - 26.200 78.500

CC PID - - - - - - - -

SIMC PI 20.920 57.217 92.870 103.304 19.920 110.000 46.800 106.000

Matlab Softwate tuned PI 111.000 128.000 111.534 128.269 75.043 115.000 39.800 130.000

2DOF PID Taguchi 129.306 129.306 106.352 122.052 122.124 122.124 105.316 119.979

2DOF PID Terauchi 20% 69.000 69.000 62.303 77.789 33.700 110.000 24.900 73.025

Terauchi 2DOF PID 0% - - - - - - - -

SP Matlab Software tuned PI 18.100 44.332 81.865 95.109 17.560 110.725 27.900 81.865

SP DS tuning 80.601 80.601 81.382 92.000 - - - -

2DOF SP 100.290 100.290 85.600 96.500 98.000 99.326 79.400 99.326

MPC 17.760 65.540 82.665 94.200 - - - -

Change in dead-time introduced at 1.3sUnchanging dead-time

33

PID-controllers

Both tunings of the default PID-controllers worked to an extent during nominal and

disturbance-free conditions, both having generally similar performance, with both having a

relatively similar settling time and disturbance rejection capabilities. However both were

limited by noise and slowed down significantly, affecting their ability to address disturbances

and reaching the reference value, as seen in Figure 11 below:

Figure 11: Simulation result of Ziegler Nichols PID-controller with disturbance in Matlab-

Simulink with model miscalculation and noise.

The ZN-tuned PID-controller had a faster rise time of 48 seconds before settling at 107

seconds after an extremely small overshoot much slower disturbance rejection speed than

the CC PID-controller, with a rise and settle time of 108 seconds. However the noise in the

system were significantly disruptive to the PID controllers, rendering results in a more

realistic setting with disturbances and measurement noise unreliable due to not reaching an

acceptable value long into the simulation time given.

34

PI controller tunings provide more varied results depending on the tuning method and were

more resistant to noise due to lacking the Derivative-element. As shown in Figure 12 below,

when using the ZN method it proves itself too slow for result, making it unobservable in this

situation at even ideal conditions with no miscalculation or noise:

Figure 12: Simulation results of a ZN-tuned PI controller in Simulation environment 1

This is contrasted by the performance of the CC and the Skogestad-Suggested Lambda tuning

rules that manage to reach the referential value at around 1 or 2 minutes and settling at 2

minutes.

The Cohen and Coon tuning rules provide a faster response that would usually result in

multiple overshoots to meet the initial value as fast as possible and undershoots to fix the

first overshoot, but due to the output limit it results in a slower rise with a dip before

meeting the reference value. This makes the CC-tuned controller more stable system with

lower overshoots, but it is outdone by the SIMC-tuned PI controller in its settling time and

rise time. However the CC-tuned PI controller is considerably faster to address disturbances

in comparison to an SIMC controller by a large margin.

35

Of the 2DOF PID-controllers only the Taguchi tuning rules were shown to work, but the

controller settles slowly as it oscillates. The Terauchi tuning rule for 0% overshoot proves too

slow even in nominal conditions, but when tuning it for a 20% overshoot it results in better

performance than the Taguchi tuning rules, having a less overshoot and settling faster,

despite a longer rise-time. The performance of the Taguchi tuning for this controller can be

seen in Figure 13 below:

Figure 13: Simulation result of the 2DOFPID tuned with Taguchi Arai's tuning rules in

Simulation environment 1

In all cases a 2 second miscalculation resulted in faster corrections, with the system reaching

the referential value faster, accompanied with faster disturbance rejection and larger

overshoots and more overshoots in all cases. This can be attributed to the controllers

correcting values too quickly before they can slow down to not overcorrect as a result of

controller values not being properly decreased to receive feedback before requiring another

correction.

36

Smith Predictor

The Smith predictor in both software tuning and Direct Synthesis resulted in relatively slower

results in comparison to other simulation, as shown in Figure 14 below:

Figure 14: Simulation result of a Smith Predictor tuned with Direct Synthesis tuning rules in

Simulation environment 1

The direct synthesis tuning of the controller module results in it meeting and settling at the

reference value at roughly 1 and a half minutes. It had a slightly slower disturbance rejection

than the CC-tuned PI controller, but it had faster disturbance rejection than the SIMC-tuned

PI controller. When using software tuning results were often superior to Direct Synthesis,

but there were noticeable overshoots and undershoots when correcting disturbances and

meeting the referential value. 2DOF-SP had results similar to a slower normal controller

without a prediction function, resulting in slower results than the default SP, but with no

overshoot.

2 second miscalculations result in slowly growing oscillations in the DS-SP, while the 2DOF-SP

and Software-SP display similar results to PID-controllers, as in being less stable but with a

faster response.

37

Model Predictive Control

The default Model Predictive had a fast response and settling time in comparison to other

controllers despite limiters with a disturbance rejection time of 84 and 96 seconds, as seen

in Figure 15 below:

Figure 15: Simulation result of a MPC within Simulation environment 1 without model

miscalculation.

A 2 second dead time miscalculation results in increasingly large and uncontrollable

oscillations in output if it is exposed to any significant change in reference value or

disturbance, which it does when the point where dead time is before it can reach the

reference value.

38

6.2 Simulation environment 2

In this simulation environment the controller of cold air in a central air conditioner system is

recreated by placing a voltage controller in a windpipe that uses a fan to feed air to turn a

turbine, the turbine then turns the flow of air into power that it supplies elsewhere. The

power being supplied by the controller to the fan is supposed to the system is supposed to

be in the range 0 to 5 volts, being the hard limit of power being provided. A drawing of the

simulation environment is shown in Figure 16:

Figure 16: Concept drawing for Simulation Environment 2 (Normey-Rico & Camacho, 2007,

p. 158)

 The acceptable voltage of the controller is changed from the default 1.5V to 3.5V at 75

seconds over the course of 150 seconds. The process itself had a process gain of 1.02 V, a

time constant of 1.7 seconds with a dead time of 8.2 seconds. (Normey-Rico & Camacho,

2007, p. 158) With the above information the process can be summarized with the below

transfer function in equation 6.2:

𝑃𝑛(𝑠) =

1.02

1.7𝑠 + 1
∙ 𝑒−8.2𝑠

(6.2)

The initial rise time, settling time and disturbance rejection of the system detailed above. It

has to be noted that disturbance rejection is tested with a disturbance of 0.225 of the

reference value at 30 seconds and a 0.525 of the initial reference value at 97 seconds. For

the sake of comparing the destabilizing effect of unknown dead time with Simulation

environment 1, the change in dead time for this Simulation environment is also 2 seconds.

39

Like in sub-chapter 6.1 “Simulation environment 1”, the results of each controller tested in

this Simulation environment are detailed in table 11 below, before the actual behavior of

each method is detailed in later in this sub-chapter:

Table 11: Results for simulation environment 2 without model inaccuracy. Rise Time and

Settle time are without dead time being taken into account.

In this Simulation environment all the control methods have additionally been tested with a -

5% model miscalculation, with the results listed in table 12 below:

Table 12: Results for Simulation environment 2 with a model inaccuracy of -5%.

The measurements in Table 12 were registered without noise taken into account due to the

low scale of the environment making exact measurements difficult.

Test 2-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 13.670 52.156 24.135 24.813 11.766 - 17.668 -

CC PID - - - - - - - -

SIMC PI 22.473 56.510 33.000 33.025 18.494 - 29.288 33.245

Matlab Softwate tuned PI 12.450 60.100 22.857 22.043 10.860 - 22.531 16.670

2DOF PID - - - - - - - -

SP Matlab Software tuned PI 1.227 9.889 16.881 19.800 - - - -

SP DS tuned PI 13.612 13.612 21.700 24.174 - - - -

2DOF SP 13.548 13.548 20.540 23.459 8.490 71.711 22.198 20.239

MPC 4.521 4.521 19.104 20.852 - - - -

Unchanging dead-time Change in dead-time introduced at 1.3s

Test 2-D

Method/Time(s) Rise TimeSettle time Dist.Rej1 Dist.rej2 Rise TimeSettle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 14.120 50.157 24.700 24.100 9.720 - 20.600 21.570

CC PID - - - - - - - -

SIMC PI 11.780 - 32.735 34.200 9.720 - 27.483 30.750

Matlab Softwate tuned PI 13.090 46.310 23.600 23.360 11.160 - 21.106 20.820

2DOF PID - - - - - - - -

SP Matlab Software tuned PI 18.833 18.833 28.455 26.711 - - - -

SP DS tuned PI 23.711 23.711 22.572 31.589 - - - -

2DOF SP 1.700 19.300 27.000 30.800 8.790 70.898 21.385 20.720

MPC 20.635 20.635 24.793 27.607 - - - -

Unchanging dead-time Change in dead-time introduced at 1.3s

40

PID

The result of the default PID-controller configuration and the 2DOFPID-controller, regardless

of tuning, results in immeasurable results, taking too long to reach the reference value in

over half the simulation time or anything close to it for proper results or analyzable and

consistent behavior regarding the effects of disturbance. As a result only the tested PI

controller configurations are analyzed.

Figure 17: Simulation Result of CC- tuned PI controller in Simulation environment 1 without

miscalculation.

As seen in Figure 17 above, due to a lack of a limiter and a longer relative dead time, the

response of the controller when tuned with Cohen and Coon-tuning rules results in it

meeting the value at 14 seconds with only one overshoot and an almost unnoticeable

undershoot that was corrected and settled at 50 seconds, with a rejection response to

disturbances within 25 seconds.

41

The SIMC-PI controller had a smaller overshoot than the CC-PI controller, but the rise time

was longer than the CC-tuned PI controller with only a 4 second longer settling time and a

noticeable slower response to disturbance, as seen in Figure 18 below:

Figure 18: Simulation of a PI controller using SIMC tuning rules in Simulation environment 2

A Matlab software-tuned-PI controller attains robust solution results with a faster-rise time

and disturbance rejection than other methods at the cost of a longer settling time.

Like in Simulation environment 1, a 2 second dead time change at 1.7 seconds causes most

methods controllers achieve a larger overshoot, more undershoots and a longer or

unreachable settling time in the simulated timeframe. The only benefits were a shorter rise

time and a faster disturbance rejection with noticeable undershoots. The controllers

generally succeed in not oscillating despite a larger relative error in dead time when

comparing it to the time constant.

42

Smith Predictors

Smith Predictors provide a relatively fast, but controlled result in even non-nominal

conditions in this simulation environment, as seen in Figure 19:

Figure 19: Simulation result of Smith Predictor Controller using Direct Synthesis tuning in

Simulation environment 2 with a model miscalculation of -5%.

When using Direct synthesis there was no overshoot in nominal conditions while having a

significantly longer rise time when exposed to a -5% process model inaccuracy, it managing

to reach and maintain the referential value at 22 seconds, being much faster than the Cohen

and Coon method to reach settling-time. It also had a shorter disturbance rejection period

than the CC-tuned PI controller under ideal circumstances, but only by a degree of

deciseconds and that speed was lost under a -5% process miscalculation. When tuned with

Matlab software the controller provides superior performance to Direct Synthesis-tuning at

the cost of a slightly larger overshoot, reaching the reference value at 10 seconds and

maintaining it at 17-to-20 seconds. The 2DOF-SP had a similar, if better performance to the

default SP-DS configuration, generally being slightly faster due to the shorter time constant

resulting in a less obstructive filter and faster controller.

43

When exposed to a 2 second difference of dead time at the instant of 1.7 seconds, the DS-SP

oscillates, the Matlab software-tuned Smith Predictor also starts to oscillate wildly and the

2DOF-SP provides only a less acceptable performance than when in ideal conditions, but it

becomes slightly faster with a larger degree of overcorrection.

Model Predictive Control

Model Predictive Control had a better performance compared to the Smith Predictor tuned

using Direct Synthesis, with the fastest rise time and settle time than all other methods with

minimal overshoot and undershoot. It manages to deal with disturbances in 20 seconds. A -

5% inaccuracy results in a noticeably longer rise- and settling- time and a slower disturbance

rejection response that can still be considered superior overall to the SP configurations

tested, as seen with Figure 20 below:

Figure 20: Simulation result of MPC in Simulation environment 2 with a -5% miscalculation.

Like with Simulation environment 1, a dead time miscalculation of 2 seconds results in

uncontrollable oscillations in this simulation environment. With the Simulation results for

both environment 1 and 2 in mind, it can be concluded that a significant error in comparison

to estimated either dead time or the time constant results in the controller creating

oscillation.

44

6.3 Simulation environment 3

In this simulation environment a controller is managing the flow of hot air of a ceramic drier

with a differing time constant and a dead time dependent on the temperature of operation,

where in this case the wanted temperature is 110° Celsius. The general function of the

heater is displayed in Figure 21 below:

Figure 21: Figure representing the general function of the ceramic dryer. (Normey-Rico &

Camacho, 2007, p. 124)

In this simulation environment the process designed for minimum temperature is used due

to the dead time of the model being over twice the time constant and the focus of this thesis

being dead time. At the temperature of 110° Celsius the dead time is approximately 154

seconds, the process gain of the air-to-hot gas relationship is 0.84° Celsius and the time

constant is 70.2 seconds. (Normey-Rico & Camacho, 2007, pp. 122-124). The above factors

result in an FOPDT model in the form of equation 6.3:

𝑃𝑛(𝑠) =

0.84

70.2𝑠 + 1
∙ 𝑒−154𝑠

(6.3)

A Disturbance step simulating issues with the heater resulting in poorer heating that

decreases the heat in the air controlled by the controller, affecting control output in steps

with the amounts of -10 and -20 at 110 seconds and 400 seconds respectively. The selected

dead time error for this system was 38.5 seconds.

45

As with the previous sub-chapters 6.1 “Simulation environment 1” and 6.2 “Simulation

environment 2”, results of the methods tested that are detailed in later subchapters have

been written down in table 13:

Table 13: Results for Simulation environment 3 without model inaccuracy.

The degree of model inaccuracy tested for this simulation environment is a +7%

miscalculation of process gain and time constant. The simulation results for this environment

with model miscalculation were contained in table 14 below:

Table 14: Results for Simulation environment 3 with a model inaccuracy of +7%.

Like in sub-chapter 6.1 “Simulation Environment 1” and sub-chapter 6.2 “Simulation

environment 2”, noise was not included in result measurements listed in table 14 due to

measurement difficulties, with the effects of which will stated when analyzing general

controller behavior.

Test 3-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 190.500 1497.319 433.000 438.326 184.800 2535.078 443.165 501.635

CC PID - - - - - - - -

SIMC PI 421.060 1461.000 676.000 675.300 350.500 1570.500 619.093 621.409

Matlab Software tuned PI 279.338 1043.602 548.681 533.290 248.800 2049.706 564.897 520.393

2DOF PID 2708.545 2708.545 414.246 456.000 2107.095 2107.095 467.354 448.000

SP Matlab Software tuned PI 62.000 370.510 561.596 629.714 62.500 - - -

SP DS tuned PI 10.240 10.240 468.144 551.000 - - - -

2DOF SP 613.000 613.000 729.000 729.000 187.200 1257.500 447.500 447.500

MPC 14.916 45.204 517.285 607.207 - - - -

Unchanging dead-time Change in dead-time introduced at 70.2s

Test 3-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 180.400 1917.548 274.000 276.000 177.800 3107.500 231.000 265.000

CC PID - - - - - - - -

SIMC PI 360.000 1493.702 462.000 463.000 319.000 2588.990 406.683 410.000

Matlab Software tuned PI 247.800 1451.317 355.000 354.000 235.700 2546.606 336.500 319.500

2DOF PID 2426.163 2426.163 476.827 471.000 946.587 2747.933 477.500 444.500

SP Matlab Software tuned PI 59.700 698.990 227.462 216.865 - - - -

SP DS tuned PI 43.500 720.183 216.865 213.894 - - - -

2DOF SP 197.000 871.000 312.000 325.000 174.800 1667.500 241.000 247.000

MPC 49.699 414.508 378.969 377.839 - - - -

Unchanging dead-time Change in dead-time introduced at 70.2s

46

PID

Like with Simulation environment 2, the default PID-controllers and the ZN-tuning of PI

controllers were too slow, resulting in them not reaching the referential value under any

circumstance. Other PI controller tuning methods had varied results as shown in Figure 22

below:

Figure 22: Simulation result of a CC- tuned PI controller in Simulation environment 3 with a

model inaccuracy of +7%

The CC-tuned PI manages to meet the intended value at 190 seconds with multiple, but

continuously lesser, overshoots and undershoots for 25 minutes with an average

disturbance rejection of 7 minutes. Skogestad’s suggestion for Lambda tuning of the

controller results in it meeting the reference value at 7 minutes with an overshoot of slightly

less than 10% of the reference value, settling at 24 minutes and disturbance adjustment

being over 10 minutes. Software-based tuning results in the fastest rise time of the

controllers of 5 and a half minutes, settling at roughly 16.5 minutes and manages to adjust

to disturbances with very small overshoots in 8 and a half minutes.

47

Of the 2DOF PID-controller tuning rules only the Taguchi tuning rules produce a usable

result, with it reaching the reference value at 46.5 minutes and having a disturbance

rejection time of 428 seconds and 430 seconds. As seen in Figure 23 below, the controller

was unable to reach the set point value with the negative disturbances:

Figure 23: Simulation result of 2DOFPID tuned using Taguchi tuning rules in Simulation

environment 3 without model miscalculations and a dead time error of 38.5s

When exposed to noise this tuning was significantly less usable in a similar manner as the

default PID configuration, as it was unable to reach the reference value even with a +7%

model miscalculation. This can be attributed to an issue PID-controllers face with the D-

element becoming problematic when exposed to significant noise, slowing down controller

response considerably and in extreme cases rendering them unable to deal with

disturbances.

48

Under a 38.5 seconds of change in dead time, settling time was dramatically increased for all

controllers, but rise time and disturbance rejection was fastened at the cost of multiple

overshoots and undershoots as shown with the result of the SIMC tuned PI controller in

Figure 24 below:

Figure 24: Simulation result of the SIMC-tuned PI controller in Simulation environment 3

with a change in dead time introduced at 70.2 seconds.

It should be noted that under such a long default dead time, a 2 second miscalculation had

nearly no effect, showing that the effect of miscalculated dead time is proportional to

measured dead time for reactive controllers. This is attributed to controller speed being

tuned with dead time in mind as well as process parameters, as with all FOPDT-model based

tuning methods the PID controller’s P-,I- or D- elements were lowered for slower error

correction depending on the dead time. This is to allow for the controller to course-correct

before meeting the reference value or overshooting the value too much, resulting in a

slower controller response to attain feedback before overcorrecting to avoid oscillation.

49

Smith Predictor

The default Smith Predictors generally meet the desired value at a faster rate than other

controllers with a small overshoot in compromised conditions and none in nominal

conditions and with the fastest responses to disturbance as seen in Figure 25 below:

Figure 25: Simulation result of Smith Predictor PI controller tuned with Direct Synthesis

tuning rules in Simulation environment 3 with a +7% miscalculation and noise.

Direct Synthesis results in the controller reaching the intended value in roughly 160 seconds

and settling, adjusting to disturbance more quickly than other controllers with less

overcorrection. Under non-nominal conditions there was a significant overshoot that was

fully corrected at 12 minutes, as seen in Figure 25. This can be attributed to the long dead

time creating a situation where model miscalculations result in an overshoot that takes

longer to be corrected due to the faster controller amplifying the degree of overshoot until

feedback of the actual process overshooting was received.

50

2DOF SP controllers trade the characteristic speed of the default SP for robustness and as a

result were generally slower than the default SP configuration, in rise time, settle time and

disturbance rejection as seen in Figure 26 below:

Figure 26: Simulation result of a 2DOF-SP controller in Simulation environment 3

The large difference in performance between SP-DS and 2DOSP can be attributed to the

2DOF-SP being prepared for a larger dead time error than in the other Simulation

environments tested. This results in both the filter and the controller being slowed due to a

longer error in dead time resulting in a more stable, but significantly slower performance in

default conditions.

Like with other simulation environments, the default Smith Predictor system cannot handle

a large change in dead time and breaks when exposed to it. An appropriately prepared

2DOF-SP, in comparison, remains usable with a rise-time almost halved and it settling at

around 1100 seconds in non-nominal conditions.

51

Model Predictive Control

The Model Predictive Controller configuration used in environment provides a worse

response than a Smith Predictor using Direct Synthesis tuning under controlled conditions.

However if there is a +7% miscalculation, the MPC manages to reach the set-point value at

the same speed with a similar settling time, with a noticeably slower disturbance rejection.

This can be seen in the simulation results displayed in Figure 27:

Figure 27: Simulation result of a MPC with a control horizon of 2 in Simulation environment 3

with a +7% miscalculation in the process model.

As seen in the Figure 27 above, a miscalculation of the controller value results in a 5%

overshoot that takes until 10 minutes to correct with a roughly 10% overshoot. With a dead

time error of 38.5 seconds, the controller oscillates uncontrollably as it did in similar tests

done in other simulation environments.

52

6.4 Simulation environment 4

The parameters for this simulation environment were entirely artificial and self-created, this

environment designed to test controller behavior at very low dead time compared to the

time constant for a favorable performance for PID and 2DOF controllers. It has also been

made to analyze how other controllers work in these environments for the sake of

comparison with the default conditions of Simulation environment 1.

The transfer function in equation 6.4 below displays the process model, having a process

gain of 30, a time constant of 35 seconds and a default dead time of 15 seconds:

𝑃𝑛(𝑠) =

30

35𝑠 + 1
∙ 𝑒−15𝑠

(6.4)

This simulation was used to test the system’s ability to keep a value of 45 over the course of

2000 seconds. Input disturbance was applied at the amounts of 0.1 and -0.25 process input

at times 615 seconds and 1465 seconds respectively, with a dead time change of 3.5 seconds

being deployed at 35 seconds. As with all the other simulation environments tested, the

results of the tests made in this environment with both complete model accuracy and model

inaccuracy of -10% are listed in table 15 and table 16 below, with the results being

elaborated on separately in in their own later in this sub-chapter:

Table 15: Results for Simulation environment 4 without model inaccuracy. Rise Time and

Settle time are without dead time being taken into account.

Test 4-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI 551.000 551.000 509.835 534.447 535.700 535.700 479.000 526.000

ZN PID 42.970 164.000 118.000 117.200 42.600 251.500 104.500 104.700

CC PI 15.192 430.500 51.700 51.700 11.691 563.963 52.950 56.120

CC PID 28.550 157.000 129.000 132.077 27.020 129.500 105.521 105.000

SIMC PI 41.100 155.935 265.000 285.000 40.500 152.500 256.239 283.066

Software tuned PI 35.070 228.900 275.000 300.000 39.500 480.456 256.239 108.559

2DOF PID Taguchi 115.200 939.071 41.004 126.000 123.550 - - -

2DOF PID Terauchi 0% 179.154 179.154 163.000 176.000 210.500 210.500 156.000 191.500

SP Software tuned PI 12.210 99.823 234.687 258.873 8.710 187.500 220.000 256.000

SP DS tuned PI 9.200 9.200 237.000 258.000 8.640 - - -

2DOF SP 319.000 319.000 251.000 271.000 313.500 313.500 244.500 265.500

MPC 5.440 19.815 244.140 264.788 - - - -

Unchanging dead-time Change in dead-time introduced at 35s

53

Table 16: Results for simulation environment 4 with a model inaccuracy of -10%. Rise Time

and Settle time are without dead time being taken into account.

PID

ZN- and CC-tuned PID-controllers display similar behavior and results, with CC-tuning

providing a generally better response at reaching the referential value:

Figure 28: Simulation result of PID-controller tuned with Ziegler Nichol tuning rules in

Simulation environment 4

The Cohen-Coon tuned PID-controller provides a slightly faster rise time of 32 seconds with a

smaller overshoot, but with a slightly slower settling time of 172 seconds and a slightly

slower time disturbance rejection with a 10 to 15 second difference.

Test 4-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI 594.900 594.900 516.000 535.000 581.500 581.500 504.000 535.000

ZN PID 48.000 174.979 124.000 125.000 45.520 260.299 110.500 110.000

CC PI 15.400 392.098 55.209 55.000 11.900 902.168 53.500 53.709

CC PID 32.300 177.000 148.000 151.000 31.650 163.500 138.000 150.000

SIMC PI 48.400 275.188 284.000 313.152 45.900 261.500 277.116 300.626

Software tuned PI 38.770 284.000 291.000 313.990 38.600 160.500 282.500 302.500

2DOF PID Taguchi 16.455 1293.977 37.250 41.700 - - - -

2DOF PID Terauchi 0% 200.000 200.000 177.000 188.000 170.500 170.500 160.500 198.600

SP Software tuned PI 12.670 213.400 243.000 263.800 9.170 159.400 241.500 259.500

SP DS tuned PI 225.084 225.084 259.739 271.399 - - - -

2DOF SP 334.000 334.000 255.500 276.500 334.500 334.500 263.000 285.000

MPC 5.750 226.250 253.873 275.587 - - - -

Unchanging dead-time Unstable dead-time

54

Figure 29: Simulation result of Ziegler Nichols-tuned PI controller in Simulation environment

4 with no model miscalculation.

As seen in Figure 29 above, using the Ziegler-Nichols rules for tuning PI controllers the

controller manages to reach the reference value at 9 minutes with minimal overshoot at

either circumstance, with similar disturbance adjustment time. It should be noted that it

manages to reach a 5% difference from the reference value at 5 minutes.

The CC-PI controller in this environment had more and larger relative overshoots and

undershoots than in other simulations, it managing to reach 80% overshoot the reference

value, which can be attributed the faster response provided by a lower dead time relative to

the time constant and a lack of an output limit. It also haf the fastest disturbance rejection of

51 seconds, rise time was 15 seconds and the fastest disturbance rejection of less than a

minute of all the default-PI tuning methods at the cost of the second slowest settle time,

managing to correct disturbance with some slight overshoot that stabilizes in 100 seconds.

The SIMC-PI controller manages to reach the reference value at a minute and noticeably

faster settle-time with a smaller overshoot than the PID-controllers, however disturbance

adjustment was nearly 5 minutes. Using Matlab software to tune the PI controller provides

results similar to the SIMC-PI controller, but with a larger overshoot, a slightly faster rise

time, a significantly longer settling-time and a slightly longer disturbance rejection period.

55

The Taguchi and Terauchi-tuned 2DOF-PID-controller had a different result, as each

controller have a very different way of reaching the set-point value and rejecting

disturbance:

Figure 30: Simulation result of 2DOF-PID-controller tuned with Taguchi-Arai tuning rules in

Simulation environment 4

As shown in Figure 30, the Taguchi 2DOFPID tuning method had a longer settling time but in

exchange for a faster rise time with the fastest disturbance rejection of all methods due to

its oscillatory nature with little noticeable overshoot. However its disturbance rejection had

a long period of gradually decreasing oscillation comparable to the former disturbance it was

rejecting in magnitude in the case of smaller disturbances. This behavior can be attributed

56

In contrast 0% overshoot Terauchi configuration provides a performance similar to other

PID-controllers, but slower with no overshoots and a slower disturbance rejection than

either of the two default PID-controller tunings, having a twice as long rise time and 25%

longer disturbance adjustment times with a faster response. This is shown in Figure 31

below:

Figure 31: Simulation result of 2DOFPID-controller tuned with Terauchi tuning rules with 0%

overshoot in Simulation environment 4

A 3.5 second difference results similar results in other simulations, only that the Taguchi-

tuned 2DOFPID control oscillates consistently until interrupted by disturbance , while the

2DOF Terauchi-tuned 2DOFPID had similar performance to the PID-controllers tested, if with

no overshoot when correcting due to the slower reaction. The Taguchi controller’s increased

oscillation can be attributed to the error in dead time increasing the controller’s speed

coupled with the existing oscillatory response resulting in oscillation that takes a significantly

longer amount of time to stabilize, if at all.

57

Smith Predictor

Smith predictors generally meet their intended value at nearly half a minute and while the

DS-SP meets the value with a rise time of 24.2 seconds in nominal conditions with no

overshoot. Under non-ideal conditions the Smith predictor does not reach the intended

value until 4 minutes, as shown in Figure 32:

Figure 32: Simulation result in SP-PI tuned with Direct Synthesis rules in Simulation

environment 4 with a -10% miscalculation

Disturbance rejection was similar to the SIMC and the Matlab software-tuned PI, but with a

slightly faster adjustment that was half a minute less. It should also be noted that with

process model inaccuracies there was a significant undershoot and overshoot, with the

Direct Synthesis-tuned PI controller having significantly longer settling-time and rise time.

This slowed performance can be attributed to the overall controller structure of the Smith

Predictor settling according to the process model, before receiving a response and a low

error value in addition to the -10% process model wrong estimation slowing the controller

response significantly.

58

The 2DOF-SP was significantly slower than the default SP, with it reaching the intended value

in four minutes and more with model inaccuracies, as shown in Figure 33 below:

Figure 33: Simulation result of a 2DOF-SP PI controller in Simulation environment 4 with a -

10% miscalculation in process gain and time constant.

Notably, a change in dead time results in the “PID tuner” software-tuned controller having

larger overshoots and undershoots rather than oscillating, which can be attributed to the

nature of the controller tuning done for this simulation environment favoring a slower

reaction. The Two-degree-of-freedom SPs controller configuration along with the filter was

too slow for the 3.5 second change in dead time to have a significant effect as it had been

prepared for it, as it had been in other Simulation Environments.

59

Model Predictive Control

Model Predictive Control had a faster performance than the Smith Predictors and in nominal

conditions it settles at 20 seconds with a disturbance rejection of 245 to 276 seconds

depending on the degree of disturbance under ideal conditions with a small overshoot. This

changes when it was exposed to a -10% miscalculation in process values:

Figure 34: Simulation result of MPC in Simulation environment 4 with a control horizon of 3.

As seen in Figure 34, when exposed to less than ideal conditions with a -10% miscalculation,

settling had been dramatically increased after initially reaching the reference value, this can

be attributed to predicted controller values being so that there was a brief overshoot before

quickly corrected back to the reference value. However due to the model miscalculation, this

predicted process and the controller’s attempt to fix it and disturbance significantly

lengthened by the decrease in process gain.

Like in the tests done in Simulation Environment 1, 2 and 3, a 3.5 second change in dead

time results in growing in oscillation, as this controller was unable to handle dead time

errors of such magnitude within this Simulation environment.

60

6.5 Cross-examination

For the purpose of cross examination Simulations environments 2 and 3 have been tested

and simulated again in nominal conditions with matching dead time-to-time-constant ratios

to see if their general behavior remains consistent regardless of actual dead time, time

constant and process gain.

Figure 35: Simulation results of SIMC-tuned PI controllers within Simulation environment 2

with a dead time of 5.3 (left) and Simulation environment 3 with a dead time of 225(right)

Figure 36: Simulation results of CC-tuned PI controllers within Simulation environment 2

with a dead time of 5.3 (left) and Simulation environment 3 with a dead time of 225 (right).

As shown in Figures 35 and 36 above and after multiple other measurements, general

behavior such as the initial overshoots when tuned with CC-tuning rules remain similar, as

does their extent from the reference value.

61

This can be also seen in the below table 17 and table 18, where dividing each controller’s

simulation results by each simulation environment’s time constant, as the rise-time and

settle-time had similar values for PI controllers:

Table 17: Test 2-2 results divided by the time constant. Change in dead time is 1 second.

Table 18: Test 3-2 results divided by time constant. Change in dead time is 18.25 seconds.

The difference in resulting Smith Predictor and MPC behavior can be attributed to

performance being generally based on the relative values between the time constant and

the process gain, which is very large for Simulation environment 3 in comparison to

Simulation environment 2. Another explanation for this variance is that generally longer

processes enable better results for predictive controllers in relation to standard PID-

controllers.

Results divided by time constant

Method/Time(s) Rise Time Settle timeDist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 4.300 24.005 8.706 9.551 4.035 35.988 9.029 10.706

CC PID - - - - - - - -

SIMC PI 8.535 21.444 25.215 13.042 7.271 41.294 12.055 10.353

Matlab software tuned PI 5.700 26.294 10.176 10.249 5.053 32.264 10.012 10.249

2DOFPID Taguchi - - - - - - - -

2DOFPID Terauchi - - - - - - - -

SP Matlab Software-tuned PI 0.686 5.681 9.914 10.089 - - - -

SP DS tuning 7.953 7.953 11.084 13.384 3.400 37.868 8.233 8.547

2DOF SP 8.408 8.408 11.828 13.136 3.409 21.765 7.941 8.038

MPC2 3.409 3.409 9.516 10.770 - - - -

Change in dead time introduced at 1.7sUnchanging dead-time

Test 2-2

Results divided by time constant

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 4.466 24.226 9.003 8.954 4.295 26.367 9.043 9.018

CC PID - - - - - - - -

SIMC PI 8.789 31.140 13.377 13.377 8.046 32.530 12.626 12.719

Matlab software tuned PI 4.402 21.671 9.018 9.018 4.281 31.027 8.945 8.873

2DOFPID Taguchi - - - - - - - -

2DOFPID Terauchi - - - - - - - -

SP Matlab Software-tuned PI 5.513 20.185 10.184 10.028 5.164 28.654 9.842 9.850

SP DS tuning 0.142 0.142 10.264 10.113 - - - -

2DOF SP 7.764 7.764 9.188 10.328 3.397 17.899 7.550 7.158

MPC 0.460 1.075 8.419 9.658 - - - -

Test 3-2

Unchanging dead-time Change in dead-time introduced at 70.2s

62

For further analysis, a second testing of Simulation environment 1 with a similar dead time-

to-time constant to Simulation Environment 3is done and was then compared to the default

Simulation Environment 3 in table 19 and table 20 below:

Table 19: Test 1-2 results divided by the time constant. Change in dead time is 5 seconds

Table 20: Test 3-1 results divided by the time constant, change in dead time is 38.5 seconds.

As seen in Table 20 and Table 19, PI controller results remain similar under nominal

conditions and the gap in performance between their Direct Synthesis-tuned Smith Predictor

controllers and MPC controllers was not as large, as the difference between the time

constant and the process gain was less than in the second simulation environment.

Results divided by time constant

Method/Time(s) Rise Time Settle timeDist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 2.450 19.162 5.870 5.996 2.399 20.461 6.742 6.315

CC PID - - - - - - - -

SIMC PI 5.542 13.489 9.154 9.061 4.748 12.968 8.002 7.871

Matlab software tuned PI 5.008 19.512 8.305 8.404 4.412 - 7.443 8.010

2DOFPID Taguchi - - - - - - - -

2DOFPID Terauchi - - - - - - - -

SP Matlab Software-tuned PI 1.431 5.769 5.063 8.939 1.453 19.705 5.059 5.359

SP DS tuning 4.741 4.741 8.526 9.018 - - - -

2DOF SP 9.427 9.427 9.396 10.275 2.527 15.763 5.534 5.855

MPC 0.371 1.291 8.482 9.337 - - - -

Change in dead-time introduced at 13.1sUnchanging dead-time

Test 1-2

Results divided by time constant

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 2.714 21.329 6.168 6.244 2.632 36.112 6.313 7.146

CC PID - - - - - - - -

SIMC PI 5.998 20.812 9.630 9.620 4.993 22.372 8.819 8.852

Matlab Software tuned PI 3.979 14.866 7.816 7.597 3.544 29.198 8.047 7.413

2DOF PID 38.583 38.583 5.901 6.496 30.016 30.016 6.657 6.382

SP Matlab Software tuned PI 0.883 5.278 8.000 8.970 0.890 - - -

SP DS tuned PI 0.146 0.146 6.669 7.849 - - - -

2DOF SP 8.732 8.732 10.385 10.385 2.667 17.913 6.375 6.375

MPC 0.212 0.644 7.369 8.650 - - - -

Unchanging dead-time Change in dead-time introduced at 70.2s

Test 3-1

63

6.6 Minor tests

Various smaller tests have been done to further analyze controller behavior and how

implementing various minor modifications can result in compensating for issues such as

overcompensation or oscillation. Due to the focus on general behavior rather than specifics,

no test results were written down.

Limiters on controllers

Output limiters can be implemented to limit the controller output spike that accompanies

the response of faster controllers, as seen with controller performance in Simulation

Environment 1 in comparison to other simulation environments. As the most extreme

example of controller overshoots, a Cohen-Coon-tuned PI controller was used as an example

on what stricter output limiters can achieve in Figure 37 below:

Figure 37: Simulation result of Cohen Coon-tuned PI controller in Simulation environment 4

without a controller output limit (left) and with an output limit of 2 (right).

Limiting controller output can put a higher limit for the inserted value for controlling the

process. This can be implemented on controller tunings that first deploy a large spike to

meet the initial value faster before quickly correcting it, mitigating the negative qualities that

involve massive spikes and long settling periods. However if the control system is not

isolated and is expected to deal with disturbance that decreases output, a low max output

limit for the controller can lead to situations where the reference value is unreachable.

64

Custom White Noise Model for MPC

Besides mitigating the effects of noise when implemented in Model Predictive Control,

custom models for white noise can be used to deny and control oscillations caused by the

misalignment of estimated and actual value caused by miscalculated dead time. The Matlab

Software “MPC designer” allows the use of a custom white noise model to reduce the effects

of noise on a system. Custom noise models can allow for otherwise unusable MPC

configurations to be used in systems where an MPC would otherwise oscillate. The

effectiveness of this model is shown in Figure 38 below, where an MPC for Simulation

environment 4 using a control horizon of 3 was tested under a 3.5 second change in dead

time at the time constant with and without a custom white noise model:

Figure 38: Simulation results for MPC within Simulation Environment 4 using a control

horizon of 3 without (left) and with a Custom White Noise model with the magnitude of 20

(right).

The custom white noise model does eliminate growing oscillations that tend to be present

where there is a large dead time miscalculation, but response-time to errors was lengthened

as a result. This can be explained as the Custom White Noise model recognizing sudden

mismeasurements, such as the oscillations caused by a dead time mismeasurement, as

disturbances or other errors being acknowledged as actual errors due to being a sustained

change rather than a sudden one.

65

Unknown dead time on Predictive controllers

Unknown dead time on Predictive control models can be disastrous, as the speed at which

the assigned controllers operate on can make even 2 second inaccuracies result in

uncontrollable oscillation. To test how smaller dead time errors can affect the predictive

controllers tested, the SP Direct Synthesis-tuned PI-controller and the MPC were tested

within a modified simulation environment 2 with a different dead time miscalculation:

Figure 39: Simulation result of DS-tuned PI controller with a Smith Predictor in Simulation

environment 2 with a dead time of 5.3 with a 1 second of dead time miscalculation.

In the Figure 39 above, it can be seen that not all unmeasured dead time result in

catastrophic failure, as a one second dead time mismeasurement does not seem to produce

oscillations as large or growing as a 2 or 3 second dead time change. After further testing,

the degree of error where the system simply oscillates before settling and the system

growing in oscillation is 1.6 seconds. The effect was the same for both dead time estimation

overshoot and undershoot.

The degree and speed of which unmeasured dead time effects Model Predictive controllers

seems to be dependent on the error in the dead time in comparison to the time constant

rather than the amount of dead time itself.

66

This can be seen in Figure 40 below, where individual simulation results for an MPC done

with a dead time error of 4 seconds in simulation environment 4 with measured dead time

of 154 and in Simulation environment 3 with the same dead time measurement:

Figure 40: Simulation Results of MPC with a control horizon of 3 within Simulation

environments 3 (left) and 4 (right) with the dead time of 154 seconds and dead time error of

4 seconds.

As seen in Figure 40 above, a 4 second difference in dead time had been relatively

insignificant in a process with the time constant of 70 seconds, while in a similar process

with a time constant of 35 seconds it results in repeated and increasing oscillation periods.

This can be attributed to a large and continuous mismatch between the process model, the

MPCs prediction model and the incorrect flow of information resulting in gradual and

growing overcorrection. Due to the overcorrected and incorrect output being taken into

account with other output values, the record of results is continuously corrupted creating

further increasing oscillations due to the constantly incorrectly measured results brought by

repeatedly mistimed comparisons. Another explanation for this behavior can simply be the

aggressive correction the MPC has in comparison to other methods like with the Direct

Synthesis-tuned Smith Predictor controller, however this does not explain overcorrection

growing between “pulses” in the left graph of Figure 40.

67

7 RESULTS

The effects of a slower flow of information caused by dead time on a system are dependent

on multiple factors, such as if the dead time is measured, unknown or its length compared to

the time constant. For the sake of simplicity, the effects of dead time is split between

whether it is measured or unknown, before a general recommendation of where and how to

use each control method based on circumstances and priorities.

7.1 Measured dead time

Measured dead time will generally slow the response and general capabilities of PID-

controllers, with the extent of which being dependent on the speed of the tuning method

itself. Tuning methods that take dead time into account will deliberately slow their response

to the dead time to match the slowed flow of feedback information to prevent

uncontrollable oscillations. This is understood by the Integral element being deliberately

smaller by a larger “Ti” value to facilitate a smaller gradual response and dead time being

often an element that decreases the value of the P-, I- and D- elements in the different

tuning methods tested in chapter 6. This is to provide a larger margin of error on all areas

such as dead time, process gain estimation and time constant estimation as well as allowing

for course correction.

Under ideal circumstances measured dead time is irrelevant to Model Predictive Controllers

and dead time-compensators used on feedback controllers. However in a practical

implementations there will always be a degree of miscalculation, as such longer dead times

increase the degree of resulting overshoots, undershoots and time for correction in the case

of overestimated process dynamics.

When using either reactive or Predictive controllers, measured dead time enlarges

disturbances according to the time constant, leaving them to grow larger as they take longer

to be corrected by the controller. This is compounded by the deliberately slowed response in

non-prediction-based controllers, leading to a slowed disturbance rejection response overall.

68

7.2 Unknown dead time

Unknown dead time has a destabilizing effect on most tuning methods and variants of the

Proportional Integral Derivative Controller, resulting in overshoots and undershoots

dependent on how large it is in comparison to the measured dead time. Longer dead time

than estimated result in a slower flow of information towards the feedback of the controller

leading to larger and more over-adjustments, having a longer settling period for dealing with

uncertainties as a result. Lower than predicted dead time brings only minor issues by

comparison, with the tuned reaction being delayed enough to account for longer dead

times. This results in merely a slower response than necessary rather than overcorrection or

oscillation.

Model Predictive Controllers and the Default Smith Predictor with a Direct Synthesis tuning

configuration are generally vulnerable to changes in dead time and result in unsettling or

growing oscillations. In the case of the default Smith Predictor with a PI controller tuned

with the Direct Synthesis method, it can be attributed to the prediction process correcting

values as fast as possible using predicted output and comparison to actual output. A wrongly

estimated rate of information, where the delayed feedback is not eliminated by being

compared to the actual delayed output, bringing unwanted spikes or dips and resulting in a

repeating critical failure for the prediction process until it is corrected. This failure in the

prediction process creates a cycle of overcorrection and, in the case of the MPC, continuous

corruption of earlier data where mis-timed information often results in growing oscillation.

By contrast, the Two-Degree-Of-Freedom Smith Predictor has responses similar to unknown

dead time like non-predictive controllers, but at the price of the speed and accuracy that

characterizes the performance of predictive controllers.

Unlike non-predictive controllers, an overestimated dead time for MPCs and SPs is just as

harmful as underestimating it due to relying in comparing the estimated feedback and the

actual feedback. When using predictive controllers, accuracy is vital, with correct dead time

estimation being one of the most important aspects to account for.

69

7.3 Recommended controllers and tunings

The default PID-controller configuration with the two most common tuning rules will only

provide satisfactory results in lag-dominant situations with a very low and quickly dealt with

overshoot. However it should be avoided in higher noise magnitude and frequency

environments due to the derivative element being disrupted, significantly increasing the

length of rise time and disturbance rejection.

Proportional-Integral controllers are more flexible and function in much larger relative Dead

time situations and noise frequencies, with a wider variety of tuning rules commonly used.

The Ziegler Nichols method has a performance that is overall worse than all alternatives with

arguably the slowest response to error. The Cohen-Coon method has massive oscillations in

exchange for its speed in reaching the set-point value and disturbance rejection, limiting

controller output is recommended to prevent the massive overshoot when reaching the

reference value. The Skogestad-Suggested Lambda tuning method can provide a response

comparable to the Cohen Coon method with smaller overshoots and it can fit in many

situations. Both PID- and PI-controllers show high tolerance in model miscalculation that

would overshoot for longer periods in predictive models with minimal issues. For a larger

margin of error and stable control, dead time can be deliberately increased in calculations at

the cost lower speed.

Smith Predictors and Model Predictive Controllers are recommended to provide quick error

correcting values for significantly delayed process situations, where the dead time is several

times larger than the time constant of the process, and for processes with a long time

constant. However under any circumstance they are not to be used in unstable systems

without heavy modification, as changes in dead time can lead to uncontrollable oscillations.

Model Predictive Controllers have a generally better performance in controlled

environments and are more resilient to dead time error than the default Smith Predictor

configuration. A 2DOF Smith Predictor or an MPC with a custom white noise model can be

used, but the cost of speed in some circumstances could be considered an unacceptable

compromise despite higher stability. If the process is unstable or the Dead time estimate is

unreliable, the use of predictive controllers is not recommended, as such conditions result in

oscillation or otherwise significantly compromised performance.

70

7.4 Conclusion

In most controller tunings for PID controllers measured dead time hinders the controller’s

ability to correct errors, while predictive control methods such as the Smith Predictor and

the Model Predictive Control maintain their speed regardless of the amounts of dead time

with an almost instant settling time. Unknown dead time has a destabilizing effect on all

control methods resulting in larger overcorrections accompanied with longer settling periods

and, in the case of control methods based on prediction, can result in uncontrollable

oscillation.

What controller to use in what situation in relation to dead time depends on the desired

output and the environment around the controller, however there are a few general

controllers that provide a serviceable performance. For controlling a more unstable process

is to use a Cohen Coon-tuned PI controller with stricter output limits to avoid output spikes

that can be harmful to the process and lessen oscillations while being quick to error to

disturbances. In more stable environments where process dynamics are accurately

measured, predictive controllers are able to provide a fast rise to the set point value and a

shorter disturbance rejection period with minimal overcorrection in ideal conditions.

71

References

Altmann, W. (2005). Practical Process Control for Engineers and Technicians. (S. McKay, Ed.)

Elsevier Science & Technology. Retrieved from ProQuest Ebook Central,

https://ebookcentral-proquest-com.ezproxy.hamk.fi/lib/hamk-

ebooks/reader.action?docID=234968#

Geyer, T. (2016). Model Predictive Control of High Power Converters and Industrial Drives.

John Wiley & Sons, Incorporated. Retrieved from ProQuest Ebook Central,

https://ebookcentral-proquest-com.ezproxy.hamk.fi/lib/hamk-

ebooks/reader.action?docID=4688951

Haber. (2011). Predictive Control in Process Engineering. In R. Haber, & R. U. Bars. John

Wiley & Sons, Incorporated. Retrieved from ProQuest Ebook Central,

https://ebookcentral-proquest-com.ezproxy.hamk.fi/lib/hamk-

ebooks/detail.action?docID=1033310.

Karimi, H. R. (2019). Stability, Control and Application of Time-Delay Systems. (Q. Gao, Ed.)

Retrieved from ProQuest Ebook Central, https://ebookcentral-proquest-

com.ezproxy.hamk.fi

Mathworks. (2012). Anti-Windup Control Using a PID Controller. Retrieved from Mathworks:

https://www.mathworks.com/help/simulink/slref/anti-windup-control-using-a-pid-

controller.html?searchHighlight=anti%20windup&s_tid=srchtitle

Mathworks. (2021). Design Controller Using MPC Designer. Retrieved from Mathworks:

https://www.mathworks.com/help/mpc/gs/introduction.html

Mathworks. (2021). MPC modeling. Retrieved from Mathworks:

https://www.mathworks.com/help/mpc/gs/mpc-modeling.html

Mathworks. (2021). Smith Predictor Controller. Retrieved from Mathworks:

https://www.mathworks.com/help/physmod/sps/ref/smithpredictorcontroller.html

McGraw-Hill. (2003). McGraw-Hill Dictionary of Scientific & Technical Terms, 6th Edition.

McMillan, G., & Vegas, H. (2010). 101 Tips for a Successful Automation Engineer.

International Society of Automation.

72

Moler, C. (2004). The Origins of MATLAB. Retrieved from Mathworks:

https://www.mathworks.com/company/newsletters/articles/the-origins-of-

matlab.html

Normey-Rico, J. E. (2019, January). PID control of dead-time processes: robustness, dead-

time compensation. Retrieved from intranet.ceautomatica: intranet.ceautomatica,

http://intranet.ceautomatica.es/sites/default/files/upload/13/files/Normey_PID_Con

trol_of_Dead_Time_Processes.pdf

Normey-Rico, J. E., & Camacho, E. F. (2007). Control of Dead-Time Processes. Springer

Science+Business Media.

O'Dwyer, A. (2006). Handbook Of Pi And Pid Controller Tuning Rules(2nd edition). Imperial

College Press.

Samad, T. (2017, February). A Survey on Industry Impact and Challenges Thereof. Retrieved

from

IEEEXplore,https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7823045

Silva, L. R., Flesch, R. C., & Rico, .. E. (2018). Analysis of Anti-windup Techniques in PID

Control of Processes with Measurement Noise. In A. o.-w. Noise. Elsevier ltd.

Retrieved from ScienceDirect,

https://www.sciencedirect.com/science/article/pii/S2405896318303975

Sira-Ramírez, H. (2014). Algebraic Identification and Estimation Methods in Feedback Control

Systems. John Wiley & Sons, Incorporated.

Smith, C. A., & Corripio, A. B. (1985). Principles and Practice of Automatic Process Control

2nd edition.

Smuts, J. (2010, 11 22). Optic Controls. Retrieved from Control Notes:

https://blog.opticontrols.com/archives/260

Sundaravadivu, K., Sivakumars, S., & Hariprasad, N. (2015, December). 2DOF PID controller

design for a class of FOPTD models - An analysis with heuristic algorithms. St.

Joseph’s College of Engineering. Retrieved from Sciencedirect,

https://www.sciencedirect.com/science/article/pii/S187705091500664X#!

Sung, S. w., Jietae, L., & In-Beum, L. (2009). Process Identification and PID Control. John Wiley

& Sons, Incorporated, 2009. Retrieved from ProQuest Ebook Central,

https://ebookcentral-proquest-com.ezproxy.hamk.fi/lib/hamk-

ebooks/detail.action?docID=479833.

73

Xue, D., & Chen, Y. (2013). System Simulation Techniques with MATLAB and Simulink. John

Wiley & Sons, Incorporated. Retrieved from ProQuest Ebook Central,

https://ebookcentral-proquest-com.ezproxy.hamk.fi

Appendix 1 / 1

Appendix 1: Controller tuning information

Controller tuning information Simulation 1

Std. PID tuning Kc Ti Td

PI 0.03940508 26.64000 N/A

PID 0.05254011 16.00000 4.00000

PI 0.08280481 11.95152 N/A

PID 0.05977540 16.21081 2.20094

Skogestad-suggested Lambda tuning PI 0.04378342 13.10000 N/A

Taguchi Araki 0.11503 12.12275 0.14263

Hiroi Terauchi 0.085815508 19.0 3.36

Software tuned PI PI 0.057279296 15.45527 N/A

Direct Synthesis for SP(td=0) PI 0.70053476 13.10000 N/A

Software tuning for SP PI 0.153674991 3.431654 N/A

2DOF Sp controller PI 0.206039635 13.1 N/A

Sample time Prd.H Ctrl. H

MPC values 1.31 30 3

Std. PID tuning Kc Ti Td

PI 0.01189587 88.24500 N/A

PID 0.01586116 53.00000 13.25000

PI 0.02778640 19.09783 N/A

PID 0.01851159 40.71712 2.67941

Skogestad-suggested Lambda tuning PI 0.01321764 13.10000 N/A

Taguchi Araki 0.03995 32.95219 1.27665

Hiroi Terauchi 0.031722329 53.0 11.13

Software tuning for PI PI 0.026665086 18.50436 N/A

Direct Synthesis for SP(td=0) PI 0.70053476 13.10000 N/A

Software tuning for SP PI 0.055743566 4.364993 N/A

2DOF Sp controller PI 0.082415854 13.1 N/A

Sample time Prd.H Ctrl. H

MPC values 1.31 50 2

2DOF PID tuning

Ziegler Nichols

Cohen Coon

2DOF PID tuning

Ziegler Nichols

Cohen Coon

Test 1-1

Test 1-2

Appendix 1 / 2

Controller tuning information Simulation 2

Std. PID tuning Kc Ti Td

PI 0.09146341 27.30600 N/A

PID 0.12195122 16.40000 4.10000

PI 0.25616212 3.37945 N/A

PID 0.14943777 9.82810 -1.05263

Skogestad-suggested Lambda tuning PI 0.10162602 1.70000 N/A

Taguchi Araki 0.11503 12.12275 0.14263

Hiroi Terauchi 0.085815508 19.0 3.36

Software tuned PI PI 0.279170802 3.591187 N/A

Direct Synthesis for SP(td=0) PI 0.98039216 1.70000 N/A

Software tuning for SP PI 8.751199286 1.693186 N/A

2DOF Sp controller PI 0.478240077 1.7 N/A

Sample time Prd.H Ctrl. H

MPC values 0.17 80 2

Std. PID tuning Kc Ti Td

PI 0.14150943 17.64900 N/A

PID 0.18867925 10.60000 2.65000

PI 0.35625416 2.87474 N/A

PID 0.22450680 7.19208 -0.01415

Skogestad-suggested Lambda tuning PI 0.15723270 1.70000 N/A

Taguchi Araki 0.52383 12.54145 2.50597

Hiroi Terauchi 0.377358491 10.6 2.226

Software tuning for PI PI 0.279170802 3.6 N/A

Direct Synthesis for SP(td=0) PI 0.98039216 1.70000 N/A

Software tuning for SP PI 1.797315151 0.521711 N/A

2DOF Sp controller PI 0.924898261 1.7 N/A

Sample time Prd.H Ctrl. H

MPC values 0.17 80 2

Test 2-2

Test 2-1

2DOF PID tuning

Ziegler Nichols

Cohen Coon

2DOF PID tuning

Ziegler Nichols

Cohen Coon

Appendix 1 / 3

Controller tuning information Simulation 3

Std. PID tuning Kc Ti Td

PI 0.24420223 512.82000 N/A

PID 0.32560297 308.00000 77.00000

PI 0.57733302 105.20269 N/A

PID 0.38116941 231.26621 12.84527

Skogestad-suggested Lambda tuning PI 0.27133581 70.20000 N/A

Taguchi Araki 0.83316 206.72954 1.46069

Hiroi Terauchi 0.65120594 308.00000 64.68000

Software tuned PI PI 0.434650069 94.7 N/A

Direct Synthesis for SP(td=0) PI 83.57142857 70.20000 N/A

Software tuning for SP PI 2.281449744 29.770998 N/A

2DOF Sp controller PI 1.276874386 70.2 N/A

Sample time Prd.H Ctrl. H

MPC values 7.02 60.00 2

Std. PID tuning Kc Ti Td

PI 0.16714286 749.25000 N/A

PID 0.22285714 450.00000 112.50000

PI 0.42321429 119.87204 N/A

PID 0.26558036 302.88462 -2.26531

Skogestad-suggested Lambda tuning PI 0.18571429 70.20000 N/A

Taguchi Araki 0.62331 563.84921 2.60414

Hiroi Terauchi 0.364 535.5 94.5

Software tuning for PI PI 0.359401282 110.7 N/A

Direct Synthesis for SP(td=0) PI 83.57142857 70.20000 N/A

Software tuning for SP PI 6.847517352 41.66643 N/A

2DOF Sp controller PI 2.657279128 70.2

Sample time Prd.H Ctrl. H

MPC values 7.02 60 2

Test 3-2

Test 3-1

2DOF PID tuning

Ziegler Nichols

Cohen Coon

2DOF PID tuning

Ziegler Nichols

Cohen Coon

Appendix 1 / 4

Controller tuning information Simulation 4

Controller tuning information 2DOF PID

Std. PID tuning Kc Ti Td

PI 0.03500000 49.95000 N/A

PID 0.04666667 30.00000 7.50000

PI 0.07249000 26.61786 N/A

PID 0.05291625 32.07432 4.52896

Skogestad-suggested Lambda tuning PI 0.03888889 35.00000 N/A

Taguchi Araki 0.10026938 25.46833 0.07204

Hiroi Terauchi 0.07622 35.70000 6.30000

Software tuned PI PI 0.04260 36.24437 N/A

Direct Synthesis for SP(td=0) PI 1.17 35.00 N/A

Software tuning for SP PI 0.165341062 10.8 N/A

2DOF Sp controller PI 0.196078431 35 N/A

Sample time Prd.H Ctrl. H

MPC values 3.50 60 2/3

Test 4-1

2DOF PID tuning

Ziegler Nichols

Cohen Coon

Test/coef. α β

Test 1-1 0.510253342 0.570956

Test 2-1 0.244511557 0.613594

Test3-1 0.245288412 0.42187

Test 4-1 0.55348449 0.600856

Test 1-2 0.264313624 0.42839

Test 2-2 0.182507751 0.42672

Test3-3 0.180072387 0.430688

2DOF-PID Taguchi coefficients

Appendix 2 / 1

Appendix 2: Unused simulation result information tables

Test results compared to the time constant for Simulation environment 1

Test 1-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID 3.664 8.178 6.233 6.793 2.977 8.376 5.743 5.953

CC PI 3.779 8.038 2.241 4.902 4.244 20.702 2.004 5.645

CC PID 8.248 8.248 6.163 7.198 8.166 8.166 5.944 6.583

SIMC PI 1.673 4.257 4.754 5.463 1.569 1.569 3.782 4.441

Softwate tuned PI 10.139 10.139 6.435 7.704 9.006 9.006 3.222 7.073

2DOF PID Taguchi 3.119 - 1.602 4.272 3.544 - - -

2DOF PID Terauchi 20% 5.496 5.496 4.894 5.931 4.282 8.321 2.069 5.645

Terauchi 2DOF PID 0% 8.702 8.702 9.064 9.805 7.269 8.779 8.033 9.665

SP Software tuned PI 1.435 3.664 6.176 6.176 1.382 8.294 2.136 3.481

SP DS tuning 6.489 6.542 6.335 7.023 - - - -

2DOF SP 7.954 7.954 6.771 7.656 7.710 7.710 6.313 7.580

MPC 1.450 1.450 6.420 7.350 - - - -

Test 1-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 3.771 9.545 2.015 6.014 1.786 - 2.000 5.992

CC PID - - - - - - - -

SIMC PI 1.597 4.368 7.089 7.886 1.521 8.397 3.573 8.092

Softwate tuned PI 8.473 9.771 8.514 9.792 5.728 8.779 3.038 9.924

2DOF PID Taguchi 9.871 9.871 8.118 9.317 9.322 9.322 8.039 9.159

2DOF PID Terauchi 20% 5.267 5.267 4.756 5.938 2.573 8.397 1.901 5.574

Terauchi 2DOF PID 0% - - - - - - - -

SP Software tuned PI 1.382 3.384 6.249 7.260 1.340 8.452 2.130 6.249

SP DS tuning 6.153 6.153 6.212 7.023 - - - -

2DOF SP 7.656 7.656 6.534 7.366 7.481 7.582 6.061 7.582

MPC 1.356 5.003 6.310 7.191 - - - -

Measured Disturbance 0.15 110.00

Unmeasured disturbance 0.35 400.00

Dead time 8.00 s

Time variance step at riseup 2.00 s

Unchanging dead-time Change in dead-time introduced at 13.1s

Unchanging dead-time Change in dead-time introduced at 13.1s

Appendix 2 / 2

Test results compared to the time constant for Simulation environment 1

Test 2-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 8.041 30.680 14.197 14.596 6.921 - 10.393 -

CC PID - - - - - - - -

SIMC PI 13.219 33.241 19.412 19.426 10.879 - 17.228 19.556

Softwate tuned PI 7.324 35.353 13.445 12.966 6.388 - 13.254 9.806

2DOF PID - - - - - - - -

SP Software tuned PI 0.722 5.817 9.930 11.647 - - - -

SP DS tuned PI 8.007 8.007 12.765 14.220 - - - -

2DOF SP 7.969 7.969 12.082 13.799 4.994 42.183 13.058 11.905

MPC 2.659 2.659 11.238 12.266 - - - -

Test 2-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 8.306 29.504 14.529 14.176 5.718 - 12.118 -

CC PID - - - - - - - -

SIMC PI 6.929 - 19.256 20.118 5.718 - 16.166 18.088

Software tuned PI 7.700 27.241 13.882 13.741 6.565 - 12.415 12.247

2DOF PID - - - - - - - -

SP Software tuned PI 11.078 11.078 16.738 15.712 - - - -

SP DS tuned PI 13.948 13.948 13.278 18.582 - - - -

2DOF SP 1.000 11.353 15.882 18.118 5.171 41.705 12.579 12.188

MPC 12.138 12.138 14.584 16.239 - - - -

Measured Disturbance 0.15 30.00

Unmeasured disturbance 0.35 97.00

Dead time 8.20 s

Time variance step at riseup 2.00 s

Unchanging dead-time Change in dead-time introduced at 1.3s

Unchanging dead-time Change in dead-time introduced at 1.3s

Appendix 2 / 3

Test results compared to the time constant for Simulation environment 3

Results divided by Time Constant

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 2.714 21.329 6.168 6.244 2.632 36.112 6.313 7.146

CC PID - - - - - - - -

SIMC PI 5.998 20.812 9.630 9.620 4.993 22.372 8.819 8.852

Matlab Software tuned PI 3.979 14.866 7.816 7.597 3.544 29.198 8.047 7.413

2DOF PID 38.583 38.583 5.901 6.496 30.016 30.016 6.657 6.382

SP Matlab Software tuned PI 0.883 5.278 8.000 8.970 0.890 - - -

SP DS tuned PI 0.146 0.146 6.669 7.849 - - - -

2DOF SP 8.732 8.732 10.385 10.385 2.667 17.913 6.375 6.375

MPC 0.212 0.644 7.369 8.650 - - - -

Test 3-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 2.570 27.315 3.903 3.932 2.533 44.266 3.291 3.775

CC PID - - - - - - - -

SIMC PI 5.128 21.278 6.581 6.595 4.544 36.880 5.793 5.840

Software tuned PI 3.530 20.674 5.057 5.043 3.358 36.276 4.793 4.551

2DOF PID 34.561 34.561 6.792 6.709 13.484 39.144 6.802 6.332

SP Software tuned PI 0.850 9.957 3.240 3.089 - - - -

SP DS tuned PI 0.620 10.259 3.089 3.047 - - - -

2DOF SP 2.806 12.407 4.444 4.630 2.490 23.754 3.433 3.519

MPC 0.708 5.905 5.398 5.382 - - - -

Measured Input Disturbance -10 1460.00

Unmeasured Input disturbance -36 2800.00

Dead time 154.00 s

Time variance step at riseup 38.50 s

Unchanging dead-time Change in dead-time introduced at 70.2s

Unchanging dead-time Change in dead-time introduced at 70.2s

Test 3-1

Appendix 2 / 4

Test results compared to the time constant for Simulation environment 4

Test 4-1

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI 15.743 15.743 14.567 15.270 15.306 15.306 13.686 15.029

ZN PID 1.228 4.686 3.371 3.349 1.217 7.186 2.986 2.991

CC PI 0.434 12.300 1.477 1.477 0.334 16.113 1.513 1.603

CC PID 0.816 4.486 3.686 3.774 0.772 3.700 3.015 3.000

SIMC PI 1.174 4.455 7.571 8.143 1.157 4.357 7.321 8.088

Software tuned PI 1.002 6.540 7.857 8.571 1.129 13.727 7.321 3.102

2DOF PID Taguchi 3.291 26.831 1.172 3.600 3.530 - - -

2DOF PID Terauchi 0% 5.119 5.119 4.657 5.029 6.014 6.014 4.457 5.471

SP Software tuned PI 0.349 2.852 6.705 7.396 0.249 5.357 6.286 7.314

SP DS tuned PI 0.263 0.263 6.771 7.371 0.247 - - -

2DOF SP 9.114 9.114 7.171 7.743 8.957 8.957 6.986 7.586

MPC 0.155 0.566 6.975 7.565 - - - -

Test 4-D

Method/Time(s) Rise Time Settle time Dist.Rej1 Dist.rej2 Rise Time Settle time Dist.Rej1 Dist.rej2

ZN PI 16.997 16.997 14.743 15.286 16.614 16.614 14.400 15.286

ZN PID 1.371 4.999 3.543 3.571 1.301 7.437 3.157 3.143

CC PI 0.440 11.203 1.577 1.571 0.340 25.776 1.529 1.535

CC PID 0.923 5.057 4.229 4.314 0.904 4.671 3.943 4.286

SIMC PI 1.383 7.863 8.114 8.947 1.311 7.471 7.918 8.589

Software tuned PI 1.108 8.114 8.314 8.971 1.103 4.586 8.071 8.643

2DOF PID Taguchi 0.470 36.971 1.064 1.191 - - - -

2DOF PID Terauchi 0% 5.714 5.714 5.057 5.371 4.871 4.871 4.586 5.674

SP Software tuned PI 0.362 6.097 6.943 7.537 0.262 4.554 6.900 7.414

SP DS tuned PI 6.431 6.431 7.421 7.754 - - - -

2DOF SP 9.543 9.543 7.300 7.900 9.557 16.171 16.171 16.171

MPC 0.164 6.464 7.254 7.874 - - - -

Measured Disturbance 0.1 615.00

Unmeasured disturbance -0.25 1465.00

Dead time 15.00 s

Time variance step at riseup 3.50 s

Unchanging dead-time Change in dead-time introduced at 35s

Unchanging dead-time Change in dead-time introduced at 35s

Appendix 2 / 5

Cross examination results without being compared to the time constant

Results

Method/Time(s) Rise Time Settle timeDist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 32.100 251.023 76.903 78.546 31.430 268.041 88.317 82.720

CC PID - - - - - - - -

SIMC PI 72.600 176.711 119.922 118.700 62.200 169.876 104.830 103.105

Matlab software tuned PI 65.600 255.610 108.795 110.092 57.800 - 97.500 104.931

2DOFPID Taguchi - - - - - - - -

2DOFPID Terauchi - - - - - - - -

SP Matlab Software-tuned PI 18.750 75.573 66.321 117.098 19.029 258.137 66.272 70.200

SP DS tuning 62.101 62.101 111.687 118.135 - - - -

2DOF SP 123.500 123.500 123.085 134.600 33.100 206.500 72.500 76.700

MPC 4.865 16.914 111.108 122.320 - - - -

Results

Method/Time(s) Rise Time Settle timeDist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 7.310 40.808 14.800 16.236 6.860 61.180 15.349 18.200

CC PID - - - - - - - -

SIMC PI 14.510 36.455 42.866 22.172 12.360 70.200 20.494 17.600

Matlab software tuned PI 9.690 44.700 17.300 17.423 8.590 54.848 17.020 17.423

2DOFPID Taguchi - - - - - - - -

2DOFPID Terauchi - - - - - - - -

SP Matlab Software-tuned PI 1.167 9.658 16.854 17.152 - - - -

SP DS tuning 13.520 13.520 18.843 22.753 5.780 64.376 13.996 14.530

2DOF SP 14.293 14.293 20.107 22.331 5.795 37.000 13.500 13.664

MPC 5.796 5.796 16.178 18.309 - - - -

Results

Method/Time(s) Rise Time Settle timeDist.Rej1 Dist.rej2 Rise Time Settle timeDist.Rej1 Dist.rej2

ZN PI - - - - - - - -

ZN PID - - - - - - - -

CC PI 313.500 1700.659 632.026 628.542 301.500 1850.984 634.800 633.094

CC PID - - - - - - - -

SIMC PI 617.000 2186.031 939.089 939.089 564.800 2283.598 886.331 892.882

Matlab software tuned PI 309.000 1521.283 633.094 633.094 300.500 2178.083 627.923 622.875

2DOFPID Taguchi - - - - - - - -

2DOFPID Terauchi - - - - - - - -

SP Matlab Software-tuned PI 387.000 1417.000 714.928 704.000 362.500 2011.500 690.923 691.500

SP DS tuning 10.000 10.000 720.538 709.942 - - - -

2DOF SP 545.000 545.000 645.000 725.000 238.500 1256.500 530.000 502.500

MPC 32.300 75.500 591.042 678.000 - - - -

Test 3-2

Unchanging dead-time Change in dead-time introduced at 70.2s

Test 1-2

Unchanging dead-time Change in dead-time introduced at 13.1s

Test 2-2

Unchanging dead-time Change in dead time introduced at 1.7s

