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The brushless DC motors have an unlimited number of applications nowadays, 
many of which require the motor speeds to be controlled. The PID controllers is 
the answer for the mentioned problem. This project implemented a PID algorithm 
to regulate a brushless DC motor speed using a programmed microcontroller unit. 

In this project, a NUCLEO-152RE development board was used as a controller unit 
and a X-NUCLEO-IHM07M1 expansion board served as a motor driver and power 
unit. The selected BLDC motor was the Nanotec DF45M024053-A2 model coming 
with the hall-effect sensors. This project was built based on C Embedded Project 
using Atollic TrueSTUDIO 9.3.0 IDE. It implemented a six-step algorithm serving 
the purpose of driving the BLDC motor and PID algorithm to control the motor 
speed. 

The results yielded showed that the PID controller eliminated the need of manual 
control (by human) but slightly decreased the system stability. The impact of PID 
controller also decreased with an increasing target speed value due to the maxi-
mum angular acceleration of the motor. 
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1 INTRODUCTION 

In today’s world, brushless direct current (BLDC) motors can be found in many 

applications ranging from big propulsion systems in an electric aircraft to a small 

compact disk (CD) drive. For some cases, it is critical for the motor speed to be 

controlled which leads to the need of motor controllers. 

The proportional-integral-derivative controllers (PID controllers) apply a control 

mechanism using proportional, integral and derivative terms to calculate optimal 

outputs from the differences between the measured values and the target value 

/3/. The PID concept is the most used control algorithm in industrial control sys-

tems because of its superior precision and accuracy. 

The PID controller is a solution to the mentioned problem. This project aimed to 

implement the PID controller algorithm on an ARM microcontroller to regulate a 

BLDC motor speed. 
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2 LITERARY REVIEW 

In this section of the thesis, the theoretical ideas behind the project are explained. 

There are two fundamental theory parts that are the DC motor and the PID con-

troller. 

2.1 DC Motor 

A DC motor generally transform electrical energy to mechanical energy in form of 

rotation /1/. The stationary part called stator and the moving part called rotor of 

a DC motor consist of permanent magnets or electromagnets (made by running 

the current through the solenoids) which generate magnetic fields. The attractive 

force between two magnetic fields made the motor rotate as illustrated in Figure 

1. 

 

Figure 1. The working principle behind the rotation of DC motor /9/ 

The formula for the torque applied on the rotor is given below. 

 𝜏 ∝ 𝐵 ∙ 𝐵 ∙ sin (𝜃) (1) /9/ 

where 

 𝜏 is the torque 

 𝐵  is the magnetic fields generated by the rotor 

 𝐵  is the magnetic fields generated by the stator 
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 𝜃 is load angle (the angle between two vectors 𝐵 ⃗ and 𝐵 ⃗) 

Deduced from the formula, the maximum output torque is archived with the load 

angle 𝜃 being 90°. 

There are two common types of DC motor which are brushed and brushless ones.  

2.1.1 Brushed DC Motor 

In a brushed DC motor, the rotor is composed of pairs of solenoids and the stator 

consists of permanent magnets. The stator electromagnetic field remains fixed 

while the rotor electromagnetic field is constantly changing during the rotation. 

The load angle is kept close to 90° by constantly charging the next pair of solenoids 

when they come to a specific position (as in Figure 2). 

 

Figure 2. Working principle of brushed DC motor /20/ 

The connectors between the circuit and solenoids are called brushes, thus the 

name of brushed DC motor. Changing the current the direction will make the mo-

tor to rotate in the opposite direction. 
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2.1.2 Brushless DC Motor 

A brushless DC motor has the rotor containing a permanent magnet and its stator 

consists of three solenoids connected in a star topology and positioned 120° from 

each other. The rotor electromagnetic field changes with the rotation so that in 

order to keep the load angle as close to 90° as possible, the stator electromagnetic 

field is constantly changed according to the position of the rotor. Figure 3 below 

show the structure and working principle of a brushless DC motor. 

 

Figure 3. Physical structure and working principle of brushless DC motor /11/ 

Even though brushed DC motors have a low initial cost and simple control of motor 

speed, the high maintenance of the brushes makes the brushless counterpart su-

perior in terms of durability and reliability. However, operating a brushless DC mo-

tors is more complex. 

Brushless motors can be constructed in several different physical configurations: 

In the 'conventional' (also known as inrunner) configuration, the permanent mag-
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nets are part of the rotor. Three stator windings surround the rotor. In the outrun-

ner (or external-rotor) configuration, the radial-relationship between the coils and 

magnets is reversed; the stator coils form the centre (core) of the motor, while the 

permanent magnets spin within an overhanging rotor which surrounds the core. 

/2/ 

2.1.3 Six-step Algorithm 

The six-step algorithm is a driving operation of three-phase BLDC motors. In six-

step, there are six current directions running through two of the three phases, 

which created six discrete directions of magnetic field for the stator (illustrated in 

Figure 4). To acquire the position of the rotor, the hall-effect sensors are used for 

sensored BLDC motors and BEMF feedbacks are used for the sensorless counter-

parts. Eventually, the correct step is applied accordingly to the known rotor posi-

tion and the intended rotation direction. 

 

Figure 4. Six combinations in six-step algorithm /12/ 
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2.2 PID Controller 

A proportional-integral-derivative controller (also known as a PID controller or 

three-term controller) is a closed loop control mechanism that is widely used in 

industrial control systems. It uses the three control terms of proportional, integral 

and derivative to calculate the output from the error value, which is the difference 

between the designated target value called a setpoint (SP) and the measured feed-

back value called a process variable (PV). /3/ 

 

Figure 5. The working principle of PID controller /3/ 

The mathematical formula of overall control function of PID controller is 

 
𝑢(𝑡) = 𝐾 ∙ 𝑒(𝑡) + 𝐾 ∙ 𝑒(𝜏)𝑑𝜏 + 𝐾 ∙

𝑑𝑒(𝑡)

𝑑𝑡
 

(2) /3/ 

 where 

 𝑡 is running time 

 𝜏 is integral time 

 𝑟(𝑡) is setpoint 

 𝑒(𝑡) is error 

 𝑢(𝑡) is control variable 

 𝑦(𝑡) is process variable 

 𝐾  is proportional gain 

 𝐾  is integral gain 

 𝐾  is derivative gain 
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From the block diagram in Figure 5, the error value 𝑒(𝑡) as a difference between 

setpoint 𝑟(𝑡) and process variable 𝑦(𝑡) is continuously measured then the output 

control variable 𝑢(𝑡) is calculated based on proportional, integral and derivative 

terms to minimize the error over time. /3/ 

Even though the PID controller has three control terms, some applications may 

not need all of them to have appropriate control. In those cases, the selective use 

of the control terms can be achieved by setting the coefficients (𝐾 , 𝐾  or 𝐾 ) of 

unnecessary terms to 0 so that they have no impact on the output. /3/ 

2.2.1 Proportional Term 

The proportional term produces an output value that is proportional to the error 

value. The P term takes the formula 

 𝑃 = 𝐾 ∙ 𝑒(𝑡) (3) /3/ 

By changing the coefficient 𝐾  (also known as proportional gain), the response of 

output based on P term can be adjusted. If the proportional gain is too large, the 

system overreacts with the error value and the process variable oscillates around 

the setpoint, which increases the settling time and decreases the stability. Mean-

while, with small proportional gain, the system becomes less responsive, and the 

rise time is increased. /3/ 

Figure 6 below shows the graph of process variable responses with different val-

ues of 𝐾 . 

The proportional term alone cannot correct the system of steady-state error, 

which is the difference between the desired final output and the actual one. /3/ 
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Figure 6. System responses with different value of 𝐾  /3/ 

2.2.2 Integral Term 

The integral term considers both the error and the duration of the error when 

calculating an output /3/. In fact, the mathematical formula for I term comes with 

the integral, which is the sum of instantaneous errors over time. 

 
𝐼 = 𝐾 ∙ 𝑒(𝜏)𝑑𝜏 

(4) /3/ 

Increasing the 𝐾  gain to, thus increasing the impact of I term, will help to eliminate 

the steady-state error but in exchange it increases the overshoot, settling time and 

decreasing system stability /3/. The graph in Figure 7 illustrates how I term affects 

the system respond. 
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Figure 7. System responses with different value of 𝐾  /3/ 

2.2.3 Derivative Term 

The derivative term produces an output base on the derivative of the errors, in 

other words, it takes into calculation the error change rate over time /3/. The 

mathematical formula for the derivative term is 

 
𝐷 = 𝐾 ∙

𝑑𝑒(𝑡)

𝑑𝑡
 

(5) /3/ 

By predicting the error changes in the system, the derivative term largely de-

creases the settling time while improving the stability with small 𝐾  value /3/. The 

graph in Figure 8 shows the system response with different value of 𝐾 . 
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Figure 8. System responses with different value of 𝐾  /3/ 

2.2.4 Tuning 

Different control systems have different control parameter values that lead to 

their desired control responses and the work of finding those optimal values is 

called tuning. The system requirements may include the rise time, settling time, 

overshoot allowance but the basic one is stability /3/. There are various tuning 

methods with different levels of sophistication but in this project, manual tuning 

method was used. 

Manual tuning requires understanding the impact on the system of control terms 

and adjusting them one by one (firstly 𝐾 , then 𝐾  and finally 𝐾 ) until the system 

response meets the requirements. 
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3 METHODS 

In this section, the resources used for the project are listed and the conducting 
method, as well as the measuring results, are interpreted. 

3.1 Resources 

The resource consumed, apart from working hours and materials, can be divided 

into two parts: hardware and software. 

3.1.1 Hardware 

The hardware selected for the project consisted of a NUCLEO-L152RE develop-

ment board serving as a controller, a X-NUCLEO-IHM07M1 expansion board serv-

ing as a power block and a Nanotec DF45M024053-A2 sensored BLDC motor. The 

Figure 9 below shows the theoretical layer structure of the hardware. 

 

Figure 9. The hardware structure of the project /7/ 

The NUCLEO-L152RE belongs to the STM32 Nucleo-64 board family which is pro-

duced by STMicroelectronics. It features the STM32 microcontrollers with the 32-

bit ARM processor core which are widely used in real-life embedded system appli-

cations. This development board is also an affordable and flexible device to study, 

try out new concepts and build prototypes, thus, it suited for this project /4/. 
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The X-NUCLEO-IHM07M1 is a three-phase brushless DC motor driver expansion 

board based on the L6230 for STM32 Nucleo. It is produced by the same manufac-

turer, STMicroelectronics, to provide an affordable and easy-to-use solution for 

driving a three-phase brushless DC motor /5/. 

The brushless DC motor model DF45M024053-A2 is produced by Nanotec Elec-

tronic GmbH & Co. KG. It is a 12N16P outrunner type which contains 16 poles of 

permanent magnet in the outer rotor and 12 coils connected to 3 current phases, 

serving as stator electromagnets. 

Apart of the main hardware, an oscilloscope was used to measure motor speed 

changes. 

3.1.2 Software 

Atollic TrueSTUDIO 9.3.0 was used during the coding part of this project. Atollic 

TrueSTUDIO is an Eclipse based IDE that is commercially enhanced by STMicroe-

lectronics. It provides extension, features and utilities that support devices pro-

duced by the same manufacturer, thus, are highly suitable to work with NUCLEO-

L152RE /6/. 

The project was based on the C Embedded Project template provided by TrueSTU-

DIO, which contains Cortex Microcontroller Software Interface Standard library 

(CMSIS) serving as a foundation of the project software. 

3.2 System Building 

The X-NUCLEO-IHM07M1 was connected to the NUCLEO-L152RE development 

board through an ST-morpho connector, and its jumper configuration was left de-

fault as in Table 1. The motor was connected to the expansion board following 

Table 2 below. The external DC voltage is connected to J1 section of the board. 
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The circuit diagrams of the D6230 three-phase BLDC motor driver and hall/en-

coder sensors are displayed in APPENDIX 2 and 3. Figure 10 below shows the com-

plete configuration of the system hardware. 

Table 1. X-NUCLEO-IHM07M1 Jumper settings /8/ 

Jumper  Permitted configurations  Default 
condition 

JP1  Selection for pull-up insertion (BIAS) in current sensing 
circuit  OPEN 

JP2  Selection for op amp gain modification in current sens-
ing circuit  OPEN 

JP3  Selection for pull-up enabling in Hall/Encoder detec-
tion circuit  CLOSED 

J9  Selection to supply the STM32 Nucleo board through 
the X-NUCLEOIHM07M  OPEN 

J5  Selection for single/three shunt configuration. Set to 
single shunt by default  2-3 CLOSED 

J6  Selection for single/three shunt configuration. Set to 
single shunt by default  2-3 CLOSED 

J7  Debug connector for DAC. Available for probe connec-
tion  OPEN 

 

Table 2. Motor and IHM07M1 pin matching 

X-NUCLEO-IHM07M1 DF45M024053-A2 

J3 

GND GND 

5V VCC 

A+ H1 

B+ H2 

Z+ H3 

J2 

OUT3 PHW 

OUT1 PHU 

OUT2 PHV 
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Figure 10. System hardware 

3.3 Programming 

The program starts with the initialisation of PID controller by setting PID parame-

ters and a target speed which will remain constant during the runtime. It then cal-

culates an optimal value for PWM duty cycle using the PID algorithm and the error 

between the target speed and the motor speed. In the next steps, the program 

reads the motor position (or current step in six-step algorithm), enables and gen-

erates PWM to the correct channels, which will then make the motor run. These 

steps will run indefinitely if there is no external interrupt caused by a hall sensor 

signal. If an interrupt is triggered, marking one eighth of revolution was done, the 

motor value would be calculated based on the timer value. Finally, a new PWM 

duty cycle value is calculated using the newly measured motor speed and the pro-

gram continues. The main logic of the program is illustrated by the flow diagram 

in Figure 11. 
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Figure 11. Program logic flow diagram 

The project was built based on a C Embedded Project template that is specifically 

designed for NUCLEO-L152RE and provided by Atollic TrueSTUDIO IDE. The project 

was given the name BLDC_Motor_PID_Controller. The Figure 12 below illustrates 

the structure of the program. 
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Figure 12. Program layer structure 

In the program structure, the bottom layer called CMSIS was provided by the pro-

ject template, serving as the foundation of the program. The remaining parts were 

developed by the author of this project in separated C source code and header 

files. 

3.3.1 Baremetal Files 

“Baremetal” files were the first to be written which contain functions executing 

bit operations directly to registers and can be called in upper layers to do basic 

specific tasks. These files are independent from each other to ensure their modu-

larity and reusability. In this project, the following sections had baremetal files: 

 Reset and clock control (RCC) 

 General-purpose input/output (GPIO) 

 Timers (TIM) 

3.3.2 Device-specific Files 

Files “x-nucleo-ihm07m1.c” and “x-nucleo-ihm07m1.h” served as a driver for the 

X-NUCLEO-IHM07M1 expansion board, which contained functions to use the 

D6230 three-phase motor driver, the hall-effect sensor encoder and the debug 

LED. 
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For the same purpose, “nucleo-l152re.c” and “nucleo-l152re.h” were created spe-

cifically for the NUCLEO-L152RE board and they contained only functions to con-

trol the user LED. 

3.3.3 Six-step Algorithm 

The six-step algorithm was implemented in “SixStep.c” and “SixStep.h”. These files 

contained functions to execute the specific tasks which are 

 Generating pulse-width modulation (PWM) to 3 channels of the D6230 

three-phase motor driver. 

 Reading the hall-effect sensor to determine at which step the motor is. 

 Measuring the motor speed based on the time between different consec-

utive steps. 

The “SixStep” files were created specifically for the X-NUCLEO-IHM07M1 board 

and the Nanotec DF45M024053-A2 sensored motor. They were not written as a 

general six-step driver and cannot used for other hardware because of the follow-

ing reasons 

 Functions in X-NUCLEO-IHM07M1 driver were called directly in SixStep 

functions. 

 Six-step table were based on the hall-effect sensor reading function and 

wiring diagram in the DF45M024053-A2 datasheet. 

Because of its specific target, it is unnecessary to write functions that implement 

the six-step algorithm based on BEMF feedbacks, thus, there are no option for a 

sensorless motor. 
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3.3.4 PID Controller 

The PID module contained “PID.c and PID.h” and was built as a standalone module 

for the purpose of reusability. In this module, the PID algorithm was implement 

based on the pseudocode in Figure 13 below. 

 

Figure 13. Pseudocode for PID algorithm 

As seen in Figure 13, the error is the different between the setpoint and the 

measured_value (or feedback value). The ways integral and derivative are cal-

culated in the code 

 integral := integral + error * dt 

 derivative := (error – previous_error) / dt 

reflect the mathematical formulas (4) and (5) above. 

The dt in the pseudocode is the time between each time the code inside the loop 

is executed, which can also be understood as a sample period of the implemented 

PID controller. In this project, the time between samples was implemented to be 

a constant during the whole operation, thus, dt in the formulas was merged with 

Ki and Kd constants. 
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3.3.5 Main Software 

The main.c file contained the main part of the program which is also considered 

to be the software layer. The block diagram in Figure 14 shows how the PID con-

troller and BLDC were implemented in this project software. 

 

Figure 14. Implementation block diagram 

The main function started with setting up and enabling all necessary interrupt rou-

tine service (IRQ) and the initialisations of the SixStep algorithm and PID controller. 

PID parameters, such as setpoint, term gains, upper and lower output limits were 

input using the PID_Init() function. After the initialisations and the one-time-

run code, the following parts run continuously during the whole operation. 

 The six-step functions generating PWM pulses and reading the current step 

of the motor was placed in the while(1) loop of the main function. 

 PID controller function calculating the output as the PWM duty cycle was 

called by the timer interrupt handler (TIM7_IRQHandler()) generated 

with 1 kHz frequency. 

 Speed computation was performed every time the hall-sensor signal trig-

gered external interrupt (EXTI15_10_IRQHandler()). 
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3.4 Measuring 

After success in compiling and downloading the source code to the microcontrol-

ler, multiple measurements were performed to reveal the internal operation of 

the system in various situations, with and without PID controller. 

3.4.1 Motor Driving Operation 

The first test runs were performed to see how the system worked during the six-

step algorithm, in which the hall sensor signal (A+/H1, B+/H2 and Z+/H3 in APPEN-

DIX 3) and PWM signals (IN1, IN2 and IN3 in APPENDIX 2) were captured using the 

digital probe of the oscilloscope. The PID controller was not initialised during these 

tests. Figure 14 below shows the measurement at PWM value equal 2500, in which 

 D0 measured Encoder A/Hall H1 at PA15 

 D1 measured Encoder B/Hall H2 at PB3 

 D2 measured Encoder Z/Hall H3 at PB10 

 D3 measured UH_PWM at PA8 

 D4 measured VH_PWM at PA9 

 D5 measured WH_PWM at PA10 

The motor speed could be calculated using the frequency of any hall signal and 

the formula below: 

motor_speed =  
𝑓

8
× 60 =

218.61

8
× 60 ≈ 1640 RPM 
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Figure 15. Hall sensor and PWM signals in six-step algorithm 

The performance and responses of the motor with various PWM values were also 

measured, captured and calculated. During these tests, the pulse value was man-

ually set and incremented starting from 0 to 10000 with the step of 500. The fre-

quency of the hall sensor H1 measured by the oscilloscope and average motor 

speed calculated are displayed in Table 2 below. For each PWM value, 8 samples 

of frequency and speed were recorded and calculated. The full measurement data 

are displayed in APPENDIX 1. 

Table 3. Motor speeds at different PWM values 

PWM value average frequency average speed error 

0 0.0 0 0 

500 34.7 261 8 

1000 60.1 451 7 

1500 113.4 851 6 

2000 175.2 1314 11 

2500 216.6 1624 12 
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3000 254.1 1905 12 

3500 291.1 2183 11 

4000 345.0 2587 21 

4500 394.1 2956 17 

5000 457.7 3433 18 

5500 484.8 3636 24 

6000 532.4 3993 33 

6500 589.5 4422 21 

7000 627.4 4705 30 

7500 672.1 5041 37 

8000 710.3 5327 35 

8500 750.4 5628 32 

9000 799.3 5995 27 

9500 877.3 6580 37 

10000 915.5 6866 33 

 

3.4.2 The Impact of PID controller 

In these measurements, test runs were performed to tune the parameters of the 

PID controller. The control terms proportional and integral were selected, and de-

rivative term was disabled as in most real-life control systems. The PI controller 

was manually tuned by the following steps: 

 Setting a small 𝐾  value (preferably   

  
) and 𝐾  equal 0.  

 Adding small 𝐾  (preferably 
  

) so that the system can correct 

the steady-state error. 

 Manually increasing 𝐾  to the maximum value that did not cause an over-

shoot. 

 Increasing 𝐾  so that the rise time was improved. 
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 Repeat the two previous steps until the rise time and settling time im-

provement was minor. 

Figures 15, 16, 17 and 18 below show the system responses with different value 

of 𝐾  during tuning. The motor speed changes were the analog output of DAC mod-

ule channel 1, pin PA4 and were captured with probe 1 of the oscilloscope. 

After tuning the PID controller, three target speed values were selected to test 

how effective it was at different speed ranges. The oscilloscope pictures (from Fig-

ure 19 to Figure 30) with the measurements displayed in the order to show the 

system rise time then settling time, with the PID, then without the PID and from 

small to large target speed values. The measurement results are also displayed in 

Table 4 below. 
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Figure 16. Steady-state error with 𝐾  alone 

 

Figure 17. Long settling time with small 𝐾  
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Figure 18. Overshoot happened with larger value of 𝐾  

 

Figure 19. Perfect system response with 𝐾   being optimal to current 𝐾  
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Figure 20. System rise time without PID at target speed of 1850 RPM 

 

Figure 21. System settling time without PID at target speed 1850 RPM 
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Figure 22. System rise time with PID at target speed 1850 RPM 

 

Figure 23. System settling time with PID at target speed 1850 RPM 



   

35 

 

 

Figure 24. System rise time without PID at target speed 3450 RPM 

 

Figure 25. System settling time without PID at target speed 3450 RPM 
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Figure 26. System rise time with PID at target speed 3450 RPM 

 

Figure 27. System settling time with PID at target speed 3450 RPM 
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Figure 28. System rise time without PID at target speed 6900 RPM 

 

Figure 29. System settling time without PID at target speed 6900 RPM 
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Figure 30. System rise time with PID at target speed 6900 RPM 

 

Figure 31. System settling time with PID at target speed 6900 RPM 
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Table 4. The impact of the PID controller at different target speed 

Target speed 
(RPM) 

Rise time (ms) Settling time (ms) 

No PID PID No PID PID 

1850 88 19 185 45 

3450 125 81 251 107 

6900 210 207 424 318 

 

For the case of target speed at 1850 RPM, the parameter values for the PID con-

troller were 𝐾 = 8, 𝐾 = 0.15 and 𝐾 = 0. The use of the PID control algorithm 

significantly reduced the rise time and settling time of the system by more than 

four times. 

At the middle range target speed (at 3450 RPM), the PID controller at first caused 

an overshoot leading to the need of re-tuning, the new parameter values were 

𝐾 = 8, 𝐾 = 0.08 and 𝐾 = 0. The PID controller in this case no longer had such 

a big impact as in the previous case but was still able to decrease the rise time 

from 125ms to 81ms (around 150% reduction) and settling time from 251ms to 

107ms (about 250% reduction). 

At the maximum target speed (6900 RPM), there was barely any difference in the 

system rise time regardless of the PID controller. This is because the PWM duty 

cycle and the angular acceleration of the motor had reached the maximum (100% 

and 45.6 RPM/ms respectively). The settling time was improved at the cost of the 

system stability; however, this decrease in stability were insignificant. 
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4 CONCLUSIONS 

From measuring results yielded, these following statements were drawn as the 

conclusion: 

 The six-step algorithm was operational as expected. 

 The motor speed increased linearly but fluctuated more with increasing 

PWM values. 

 The PID controller eliminated the need of manual control but slightly de-

creased the system stability. 

 Manual tuning method in this project proved to be effective. 

 Each range of target speed had a different optimal tuning value for PID pa-

rameters. 

 The PID controller significantly reduced the motor speed rise time and set-

tling time at a low target speed but had little impact at a high target speed. 

In the future, this thesis work can be developed by improving the reusability of six-

step module so that it can be used by other microcontrollers and BLDC motors. In 

addition to that, new software tuning methods are encouraged to be developed 

to eliminate the need of manual tuning. 
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APPENDIX 1 

Motor Speed Result Table 
Average values Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 
PWM val avg freq avg speed error freq speed freq speed freq speed freq speed freq speed freq speed freq speed freq speed 

0 0.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 
500 34.7 261 8 35.4 265 33.7 252 35.1 263 35.5 266 34.5 259 33.8 254 35.1 264 34.9 262 

1000 60.1 451 7 60.2 452 59.2 444 60.1 451 60.4 453 60.3 452 60.3 452 60.2 452 60.1 450 
1500 113.4 851 6 113.4 851 113.6 852 113.6 852 113.4 850 112.6 844 113.5 851 113.1 848 114.0 855 
2000 175.2 1314 11 174.8 1311 176.0 1320 176.6 1325 174.8 1311 174.2 1307 173.9 1304 175.6 1317 175.9 1319 
2500 216.6 1624 12 216.3 1622 215.2 1614 215.5 1616 216.3 1622 217.0 1628 217.4 1631 218.2 1637 216.6 1625 
3000 254.1 1905 12 253.6 1902 253.9 1904 253.3 1900 255.6 1917 254.1 1906 254.3 1907 254.2 1907 253.4 1901 
3500 291.1 2183 11 290.5 2179 292.1 2191 291.6 2187 292.6 2195 290.4 2178 290.2 2177 290.2 2177 291.0 2183 
4000 345.0 2587 21 344.6 2585 346.1 2596 342.9 2572 343.0 2573 344.6 2585 347.8 2609 345.3 2590 345.3 2590 
4500 394.1 2956 17 394.6 2960 395.3 2965 395.7 2968 394.6 2960 392.2 2942 393.6 2952 391.9 2939 395.1 2963 
5000 457.7 3433 18 457.9 3434 457.0 3428 455.4 3416 457.5 3431 456.2 3422 459.6 3447 458.7 3440 459.6 3447 
5500 484.8 3636 24 483.0 3623 485.0 3638 484.0 3630 482.0 3615 485.0 3638 485.0 3638 486.0 3645 488.0 3660 
6000 532.4 3993 33 530.2 3977 534.2 4007 534.8 4011 534.8 4011 534.8 4011 530.8 3981 528.0 3960 531.9 3989 
6500 589.5 4422 21 591.7 4438 586.9 4402 591.7 4438 586.9 4402 588.2 4412 588.2 4412 592.4 4443 590.3 4427 
7000 627.4 4705 30 630.0 4725 627.5 4706 628.8 4716 628.5 4714 625.9 4694 623.4 4676 628.1 4711 626.9 4702 
7500 672.1 5041 37 672.0 5040 670.6 5030 672.0 5040 673.1 5048 677.1 5078 671.0 5033 672.0 5040 669.2 5019 
8000 710.3 5327 35 705.6 5292 713.4 5351 708.5 5314 713.1 5348 711.8 5339 712.8 5346 706.5 5299 710.8 5331 
8500 750.4 5628 32 751.0 5633 749.2 5619 754.6 5660 750.8 5631 746.1 5596 748.7 5615 749.2 5619 753.5 5651 
9000 799.3 5995 27 801.5 6011 799.7 5998 800.8 6006 801.3 6010 799.2 5994 795.7 5968 799.5 5996 796.9 5977 
9500 877.3 6580 37 874.4 6558 879.7 6598 877.8 6584 878.7 6590 880.0 6600 877.5 6581 872.3 6542 877.8 6584 

10000 915.5 6866 33 915.8 6869 917.8 6884 917.8 6884 915.1 6863 911.1 6833 915.8 6869 912.4 6843 918.4 6888 
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APPENDIX 2 

D6230 Three-phase BLDC Motor Driver Schematic 
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APPENDIX 3 

Hall Sensor Schematic 

 


