

Malika Tasnim Taky

AUTOMATED TESTING WITH

CYPRESS

Technology and Communication

2021

ACKNOWLEDGEMENTS

Thesis writing is a heavy task, and it would have not been possible without the su-

pervision of Dr. Ghodrat Moghadampour, PhD, Senior Lecturer, VAMK; Univer-

sity of Applied Science. I express my sincere gratitude to the supervising teacher

for his instructions and guidance on my thesis writing.

My heartiest gratitude is due to Jukka Ruokonen and Timo Laulajainen from

Nokia team for their valuable comments on my thesis. I thank them for guiding

my work and motivating me. Also, I am thankful to my co-worker Amanda Kaup-

pinen for her contribution to the project and introducing me with an effective

working strategy.

I am also deeply grateful to Marita Raja and her team as they have welcomed me

at Nokia, made me comfortable to work with them and kept inspiring me always.

My cordial thanks are due to the teachers Seppo Mäkinen, Principal Lecturer,

VAMK and Timo Kankaapää, Principal Lecturer, VAMK for their inspiration

during my job application and guidance while choosing the thesis topic.

I express my warmest thanks to my family and friends for keep believing in me at

my worst and giving me mental support to return from every failure.

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Malika Tasnim Taky

Title Automated Testing with Cypress

Year 2021

Language English

Pages 40 + 3 Appendices

Name of Supervisor Dr. Ghodrat Moghadampour

This thesis document describes a practical work completed in Nokia. There, the

Roadmap Online (RON) development team was looking for an automated testing

solution for an ongoing web project. The team wanted to have a Graphical User

Interface (GUI) testing solution to test a web application. The purpose of this test

environment was to run the test cases reliably and faster. It also required to test

the whole system after each new implementation. Moreover, the testing needed to

be straightforward. The team wanted to ensure the performance of the application

from the users’ perspective. Thus, the testing environment was built with the test-

ing tool, Cypress and more than 100 test cases were implemented.

The tested application has various features. Some features are depending on the

other features. Thus, the test cases were divided in two sets: 1) full system test

cases and 2) targeted test cases. The full system test cases examined the whole cy-

cle of the application and the targeted test cases were to check specific features.

With the help of numerous built-in commands of Cypress, it was convenient to

implement the test cases. Moreover, having the flexibility of building custom

commands made the execution simple. Cypress comes with an interactive dash-

board named “Test runner” which was very useful to visualize the tests running

gradually. The efficiency of testing was 75% since it varied according to the pro-

cessor speed. Before the application deployment, the test cases were able to find

intended bugs. Testing with Cypress was easy and well guided. Cypress has a vast

community with developers and professional testers all around the world who are

very cooperative. The RON development team was pleased with the solution. It

seemed promising to them.

Currently, the application has a fully working automated test environment which

reduces the team’s effort of testing the GUI side manually. It has test cases for

both full system test as well as targeted test.

Keywords Software, system testing, Cypress, full system test, targeted test

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

1 INTRODUCTION .. 8

2 SOFTWARE TESTING ... 10

2.1 Importance of Software Testing.. 10

 Cost Effectiveness ... 10

 Security ... 11

 Efficiency of Product .. 11

 Customer Satisfaction ... 11

 Development Process Improvement ... 11

 Consistency of Software Performance .. 12

2.2 Testing Approaches .. 12

 White Box Testing .. 12

 Black Box Testing ... 12

 Grey Box Testing .. 13

2.3 Testing Levels ... 13

 Unit Testing ... 14

 Integration Testing .. 14

 System Testing .. 14

 Acceptance Testing ... 14

3 APPLICATION DESCRIPTION ... 15

4 TEST AUTOMATION TOOL ... 16

4.1 Cypress .. 16

4.2 Setting up the Environment .. 17

 Node.js .. 17

 Cypress Installation ... 19

5 TEST ARCHITECTURE / STRATEGY ... 21

5.1 Targeted Test .. 21

5.2 Full System Test ... 22

6 TEST TECHNIQUES .. 24

6.1 Folder Structure .. 24

 Integration ... 25

 Support .. 26

6.2 File Structure ... 27

7 TEST CASE IMPLEMENTATION ... 28

7.1 Taking Initial Preparation ... 29

7.2 Taking an Action... 31

7.3 Making an Assertion ... 33

8 TEST RUNNER AND CONFIGURATION IN CYPRESS 34

9 CONCLUSIONS .. 38

10 REFERENCES ... 40

LIST OF FIGURES

Figure 1. Cypress test runner. 20

Figure 2. Division of testing method. 21

Figure 3. Activity diagram of a product’s interlock. 22

Figure 4. Folder structure for organizing test files. 25

Figure 5. Cypress test runner with test files. 37

7

LIST OF CODE SNIPPETS

Code snippet 1. Initializing npm. 19

Code snippet 2. Primary structure for test files. 27

Code snippet 3. Commands under beforeEach() hook. 29

Code snippet 4. Setting up the environment with custom command. 31

Code snippet 5. Test case for testing possible error messages. 32

Code snippet 6. Asserting to an action. 33

Code snippet 7. Config file, cypress.json. 34

1 INTRODUCTION

Software development is a dynamic and demanding job. Each software develop-

ment team and company tackle the issue in a different way. However, it does not

matter which approach the team uses, it is still possible to know what specific steps

the employees follow.

To develop a software, there are few steps. It requires designing, implementation

and testing. Developing a software following these steps is a process which is called

Software Development Life Cycle (SDLC). SDLC is an infrastructure of planning

in details that how a software can be developed, maintained, altered or enhanced.

A typical SDLC has seven stages, namely, Planning and Requirement Analysis,

Defining Requirements, Design the Production Architecture, Developing the Prod-

uct, Testing the Product, Deployment in the Market, and Maintenance. /1/

On the other hand, the method where the specification, design, development and

testing of a software application are being managed is called Application Life-cycle

Management (ALM). It covers the entire life cycle of an application. From design-

ing through to the process of implementation, development, testing, support and

ensuring the user experience are supervised in ALM. /2/

ALM is often confused with SDLC, because they both deal with the software de-

velopment process. The key difference is that SDLC focuses mainly on the imple-

mentation process, where ALM deals with the whole life cycle of the application.

SDLC, particularly during the stages of development, testing, and implementation,

can be considered part of application life cycle management. /3/

In both ALM and SDLC methods, one of the common stages is Testing. Software

testing is a method of evaluating the functionality of a software application in order

to determine whether the designed software satisfies the specified requirements.

Moreover, it is crucial to detect defects to ensure that the product is free of bugs

before production. In order to detect bugs, software testing refers to the system of

testing using scripts, tools, or any testing automation frameworks. It allows teams

to release fault-free and stable applications to the real-world. Moreover, in the early

stages of development, it helps teams to find bugs and save time. There are two

9

ways of testing an application: Manual testing and Automation testing. Manual test-

ing, as the term suggests, is a type of testing where the Tester has to check each

element, feature, functionality manually. Contrariwise, Automation Testing is per-

formed with the help of another software. /4/

Investing in manual testing is ineffective and inefficient when it comes to regression

testing. Regression testing is the process of rerunning functional and non-functional

tests to ensure that previously developed and tested software continues to work after

a transition /19/. It is much more rational to program a computer to do the same,

instead of expecting humans to repeat same steps with same speed, consistency and

energy. Automated testing is a main aspect of continuous integration and delivery.

As developers add new features to an application, it is a great way to scale the qual-

ity assurance process. There are several automated testing tools to make developers

life easier. One of them is Cypress.

Cypress is a modern front-end testing tool for web applications. When testing an

application, it covers the main struggle points that developers and QA testers often

face. The tool is famous among engineers who use JavaScript frameworks to build

applications. Cypress is a locally installed test runner with a dashboard service for

recording tests. It is free and open source, released under the MIT licence. Cypress

is written in JavaScript. The installation of the software is effortless, and it enables

writing test cases frequently while building the application. Cypress makes testing

quick and easy. It can test anything that runs in a browser. One of the useful features

of the tool is, it takes snapshots as tests run. It has a command log, whereby hover-

ing over, it is possible to see specifically what happened at each step. /5/

In Nokia, the Roadmap Online development team was looking for a reliable solu-

tion for testing a web application with automation testing method. The developers

aimed to build an automated test environment which would ease the process of test-

ing User Interface before the deployment. Moreover, every time after new imple-

mentations, the team wants to ensure both the new and old features are working as

they are expected. The team wishes to confirm the application performance from

the end user’s perspective. In this case, their requirements matched with Cypress

features. This thesis discusses testing, testing with Cypress, installation of the tool

and utilizing it to enhance the quality of the web application.

2 SOFTWARE TESTING

Software is a set of instructions or programs that tell a computer what to do. A

software may or may not contain bugs. In most cases, software bugs occur due to

human mistakes in software design and poor-quality code. A software with bugs

causes loss in business revenue. It also declines in customer loyalty and brand rep-

utation. According to ANSI/IEEE 1059 standard, software testing is: /6/

“A process of analyzing a software item to detect the differences between existing

and required conditions (i.e., defects) and to evaluate the features of the software

item.”

In general terms, Software Testing is a method of evaluating the functionality of an

application with the goal of determining whether the designed application satisfies

the stated requirements and identify bugs to ensure that the application is error-free.

/6/

2.1 Importance of Software Testing

Software Testing is a crucial part of Software Development Process. It is impossible

to develop an entire software without any defects or bugs. Since engineers are not

machines, mistakes may occur. There are high chances of errors in functionality

and design in the final code. Deploying a defected software in the market would not

be worthy. It may harm the industry in several ways. It is a requirement for carrying

out software testing to detect the problems prior to the occurrence in the critical

environment.

Next, we discuss some reasons why Software Testing is important.

 Cost Effectiveness

Software testing consists of a number of projects. If bugs are found in the early

stage, it costs a reduced amount of cash to fix them. Therefore, it is required to get

the test completed as soon as possible. To undertake this process, it is beneficial to

11

invest on experienced testers who carries the professional knowledge in it. They

can be a great resource to reap the advantages of a project. /7/

 Security

Security of a software is most fragile and sensitive part. There are a variety of cases

in which users' data and information are cracked and used for detrimental intentions.

The customer cannot be confident that they obtain a quality product if the particular

product is not properly tested. After testing, he can be sure that his personal details

will be safe. With the assistance of software testing, customers may obtain vulner-

ability-free products. /7/

 Efficiency of Product

The purpose of a product should be serving its customer. As per pledge, it is essen-

tial that it carries value to the customers. It should therefore work entirely to ensure

an efficient user experience. Moreover, checking the compatibility of the system is

needed. For instance, if a developer intends to deploy an application in the market,

the compatibility of it must be tested with a wide range of computers and operating

systems. /7/

 Customer Satisfaction

The primary goal of the product provider is to give customers the highest satisfac-

tion. The fact that it provides the prerequisite and perfect user experience is the

reason why it is important to opt for software testing. By providing the best project,

it is possible to earn the reputation of reliable clients. Thus, by software testing,

company can gain long-term benefits. It is definitely not a simple task to gain trust

of consumers, in case the product is found to work and fail one time or another. If

one software fails to offer a good impression, customers will find another alternate

of it, which will fulfill their requirements. /7/

 Development Process Improvement

To avoid reproduction of mistakes, software testing is essential. Varity of errors can

be found with the assistance of testing. Finding a bug in the development phase and

fixing it immediately is rather easy and effective. Thus, it is highly recommended

that software testers would be working with the developers simultaneously. It is

helpful in accelerating the process of growth. /7/

 Consistency of Software Performance

An application or program with decreased performance lowers the prestige of the

company in the market. Users are not going to trust the company, and it is highly

possible that its reputation will suffer. If a company launches a software in the mar-

ket without testing, and after few days its performance does not match customers’

standards or specifications, it would be very hard to convince them in future. Thus,

software testing is a better solution for determining a software performance. /7/

2.2 Testing Approaches

For different cases, there are different software testing approaches.

1. White Box Testing

2. Black Box Testing

3. Grey Box Testing

 White Box Testing

White Box Testing is a type of software testing in which the tester understands the

internal structure, design, implementation of the item being evaluated. To exercise

paths through the code, here the tester selects the inputs and decides the required

outputs. During the White Box Testing, having the know-how in programming and

the implementation knowledge is essential. In this process, testing happens into the

system and the tester is aware of both the internal and external behavior. Hence it

is called white box testing. /8/

 Black Box Testing

Black Box Testing is a type of software testing where the internal structure, design

or implementation is unknown to the tester. Such tests may be functional or non-

functional, while typically those are functional. Black Box Testing can be used at

13

almost every stage of software testing: unit, integration, system and acceptance test-

ing. Specification-based research is another name for Black Box Testing.

This approach is named as its program, like a black box in the eyes of a tester, where

the program code is invisible. This approach tries to find errors in the following

categories:

1. Incorrect functions

2. User Interface errors

3. Data structures or external database access errors

4. Performance errors

5. Initialization and termination errors

For instance, a tester, without understanding a website's internal framework, uses a

browser to test the web page. He provides inputs, such as clicks or keystrokes, to

check if the outputs against the predicted result. /9/

 Grey Box Testing

Grey Box Testing is a hybrid between White Box and Black Box testing techniques.

In the White Box Testing, the internal program is known to the tester. Contrary, in

Black Box Testing it is unknown. Since Grey Box Testing is a mixture of these two

processes, the program structure is partially known to the tester. /10/

2.3 Testing Levels

There are several test levels in Software Testing:

1. Unit Testing

2. Integration Testing

3. System Testing

4. Acceptance Testing

Next, we discuss these in more details.

 Unit Testing

Unit testing is the first phase of software testing, where individual software com-

ponents are tested. It is also familiar by the name of Module Testing or Component

Testing. During the creation of an application, through this method developer can

assure if an individual unit or module of the application is functioning properly or

not. Mostly developers are responsible for doing it in the development environment.

/11/

 Integration Testing

Integration Testing is the phase of software testing which is combined by both Unit

Testing and System Testing. Identifying the faults in the interaction between inte-

grated units is the goal of integration testing. In Integration Testing, test drivers and

test stubs are used to assist. It is the next level after Unit Testing. There are primarily

two forms of research for integration: 1) Unit Integration Testing and 2) System

Integration Testing. /12/

 System Testing

System Testing is a form of Black Box Testing. It is also known as End-to-End

Testing. By following this testing method, it is possible to test the program on all

of the planned target systems. It verifies the desired outputs of every input in the

application. This method is commonly used to test the user’s experience with the

application. /6/

 Acceptance Testing

Acceptance tests are the type of tests which perform to determine if a program sat-

isfies its business specifications. The entire program must be operational, with a

focus on replicating user patterns. If those targets are not reached, they may also go

further, assess the system performance and reject changes. /13/

15

3 APPLICATION DESCRIPTION

Throughout the world, Nokia has a massive number of products to implement, en-

hance, manage and maintain. Those are being executed by the teams from different

regions and continents. Each team follows its own method of work. Even though

the core concepts of presenting the products are same. But, because of assorted

working strategy, the presentation varies. Thus, to solve this complicity the

Roadmap Online (RON) Development team came up with a better solution. They

proposed to build an application which would be convenient for every team to use

to handle the products information.

The application is a solution in Nokia for the portfolio of product and its roadmap

dialogue process, aka the interlock process. This process is used to update the

roadmap materials in global scale. It also

• Defines steps which need to be done before business groups can update

roadmaps and communicate them.

• Provides a common roadmap template to product management teams to get

a harmonized look and feel for all roadmaps.

• Provides portal for storing roadmaps.

• Provides transparency of proposed changes.

• Gives an opportunity to mitigate issues for customers, thus reducing risk

and customer dissatisfaction.

There are over 4000 users around the world for this application. Based on user role,

the application enables certain features. People from product management team gets

the full access right to the application. In a quarterly update, all proposed changes

of product roadmaps will be inserted by creating new interlocks and roadmap drafts.

The application will then generate a complete change log comparing the previous

and new version of roadmap for the product. Then the roadmap will be set for eval-

uation where the customer dissatisfaction, positive changes and risks can be noted

down. After that, roadmap owner teams and the customer operation teams will

discuss to mitigate the risks and set an agreement. In the end, after approvements,

the last step is approval and publication of the roadmaps.

4 TEST AUTOMATION TOOL

In this modern software development era, web testing has become a crucial part.

The demand for firm and secure test automation tool is raising day by day. There

are several testing tools nowadays focusing on resolving developers’ expectations

and Cypress is one of those tools. It is one of the popular tools which got renowned

in no time for its quality and performance.

4.1 Cypress

Cypress is an end-to-end test automation tool for graphical user interface of web

applications. The tool is primarily designed to make the lives of developers and

quality assurance engineers easier. Developers can easily synchronize and resolve

problems with Cypress. Even though it is often compared to Selenium (a portable

framework for testing web applications), both are architecturally different.

Cypress uses JavaScript for writing test cases since the tool is built on Node.js. It

comes packaged as a npm module. Moreover, Cypress has numerous built-in com-

mands for writing tests. Those commands are very convenient and understandable

for the users. It also contains jQuery methods to identify UI components and sim-

plify DOM, HTML tress traversal and manipulation. In addition, it simplifies CSS,

Ajax and event handlers. /20/

The tool can test anything that can be run on a browser. Other tools may run outside

of a browser and execute remote commands. But Cypress engine directly operates

inside a browser. Thus, the tester can visualize how users would see. Cypress also

provides time travel facility. While the test cases are running, Cypress takes snap-

shots of individual steps. It is very useful since the tester can hover over each com-

mand in the test runner and see the history of actions. /20/

17

4.2 Setting up the Environment

Cypress is a desktop application which supports the following operating systems:

• macOS 10.9 and above (only 64-bit)

• Linux Ubuntu 12.04 and above, Fedora 21 and Debian 8 (64-bit only)

• Windows 7 and above

The tool is built on Node.js and it uses JavaScript to write test cases. Cypress does

not require Node.js for installation but having Node.js in the project makes the work

easier. It would then enable more features to use which would not be possible from

a direct downloaded application. Also, maintaining and updating the application

become easier using npm. If there is no Node.js or npm in the project, yet Cypress

can be installed via downloading it form Cypress CDN link.

In this project, the installation has been done via npm. The process has described

below in ‘Cypress Installation’ section.

 Node.js

Node.js is a cross platform, runtime environment of JavaScript. It is also an open

source which can generate dynamic page content. On the server side, Node.js can

create, open, read, write, delete and close files. It is also capable of collecting form

data. In Node.js when a file has requested, it sends the task to the file system of the

computer and gets ready to handle the next request. When the system has opened

and read the file, the server returns the content to the client. Node.js is fast. It elim-

inates waiting and continues with the next request. /21/

Cypress is built on Node.js but it does not require one to run. If Node.js or npm is

not available in a project, it is still possible to install the tool via downloading di-

rectly from Cypress CDN link. The direct download will always grab the latest ver-

sion of the application. After the download, the folder is unzipped and double click-

ing on the application will start it running without needing to install any dependen-

cies.

To utilize the most out of Cypress, however, Node.js can be used. Cypress can be

required as a node module from an application under test and run via Node.js. This

is useful when the developer wants access to the test results directly after the run.

With this workflow, it is possible to

• Send a notification about failing tests with included screenshot images.

• Rerun a single failing spec file.

• Kick of other scripts

Since the purpose of using Cypress in this project is to generate test report for the

GUI, we run the application as a node module. Thus, Node.js needed to be installed.

The steps for installing Node.js has described below.

1. Go to the Node.js official website and download the recommended version

of it.

2. Run the downloaded installer.

3. It will welcome to the Node.js Setup Wizard – click next.

4. Agree to the terms of license agreement – click next.

5. Then the installer will ask for the installation location. Leave it as default

and click next.

6. Now the wizard will prompt to select components to include or remove

from the installation. Leave it as default – click next.

7. Finally click on the install button and finish it when the installation is done.

To verify if the installation has done properly, the computer must be restarted, and

the following commands are given sequentially:

• node -v; This will show the installed version of node.js in the computer.

• npm -v; This will show the installed version of npm in your computer.

After the successful installation of Node.js, it is possible to initiate npm inside the

project folder and install Cypress as a node module. To initiate npm, the steps are

the following:

1. Open the project in an editor. For instance- Visual Studio.

2. Open a terminal in Visual Studio and type npm init.

19

It will then walk through the process of creating a package.json file. It only covers

the most common items and tries to guess sensible fields. It is also possible to insert

the information later in package.json file. See Code snippet 1.

See `npm help init` for definitive documentation on these fields

and exactly what they do.

Use `npm install <pkg>` afterwards to install a package and save it

as a dependency in the package.json file

Press ^C at any time to quit.

package name: (webgui)

Code snippet 1. Initializing npm.

After the initialization, all the inserted data can be found inside package.json file.

 Cypress Installation

Now that Node.js has been installed and npm is available to get third party’ pack-

ages, the environment is set up to install Cypress. There are two ways of getting the

package, dependency and devDependency.

The difference between above two types is that when a module is required during

development, it is installed as a devDependency. On the other hand, when a module

is required at run time, it is suggested to install as a dependency. In this project,

Cypress is needed as devDependency. For that, Cypress has installed through the

following command:

npm install cypress –save-dev

After the successful installation, it is noticeable that along with Cypress files and

folders, a file named package-lock.json has been automatically generated. It is for

any operations where npm modifies either the node_modules tree, or package.json.

It describes the exact tree that was generated, such that subsequent installs can gen-

erate identical trees, regardless of intermediate dependency updates.

Cypress has now been installed to ./node_modules directory with its binary execut-

able form ./node_modules/bin. To open from the project root, any one of the below

commands can be run on the terminal.

./node_modules/.bin/cypress open

Or, npx cypress open

npx can be run only if npm version is greater than 5.2. Now after the installation,

Cypress works, and can be open the test runner.

Figure 1. Cypress test runner.

21

5 TEST ARCHITECTURE / STRATEGY

The architecture of testing is the practice of gazing at a production flow and finding

out what, how and when to test to produce the best possible result /14/. It creates a

diagram of test activities. Constructing a test strategy before implementation helps

to ensure that everyone in the team is on the same page. It visualizes the testing

process to all the members. Moreover, if any step is missing, it can be indicated

here. In an agile testing strategy, the planner needs to keep account of future imple-

mentations as well. Eventually, if users demand for new addition of features, testing

of those would also be needed. Hence, the architecture needs to be in such manner

that the previous implementations would not require massive change.

Primarily, the testing method of this web application has divided into two parts-

Targeted test and Full system test.

Figure 2. Division of testing method.

5.1 Targeted Test

Targeted test means testing each component or features of the application sepa-

rately. If a developer implements something new to an existing feature, he would

like to be assured that none of the changes made over have caused new bugs. So, to

avoid end-to-end testing every time for each new development, the team came up

with such testing solution. This saves time, exclude hassles and response to the re-

quest specifically asked for.

5.2 Full System Test

Full system test validates the complete process of the roadmap functionality of the

product. It is a chain flow of targeted test cases. From creating an interlock for a

product to completing it, adding several contents to its roadmap, as well as the other

functionalities, all are being checked in full system test. It is basically an end-to-

end testing process for a product interlock.

The Roadmap Online application has the functionality of inserting proposed

changes of products by creating new interlocks and roadmap drafts. It requires sev-

eral steps to complete one interlock creation. The process of creating an interlock

to completing it is shown in Figure 3.

Figure 3. Activity diagram of a product’s interlock.

23

To initiate inserting proposed changes or information for a product, the user needs

to create an interlock first. Based on the role, the user retains the right of creation.

After successfully creating the interlock, the application enables options for creat-

ing a draft roadmap. The draft roadmap is where the user can add product infor-

mation. There are two options for it, Create new draft from scratch and Create new

draft based on latest approved. Create new draft from scratch constructs an empty

roadmap. On the other hand, Create new draft based on latest approved sends a

request to the database to get the data from the previous version of the same product

and create a draft roadmap including those data.

A roadmap has different modules for storing different information. Those are

(shown in Figure 3.) Category, Overview, Release, Feature, Feature Evolution,

Compatibility and Contact. All these modules are diverse from each other but have

same action functionalities, such as create, modify and remove.

After completing the necessary changes, it is possible to modify the roadmap state.

A roadmap has several states. Based on the selection, it enables the next module.

For instance, if the state of a roadmap has changed to Draft for Evaluation, it will

open the option for adding new impacts.

Impact is where the possible risks, positive changes and the customer’s dissatisfac-

tions are noted. However, it is not possible to add an impact for a roadmap which

has created from scratch. There needs to be a previous roadmap of the same product

for comparison. At last, to complete an interlock, the prior task is to approve the

roadmap. This is also known as the last state of a roadmap.

In the full system test, the complete chain explained above has been tested with

Cypress. With the automated tool, it is much faster to test the system than testing

manually. Since the purpose of testing is to check the application process from the

user’s perspective, Cypress made the task very easy and plays a conducive role in

it.

6 TEST TECHNIQUES

Creating and writing test suites for software testing is known as test design. Test

architecture and detection of test conditions provide us a general idea for testing

that refers to a variety of scenarios. However, when it comes to create a test case, it

should be more specific. /18/

In this project, the test files were created based on individual features of the appli-

cation. Since there are several features, the test files were divided into subfolders.

In this manner, the files are organized and easy to look into. Below, the design of

folder and file structures are explained.

6.1 Folder Structure

For a better understanding, it is strongly recommended that test files be organized

into separate folders. By default, Cypress scaffolds out a suggested folder structure.

Though it is fully configurable, in this project the default folder structure has been

followed.

After the installation of Cypress in the project, a folder named cypress had ap-

peared. Inside it, there were couple of sub-folders with some example *.spec.js files.

*.spec.js files are basically the files which contain the test cases. Those example

*.spec.js files are good examples of test cases that can be created with Cypress.

The sub-folders inside /cypress are- integration, support, fixture and plugin. Con-

sidering the application needs, the integration and support folders have been uti-

lized mostly.

Since the integration and support folders are the main focus for this project, they

are shown in Figure 4.

25

Figure 4. Folder structure for organizing test files.

 Integration

This is the folder which contains all the test files (*.spec.js). In this project, the test

files have been created based on individual modules and components. However,

storing all those files at once inside Integration would have made finding difficult.

Therefore, there are feature based folders, as sub folders which contain the test files.

For instance, in Draft Roadmap, the user either can create a roadmap from scratch

or change an existing state of the roadmap.

The creation of a roadmap has two different ways of doing it; one is creating a

roadmap from scratch and the other is creating a roadmap based on the latest ap-

proved roadmap. The first option creates an empty roadmap which does not contain

any information at the beginning. On the contrary, the second option would copy

the contents from the previous roadmap and creates a new one based on it. To have

this option available, there must be a completed roadmap of the same product which

had created earlier.

In other roadmap features, there are three common actions noticeable: create, mod-

ify and delete. These actions are for organizing information of a roadmap. Even

though the actions might seem similar, but the modules are distinct. For instance,

the module for creating a category is unique than creating a compatibility.

 Support

The support folder contains the support file (cypress/support/index.js). It runs be-

fore the individual *.spec.js files. It has been done as a convenience mechanism to

avoid repetition of importing it into other *.spec.js files. It is possible to set the

initial imported support file to another file or use the supportFile configuration to

turn it off completely. It is a great place to add reusable actions to all the *.spec.js

files, such as custom commands or global overrides to apply and access. To keep

test files organized, it is important to import or request other files from the support

file.

Before the *.spec.js file, Cypress executes the support file. For instance, when a

*.spec.js file is clicked, Cypress executes the support/index.js first. But when all the

*.spec.js files are running for full system test, the support file executes once and

then continues executing other test files one after another.

27

6.2 File Structure

The test files have built based on the components. Each module or component has

different functionalities to check. However, the similarity among those is in the

structure. The following Code snippet is representing the common skeleton.

// Define variables

var title = “Add information title”;

// Start Cypress tests

describe(‘Create Roadmap Information Items’, () => {

// This is a root level hook; it runs before every test

beforeEach(() => {…});

// Conditional test case

// Check mode: either "full_test" or "targetted" -> set in /cy-

press.json

if(Cypress.env(‘mode’) == “targeted”){

 // Conditional test

 it(‘Sets up the environment’, () => {

/* Execute the custom command to procced by setting the

environment for targeted test case */

 cy.ajax_redirect(“roadmap_setup”);

});

}

it(‘Check error messages’, () => {…….}); // Failing Test

it(‘Create two roadmap info items’, () => {………}); // Success Test

});

// End Cypress tests

Code snippet 2. Primary structure for test files.

Details about the file structure is described in the “Test Case Implementation” chap-

ter.

7 TEST CASE IMPLEMENTATION

In this project, each test script has a common structure which helps to read and write

test cases. The structure is divided into three parts: 1) Set up the environment, 2)

Check the error messages and 3) Check the successful implementation.

In our code, on the very top of the file, the main function for initiating test cases is

called describe(). describe() came from a bundle tool called Mocha that Cypress

bakes in /15/. In Mocha, describe() is used to group the tests. It has the ability to

nest tests in as many groups as necessary. describe() requires two arguments: a

callback function and the name of the test party. /16/

Inside describe(), the very first function is beforeEach(). It is also borrowed from

Mocha. beforeEach() is a root level hook. The hook is a functionality that allows to

plug into a module to change its actions or response when anything happens /17/.

All the conditions which are expected to run before the tests, are defined inside

beforeEach().

After that, based on the testing mode, the initial preparation is set under conditional

test function. For example, if the tester wants to test a specific feature, the condition

will state true, and it will send a request to the database for completing the initial

preparation. Since in the application there are features which has dependency on

others, this conditional test is needed to continue. Inside it() (a function of Mocha),

a customized function is called which sends request to the database for imitating

values and sets the environment to proceed. On the other hand, if the state false, this

function is ignored.

Then, there is a new function initiated which handles all the possible errors that may

occur. It checks if the program gives correct error messages for individual mistakes.

At the end, the last test is to check if the successful act on the action requested by

the user has been executed. If it fails, it means there is a bug in the development

which needs to be fixed. Vice versa, if it passes then it assures that the module is

working as expected.

29

Though most of the test files are following the similar structure, the cases are

scripted differently for different functions. The functions which are common and

needed to execute several times, are defined as a custom command in the support

file (index.js).

Next, considering the test file of a feature (create_info_item.spec.js) as an example,

the steps and commands for testing are described in detail.

7.1 Taking Initial Preparation

Before running these cases for individuals, the first step is to take initial preparation.

Each time the viewport, a successful login, respond time of the server need to be

defined. Instead of repeating these conditions inside each cases, they are initiated

under beforeEach() hook, which executes every time before test case runs.

// Start Cypress tests

describe(‘Create Roadmap Information Items’, () => {

 beforeEach(() => {

 cy.viewport(1500, 800); // Setting the screen size

 cy.login();

// After programmatically login, need to indicate where to visit

 cy.visit('https://localhost:8080/index.php');

 cy.url().should('include', '/index.php');

 cy.server();

 cy.route({

 method: 'POST',

 url: '/includes/ajax_draft_details.php'

 }).as('ajax_draft_details');

});

Code snippet 3. Commands under beforeEach() hook.

In the above code snippet, inside beforeEach() hook, there are few built-in com-

mands visible. Those commands are initiated in Cypress. Below, the commands and

their tasks are explained.

cy.viewport(): It is a command to set the screen size. It is useful

when tester wants to test the application for different

devices. In this manner, the interface can be tested for

various screen sizes.

cy.login(): It is a custom command defined in the support file

(/support/index.js). It goes through the steps of login

and results a successful access to the application.

cy.visit(): It is a built-in command for visiting a local new page

or any URL. It redirects to the given site address and

continues.

cy.url().should(): It is an assertion. Details about it is described in

“Make an assertion” section.

cy.server(); cy.route(): This command is very useful for imitating server re-

sponse. Here, we have used it to capture the time du-

ration of completing a request. Later we called this

duration as waiting.

After the beforeEach() hook, there is a conditional test case for setting up the envi-

ronment. It checks how the environmental variable mode is defined. mode has ini-

tiated in cypress.json (the configuration file).

31

// Conditional test case

/* Check mode: either "full_system_test" or "targeted" -> set in

/cypress.json */

if(Cypress.env(‘mode’) == “targeted”) {

 // Conditional test

 it(‘Sets up the environment’, () => {

/* Execute the custom command to procced by setting the

environment for targeted test case */

cy.ajax_redirect(“roadmap_setup”);

});

}

Code snippet 4. Setting up the environment with custom command.

If the tester is testing a targeted test case, then before testing the actual feature, there

are some prior actions need to be done. To add a piece of information in a roadmap,

the system must have an interlock and an open roadmap for that product. Therefore,

before executing the actual test case, the application needs to be set. This setting is

done through the conditional test. There is a custom command which completes the

actions of setting. If the user changes the mode value to targeted, it sends a request

to the database for imitating values for setting and then continues to the next step.

Contrariwise, if the mode value is full_system_test, the condition states false and it

skips the stage.

7.2 Taking an Action

Taking an action means commanding Cypress to do a task, for example, querying

an element, or clicking an element. There are numerous numbers of commands Cy-

press provides to execute such tasks. In the next Code snippet, there are some ex-

amples.

// Failing Test

it(‘Check error messages’, () => {

 cy.get('button#addRMInfoItemOpenModal').should('be.visible')

 .click()

 .get('#addRMInfoModal').should('be.visible').wait(500)

 .within(() => {

 cy.sweetAlert('button#RMInfoAddButton'

 , 'Oops...'

 , 'You forgot to enter all needed data.'

 , 'OK')

cy.get('input#addRMInfoTitle').should('have.css', 'border',

'1px solid rgb(255, 0, 0)')

 .type(title).should('have.value', title);

 });

});

Code snippet 5. Test case for testing possible error messages.

In the above Code snippet, it is testing the error message when the user clicks on

the Add Information button without filling the information fields. Here, cy.get(),

cy.click(), cy.type() are default commands which help to execute the task.

cy.get(): It is a default command in Cypress. It helps to find elements from

the testing page. It can be used to find a specific element by men-

tioning the id (with a hashtag “#”) or class (with a dot “.”) beside the

tag name as an argument.

cy.click(): It is an action which performs like a mouse click.

cy.type(): It acts like keyboard strokes. To type something, this command can

be used by passing the value as an argument.

If the code is read out loud, it might sound like this:

1. Get the button with id addRMInfoItemOpenModal.

33

2. Click on it.

3. Then get the modal with id is addRMInfoModal and wait for 500ms.

4. Within this modal, execute the custom command, cy.sweetAlert(), which

would click on the button with id RMInfoAddButton. As a result, it will pop

up an error message. Check if the message contains correct headline, body

text and footer.

5. Then check the styling.

7.3 Making an Assertion

Cypress commands are built to fail if it does not find what is expected. Without

adding any assertion, if a test file runs with some action, it will execute accordingly.

It will automatically wait and try to complete the action. It is because, Cypress com-

mands have default assertions. Cypress will keep retrying to finish the task within

the default waiting time. It will not fail immediately.

However, Cypress gives the user the full control of changing the default values. The

tester can add assertions as his convenience. In the following code snippet, we can

see an assertion, .should() which indicates how the result of the action should be.

// After programmatically login, need to indicate where to visit

cy.visit('https://localhost:8080/index.php');

cy.url().should('include', '/index.php');

Code snippet 6. Asserting to an action.

In the above Code snippet, it is asked to redirect to the page https://lo-

calhost:8080/index.php. On the next line, with command cy.url().should() we are

asserting that the URL should have extension /index.php included. So, if the visit

fails to redirect to the exact page, the assertion will catch the error.

8 TEST RUNNER AND CONFIGURATION IN CYPRESS

One of the benefits of using automation framework for testing is that it provides a

test runner to execute test cases. It is one of the essential parts and Cypress is re-

nowned for its easy to execute and well-structured visual test runner. It allows to

follow step by step of a test case when it runs. Also, it has a command log which

helps to time travel throughout the steps.

In this project, the testing method was divided into two parts, targeted test and full

system test. Each of these methods/modes requires different configuration before

executing. Therefore, it is essential to configure the runner beforehand. Cypress

provides an easy way of doing it. After the installation of framework in the project,

it creates a file named cypress.json, which allows to configure the default settings

provided by Cypress. For this project, the configuration of cypress.json is shown

and explained below.

{

 "baseUrl": "https://localhost",

 "reporter": "mochawesome",

 "reporterOptions": {...},

 "testFiles": ["Login/login.spec.js",

 "Interlock/create_interlock.spec.js",

],

 "screenshotsFolder": "./mochawesome-report/assets",

 "video": false,

 "env": {

 "mode": "full_system_test",

 "product": "5G RAN",

 "interlockID": "1000007"

 }

}

Code snippet 7. Config file, cypress.json.

35

Cypress offers a range of default configurations for a variety of application re-

sources. In this project, a few of those default values have been overridden. Below,

the objects of configuration file are explained.

baseUrl : This setting determines the URL to use as a prefix for the

command like cy.visit(). Since the aim for running these test

cases locally, it has been defined as https://localhost.

reporter: Cypress enables the option for assigning 3rd party packages

as reporter. In this project, Mochawesome has been used for

this.

reporterOptions: This option is for customizing the report generating process.

testFiles: By default, Cypress scaffolds the test files in alphabetic or-

der, which is okay for running targeted test cases. But when

the full system test runs, the execution needs to follow the

order as the application requires. For this purpose, all the test

files are organized in order so that the execution follows the

correct sequent.

screenshotsFolder: Directs to the path where the screenshots of fail cases should

be stored while generating test report.

video: It is possible to capture a video clip of the tests run by ena-

bling this option.

env: Here the environment variables or the global variables are

defined. This option is very important since the mode of the

testing is defined here. When the mode value is changed to

“targeted”, the product value also needs to be changed to

“GSM”. Consequently, it sends a request to the database for

setting up the application environment to run targeted test

cases. After the set up, then the actual test cases run. On the

other hand, for “full_system_test”, the value of the product

needs to be changed to “5G RAN” and then the database set

the application for executing the end-to-end test.

Now that the configuration file has set up, it is time to run the test cases. To open

the Cypress runner the following command needs to be typed in a terminal:

npx cypress open

It will open the Cypress test runner which shows the test cases defined in testFiles

in cypress.json. A picture of the test runner is shown in Figure 5 below.

37

Figure 5. Cypress test runner with test files.

9 CONCLUSIONS

Software testing is a method of evaluating the functionality of an application with

the goal of determining whether the developed application meets the stated specifi-

cations and identifying errors to ensure that the developed application is flawless.

Throughout fundamental software testing, the quality of software can be assured.

Software testing can be done in different levels and in different forms. Automated

testing can help carrying out testing process more efficiently with less resources. In

Nokia, the RON development team was looking for a solution to test the GUI of a

web project. They ended up with solving this problem with the help of an external

framework named Cypress. Cypress is an open source, free, frontend testing auto-

mation tool. In the project, Cypress is installed with Node.js.

The test cases for the project were divided in two parts: 1) targeted test and 2) full

system test. The full system test covers end-to-end testing of the whole system.

Contrariwise, the targeted test focuses on testing a specific feature. For conven-

ience, test cases are divided in sub-folders and files. However, most of the test cases

follow a common structure for testing. Based on the testing mode, it first takes care

of initial preparations and then starts implementing test cases to find possible errors

in the software. Cypress provides a large number of default commands for taking

actions. However, it was also possible to create own custom commands. Each of

Cypress action command has a default assertion, which specifies the expected re-

sult. The tool also gives the flexibility of overwriting the default values.

Testing with Cypress was trouble-free. Visualizing the tests running in the test run-

ner, shows the user’s possible actions on the application. Cypress takes snapshots

while it runs which made identifying errors easily and fix the bug instant. The team

was pleased with the solution and found it promising to continue.

The possible improvement of the process could be updating the test files with the

latest Cypress version. In the Cypress documentation, there are some recommended

approaches for getting better results.

39

The application has dependencies. While running the test cases, testing those com-

ponents which are built with the help of third-party packages failed. Over that pe-

riod, to solve the issue, those packages were downloaded and added to the project.

But it was not a fruitful solution, especially in the future when the application would

get larger. So, to avoid downloading a complete package, it is possible to install

only required parts of packages. Moreover, the latest Cypress version has better

solutions for network requests, which affects test results.

10 REFERENCES

/1/ Tutorials Point 2014. SDLC – Overview. Accessed 3.2.2021.

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

/2/ Guru99. What is ALM? Application Lifecycle Management. Accessed

13.2.2021. https://www.guru99.com/alm-tutorial.html

/3/ RedHat. What is Application Lifecycle Management (ALM)? Accessed

13.2.2021. https://www.redhat.com/en/topics/devops/what-is-application-lifecy-

cle-management-alm

/4/ Unadkat, Jash. 2020. Beginner’s Guide to Software Application Testing.

BrowserStack. Accessed 13.2.2021. https://www.browserstack.com/guide/learn-

software-application-testing

/5/ Cypress 2021. Why Cypress? Accessed 13.2.2021. https://docs.cy-

press.io/guides/overview/why-cypress.html#Cypress-in-the-Real-World

/6/ Rajkumar. 2021. What is Software Testing | Everything You Should Know?

Software Testing Material. Accessed 14.2.2021. https://www.softwaretesting-

material.com/software-testing/

/7/ Parthiban, Pradeep. 2019. 7 Reasons Why Software Testing is Important.

Indium Software. Accessed 14.2.2021. https://www.indiumsoft-

ware.com/blog/why-software-testing/

/8/ Software Testing Fundamentals 2020. White Box Testing. Accessed

14.2.2021. https://softwaretestingfundamentals.com/white-box-testing/

/9/ Software Testing Fundamentals 2020. Black Box Testing. Accessed

14.2.2021. https://softwaretestingfundamentals.com/black-box-testing/

/10/ Software Testing Fundamentals 2020. Grey Box Testing. Accessed

14.2.2021. https://softwaretestingfundamentals.com/gray-box-testing/

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.guru99.com/alm-tutorial.html
https://www.redhat.com/en/topics/devops/what-is-application-lifecycle-management-alm
https://www.redhat.com/en/topics/devops/what-is-application-lifecycle-management-alm
https://www.browserstack.com/guide/learn-software-application-testing
https://www.browserstack.com/guide/learn-software-application-testing
https://docs.cypress.io/guides/overview/why-cypress.html#Cypress-in-the-Real-World
https://docs.cypress.io/guides/overview/why-cypress.html#Cypress-in-the-Real-World
https://www.softwaretestingmaterial.com/software-testing/
https://www.softwaretestingmaterial.com/software-testing/
https://www.indiumsoftware.com/blog/why-software-testing/
https://www.indiumsoftware.com/blog/why-software-testing/
https://softwaretestingfundamentals.com/white-box-testing/
https://softwaretestingfundamentals.com/black-box-testing/
https://softwaretestingfundamentals.com/gray-box-testing/

41

/11/ Rajkumar. 2019. Unit Testing Guide | Software Testing Material. Software

Testing Material. Accessed 14.2.2021. https://www.softwaretesting-

material.com/unit-testing/

/12/ Software Testing Fundamentals 2020. Integration Testing. Accessed

14.2.2021. https://www.softwaretestingmaterial.com/integration-testing/

/13/ Pittet, Sten. The different types of Software Testing. Atlassian CI/CD. Ac-

cessed 14.2.2021. https://www.atlassian.com/continuous-delivery/software-test-

ing/types-of-software-testing/

/14/ SQC. Test Architecture. Accessed 21.2.2021. https://www.sqc.co.uk/per-

form/assurance/test-architecture/

/15/ Cypress 2021. Writing Your First Test. Accessed 23.2.2021.

https://docs.cypress.io/guides/getting-started/writing-your-first-test.html#Write-

your-first-test

/16/ Morelli, Brandon. 2017. How to test JavaScript with Mocha -The Basics.

Code Burst. Accessed 23.2.2021. https://codeburst.io/how-to-test-javascript-with-

mocha-the-basics-80132324752e#:~:text=describe()%20is%20simply%20a,sec-

ond%20is%20a%20callback%20function.

/17/ Micha. 2009. What is meant by the term “hook” in programming. Stack

Overflow. Accessed 23.2.2021. https://stackoverflow.com/questions/467557/what-

is-meant-by-the-term-hook-in-programming

/18/ Try QA. What is Test design? Or How to specify test cases? Accessed

27.2.2021. http://tryqa.com/what-is-test-design-or-how-to-specify-test-cases/

/19/ Wikipedia 2021. Regression Testing. Accessed 27.3.2021. https://en.wik-

ipedia.org/wiki/Regression_testing

/20/ Khetarpal, Aashish. 2020. What is Cypress: Introduction and Architecture.

Tools QA. Accessed 22.3.2021. https://www.toolsqa.com/cypress/what-is-cypress/

https://www.softwaretestingmaterial.com/unit-testing/
https://www.softwaretestingmaterial.com/unit-testing/
https://www.softwaretestingmaterial.com/integration-testing/
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing/
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing/
https://www.sqc.co.uk/perform/assurance/test-architecture/
https://www.sqc.co.uk/perform/assurance/test-architecture/
https://docs.cypress.io/guides/getting-started/writing-your-first-test.html#Write-your-first-test
https://docs.cypress.io/guides/getting-started/writing-your-first-test.html#Write-your-first-test
https://codeburst.io/how-to-test-javascript-with-mocha-the-basics-80132324752e#:~:text=describe()%20is%20simply%20a,second%20is%20a%20callback%20function.
https://codeburst.io/how-to-test-javascript-with-mocha-the-basics-80132324752e#:~:text=describe()%20is%20simply%20a,second%20is%20a%20callback%20function.
https://codeburst.io/how-to-test-javascript-with-mocha-the-basics-80132324752e#:~:text=describe()%20is%20simply%20a,second%20is%20a%20callback%20function.
https://stackoverflow.com/questions/467557/what-is-meant-by-the-term-hook-in-programming
https://stackoverflow.com/questions/467557/what-is-meant-by-the-term-hook-in-programming
http://tryqa.com/what-is-test-design-or-how-to-specify-test-cases/
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Regression_testing
https://www.toolsqa.com/cypress/what-is-cypress/

/21/ Node.js 2021. Introduction to Node.js. Accessed 29.3.2021.

https://nodejs.dev/learn/introduction-to-nodejs

https://nodejs.dev/learn/introduction-to-nodejs

