

Evaluation of pre-trained object detection models for the use in the SURE project
Gamze Laitila
BACHELOR’S THESIS April 2021 ICT Engineering Software engineering

2

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in ICT Engineering Software Engineering LAITILA, GAMZE: Evaluation of Pre-trained Object Detection Models for the Use in the SURE Project Bachelor's thesis 46 pages, appendices 8 pages April 2021
The main purpose of this study was to investigate as many object detection models as possible in order to evaluate their efficiency and determine a suitable model to be used in the SURE project. This model would have then processed images taken by drones outside, which contain mostly vehicles and crowds of people. Out of 41 pre-trained object detection models, 17 were selected for evaluation. Over 1000 photographs taken by the drones were received as test data and 240 of them were chosen to be processed. In these photographs, 1754 objects were annotated using an image annotation tool. Detection results and actual annotation results of the images were then compared, and evaluation metrics were calculated using a code written in Python. As a result of this process, it was found that EfficientDet D7 1536x1536, EfficientDet D6 1280x1280 and EfficientDet D5 1280x1280 were the three top ranking models in terms of accuracy whereas CenterNet Resnet50 V1 FPN Keypoints 512x512, CenterNet Resnet50 V2 Keypoints 512x512 and Faster R-CNN ResNet101 V1 800x1333 were the three top ranking models in terms of image processing speed. The findings indicate that models that were proven to be the most accurate in international competitions were not necessarily useful for the SURE project. One-stage models could later be investigated, for example YOLO and RetinaNet, but this study suggests the use of the model EfficientDet D6 1280x1280 for efficiency in accuracy and Faster R-CNN Inception ResNet V2 1024x1024 for efficiency in image processing speed.

Key words: object, detection, mAP, evaluation

3

CONTENTS

1 INTRODUCTION ... 6

2 ABOUT SURE ... 7

3 OBJECT DETECTION .. 8

4 OBJECT DETECTION METHODS ... 9

4.1 Models under investigation .. 9

4.2 Two-stage, Neural Network-based Object Detection techniques . 13

4.2.1 CNN .. 13

4.2.2 R-CNN... 14

4.2.3 Fast R-CNN .. 15

4.2.4 Faster R-CNN ... 16

4.2.5 Mask R-CNN ... 18

4.2.6 CenterNet .. 18

4.2.7 EfficientNet .. 20

5 EVALUATION METRICS FOR OBJECT DETECTION 21

5.1 Ground truth .. 21

5.2 Intersection over Union .. 22

5.3 Precision and Recall ... 23

5.4 Mean Average Precision .. 24

6 ANALYSIS OF THE OBJECT DETECTION MODELS 26

6.1 Work environment .. 26

6.2 Source of the tested images .. 27

6.3 Annotation of the images.. 27

6.4 Detection results framed by classes .. 30

6.5 Evaluation results ... 32

7 DISCUSSION .. 35

REFERENCES ... 37

APPENDICES ... 39

Appendix 1. Complete list of pre-trained models with TensorFlow 2 for COCO 2017 dataset, sorted by mAP results. Marked ones are used in this work. ... 39

Appendix 2. Additional codes made to “code_models” and models\research\object_detection\utils\visualization_utils.py (Tensorflow models repository): ... 40

Appendix 3. List of object class names in MS COCO dataset 42

Appendix 4. Additional code piece, for renaming ground truth text files for each model. ... 43

4

Appendix 5. Complete chart consisting of image processing times, ranks and mAP scores of each model, sorted by models names in alphabetical order. .. 44

5

ABBREVIATIONS AND TERMS

SURE Smart urban security and event resilience
TAMK Tampere University of Applied Sciences
GPU Graphical Processing Unit
YOLO You Only Look Once
SSD Single Shot Detector
R-CNN Region Based Convolutional Neural Network
Mask R-CNN Mask Region Based Convolutional Neural Network
Cascade R-CNN Cascade Region Based Convolutional Neural Network
MS COCO Microsoft Common Objects in Context
mAP Mean Average Precision
Faster R-CNN Faster Region Based Convolutional Neural Network
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
RoI Region of Interest
SVM Support Vector Machine
IoU Intersection of Union
TP True Positive
FP False Positive
FN False Negative
AP Average Precision
code_models Code that was used for image detection
code_mAP Code that was used for evaluation of the models

6

1 INTRODUCTION

With the rapid innovations in image obtaining techniques and digitalized data
storage options, people and entities are able to obtain more and more image
data. As a result of this, researchers are keen to use these sources for
humanity’s benefit and look for fields where this number of images can be used.
The analysis of the image data obtained, and the extraction of the results have
a special importance. With a variety of image processing techniques, results
can be drawn from raw image data and used in several applications. For
example, daily applications such as face recognition on smartphones or license
plate detection of vehicles in traffic are among the most prominent applications
in the field of image processing.

In the attempts of developing urban security measures, city of Tampere has
initiated a project called SURE (Smart urban security and event resilience),
where object detection in images will be used as an observation tool in outdoor
events taking place in the city.

Throughout this study, modern object detection methods and models derived
from them will be investigated in terms of their accuracy and speed. These
models will be evaluated by certain evaluation metrics and the results will be
analysed in order to determine a suitable model to be used in the SURE project.

7

2 ABOUT SURE

Tampere’s SURE is an EU-financed project that receives its funds worth of 3.2
million euros from Urban Innovative Actions initiative. Its main purpose is to
develop and apply security technologies for cities. Project is to be completed in 3
years and its development started in September 2019.

Partners of the project are Insta Group, Nokia, Securitas, University of Tampere,
TAMK (Tampere University of Applied Sciences), Business Tampere and The
Baltic Institute of Finland.

One of the project’s focus areas is the observation of events in the city where
large amounts of people gather. These events and gatherings would be observed
with unmanned aerial vehicles, commonly known as drones. The visual data
received from these drones will be processed by an object detection algorithm to
identify the objects and decipher the happenings throughout the. For example,
unexpected movements of the crowd such as pushing, mass movement towards
a certain direction or a fast-moving vehicle would be detected by the algorithm
and precautions would be taken beforehand in order to prevent security
breaches.

8

3 OBJECT DETECTION

Object detection is a technique used in image processing which lets us detect,
identify and track various objects of determined classes (cars, humans, dogs,
buildings etc.) in digital images and videos. Object detection is used in many
applications simply for image retrieval or in more complex cases like video
surveillance.

In the recent years, the amount of unprocessed raw data has increased
considerably with the effect of the developments in information storage
technologies. This increase led to parallel computing methods and high
processing power becoming indispensable for areas such as machine learning
and image processing. With all these developments, new libraries that allow
parallel calculation on graphic cards have been created. Due to GPUs’

(Graphical Processing Unit) high bandwidth, easily programmable registers, and
efficiency through thread parallelism, it has become quite easy and convenient
to perform arithmetic operations on graphic cards that would normally require a
lot of time and high processing power.

As a result, high computation and processing power made it possible to work
with multi-layer networks called deep neural networks. Multi-layer neural
networks have proven to be the best in the field by getting much better degrees
than normal machine learning methods in competitions for classification and
detection of objects in images.

9

4 OBJECT DETECTION METHODS

State-of-the-art object detection methods can be divided into 2 categories: one-
stage methods and two stage-methods.

In one-stage methods primary focus is on speed whereas in two-stage methods
it is on detection accuracy. Example methods for one-stage methods can be
YOLO (You Only Look Once), SSD (Single Shot Detector) and RetinaNet and
for two-stage they can be Faster R-CNN (Region Based Convolutional Neural
Network), Mask R-CNN and Cascade R-CNN. The most popular benchmark is
the MS COCO (Microsoft Common Objects in Context) dataset and the main
evaluation metric used is Mean Average Precision (mAP) metric. (Papers With
Code n. d.)

During the time of this study, Google and TensorFlow are the leading publishers
of object detection models. Every passing year new and more efficient methods
and models are developed, and these new models prove themselves in multiple
challenges after they have been trained on certain datasets. Dataset in general
is a collection of data. This data could be, for example, a combination of several
tables which include attributes and values of collected data or like in this case, a
database consisting of thousands or millions of images.

Most of above-mentioned challenges are based on MS COCO dataset where
there are 80 classes and 328 thousand images or ImageNet dataset where
there are 1000 classes and over 14 million images to be detected by the
models. Models used in this study are trained on the COCO 2017 dataset with
TensorFlow 2.

4.1 Models under investigation

Models that are tested in this study with their full names, including versions and
image resolutions are the following:

10

- CenterNet HourGlass104 Keypoints 512x512
- CenterNet HourGlass104 Keypoints 1024x1024
- CenterNet HourGlass104 512x512
- CenterNet HourGlass104 1024x1024
- CenterNet Resnet50 V1 FPN Keypoints 512x512
- CenterNet Resnet50 V2 Keypoints 512x512
- EfficientDet D2 768x768
- EfficientDet D3 896x896
- EfficientDet D4 1024x1024
- EfficientDet D5 1280x1280
- EfficientDet D6 1280x1280
- EfficientDet D7 1536x1536
- Faster R-CNN Inception ResNet V2 640x640
- Faster R-CNN Inception ResNet V2 1024x1024
- Faster R-CNN ResNet101 V1 800x1333
- Faster R-CNN ResNet101 V1 1024x1024
- Mask R-CNN Inception ResNet V2 1024x1024

At the time of this study, there were 41 pre-trained object detection models
available (appendix 1) which were developed using TensorFlow 2 for the COCO
2017-dataset. 17 of these 41 models were chosen for investigation: various
versions of Faster R-CNN, EfficientNet and CenterNet and one Mask R-CNN
model. These are all two-stage methods. One-stage methods such as YOLO,
SSD or RetinaNet could be compared in a later study.

Models seen in appendix 1 were tested and competed at least in the MS COCO
2017 Challenge and got a spot in the comparison charts. Easiest way would
have been to choose the one with the best rankings and claim that it can be
used in the SURE project. But there are many factors that prevent this, like
reverse ratio between accuracy and speed or unexpected results caused by
image resolutions.

For example, it can be seen from the list that ‘CenterNet Hourglass104

Keypoints 1024x1024’ seems to be the most accurate model to determine the

11

keypoints of the objects although is not as good at boxing them. However, there
are way faster models that are not as accurate at keypoints but relatively good
at boxing.

Another reason for testing so many models is the difference in image
resolutions which can be seen at the end of the model names. A model would
transform the resolution of the input image into its own, 640x640, 800x1333,
1024x1024 etc. So, detection with higher resolution would last longer yet results
would be more accurate.

Last and most important reason for testing these models is the dissimilarity
between the images taken by the SURE drone (picture 1; picture 2) and the
images in COCO dataset (picture 3) which were used to test the models in
getting their rankings.

PICTURE 1. Sample image taken by the SURE drone

12

PICTURE 2. Sample image taken by the SURE drone

PICTURE 3. Sample images from COCO dataset

As clearly seen in the pictures above, images taken by the drone and images
used in testing have totally different concepts and scalings. The SURE drone
will be taking the photographs from over tens of meters away in order to capture
crowds and places in wider views. While a person’s silhouette can easily cover
half of a test image, drone image may consist tens or hundreds of persons with
way smaller coverage. As a result, a model that has significantly good numbers
in the rankings might not perform as well with the SURE drone images.

Because of the reasons mentioned above, selection of the pre-trained models
started from the top rankings in terms of accuracy. As the list went down,
models with the most variety in methods, resolution and speed were additionally
selected.

13

4.2 Two-stage, Neural Network-based Object Detection techniques

Now that it is established which models are under investigation in this study and
why, following sections will present relatively brief information about them. In
order to set the basics of Faster R-CNN and Mask R-CNN, earlier methods of the
R-CNN family (CNN (Convolutional Neural Network), R-CNN and Fast R-CNN)
are also explained in the following sections.

4.2.1 CNN

CNN is a deep learning network developed for image and video processing.
CNN consists of 4 layers. These are Convolution layer, ReLU (Rectified Linear
Unit) layer, Pooling layer and Fully connected layer (picture 4).

PICTURE 4. Architecture of CNN (Swapna 2020)

Convolution layer is the first layer that handles the image in CNN algorithms.
Technically images are matrices consisting of pixels with certain values in them.
In the convolution layer, a filter smaller than the original image size hovers over
the image and tries to capture certain features from these images. Parameters
learned in CNN algorithms are the values in these filters. The model constantly
updates these values and begins to detect features even better.

14

ReLU (Rectified Linear Unit) is a nonlinear function that works as in f (x) = max
(0, x). For example, a result that passes from the convolutional layer might
consist of negative numbers caused by a matrix filter. ReLU function takes the
negative value, let’s say -25, and gives an output of 0. Another ReLU function
that takes the value 25, gives 25 as output. ReLU’s main purpose is to get rid of
negative values, and it has a very important role in CNN.

Like the convolution layer, the pooling layer also aims to reduce the
dimensionality. This way the required processing power is reduced, the
captured unnecessary features are ignored, and more important features can
be focused on.

In the Fully Connected layer the image passes through the convolution layer
and the pooling layer several times and is transformed into a flat vector.

4.2.2 R-CNN

R-CNN (Region-based Convolutional Neural Networks) works in two main
steps. As shown in picture 5; first with selective search, it splits the image area
into about 2000 “candidate” pieces which are called Region of Interest (RoI). In
the second step, system then computes previously mentioned CNN features for
each region in order to produce classifications. (Weng 2017.)

PICTURE 5. The architecture of R-CNN (Girshick, Donahue, Darrell & Malik
2014)

As pawangfg (2020) explains, selective search is a method used to determine
the regions that need to be captured in images. Small regions are determined

15

first, which works with the logic of hierarchy from small to large. Then, two
similar regions are combined, creating a larger region. This process (picture 6)
continues repeatedly and at the end larger regions appear in each iteration.

PICTURE 6. Selective search (pawangfg 2020)

According to Gandhi (2018), there were still problems with R-CNN. First of all,
classification of nearly 2000 region proposal was time consuming and real-time
implementation was unlikely due to 47 seconds of process cycle per image.
Complex multi-stage training pipeline and fixed selective search algorithm
prevented the model from learning during the process.

One year after R_CNN, computer scientists developed Fast R-CNN which is
about 146 times faster than the R-CNN during the test time. It solves above-
mentioned issues efficiently.

4.2.3 Fast R-CNN

In R-CNN, creation of 2000 different candidate regions and the use of 2000
different CNN networks for these regions costs hugely in terms of the training
process. To solve this, Fast R-CNN gets rid of the 2000 CNN models and uses
only one model.
The biggest improvement in Fast R-CNN is that it combines CNN, SVM (Support
Vector Machine) and Regressor phases that were used in R-CNN. SVM,

16

“classifier” in picture 7, is an algorithm that finds significant distances between
data points in an N-dimensional space where N is the number of features of
mentioned data points. This way different types of features are “classified”.
Regressor is used to determine more precise coordinates for the bounding box.
With this combination, it achieves a tremendous advantage in performance.
These phases are summarized and shown in picture 7.

PICTURE 7. Fast R-CNN combined the CNN, classifier, and bounding box
regressor into one, single network. (Girshick 2015, edited)

4.2.4 Faster R-CNN

After seeing the imperfections of Fast R-CNN, Ren at al. (2015) developed a
better and “faster” version of Fast R-CNN called Faster R-CNN which would lower
the number of region proposals, is faster and more accurate than selective search
and is able to offer better region selections for overlapping objects. (Weng 2017.)

Considering picture 8, on the image on the left, there are a lot of objects
overlapping each other. On the right side of the picture, the bounding boxes are
drawn for each object. Selective search could be applied here but as a result
there would be too many RoIs to handle. In this case, Faster R-CNN method
offers the use of Anchor Boxes.

17

PICTURE 8. An image consisting overlapping objects and their bounding boxes
(Yelisetty 2020)

Anchor Boxes

There are generally 3 types of boxes where an image could fit. These boxes could
be squared, rectangular and wide or rectangular and tall. In addition, these 3
types of boxes could have 3 different sizes: big, small of medium (picture 9).
Experimentally, it was found that any object in an image could be detected using
one of these 9 boxes. If the overlapping image shown above in picture 8 to be
considered, hovering these 9 types of boxes over the image would result in
determining the majority of the overlapping objects although not very accurately
since the size of the boxes would be fixed. (Yelisetty 2020.)

PICTURE 9. Anchor boxes shown with their aspect ratios and scales (Yelisetty
2020)

18

4.2.5 Mask R-CNN

Mask R-CNN extends Faster R-CNN to pixel-level image segmentation (Weng
2017). The most significant improvement in Mask R-CNN is that it offers instance
segmentation for each detected object. The method is used in applications where
there is the need to know where each and every detected object is located. For
example, a self-driving car would need to see each car around it in order to make
necessary calculations. (ArcGIS Developers n. d.)

Examples of Mask R-CNN results on the COCO test set are shown in picture 10.

PICTURE 10. Mask R-CNN results on the COCO test set. (He et al. 2017)

4.2.6 CenterNet

According to Zhou, Wang and Krähenbühl (2019), object detection algorithms
where the method is based on window-sliding are wasteful since a large number
of locations and dimensions need to be counted and processed. They found a
new and more efficient method called CenterNet where objects are represented
by a single point at the center of their bounding box as shown in picture 11.

19

PICTURE 11. Example of modelled objects with the center of their bounding
boxes (Zhou et al. 2019)

The main idea is to feed the image to a fully convolutional network which
generates a heatmap (picture 12). Peaks of the heatmap address the
centerpoints of the bounding boxes, hence the objects. Result image also
contains the height and weight of the bounding boxes.

PICTURE 12. Examples of heatmaps: Left parts show the original image and right
parts heatmaps (Tzelepi & Tefas 2017)

Zhou (2019) also claims that CenterNet runs at a very high speed due to its
simplicity and can easily be adjusted to serve other tasks such as 3D object
detection and multi-person human pose estimation.

20

4.2.7 EfficientNet

In a traditional CNN, factors like depth, width and scaling of the resolution are
arbitrary. In order to increase the power of a CNN, more convolution layers are
often added to the network e.g. ResNet18, ResNet50, ResNet1202. But the
amount of the layers and the performance of the system do not increase at the
same rate so after a while this process becomes impractical.

Unlike the conventional practice, EfficientNet uses a compound coefficient to
uniformly scale width, depth, and resolution in a principled way (picture 13). The
main reason to come up with this compound coefficient, was to prevent the
inefficiency caused by the increase in layers and channels, as the size of the
images got bigger. (Papers With Code n. d.)

PICTURE 13. Model scaling (Tan & Lee 2019)

In the above picture;
• (a) is a baseline network example,
• (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution and
• (e) is the proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio. (Tan & Lee 2019.)

21

5 EVALUATION METRICS FOR OBJECT DETECTION

5.1 Ground truth

Ground truth, in general, means a defined standard by which an algorithm’s

successful result is evaluated. In object detection, ground truth represents the
true state of an object located in an image (picture 14). This state would include
the visual bounding box around the object, predicted along with its width, height
or centerpoint and an expression to show what class it belongs to. Class here
could be a specific object like siberian husky, german shephard, hognose
snake, sand viper etc. (classes from ImageNet dataset) or a more generalized
one like dog, snake etc. (classes from MS COCO dataset).

PICTURE 14. Example of ground truth and detection bounding boxes of an
object

In this work, the evaluation process required that the ground truth
representation would be in text format where one row of the file would consist
the information that belongs to one detected object. Detailed explanation of this
process can be found in section 6.3.

22

5.2 Intersection over Union

Intersection over Union (IoU) is the name of the calculation which gives “the
overlap divided by the union” of 2 bounding boxes: ground truth bounding box
and detection (prediction) bounding box. A simple visual example of IoU is
shown in picture 15.

PICTURE 15. Intersection over Union

For most evaluation cases like competitions, an IoU threshold of 0.5 is
sufficient. This number means that there is most likely an object inside the
ground truth box. IoU is used to determine whether a prediction is positive or
negative. For example, if mAP is being calculated for IoU value of 0.5
(mAP@0.5)

• IoU >= 0.5, then true positive (TP): ground truth object is detected with
the correct class.

• IoU < 0.5, then false positive (FP): ground truth object is detected with a
wrong class.

• False negative (FN): ground truth object is not detected.

23

Example cases are shown in picture 16.

PICTURE 16. Example cases of IoU results where (a) is a true positive, (b) a
false positive and (c) a false negative.

True positive (TP), False positive (FP) and False negative (FN) concepts are
used to calculate precision and recall, which are explained in the next section.

5.3 Precision and Recall

Precision tells in what ratio the object detection model found the correct objects
in the image. Or in other words, how many of the positive results are actually
positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

Recall tells in what ratio the model managed to identify those cases that are
positive.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑔 𝑖𝑚𝑎𝑔𝑒𝑠

24

5.4 Mean Average Precision

Mean average precision (mAP) is the most used object detection model
evaluation metric which measures the model’s ability to correctly determine the

objects’ bounding boxes for some confidence value. (Nelson 2020.)

Basically, mAP is the average of APs (Average Precision) where AP is found by
calculating the area under the precision-recall curve, for specific values of IoUs.

To calculate the AP, for a specific class (say a “person”) the precision-recall curve is computed from the model’s detection output, by varying the model score threshold that determines what is counted as a model-predicted positive detection of the class. (Arlen 2018.)
An example precision-recall curve may look like in picture 17.

PICTURE 17. Precision-Recall curve for an example classifier. A point on the
precision-recall curve is determined by considering all objects above a given
model score threshold as a positive prediction, then calculating the resulting
precision and recall for that threshold (Arlen 2018)

The final step to calculating the AP score is to take the average value of the precision across all recall values. This becomes the single value summarizing the shape of the precision-recall curve. To do this unambiguously, the AP score is defined as the mean precision at the set of 11 equally spaced recall values, Recalli = [0,
0.1, 0.2, …, 1.0]. Thus,

25

𝐴𝑃 =
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙𝑖

 The precision at recall i is taken to be the maximum precision measured at a recall exceeding Recalli. (Arlen 2018.)

26

6 ANALYSIS OF THE OBJECT DETECTION MODELS

6.1 Work environment

The computer used for this work had the following system specifications:

- Processor: Intel® i5-4460
- RAM: 16.0 GB DDR3 @ 1600 MHz.
- 250 GB Crucial MX500 SATA SSD

At first, object detection process was tested by using GPU but the existing GPU
(GTX 1060) had a RAM size of 3 GB which proved to be insufficient for the
process. During the time of this study, there was a worldwide shortage in GPU
production and there was no other way to access another PC having the
necessary GPU features. So, the work had to be performed using the existing
CPU and RAM combination. This affected the image process time to be a couple
of minutes per image whereas this number is tens or a couple of hundreds of
milliseconds with GPU process.

Models were run on Python (3.7.9) in Anaconda using many necessary packages
one of which was TensorFlow 2.1.0.

The first code, later referred to as “code_models”, that processes the images
through the models was obtained from TensorFlow Hub Object Detection Colab
(The TensorFlow Hub Authors 2020.). In order to speed up the process, code
was mildly edited e.g loops were added to run through image folders so that the
model can process one image after another without break. Another edition
(appendix 2) was made to extract detection results (class name, confidence
percentage, coordinates of the bounding box) and write them in a text file to be
used later.

The second source code, later it will be referred to as “code_mAP”, which
calculates the mAPs was developed by Cartucho and his colleagues for their
paper (Cartucho et al. 2018.). It required that both ground truth (more in section

27

6.3) and object detection files (more in section 6.4) were in text file format, having
the same file names with the following syntaxes:

Ground truth:

<class_name> <left> <top> <right> <bottom> [<difficult>]

e.g

tvmonitor 2 10 173 238

book 439 157 556 241

book 437 246 518 351 difficult

pottedplant 272 190 316 259

 Detection results:
<class_name> <confidence> <left> <top> <right> <bottom>

e.g

tvmonitor 0.471781 0 13 174 244

cup 0.414941 274 226 301 265

book 0.460851 429 219 528 247

chair 0.292345 0 199 88 436

book 0.269833 433 260 506 336
Ground truth files were created using a graphical image annotation tool named
labelImg (Tzutalin 2015, Copyright (c)).

6.2 Source of the tested images

Over 1000 photographs taken by the SURE drones were received as test data.
Since the focus classes of object detection were persons and vehicles, out of
over 1000 images, 240 of them were chosen to be tested through these models.
Having a random vehicle in these images was inevitable so chosen images were
those where there were as many people at the same time with vehicles, in many
angles as possible. 13 of these images had a pixel resolution of 4056x2280 and
227 had 1920x1080.

6.3 Annotation of the images

Ground truth bounding boxes can be drawn by a graphical image annotation tool.
Several open-source tools are available on the internet, and in this work Tzutalin’s
“labelImg” (2015) was used. It was written in Python and uses Qt as graphical

28

interface. Tool is provided with the original images and a text file that consists a
list of the object classes’ names (appendix 3). After drawing bounding boxes on
an image and saving it, the tool produces an XML file (used for ImageNet dataset)
that holds the annotation data such as the annotated object’s class and

coordinates of the ground truth bounding box.

However, “code_mAP” required a text file with each row only consisting of the
detected object’s name and coordinates of the bounding box in the order of

- left (starting pixel on x-axis)
- top (starting pixel on y-axis)
- right (ending pixel on x-axis) and
- bottom (max pixel value on y-axis).

So, after the annotation was done, XML files (picture 18) needed to be modified
where unneeded columns were removed, and the rest was saved as (for the lack
of an option with “space” as a delimiter) a “tab delimited” text file (picture 19).

PICTURE 18. Example XML file produced by labelImg opened in Excel; needed
data were in columns I, M, N, O and P

PICTURE 19. Example text file consisting of the necessary data for “code_mAP”

29

A piece of code was written for this problem which deleted the first row (titles)
and changed each tabulator with a space character and was run through all 240
ground truth files.

A total of 1754 objects of 9 classes (car, person, truck, bench, boat, bicycle, bus,
dog, motorcycle) were annotated in 240 images with .jpg format as received from
the SURE drone. Figure 1 shows totals of the annotations made in these images,
sorted by class names.

FIGURE 1. Total numbers of annotated objects, sorted by class name

“code_mAP” required that the detection results text files and the ground truth text
files to have the same names. Because of this, each model had its own ground
truth files created for the same 240 images (copied from original ground truth files
and given the model’s name and the name of the image in use), with names
coinciding with the corresponding detection result files. This meant there would
be 4560 ground truth text files to be handled. Another code piece (appendix 4)
was written to speed up this process and keep the filenames organized.

1

21

26

27

27

30

114

526

982

0 100 200 300 400 500 600 700 800 900 1000 1100

motorcycle

dog

bus

bicycle

boat

bench

truck

person

car

Totals of annotated classes

30

6.4 Detection results framed by classes

At the end of its process, “code_models” would produce a copy of the input
image (pictures 20; picture 21) including bounding boxes and confidence values
of the objects it has detected in the image.

PICTURE 20. Example of a framed image (objects detected by model
EfficientDet D7 1536x1536)

PICTURE 21. Example of a framed image (objects detected by model Faster R-
CNN Inception ResNet V2 1024x1024)

31

Detection result text files would also be created at the end of the process
(pictures 22; picture 23) using the additional code (appendix 3). As seen in
picture 23, sometimes detected classes’ names consisted of more than 1 word.
In any case, it was enough that class names would match the ones that are in
the ground truth files but since the annotations were only for the classes car,
person, truck, bench, boat, bicycle, bus, dog and motorcycle which consisted of
only 1 word. So there was need to modify only those detection text files that had
the 2-word class names; some of them manually and some of them using rows
1211–1229 in the code seen in appendix 2, 2 (2).

PICTURE 22. Detection result text file by model EfficientDet D7 1536x1536

PICTURE 23. Detection result text file by model Faster R-CNN Inception
ResNet V2 1024x1024

32

“code_model” had, to begin with, a confidence threshold of 30 % to decide
whether a detected object was going to be marked on the image or not. In this
work, threshold was kept as 0.3, since images taken in the SURE project would
be from further away and higher threshold values than 0.3 would not be enough
to obtain a healthy view of the whole picture.

It was observed that during a model’s process, sometimes it would detect an
object with 2 classes and frame it with both. In these cases, the class with the
higher confidence would be saved in the detection results text file.

6.5 Evaluation results

For the sake of a realistic analysis, instead of considering only one evaluation
value (mAP@0.5), mAP was calculated within the range of “0.5, 0.95, 0.05”,

meaning that 10 APs were calculated with an IoU starting from 0.5 to 0.95, 0.05
being the increment. These 10 APs were then simply averaged to find the value
of mAP@(0.5, 0.95, 0.05).

“code_mAP” was provided with coinciding ground truth and detection result files
of each model and ran for 10 IoU values as mentioned above. Results for each
AP, for each object class were documented per model. Complete chart of these
findings, with average image processing times, can be seen in appendix 5.

Since the SURE project’s focus area involves detection of people and vehicles,

top 4 models with the most accuracy can be extracted from the complete chart,
including these specific results (table 1).

TABLE 1. Four most accurate models with mAP results

Model name
avg_time

(min/image)
Class name Rank

mAP @
(.50, .95, .05) (%)

EfficientDet D7 1536x1536
2,73

bus 3 54,42
car 2 55,40

person 2 44,98
truck 2 30,38

overall avg. 1 35,43

33

EfficientDet D6 1280x1280
2,61

bus 1 59,67

car 1 56,33

person 1 47,01

truck 1 31,59

overall avg. 2 35,20

EfficientDet D5 1280x1280 2,06

bus 2 54,93

car 3 50,20

person 5 38,06

truck 4 26,20

overall avg. 3 30,40
Faster R-CNN Inception ResNet V2 1024x1024

1,48

bus 5 49,69
car 8 43,04

person 6 36,59
truck 3 26,91

overall avg. 4 27,41
Three out of six EfficientNet models shared the top three ranks in terms of
accuracy. The 4th coming model, Faster R-CNN Inception ResNet V2
1024x1024, is also added to this table because it has relatively high mAP
results with a much better speed than the top three models. Comparison
between these four models can be observed more clearly in figure 2.

FIGURE 2. Evaluation results of top 4 models

54
.9

3

50
.2

0

3
8

.0
6

26
.2

0

30
.4

0

59
.6

7

56
.3

3

47
.0

1

31
.5

9

35
.2

0

54
.4

2

55
.4

0

44
.9

8

30
.3

8 35
.4

3

4
9

.6
9

43
.0

4

36
.5

9

26
.9

1

2
7

.4
1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

bus car person truck overall avg.

m
A

P
@

(0
.5

, 0
.9

5,
 0

.0
5)

Objects

Evaluation results of top 4 models

EfficientDet D5 1280x1280 EfficientDet D6 1280x1280

EfficientDet D7 1536x1536 Faster R-CNN Inception ResNet V2 1024x1024

34

The speed of the models is another metric that should be considered.
Therefore, table 2 is also extracted from the complete chart which shows the
top three models that excel in speed.

TABLE 2. Three fastest models with mAP results

Model name avg_time (min/image) Class name Rank mAP @ (.50, .95, .05) (%)

CenterNet Resnet50 V1 FPN Keypoints 512x512 0,56
bus 15 1,02 %
car 16 20,78 %

person 16 17,32 %
truck 16 2,80 %

overall avg. 16 6,59 %
CenterNet Resnet50 V2 Keypoints 512x512 0,56

bus 16 1,02 %
car 17 20,78 %

person 17 17,32 %
truck 17 2,80 %

overall avg. 17 6,59 %
Faster R-CNN ResNet101 V1 800x1333 0,75

bus 8 39,95 %
car 9 41,82 %

person 7 35,77 %
truck 5 24,43 %

overall avg. 7 24,91 %

Detailed analysis of these results can be found in the discussion section.

35

7 DISCUSSION

Most of the models that were selected for evaluation were at the top of the
COCO 2017 challenge chart, having successful results in terms of accuracy and
speed in object detection. Considering the methodology behind all the models,
each newer method used in them brought a better and more efficient technic
into the field.

As a result of this study, it was found that the following three models were at the
top of the list in terms of accuracy:

1. EfficientDet D7 1536x1536
2. EfficientDet D6 1280x1280
3. EfficientDet D5 1280x1280

and the following three models were at the top of the list in terms of image
processing speed:

1. CenterNet Resnet50 V1 FPN Keypoints 512x512
2. CenterNet Resnet50 V2 Keypoints 512x512
3. Faster R-CNN ResNet101 V1 800x1333

CenterNet and EfficientNet models had shared the highest ranks in the
challenge chart to begin with. Three out of six EfficientNet models came up as
the top three in mAP scores. Although EfficientDet D7 1536x1536 is the 1st only
by looking at its mAP@(0.5, 0.95, 0.05) score, EfficientDet D6 1280x1280 is the
model that has the highest average mAPs for the specific objects that were
focused on: bus, car, person and truck. For this reason, it can be suggested that
EfficientDet D6 1280x1280 is more suitable for the SURE project than
EfficientDet D7 1536x1536.

Four out of six CenterNet models came as the last four in mAP scores which
indicates that their object detection skills were not precise enough for the tiny
objects in the test images. Two out of six CenterNet models came as 5th and 6th

36

with relatively good mAP scores however, they were the top two slowest
models.

Faster R-CNN models were expected to stand out from the R-CNN family.
Although Mask R-CNN is the best ranking in locating objects in the family, its
application area is too specific, it is slower than Faster R-CNN and does not
necessarily improve the previous algorithm. In the light of all this, it was not
unexpected that a relatively old Faster R-CNN model, Faster R-CNN Inception
ResNet V2 1024x1024, would be in the higher ranks (4th) of the list, with a high
mAP score and high speed.

Listing the results in terms of the models’ speed though, drew a rather
disappointing picture. Only one of the fastest models had a decent detection
accuracy and this model was also a Faster R-CNN model. Therefore, the
decision of choosing the most suitable model can not be based on the speed of
the models but primarily on their accuracy.

In conclusion, this work gives two suggestions for the suitable object detection
model for the SURE project. First one is EfficientDet D6 1280x1280, if the
object detection’s primary concern is accuracy. Second one is Faster R-CNN
Inception ResNet V2 1024x1024, if the primary concern is speed.

37

REFERENCES

ArcGIS Developers. n. d. How RetinaNet works? Website article. Read 9.4.2021. https://developers.arcgis.com/python/guide/how-retinanet-works/ ArcGIS Developers. n. d. How Mask R-CNN Works? Website article. Read 16.4.2021. https://developers.arcgis.com/python/guide/how-maskrcnn-works/ Arlen, T. C. 2018. Understanding the mAP Evaluation Metric for Object Detection. Website article, Medium. Published 1.3.2018. Read 11.4.2021. https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3 Cartucho, J., Ventura R. & Veloso, M. 2018. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018): 2336-2341. Source code in https://github.com/Cartucho/mAP Gandhi, R. 2018. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms. Website article, Towards Data Science. Published 9.7.2018. Read 22.3.2021. https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e Girshick, R., Donahue, J., Darrell, T. & Malik, J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. IEEE Conf. on computer vision and pattern recognition (CVPR), 580-587. Girshick, R. 2015. Fast R-CNN. In Proc. IEEE Intl. Conf. on computer vision, 1440-1448. He, Kaiming, Georgia Gkioxari, Piotr Dollár & Ross B. Girshick. 2017. Mask R-CNN. 2017 IEEE International Conference on Computer Vision. 2980-2988. Lin, T., Goyal, P., Girshick, R.B., He, K., & Dollár, P. 2020. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327. Nelson, J. 2020. Evaluating Object Detection Models with mAP by Class. Blog article, Roboflow. Published 3.11.2020. Read 6.4.2021. https://blog.roboflow.com/mean-average-precision-per-class/ Papers With Code. n. d. EfficientNet. Website article. Read 9.4.2021. https://paperswithcode.com/method/efficientnet Papers With Code. n. d. Object detection. Website article. Read 12.4.2021. https://paperswithcode.com/task/object-detection Pawangfg. 2020. Selective search for object detection | R-CNN. Geeks for Geeks. Website article. Published 26.2.2020. Read 12.4.2021. https://www.geeksforgeeks.org/selective-search-for-object-detection-r-cnn/

https://developers.arcgis.com/python/guide/how-retinanet-works/
https://developers.arcgis.com/python/guide/how-maskrcnn-works/
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://github.com/Cartucho/mAP
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://blog.roboflow.com/mean-average-precision-per-class/
https://paperswithcode.com/method/efficientnet
https://paperswithcode.com/task/object-detection
https://www.geeksforgeeks.org/selective-search-for-object-detection-r-cnn/

38

 Ren, S., He, K., Girshick, R. B., & Sun, J. 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149. Swapna, K. E. 2020. Convolutional Neural Network | Deep Learning. Developers Breach. Website article. Published 21.8.2020. Read 22.3.2021. https://developersbreach.com/convolution-neural-network-deep-learning/ Tan, M. & Le, Q. V. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Published 2019. ArXiv abs/1905.11946 n. pag. Tensorflow models repository, https://github.com/tensorflow/models The TensorFlow Hub Authors. 2020. Source code, TensorFlow Hub Object Detection Colab. Read 11.4.2021. https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf2_object_detection.ipynb#scrollTo=rOvvWAVTkMR7 Tzelepi, M. & Tefas, A. 2017. Human crowd detection for drone flight safety using convolutional neural networks. 25th European Signal Processing Conference (EUSIPCO), 743-747. Tzutalin, 2015. Github repository. Read 20.4.2021. https://github.com/tzutalin/labelImg Weng, L. 2017. Object Detection for Dummies Part 3: R-CNN Family. Blog article. Published 31.12.2017. Read 21.3.2021. https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html Yelisetty, A. 2020. Understanding Fast R-CNN and Faster R-CNN for Object Detection. Website article, Towards Data Science. Published 13.7.2020. Read 25.03.2021. https://towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97 Zhou, X., Wang, D. & Krähenbühl, P. 2019. Objects as Points. ArXiv abs/1904.07850: n. pag.

https://developersbreach.com/convolution-neural-network-deep-learning/
https://github.com/tensorflow/models
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf2_object_detection.ipynb#scrollTo=rOvvWAVTkMR7
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf2_object_detection.ipynb#scrollTo=rOvvWAVTkMR7
https://github.com/tzutalin/labelImg
https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97
https://towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97

39

APPENDICES

Appendix 1. Complete list of pre-trained models with TensorFlow 2 for COCO
2017 dataset, sorted by mAP results. Marked ones are used in this work.

 Model name Speed (ms) COCO mAP Outputs
1 CenterNet HourGlass104 Keypoints 1024x1024 211 42.8/64.5 Boxes/Keypoints
2 CenterNet HourGlass104 Keypoints 512x512 76 40.0/61.4 Boxes/Keypoints
3 Mask R-CNN Inception ResNet V2 1024x1024 301 39.0/34.6 Boxes/Masks
4 CenterNet Resnet50 V1 FPN Keypoints 512x512 30 29.3/50.7 Boxes/Keypoints
5 CenterNet Resnet50 V2 Keypoints 512x512 30 27.6/48.2 Boxes/Keypoints
6 EfficientDet D7 1536x1536 325 51,2 Boxes
7 EfficientDet D6 1280x1280 268 50,5 Boxes
8 EfficientDet D5 1280x1280 222 49,7 Boxes
9 EfficientDet D4 1024x1024 133 48,5 Boxes

10 EfficientDet D3 896x896 95 45,4 Boxes
11 CenterNet HourGlass104 1024x1024 197 44,5 Boxes
12 CenterNet HourGlass104 512x512 70 41,9 Boxes
13 EfficientDet D2 768x768 67 41,8 Boxes
14 CenterNet MobileNetV2 FPN Keypoints 512x512 6 41,7 Keypoints
15 SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152)

111 39,6 Boxes
16 SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101)

104 39,5 Boxes
17 Faster R-CNN Inception ResNet V2 1024x1024 236 38,7 Boxes
18 EfficientDet D1 640x640 54 38,4 Boxes
19 SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50) 87 38,3 Boxes
20 Faster R-CNN Inception ResNet V2 640x640 206 37,7 Boxes
21 Faster R-CNN ResNet152 V1 1024x1024 85 37,6 Boxes
22 Faster R-CNN ResNet152 V1 800x1333 101 37,4 Boxes
23 Faster R-CNN ResNet101 V1 1024x1024 72 37,1 Boxes
24 Faster R-CNN ResNet101 V1 800x1333 77 36,6 Boxes
25 SSD ResNet101 V1 FPN 640x640 (RetinaNet101) 57 35,6 Boxes
26 SSD ResNet152 V1 FPN 640x640 (RetinaNet152) 80 35,4 Boxes
27 SSD ResNet50 V1 FPN 640x640 (RetinaNet50) 46 34,3 Boxes
28 CenterNet Resnet101 V1 FPN 512x512 34 34,2 Boxes
29 EfficientDet D0 512x512 39 33,6 Boxes
30 Faster R-CNN ResNet152 V1 640x640 64 32,4 Boxes
31 Faster R-CNN ResNet101 V1 640x640 55 31,8 Boxes
32 Faster R-CNN ResNet50 V1 800x1333 65 31,6 Boxes
33 CenterNet Resnet50 V1 FPN 512x512 27 31,2 Boxes
34 Faster R-CNN ResNet50 V1 1024x1024 65 31 Boxes
35 CenterNet Resnet50 V2 512x512 27 29,5 Boxes
36 Faster R-CNN ResNet50 V1 640x640 53 29,3 Boxes
37 SSD MobileNet V1 FPN 640x640 48 29,1 Boxes
38 SSD MobileNet V2 FPNLite 640x640 39 28,2 Boxes
39 CenterNet MobileNetV2 FPN 512x512 6 23,4 Boxes
40 SSD MobileNet V2 FPNLite 320x320 22 22,2 Boxes
41 SSD MobileNet v2 320x320 19 20,2 Boxes

http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_hg104_1024x1024_kpts_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v1_fpn_512x512_kpts_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v2_512x512_kpts_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d7_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d6_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d5_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d4_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d3_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200713/centernet_hg104_1024x1024_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200713/centernet_hg104_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20210210/centernet_mobilenetv2fpn_512x512_coco17_kpts.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_inception_resnet_v2_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d1_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_inception_resnet_v2_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet152_v1_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet152_v1_800x1333_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet101_v1_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet101_v1_800x1333_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet101_v1_fpn_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d0_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet152_v1_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet101_v1_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet50_v1_800x1333_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v1_fpn_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet50_v1_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v2_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20210210/centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_320x320_coco17_tpu-8.tar.gz

40

1 (2)
Appendix 2. Additional codes made to “code_models” and
models\research\object_detection\utils\visualization_utils.py (Tensorflow models
repository):

- In object_detection_gamze.py file, lines 241&242
- In visualization_utils.py file, lines 1121&1122, 1183, 1210–1229, 1257–

1274

41

2 (2)

42

Appendix 3. List of object class names in MS COCO dataset
1-16 17-32 33-48 49-64 65-80

person dog sports_ball sandwich mouse
bicycle horse kite orange remote
car sheep baseball_bat broccoli keyboard
motorcycle cow baseball_glove carrot cell_phone
airplane elephant skateboard hot_dog microwave
bus bear surfboard pizza oven
train zebra tennis_racket donut toaster
truck giraffe bottle cake sink
boat backpack wine_glass chair refrigerator
traffic_light umbrella cup couch book
fire_hydrant handbag fork potted_plant clock
stop_sign tie knife bed vase
parking_meter suitcase spoon dining_table scissors
bench frisbee bowl toilet teddy_bear
bird skis banana tv hair_drier
cat snowboard apple laptop toothbrush

43

Appendix 4. Additional code piece, for renaming ground truth text files for each
model.

44

Appendix 5. Complete chart consisting of image processing times, ranks and
mAP scores of each model, sorted by models names in alphabetical order.

M
o

d
el

 n
am

e

A
vg

 im
ag

e
p

ro
ce

ss

ti
m

e
(m

in
)

C
la

ss
 n

am
e

R
an

ki
n

g

m
A

P
 @

(.
50

, .
95

, .
05

)
(%

)

A
P

Io
U

=.
50

 (%
)

A
P

Io
U

=.
55

 (%
)

A
P

Io
U

=.
60

 (%
)

A
P

Io
U

=.
65

 (%
)

A
P

Io
U

=.
70

 (%
)

A
P

Io
U

=.
75

 (%
)

A
P

Io
U

=.
80

 (%
)

A
P

Io
U

=.
85

 (%
)

A
P

Io
U

=.
90

 (%
)

A
P

Io
U

=.
95

 (%
)

C
en

te
rN

et
 H

o
u

rG
la

ss
10

4

K
ey

p
o

in
ts

 5
12

x5
1

2

2,59

bench 12 3,00 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3,33 0,00

bicycle 9 17,08 29,22 29,22 29,22 24,04 24,04 17,95 12,30 4,76 0,00 0,00

boat 12 6,33 17,81 15,86 15,86 6,36 3,81 3,03 0,53 0,00 0,00 0,00

bus 14 5,29 6,87 6,87 6,87 6,87 6,87 6,87 5,77 2,56 2,56 0,77

car 13 33,37 47,76 47,40 46,96 46,47 45,19 43,40 35,93 15,91 3,81 0,84

dog 11 34,71 45,50 45,50 45,50 39,95 37,57 37,57 33,33 33,33 22,45 6,35

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 9 31,60 53,40 51,77 50,42 46,03 39,28 30,07 23,36 13,97 5,97 1,70

truck 14 6,88 10,82 10,60 10,16 9,95 9,95 9,95 3,56 2,94 0,84 0,00

mAP 14 15,36 23,86 23,39 23,15 20,33 18,89 16,91 13,12 8,53 4,33 1,07

C
en

te
rN

et
 H

o
u

rG
la

ss
10

4

K
ey

p
o

in
ts

 1
02

4x
10

24

3,80

bench 3 18,04 25,28 21,39 21,39 21,39 21,39 21,39 16,23 16,23 13,64 2,06

bicycle 5 23,30 45,61 36,53 36,53 34,14 26,36 23,95 18,15 11,11 0,62 0,00

boat 10 7,67 16,95 15,61 13,17 10,48 10,48 6,39 3,33 0,26 0,00 0,00

bus 10 32,57 39,05 39,05 39,05 39,05 39,05 39,05 32,94 29,98 24,65 3,85

car 4 48,43 65,41 64,91 64,50 64,28 62,52 58,44 50,41 34,13 18,38 1,33

dog 5 48,02 66,95 66,95 66,95 60,92 56,26 48,51 43,45 36,92 30,92 2,38

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 4 43,87 67,21 66,36 64,59 61,32 57,14 46,34 36,22 24,72 12,15 2,69

truck 12 11,39 17,01 16,00 16,00 14,25 13,50 13,20 10,85 8,55 4,31 0,25

mAP 5 25,92 38,16 36,31 35,80 33,98 31,85 28,59 23,51 17,99 11,63 1,39

C
en

te
rN

et
 H

o
u

rG
la

ss
10

4

51
2x

51
2

1,84

bench 8 7,20 8,67 8,67 8,67 8,67 8,67 8,67 6,67 6,67 6,67 0,00

bicycle 12 15,64 25,93 25,93 25,93 21,16 17,90 17,90 17,90 3,70 0,00 0,00

boat 13 5,08 14,20 14,20 12,87 3,56 2,59 2,59 0,37 0,37 0,00 0,00

bus 17 0,77 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,00 0,00

car 15 31,50 47,06 46,59 45,80 45,09 42,96 37,10 29,47 15,76 4,52 0,66

dog 13 28,73 41,90 41,90 37,57 30,91 30,91 30,91 30,91 25,62 14,02 2,65

motorcycle - 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 8 31,64 53,08 51,14 48,35 43,79 39,14 32,18 22,80 15,45 8,11 2,32

truck 15 6,05 10,45 9,63 9,18 8,40 8,17 8,17 4,28 1,83 0,36 0,05

mAP 15 14,07 22,47 22,11 21,04 18,06 16,81 15,39 12,60 7,82 3,74 0,63

C
en

te
rN

et
 H

o
u

rG
la

ss
10

4
10

24
x1

02
4

3,12

bench 4 14,13 15,00 15,00 15,00 15,00 15,00 15,00 15,00 15,00 11,33 10,00

bicycle 4 26,68 46,14 46,14 46,14 41,36 31,48 31,48 18,82 4,63 0,31 0,31

boat 5 15,03 38,06 30,90 30,90 19,46 18,50 6,95 5,35 0,19 0,00 0,00

bus 12 24,99 30,91 30,91 30,91 30,91 30,91 30,91 24,18 24,18 16,09 0,00

car 7 46,11 64,62 64,27 63,99 63,23 60,80 51,23 42,57 32,34 16,51 1,54

dog 6 45,27 60,11 60,11 60,11 55,34 55,34 55,34 43,10 39,00 15,87 8,33

motorcycle - 2,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 3 44,26 67,59 66,62 64,81 60,53 55,11 47,85 37,95 24,55 14,07 3,48

truck 11 11,42 17,18 16,55 15,41 15,41 13,29 13,29 10,68 8,22 3,56 0,61

mAP 6 25,32 37,73 36,72 36,36 33,47 31,16 28,01 21,96 16,46 8,64 2,70

C
en

te
rN

et
 R

es
n

et
5

0
V

1
FP

N

K
ey

p
o

in
ts

 5
12

x5
1

2

0,56

bench 16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

bicycle 16 1,11 3,70 3,70 3,70 0,00 0,00 0,00 0,00 0,00 0,00 0,00

boat 16 0,56 1,85 1,85 1,85 0,00 0,00 0,00 0,00 0,00 0,00 0,00

bus 15 1,02 1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28 0,00 0,00

car 16 20,78 35,53 35,08 34,02 33,41 31,06 18,28 11,58 6,78 1,91 0,13

dog 15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

motorcycle - 15,72 23,81 23,81 23,81 23,81 19,05 19,05 19,05 4,76 0,00 0,00

person 16 17,32 33,91 31,18 27,71 23,30 19,54 15,54 12,37 6,79 2,30 0,51

truck 16 2,80 4,26 4,26 3,78 3,78 3,64 3,64 3,53 0,61 0,50 0,00

mAP 16 6,59 11,59 11,24 10,68 9,51 8,28 6,42 5,31 2,25 0,52 0,07

45

C
en

te
rN

et
 R

es
n

et
5

0
V

2

K

ey
p

o
in

ts
 5

12
x5

1
2

0,56

bench 17 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

bicycle 17 1,11 3,70 3,70 3,70 0,00 0,00 0,00 0,00 0,00 0,00 0,00

boat 17 0,56 1,85 1,85 1,85 0,00 0,00 0,00 0,00 0,00 0,00 0,00

bus 16 1,02 1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28 0,00 0,00

car 17 20,78 35,53 35,08 34,02 33,41 31,06 18,28 11,58 6,78 1,91 0,13

dog 16 15,72 23,81 23,81 23,81 23,81 19,05 19,05 19,05 4,76 0,00 0,00

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 17 17,32 33,91 31,18 27,71 23,30 19,54 15,54 12,37 6,79 2,30 0,51

truck 17 2,80 4,26 4,26 3,78 3,78 3,64 3,64 3,53 0,61 0,50 0,00

mAP 17 6,59 11,59 11,24 10,68 9,51 8,28 6,42 5,31 2,25 0,52 0,07

Ef
fi

ci
e

n
tD

et
 D

2
 7

68
x7

6
8

1,22

bench 7 8,81 11,90 11,90 11,90 11,90 11,90 11,90 11,90 4,76 0,00 0,00

bicycle 15 10,44 20,11 20,11 20,11 11,11 11,11 8,15 8,15 5,56 0,00 0,00

boat 14 4,08 7,41 7,41 7,41 7,41 7,41 1,85 1,85 0,00 0,00 0,00

bus 13 24,93 31,99 31,99 31,99 31,99 31,99 31,99 28,14 20,34 7,00 1,92

car 14 32,82 46,17 45,88 45,69 45,30 44,47 36,26 30,27 24,93 8,94 0,25

dog 12 29,53 34,83 34,83 34,83 34,83 34,83 34,83 34,83 30,91 15,82 4,76

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 14 19,24 29,13 28,96 28,16 24,07 22,41 19,62 17,48 13,60 7,64 1,35

truck 14 10,86 15,25 14,90 14,90 14,21 13,87 12,73 10,24 7,21 5,32 0,00

mAP 14 15,63 21,87 21,77 21,66 20,09 19,78 17,48 15,87 11,92 4,97 0,92

Ef
fi

ci
e

n
tD

et
 D

3
 8

96
x8

9
6

1,37

bench 5 9,66 11,67 11,67 11,67 11,67 11,67 11,67 11,67 11,67 3,22 0,00

bicycle 11 16,13 25,46 25,46 25,46 20,68 20,68 20,68 12,65 10,19 0,00 0,00

boat 11 7,01 20,12 12,65 12,65 12,65 3,70 3,70 3,70 0,93 0,00 0,00

bus 11 26,56 32,48 32,48 32,48 32,48 32,48 30,49 30,49 30,49 8,10 3,63

car 10 39,32 56,27 55,76 55,05 54,47 53,12 45,49 37,16 26,77 8,83 0,29

dog 10 35,54 44,05 44,05 44,05 44,05 39,29 39,29 39,29 30,67 30,67 0,00

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 12 25,30 39,25 38,33 36,91 34,02 30,96 26,45 19,84 15,27 9,21 2,78

truck 8 16,21 25,31 25,31 23,48 22,74 22,74 21,98 9,46 6,91 3,69 0,45

mAP 10 19,52 28,29 27,30 26,86 25,86 23,85 22,19 18,25 14,77 7,08 0,79

Ef
fi

ci
e

n
tD

et
 D

4
 1

02
4x

10
24

1,74

bench 13 2,83 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3,33 1,67 0,00

bicycle 10 16,30 22,22 22,22 22,22 22,22 22,22 18,52 18,52 11,85 2,96 0,00

boat 2 19,26 34,47 34,47 31,44 31,44 27,35 18,94 9,45 3,76 1,23 0,00

bus 6 47,07 56,16 56,16 56,16 56,16 56,16 56,16 53,28 53,28 22,51 4,67

car 5 46,56 61,91 61,41 60,95 60,02 58,42 54,81 49,71 38,32 19,22 0,84

dog 8 40,71 51,98 51,98 51,98 45,87 45,87 45,87 40,71 36,51 31,35 5,00

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 10 28,87 43,38 42,40 41,96 39,44 36,20 29,88 23,47 17,39 11,12 3,45

truck 7 19,46 28,91 27,10 26,52 25,27 24,14 22,34 19,51 11,52 8,92 0,32

mAP 8 24,56 33,60 33,23 32,73 31,53 30,41 27,76 24,22 19,55 11,00 1,59

Ef
fi

ci
e

n
tD

et
 D

5
 1

28
0x

12
80

2,06

bench 10 6,70 7,29 7,29 7,29 7,29 7,29 7,29 7,29 7,29 6,10 2,62

bicycle 2 30,20 47,65 47,65 47,65 43,09 39,42 28,16 20,54 15,76 8,40 3,70

boat 3 16,80 35,62 35,62 32,63 29,88 11,83 7,48 7,48 7,48 0,00 0,00

bus 2 54,93 66,58 65,19 65,19 65,19 65,19 62,17 62,17 56,35 38,42 2,88

car 3 50,20 66,51 66,15 65,82 64,77 62,97 60,00 53,21 39,01 21,72 1,83

dog 4 50,46 63,85 63,85 63,85 59,57 59,57 59,57 50,01 43,51 32,28 8,57

motorcycle - 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 5 38,06 56,36 55,65 54,55 51,78 47,52 40,28 32,27 22,82 14,96 4,41

truck 4 26,20 37,34 36,24 36,24 33,85 31,97 31,97 25,07 16,48 12,38 0,46

mAP 3 30,40 42,36 41,96 41,47 39,49 36,19 32,99 28,67 23,19 14,92 2,72

Ef
fi

ci
e

n
tD

et
 D

6
 1

28
0x

12
80

2,61

bench 2 23,97 28,81 28,81 28,81 28,81 28,81 28,81 28,81 24,98 11,33 1,67

bicycle 1 30,50 44,44 44,44 44,44 39,20 35,31 35,31 27,93 22,22 9,88 1,85

boat 4 16,74 32,66 32,66 32,66 30,43 11,16 10,05 10,05 7,13 0,62 0,00

bus 1 59,67 69,89 69,89 69,89 69,89 69,89 69,89 68,25 63,46 44,85 0,79

car 1 56,33 71,52 71,10 70,83 69,81 68,77 67,04 60,96 50,70 30,42 2,15

dog 3 51,02 65,73 65,73 65,73 65,73 65,73 55,67 46,26 46,26 28,57 4,76

motorcycle - 2,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 1 47,01 71,35 69,98 68,47 64,50 58,89 49,16 40,13 27,12 16,31 4,16

truck 1 31,59 45,85 43,70 43,70 40,48 38,84 38,39 30,54 18,28 14,43 1,70

mAP 2 35,20 47,81 47,37 47,17 45,43 41,93 39,37 34,77 28,90 17,38 1,90

46

Ef
fi

ci
e

n
tD

et
 D

7
 1

53
6x

15
36

2,73

bench 1 27,19 33,36 33,36 33,36 33,36 33,36 33,36 33,36 25,52 10,71 2,17

bicycle 3 29,92 42,22 42,22 42,22 42,22 33,84 31,03 27,44 27,44 6,91 3,70

boat 1 22,51 35,75 35,75 35,75 30,96 30,96 22,35 12,54 12,54 8,47 0,00

bus 3 54,42 64,15 64,15 64,15 64,15 64,15 64,15 64,15 57,72 29,40 8,01

car 2 55,40 70,44 70,29 70,03 69,02 68,32 65,49 60,77 51,28 26,85 1,50

dog 1 54,07 64,74 64,74 64,74 64,74 64,74 64,74 60,54 50,92 36,51 4,29

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 2 44,98 68,28 66,99 65,11 61,49 55,86 49,29 37,08 23,66 16,76 5,27

truck 1 30,38 41,08 40,34 39,81 39,81 38,62 36,85 30,08 22,25 14,45 0,54

mAP 1 35,43 46,67 46,43 46,13 45,08 43,32 40,81 36,22 30,15 16,67 2,83

Fa
st

er
 R

-C
N

N
 In

ce
p

ti
o

n

R

es
N

et
 V

2
64

0x
64

0

2,18

bench 15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

bicycle 13 11,60 25,02 22,90 22,90 19,81 17,04 8,33 0,00 0,00 0,00 0,00

boat 8 9,94 20,60 18,32 18,32 18,32 14,55 4,39 4,39 0,26 0,26 0,00

bus 9 35,52 49,61 49,61 49,61 49,61 49,61 49,61 40,25 15,16 1,92 0,21

car 12 37,60 53,92 52,97 52,63 51,26 48,92 44,99 38,25 27,74 5,19 0,09

dog 14 16,55 19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05 13,10 0,00

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 15 18,13 34,68 32,40 29,45 25,08 20,39 15,43 11,80 7,40 4,33 0,36

truck 9 15,72 24,36 23,79 23,07 21,79 21,16 19,77 14,35 6,26 2,62 0,05

mAP 12 16,12 25,25 24,34 23,89 22,77 21,19 17,95 14,23 8,43 3,05 0,08

Fa
st

er
 R

-C
N

N
 In

ce
p

ti
o

n

R

es
N

et
 V

2
10

24
x1

02
4

1,48

bench 6 8,98 14,74 14,71 14,71 13,61 10,88 9,53 6,26 5,37 0,00 0,00

bicycle 7 17,95 32,79 32,79 32,79 31,18 26,55 15,02 6,20 1,41 0,74 0,00

boat 6 10,98 19,24 19,24 19,24 19,24 16,46 12,72 1,85 1,85 0,00 0,00

bus 5 49,69 64,34 64,34 64,34 64,34 64,34 64,34 53,30 33,25 23,08 1,18

car 8 43,04 63,53 62,93 61,80 59,33 56,63 51,89 39,00 26,23 8,82 0,20

dog 2 52,60 78,56 73,10 73,10 69,29 69,29 52,68 38,97 35,91 32,74 2,38

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 6 36,59 64,27 62,23 58,37 53,51 45,04 35,74 24,26 13,96 7,58 0,96

truck 3 26,91 41,21 41,21 38,73 37,46 36,07 33,19 25,01 11,40 3,89 0,88

mAP 4 27,41 42,07 41,17 40,34 38,66 36,14 30,57 21,65 14,38 8,54 0,62

Fa
st

e
r

R
-C

N
N

 R
es

N
et

1
01

 V
1

80
0x

13
33

0,75

bench 9 7,13 8,89 8,89 8,89 8,89 8,89 8,89 8,89 6,98 2,06 0,00

bicycle 6 21,37 40,84 39,61 31,19 31,19 31,19 22,22 15,37 2,06 0,00 0,00

boat 7 10,52 21,78 21,78 21,78 16,21 12,90 10,16 0,62 0,00 0,00 0,00

bus 8 39,95 51,24 51,24 51,24 51,24 51,24 51,24 41,84 36,19 14,02 0,00

car 9 41,82 59,58 58,99 57,48 55,45 53,33 49,58 42,54 31,89 9,09 0,31

dog 7 43,21 55,56 55,56 55,56 48,67 48,67 48,67 48,67 38,59 31,35 0,79

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 7 35,77 62,39 60,33 57,59 52,55 44,58 33,02 22,35 15,28 7,69 1,91

truck 5 24,43 36,40 35,21 34,47 34,01 32,88 30,30 22,47 14,66 3,80 0,12

mAP 7 24,91 37,41 36,84 35,35 33,13 31,52 28,23 22,53 16,19 7,56 0,35

Fa
st

er
 R

-C
N

N
 R

e
sN

et
1

01
 V

1
10

24
x1

02
4

0,80

bench 14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

bicycle 8 17,85 29,63 29,63 29,63 29,63 25,93 15,98 15,98 2,12 0,00 0,00

boat 9 7,79 15,37 13,79 13,79 13,79 13,79 7,41 0,00 0,00 0,00 0,00

bus 7 47,07 57,10 57,10 57,10 57,10 57,10 57,10 53,28 51,08 23,17 0,55

car 11 37,62 55,37 54,76 53,80 52,26 49,85 44,26 35,69 24,39 5,78 0,06

dog 17 13,90 29,17 29,17 21,43 17,01 17,01 10,88 10,88 2,72 0,68 0,00

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 13 20,13 40,56 36,44 33,75 27,94 22,09 16,93 12,49 7,72 3,22 0,14

truck 10 15,17 21,53 20,88 20,58 20,34 19,99 19,99 14,84 9,43 3,14 0,99

mAP 11 17,73 27,64 26,86 25,56 24,23 22,86 19,17 15,91 10,83 4,00 0,19

M
as

k
R

-C
N

N
 In

ce
p

ti
o

n

R

es
N

et
 V

2
10

24
x1

02
4

1,86

bench 11 4,19 7,96 7,96 7,96 7,96 6,11 1,57 1,57 0,83 0,00 0,00

bicycle 14 10,69 28,36 22,82 22,82 12,54 9,93 4,94 4,94 0,28 0,28 0,00

boat 15 3,53 8,78 6,80 5,94 4,02 4,02 4,02 1,42 0,25 0,00 0,00

bus 4 51,77 66,03 66,03 66,03 66,03 66,03 62,88 62,88 47,60 14,22 0,00

car 6 46,15 62,83 62,32 61,70 60,32 58,07 53,28 44,92 37,06 19,43 1,56

dog 9 36,16 52,38 46,32 46,32 46,32 46,32 41,13 27,21 27,21 27,21 1,19

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

person 11 28,10 48,33 45,37 43,12 39,85 35,87 28,51 20,17 12,75 6,13 0,88

truck 6 21,60 33,01 33,01 33,01 32,03 28,66 27,88 19,84 7,14 1,45 0,00

mAP 9 22,47 34,19 32,29 31,88 29,90 28,33 24,91 20,33 14,79 7,64 0,40

	1 INTRODUCTION
	2 ABOUT SURE
	3 OBJECT DETECTION
	4 OBJECT DETECTION METHODS
	4.1 Models under investigation
	4.2 Two-stage, Neural Network-based Object Detection techniques
	4.2.1 CNN
	4.2.2 R-CNN
	4.2.3 Fast R-CNN
	4.2.4 Faster R-CNN
	4.2.5 Mask R-CNN
	4.2.6 CenterNet
	4.2.7 EfficientNet

	5 EVALUATION METRICS FOR OBJECT DETECTION
	5.1 Ground truth
	5.2 Intersection over Union
	5.3 Precision and Recall
	5.4 Mean Average Precision

	6 ANALYSIS OF THE OBJECT DETECTION MODELS
	6.1 Work environment
	6.2 Source of the tested images
	6.3 Annotation of the images
	6.4 Detection results framed by classes
	6.5 Evaluation results

	7 DISCUSSION
	REFERENCES
	APPENDICES
	Appendix 1. Complete list of pre-trained models with TensorFlow 2 for COCO 2017 dataset, sorted by mAP results. Marked ones are used in this work.
	Appendix 2. Additional codes made to “code_models” and models\research\object_detection\utils\visualization_utils.py (Tensorflow models repository):
	Appendix 3. List of object class names in MS COCO dataset
	Appendix 4. Additional code piece, for renaming ground truth text files for each model.
	Appendix 5. Complete chart consisting of image processing times, ranks and mAP scores of each model, sorted by models names in alphabetical order.

