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1 INTRODUCTION 

The analysis of a steel structure consists of the determination of the different loadings 

and deflections that take place not only on a structure but in the structure member them-

selves [1, p. 19]. This analysis can be performed in numerous different ways, often re-

quiring more than one study to be done in the same structure to find out the most effi-

cient method and especially when trying to design a structure following a certain stand-

ard code.  

Thus, comprehensive research concerning the aforementioned ways of analysing must 

be done when trying to assess a particular situation that may require the use of a struc-

ture, be it constituted by cantilevered or fixed beams, arches, cables, trusses, or several 

of them simultaneously focusing not only in both the structure as a whole and the dif-

ferent individual members but also on the joints and supports that bind them together. 

Once the structure has been deemed to be stable and its diverse loads and deflections 

determined, the individual beams and their joint connections have to be assessed to be 

considered safe to use.  

Said beams may be shaped in different ways according to distinct standards around the 

world. In the matter of Europe, the European Committee for Standardisation developed 

ten European standards, named Eurocodes, concerning structural design [2]. In particu-

lar, Eurocode 3 (EN 1993) focuses on the design of steel structures and steel beams to 

determine whether they can withstand the design calculated loads and deflections within 

safety regulations against not only service-related failures but also environmental haz-

ards or not [3]. As per the connections, the determination of their suitability and effi-

ciency is crucial to ensure the best service of the structure. 

These analysis combined will aid the engineer to achieve the most advisable structural 

design accounting not only for its safety, aesthetics, and serviceability but also for its 

economic and environmental constraints [1, p. 19].  
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1.1 Relationship to existing knowledge 

On general terms, the analysis of structures is an important part of any materials engi-

neering related degree as well as the strength of the materials used, among others. That 

is what could be referred to as the traditional method of analysis. 

This method analyses structures following the basic principles of equilibrium, as struc-

tures are assumed to be stable in their functioning state in the majority of cases. Using 

this analysis it is possible to obtain an estimate on how certain applied loads translate to 

the rest of not only the member itself but also to the members of the structure. Then, the 

stresses produced can be extracted and compared as to whether the material can sustain 

it, but that comparison is unsuitable to most real-life structural applications since there 

are many other side-effects to be considered as to assess the safety of the member. 

Hence, the insight offered by the traditional method must be expanded using either es-

timations or simulations of those side-effects. The European standards are the gateway 

to accomplish that task, and that is what this document will focus on. 

1.2 Relevance of the problem  

The traditional method of analysis will more often than not fail to reveal the true extent 

of a structure or a member’s capability to withstand a certain applied load, let alone to 

environmental-originated forces or any sort of unexpected extra weight. 

It is, then, crucial for any engineer not only to understand how a certain member can 

withstand the not-so-obvious forces created by the foregoing phenomena in order to 

deem that member as a safe part of a structure but as to be assess what are the required 

conditions said member must fulfil to be as cost-effective as possible for the viability of 

the structure. Understanding and mastering the European standards is, thus, a key mile-

stone when it comes to structural analysis in real life. 
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2 LITERATURE REVIEW 

When starting the design analysis process, the first step must always be to identify the 

elements constituting its shape and whether the analysed structure is either determinate 

or indeterminate to establish their loadings and deflections.  

 

The determinacy of a structure depends on the number of reactions happening on it 

compared to the number of members. The stability of a member can be determined by 

the three equilibrium equations [1, Eq. (2-2)]: 

∑𝐹𝑥 = 0; ∑𝐹𝑦 = 0; ∑𝑀𝑂 = 0 (1)  

Thus, if the number of reactions in the structure is bigger than threefold the number of 

members of the structure will then be indeterminate. For a structure to be determinate 

the number of reactions must equal the total number of equilibrium equations in the 

structure. 

2.1 Determinate structures 

2.1.1 Loads 

 

Loads in statically determinate structures can be analysed by applying Eq. (1). Said 

equations can be adapted under certain circumstances to ease the analysis by associating 

them to each other through the parameters present in some of the members. That is the 

case, for example, of cables and arches (a frequent element to help stabilize the total 

load on certain structures like bridges) or trusses. 

 

Cables act in tension assuming they are perfectly flexible. When subjected to concen-

trated loads, it is safe to apply the equations of equilibrium (Eq. (1)) at either the joints 

that the applied loads create or the segments in-between them. In the event of an exter-

nal distributed load being applied or the weight of the cable is taken into consideration, 

then the shape of the cable must be analysed as follows: 
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1. The origin of the 𝑥, 𝑦 coordinate system is placed at the lowest point of the cable 

where the slope is zero. A differential segment of the cable is then taken into 

consideration analysing the forces acting there.  

2. Taking that tensile force 𝑇 through the cable’s length 𝑠 increases continuously 

along its angle 𝜃, the free-body diagram shown in Figure 1 can be considered:  

3. Eq. (1) when applying the limits Δy → 0, Δ𝜃 → 0 and ΔT → 0 at 𝑥 = 0, it is ob-

tained through integration that: 

o 𝑇 cos 𝜃 = 𝐹𝑥      [1, eq. (5-4)] 

o 𝑇 sin 𝜃 = ∫𝑤(𝑠) 𝑑𝑠     [1, eq. (5-12)] 

o tan 𝜃 = 𝑑𝑦 𝑑𝑥⁄ = (1 𝐹𝑥⁄ ) ∫𝑤(𝑠) 𝑑𝑠   [1, eq. (5-13)] 

The combination of these three equations yields the final parabolic equation [1, 

(eq. 5-14)]: 

  𝑥 = ∫
1

√1 +
1
𝐹𝑥

2 (∫𝑤(𝑠) 𝑑𝑠)2

𝑑𝑠                    (2) 

its two constants determined by applying the cable’s boundary conditions. 

It is important to observe also that the maximum value of the tension 𝑇 can be obtained 

from observing the point of 𝜃𝑚𝑎𝑥 at 𝑥 = 𝐿.  

 

As per the arches, they are designed to work mainly in compression as opposed to ca-

bles. To support a uniform distribution of the load throughout its horizontal projection a 

parabolic shape is required, meaning that no bending or shear forces will occur within 

it: that arch shape is called a funicular arch [1, p. 220]. The equilibrium of forces is then 

calculated at each joint like previously. 

Figure 1. Cable differential segment free-body diagram. Adapted from [1, Fig. 5-3] 
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Trusses, as noted by Hibbeler, are “structures composed of slender members joined to-

gether at their endpoints to form a series of triangles” [1, p. 152]. A pin connection sup-

porting the member’s load is applied to every joint, hence creating either tension or 

compression in each of the members. The structure can then be analysed by either estab-

lishing equilibrium on its joints (method of joints), by assuming sections of the structure 

as solids and applying the equilibrium equations on their connecting joints (method of 

sections) or both methods simultaneously. 

2.1.2 Deflections 

The deflections in either the members of a structure or the structure themselves can be 

efficiently resolved once the moment diagram is known, as a positive moment (assum-

ing positive as clockwise) will create a negative displacement (assuming positive as 

upwards) in the deflection curve and vice versa. This relationship works both ways, thus 

a known deflection curve will reveal the moment diagram easily. It is important to re-

member that the linear displacement Δ and the angular displacement 𝜃 on either joints 

or supports will depend on their type. No supports generally allow linear displacement 

yet pinned and roller supports allow an angular displacement while fixed supports do 

not; joints allow both of them, with the difference being that pin-connected joints create 

different angular displacements on the connected members while a fixed-connected 

joint does not. [1] 

 

There are several methods to calculate the deflections happening on a beam like the 

double-integration method, the moment-area theorems, or the conjugate-beam method 

[1]. This last method will constitute the main method used in this study. 

 

The conjugate-beam method consists of converting the analysed beam into a conjugate 

applying the transformations described in Table 1 [1, Table 7.2]. This method is based 

on the comparison between the real and the conjugate beam: a direct translation of the 

angular displacement on the real beam can be done to the shear in its conjugated form, 

and the same applies between the linear displacement on the real beam and the moment 

on the conjugated form. Thus, a normal analysis can be performed on the conjugated 

beam which will then render the displacements occurring in the real beam. As per the 
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loads, the 𝑀/𝐸𝐼 diagram (that is the moment 𝑀 over the member's flexural rigidity 𝐸𝐼) 

of the real beam will be applied as a distributed load on the conjugated beam. 

 

Table 1. Real to conjugated beam conversions. Adapted from [1, Table 7.2] 

Real Beam Conjugated Beam 

Pin support 𝜃 Pin support 𝑉 

∆= 0 𝑀 = 0 

Roller support 𝜃 Roller support 𝑉 

∆= 0 𝑀 = 0 

Fixed support 𝜃 = 0 Free end 𝑉 = 0 

∆= 0 𝑀 = 0 

Free end 𝜃 Fixed support 𝑉 

∆ 𝑀 

Internal pin 𝜃 Hinge 𝑉 

∆= 0 𝑀 = 0 

Internal roller 𝜃 Hinge 𝑉 

∆= 0 𝑀 = 0 

Hinge 𝜃 Internal roller 𝑉 

∆ 𝑀 

2.2 Indeterminate structures 

As established previously, when the reactions exceed the total number of equilibrium 

equations in a structure it is then deemed indeterminate. The main goal is, then, to make 

the structure determinate to be suitable to be analysed. There are different methods to 

achieve that aim depending on the provided information, the placement of the members 

or the suitability of the methods themselves: the displacement method of analysis, the 

approximation analysis, and the stiffness method. 
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2.2.1 Displacement method of analysis 

The displacement method of analysis consists, according to Hibbeler, of “writing the 

unknown displacements in terms of the loads using the load-displacement relationships” 

[1, p. 449] to achieve a determinate structure that can be analysed through the equilibri-

um equations. There are two main methods to accomplish that: using slope-deflection 

equations or using moment distribution. 

2.2.1.1 Slope-deflection equations 

Through the use of the slope-deflection equations, it is possible to conjoin the unknown 

moments happening at a specific joint of the structure to the unknown rotations (or de-

grees of freedom (DOF)) occurring in it. There are two different cases to be evaluated 

when applying the slope-deflection equations:  

1. Far end of the member is fixed: the corresponding equation is applied to both 

ends of the member and is valid for either internal or end span [1, eq. (10-8)].  

 

                     𝑀𝑁𝐹 = 2𝐸𝑘(2𝜃𝑁 + 𝜃𝐹 − 3𝜓) + (𝐹𝐸𝑀)𝑁                                 (3)  

where N and F are the assumed near and far end respectively, the span 

stiffness 𝑘 = 𝐼/𝐿, the angular span rotation 𝜓 = Δ/𝐿 and 𝐹𝐸𝑀 the 

Fixed-End Moments as described in Appendix A. 

2. Far end of the member is either pin or roller supported: the corresponding equa-

tion is applied only at the near end [1, eq. (10-10)]. 

                    𝑀𝑁𝐹 = 3𝐸𝑘(𝜃𝑁 − 𝜓) + (𝐹𝐸𝑀)𝑁                                               (4)   

These equations are then substituted into the equations of moment equilibrium at each 

specific joint of the structure, leading to the solving of the unknown displacements. In 

the case of a frame structure having sidesway, where an unknown horizontal displace-

ment takes place, the column shears are to be related to the moments at the joints and 

then solved in both the moment and force equilibrium equations. 
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2.2.1.2 Moment distribution 

Another way of solving the DOF is the moment distribution method. It consists of suc-

cessive approximations of locking and unlocking all the joints of the structure to allow 

the moment present in these to be distributed onto each connecting moment and carry-

ing over half its value to the other side of the analysed span. 

 

As a first step, all member stiffness factors are determined following four different cas-

es: 

1. Far end is fixed [1, eq. (11-1)]:     𝑘 = 4𝐸𝐼 𝐿⁄  

2. Far end is pinned or roller supported [1, eq. (11-4)]:   𝑘 = 3𝐸𝐼 𝐿⁄   

3. Symmetric span and loading [1, eq. (11-5)]:     𝑘 = 2𝐸𝐼 𝐿⁄  

4. Symmetric span but antisymmetric loading [1, eq. (11-6)]:  𝑘 = 6𝐸𝐼 𝐿⁄  

Second, the distribution factors are found by dividing each member’s stiffness factor by 

the total sum of the stiffness factors of the members present in the joint, also taking into 

consideration that the 𝐷𝐹 for a fixed end is 𝐷𝐹 = 0, and for a pin or roller-supported 

end is 𝐷𝐹 = 1. Finally, the Fixed-End Moments (see Appendix A) of each span must be 

calculated.  

 

All the calculations can be easily quantized by using a Moment Distribution table as the 

one exemplified in Table 2: 

Table 2. Moment Distribution table example. 

Joint A B C D 

Member     

DF     

 

FEM     

Distribution     

Carry-Over     

Distribution     

Carry-Over     
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The Distribution and Carry-Over process (𝐶𝑂) must be repeated until a desired degree 

of accuracy is attained. Once this is reached, the moment at each joint is the sum of the 

moments from the cycle of locking and unlocking. 

 

When a member in the structure has a non-prismatic shape, that is to say, a varying 

cross-section area along the member span, a variable moment of inertia also takes place 

during that same span. These members are often used on long-span structures to save 

material. Structural analysis of said members can be also executed using any of the 

methods mentioned before, slope-deflection equations or moment distribution.  

 

To do this, it is needed to obtain the FEM of the members, as well as their stiffness (𝑘) 

and carry-over (𝐶𝑂) factors. In the case of using the moment distribution analysis, the 

process can be then simplified further if the stiffness factor of one or several members is 

modified for the cases of end-span pin support, or structural symmetry or antisymmetry. 

 

Even though the conjugate-beam method could be used, it is a very tedious work that 

could be simplified by using already tabulated data such as the one published by the 

Portland Cement Association [4]. 

2.2.2 Approximate method 

The main objective of an approximate structural analysis is to reduce a statically inde-

terminate structure to one that is, thus, statically determinate. There are several methods 

of doing so: 

• Trusses having cross-diagonal bracing within their structural panels can be ana-

lysed, given that the members are long and slender, by assuming that the tension 

diagonal supports the panel’s shear and that the compression diagonal is a zero-

force member. In case that the cross-section is larger, it is acceptable to assume 

that each diagonal member carries half of the panel’s shear. 

• An estimation can be made when analysing a girder of length 𝐿 of a certain 

building frame as to assume that the girder does not support an axial load, and 

there are hinges located 0.1 𝐿 away from the supports. 
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• For portal frames with fixed supports, hinges are assumed at the midpoint of 

each column height (that is from the ground until the truss bracing). Each col-

umn is then assumed to support half the shear load on the frame, no matter if 

fixed or pin supported. 

• For fixed and connected building frames subjected to a lateral load, the same 

hinge assumption at the centre of the columns can be made as well as the girder. 

Then, the analysis will depend on the frame elevation: 

o For low elevation, shear resistance is important and thus the portal meth-

od is used, where interior columns carry twice the shear as that of the ex-

terior ones. 

o For tall and slender frames the cantilever method can be used, where the 

axial stress in a column is directly proportional to the distance from the 

cross-sectional area centroid of each column. 

2.2.3 Stiffness method 

When analysing structures with the use of a computer, the stiffness method is usually 

the way to go. This method requires numbering and plotting the coordinates of the ele-

ments and nodes for the entire structure taking the local coordinate system’s origin at a 

selected near-end and establishing the global coordinates for the entire structure. 

 

The first requirement is to formulate each member stiffness matrix in local coordinates 

(𝑘’), relating the loads at the ends of the member (𝑞) to their displacements (𝑑) such as 

in 𝑞 = 𝑘′𝑑 [1, eq. (14-3)]. The stiffness matrix has the form of:  

𝑘′ =
𝐴𝐸

𝐿
[

1 −1

−1 1
]                                                                                                  

Next, the local displacements 𝑑 are related to global displacements 𝐷 through the trans-

formation matrix 𝑇 where 𝑑 = 𝑇𝐷 and, at the same time, local forces 𝑞 are transformed 

into global forces 𝑄 using the same transformation matrix such as 𝑞 = 𝑇𝑄. The trans-

formation matrix has the form of: 
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𝑇 = [
𝜆𝑥 𝜆𝑦 0 0

0 0 𝜆𝑥 𝜆𝑦
]                                                                                          

where 𝜆𝑥 = (𝑥𝐹 − 𝑥𝑁) 𝐿⁄  for each member and coordinate axis, being 𝑥𝐹 and 𝑥𝑁 

the far and near end position on the 𝑥-axis. 

 

When these matrices are finally combined, the result is the member’s stiffness factor 

matrix 𝑘 = 𝑇𝑇 · 𝑘′ · 𝑇, which is then assembled into the stiffness matrix 𝐾 for the entire 

structure by superposition of all matrices 𝑘. The displacements and loads happening in 

the entirety of the structure are obtained through the partition of the equation 𝑄 = 𝐾𝐷, 

which will be made as in [1, eq. (14-18)]: 

            [
𝑄𝑘

⋯
𝑄𝑢

] = [
𝐾11 ⋮ 𝐾12

⋯ ⋯ ⋯
𝐾21 ⋮ 𝐾22

] [
𝐷𝑢

⋯
𝐷𝑘

]                                                         (5)  

where 𝑘 stands for known variable, and 𝑢 for unknown variable. 

From equation 3, two equations can be obtained: 𝑄𝑘 = 𝐾11𝐷𝑢 + 𝐾12𝐷𝑘 and 𝑄𝑢 =

𝐾21𝐷𝑢 + 𝐾22𝐷𝑘. The combination of both will yield all unknown variables. Once those 

values have been calculated, each member’s forces can be then obtained by combining 

𝑞 = 𝑘′𝑑 and 𝑑 = 𝑇𝐷, thus: 𝑞 = 𝑘′𝑇𝐷. 

 

In a similar fashion as to analysing structures, the application of the stiffness method on 

beam analysis starts by identifying members and nodes, the latter being either supports 

or points where members are connected, where an external force is applied, where the 

cross-sectional area of the member suddenly changes or where a vertical or rotational 

displacement must be identified.  

 

Then, a global and member coordinate system must be established paying attention that, 

unlike 0.with trusses, the global and member coordinates will be parallel due to their 

axis being collinear thus not needing to develop a transformation matrix. 

 

Once the previous steps have been completed, the DOF can be then determined. Each 

node on a beam can have up to two degrees of freedom: a vertical displacement and a 

rotation. The lowest code numbers will be used to identify unknown displacements 
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(𝐷𝑢). Being all the displacement correctly tagged, it is time to develop the stiffness ma-

trix for each member according to its local coordinate system (𝑥′, 𝑦′, 𝑧′), placing its 

origin at the selected near end 𝑁 and extending the positive axis 𝑥′ towards the far end 

𝐹. 

 

By applying the conjugate-beam method and superposing all the possible scenarios in 

equilibrium, the following stiffness matrix is obtained [1, eq. (15-1)]: 

𝑘 = 𝐸𝐼 ·

[
 
 
 
 
 
 
 12 𝐿3⁄

6

𝐿2
−

12

𝐿3

6

𝐿2

6 𝐿2⁄
4

𝐿
−

6

𝐿2

2

𝐿

−12 𝐿3⁄ −
6

𝐿2

12

𝐿3
−

6

𝐿2

6 𝐿2⁄
2

𝐿
−

6

𝐿2

4

𝐿 ]
 
 
 
 
 
 
 

 (6)  

The superposition of the different member’s stiffness matrix will then yield the stiffness 

matrix for the system 𝐾, which will then be used to determine the unknown loads and 

displacements happening in the system as in the previously used Equation 3 (𝑄 = 𝐾𝐷) 

and the local loads and displacements for each member as in 𝑞 = 𝑘𝑑 + 𝑞0 [1, eq. (15-

5)], where 𝑞0 represents the reversed fixed end loadings. 

2.3 Beam failure types 

To say that a beam is safe is the same as to say that a beam must avoid failing. There are 

different types of beam failure according to the different type of forces acting on it [5]: 

1. Compression failure: when the axial load is higher than the load it was designed 

to sustain it results in a compression failure or buckling of the member. 

2. Tension failure: if the tensile load acting on the member exceeds the resistance 

offered by the material strength, the member will fail. 

3. Flexural failure: the combination of compressive and tensile forces acting on a 

beam due to the load applied can cause a twisting moment, that can result in the 

failure of the beam. That failure type is called lateral-torsional buckling. 

4. Shear failure: if the shear load exceeds the shear value, the member will fail.  
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Figure 2. Cross-section notations 

2.4 Beam design according to European standards 

When a member undergoes bending moment, it is also affected generally by shear forc-

es. These forces have to be considered as well as the beam’s serviceability, that is de-

flections and other dynamic effects, resistance, and stability verifications. Thus, and ac-

cording to Bernuzzi et al, it is “needed to evaluate some aspects related to the behaviour 

of the beam elements under flexure and shear”. [3, p. 176] 

 

When analysing a member to verify its accord with the Eurocode 3 European Standard, 

there are several steps to be followed. 

2.4.1 Beam’s geometry analysis and material properties 

The very first phase of the study must start with the analysis of 

the beam’s cross-section geometry and material properties. 

There exist several tables that collect the design properties of the 

different profiles and classes (see Appendix B). A table is then 

filled such as in the following example: 

Table 3. An example table of the beam's geometry and material properties 

𝑟 Root radius 𝐼𝑦 Moment of inertia about axis y-y 

ℎ Height 𝐼𝑧 Moment of inertia about axis z-z 

𝑏 Width/Breadth  𝐼𝑡 Torsion constant 

𝑡𝑤 Web thickness 𝐼𝑤 Warping constant 

𝑡𝑓 Flange thickness 𝑊𝑒𝑙,𝑦 Elastic section modulus about axis y-y 

𝐴 Area of the cross-section 𝑊𝑝𝑙,𝑦 Plastic section modulus about axis y-y 

 

𝐿 Length of the beam 𝐿𝑐𝑟,𝐿𝑇 Critical length of the beam 

 

𝑆 Steel type (e.g. S275) 𝑓𝑦 Yield strength 

𝜌 Density 𝑓𝑢 Ultimate strength 

𝐸 Young’s modulus 𝐺 Shear modulus 

𝑣 Poisson’s ratio 𝛼 Thermal expansion coefficient 
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Once all the data is gathered, the cross-section has to be classified into one of four clas-

ses [3, pp. 75, 109-110], the behaviour of which will determine the method to the analy-

sis: 

• Class 1, or plastic or ductile sections: These cross-sections provide an adequate 

rotational capacity for an effective plastic analysis without any reduction hap-

pening to its resistance.  

• Class 2, or compact sections: These cross-sections, as the ones in class 1, pro-

vide a plastic moment resistance yet have limited rotational capacity due to local 

buckling.  

• Class 3, or semi-compact sections: These cross-sections are capable of sustain-

ing yielding stresses only in the more compressed fibres when an elastic stress 

distribution is taken into consideration due to local buckling impeding an ade-

quate spread of the plasticity along the cross-section itself. 

• Class 4, or slender sections: These cross-sections are subjected to local buckling 

in one or more parts of itself before yielding stress can be reached. 

As per the methods of analysis, the following procedures can be adopted [3, pp. 76]: 

• Elastic method (E): A linear elastic response can be safely assumed until the 

yielding stress is attained. This method can be used to analyse the four different 

classes, yet in the case of class 4, the effective geometrical properties of the 

cross-section must be referenced. 

• Plastic method (P): A complete plasticity spread throughout the entire cross-

section is assumed. This method can be used for the entirety of the class 1 evalu-

ation and as an approach to evaluate the load-carrying capacity of class 1 and 2 

cross-sections. 

• Elasto-plastic method (EP): Simplified by an elastic-perfectly plastic relation-

ship or with an elastic-plastic with strain hardening relationship, this method re-

fers to the actual material constitutive law and can be applied in all 4 classes. 
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To establish to which class our beam belongs, the flanges and the web are looked at 

separately as shown in Table 4: 

Table 4. Cross-section classification table 

Flange 𝑐 (𝑡𝑓)𝑡𝑜𝑡
⁄  Class: 1-4 

Web 𝑑 𝑡𝑤⁄  Class: 1-4 

Section  Class: Take the worst class case. 

where 𝑐 is the breadth of only the flanges (that is excluding the thickness of the 

web and the root), (𝑡𝑓)𝑡𝑜𝑡
 the total thickness of the flanges (that is both of them) 

and 𝑑 the length of the web excluding both root and flange thicknesses. 

 

The classes are determined according to the following: 

Table 5. Classification summary table. Adapted from EN 1993-1-1: Table 5.2. [3, eq. (7.16a-d)] 

 Flange Web in bending Web in compression  𝑴𝒄,𝑹𝒅 

Class 1 ≤ 9휀 ≤ 72휀 ≤ 33휀 (𝑊𝑝𝑙,𝑦 · 𝑓𝑦) 𝛾𝑀0⁄  

Class 2 ≤ 10휀 ≤ 83휀 ≤ 38휀 (𝑊𝑝𝑙,𝑦 · 𝑓𝑦) 𝛾𝑀0⁄  

Class 3 ≤ 14휀 ≤ 124휀 ≤ 42휀 (𝑊𝑒𝑙,𝑦 · 𝑓𝑦) 𝛾𝑀0⁄  

Class 4 Does not meet other requirements (𝑊𝑒𝑓𝑓 · 𝑓𝑦) 𝛾𝑀0⁄  

where the reduction material factor 휀 = √235 𝑓𝑦⁄ , 𝑀𝑐,𝑅𝑑 stands for the moment 

capacity of the beam, 𝑊𝑒𝑓𝑓 stands for the effective elastic section modulus and 

𝛾𝑀0 for the partial safety factor (see Table B3 in Appendix B) 

2.4.2 Load analysis and maximum deflection permitted 

Once the cross-section has been classified, the load 𝑊 must be identified and correctly 

factorized in the event of dead (𝐷) and live (𝐿) loads taking place at the same time. 

There are two different approaches to the factorization of uniformly distributed loads 

according to Eurocode 0 [2]: 
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Figure 3. Recommended limiting values for vertical deflections from ENV 1993-1-1. [3, Table 7.1] 

1. 𝑊 = 1.35 𝑊𝐷 + 1.50 𝑊𝐿       (7) 

being this the most conservative approach. [4, eq. (6.10)] 

2. The higher value from either 𝑊 = 1.35 𝑊𝐷 + 1.05 𝑊𝐿 or 𝑊 = 1.25 𝑊𝐷 +

1.50 𝑊𝐿, the second one being the most used. [4, eq. (6.10a,b)] 

Upon obtaining the value of the load, the maximum deflection permitted due to the total 

load 𝛿𝑚𝑎𝑥 is selected through the table shown in Figure 3 while the limit conditions [3, 

p. 229] have to be considered: 

Table 6. Minimum geometrical characteristics of cross-sections. 

Uniformly Distributed 

Loads 
𝛿𝐿𝑖𝑚 =

5

384
·
(𝑊𝐷 + 𝑊𝐿) · 𝐿4

𝐸 · 𝐼𝑚𝑖𝑛
 𝑊𝑚𝑖𝑛 =

3

2
·
(𝑊𝐷 + 𝑊𝐿) · 𝐿2

8 · 𝑓𝑦
 

Point-Placed Loads  𝛿𝐿𝑖𝑚 =
1

48
·
(𝑃𝐷 + 𝑃𝐿) · 𝐿3

𝐸 · 𝐼𝑚𝑖𝑛
 𝑊𝑚𝑖𝑛 =

3

2
·
(𝑃𝐷 + 𝑃𝐿) · 𝐿

4 · 𝑓𝑦
 

Evenly Spaced Point 

Loads 
𝛿𝐿𝑖𝑚 =

23

648
·
(𝑃𝐷 + 𝑃𝐿) · 𝐿3

𝐸 · 𝐼𝑚𝑖𝑛
 𝑊𝑚𝑖𝑛 =

3

2
·
(𝑃𝐷 + 𝑃𝐿) · 𝐿

3 · 𝑓𝑦
 

Which can then help determine the minimum beam depth as [3, Eq. (7.147)]:  

𝐻𝑚𝑖𝑛 =
2𝐼𝑚𝑖𝑛

𝑊𝑚𝑖𝑛
   (8)  
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2.4.3 Resistance verification 

2.4.3.1 Shear resistance 

Direct analysis of the forces acting on the beam will render the maximum design shear 

force 𝑉𝐸𝑑. This design value at each cross-section must never be greater than the design 

shear resistance 𝑉𝑐,𝑅𝑑, thus 𝑉𝐸𝑑 ≤ 𝑉𝑐,𝑅𝑑 (7) [3, eq. (7.18)]. As to the calculation of the 

design shear resistance, the approach will vary depending on the method of analysis.  

 

For plastic design, 𝑉𝑐,𝑅𝑑 is then regarded as the design plastic shear resistance 𝑉𝑝𝑙,𝑅𝑑 and 

takes the form of: 

  𝑉𝑝𝑙,𝑅𝑑 =
𝐴𝑣 · 𝑓𝑦

√3 · 𝛾𝑀0

      (9)  

where 𝐴𝑣 is the shear area (see Appendix C for its adequate calculation), 𝑓𝑦 is 

the yield strength and 𝛾𝑀0 is the partial safety factor (see Table B3 in Appendix 

B). [3, eq. (7.19)] 

In the case of elastic design, to verify the design shear resistance in equation 7 the fol-

lowing criterion [3, eq. (7.20a,b)]: 

  𝜏𝐸𝑑 =
𝑉𝐸𝑑 · 𝑄

𝐼 · 𝑡
≤

𝑓𝑦

√3 · 𝛾𝑀0

 (10)  

being 𝜏𝐸𝑑 the tangential shear stress, 𝑄 the first moment of the area above the 

examined point on the cross-section, 𝐼 the moment of inertia of the whole cross-

section and 𝑡 the thickness at the examined point. 

When the shear force is acting on a beam, in the event of the design shear force 𝑉𝐸𝑑 be-

ing less than half of the plastic shear resistance 𝑉𝑝𝑙,𝑅𝑑 (as in 𝑉𝑒𝑑 < 0.5 𝑉𝑝𝑙,𝑅𝑑) then its 

effect on the moment resistance is to be neglected unless if detected that the shear buck-

ling reduces the resistance of the section (see Bending Resistance section). Otherwise, 

the reduced moment resistance should be based on reduced yield strength, 𝑓𝑦,𝑟𝑒𝑑, ob-

tained as [3, eq. (7.26-7.27a)]: 

𝑓𝑦,𝑟𝑒𝑑 = (1 − [
2 · 𝑉𝐸𝑑

𝑉𝑝𝑙,𝑅𝑑
− 1]

2

) · 𝑓𝑦    (11)  
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2.4.3.2 Bending resistance 

As with the shear resistance, the design value of the bending moment, 𝑀𝐸𝑑, must satisfy 

the condition at each cross-section of 𝑀𝐸𝑑 ≤ 𝑀𝑐,𝑅𝑑 (11) [3, eq. (7.16a)]. The moment 

capacity 𝑀𝑐,𝑅𝑑 can be determined, depending on each class, according to Table 5. 

In the event of shear buckling reducing the resistance of the section, the reduced design 

plastic resistance moment 𝑀𝑦,𝑉,𝑅𝑑 can be obtained, alternatively [3, eq. (7.28)], as: 

    𝑀𝑦,𝑉,𝑅𝑑 = (𝑊𝑝𝑙,𝑦 − [
2 · 𝑉𝐸𝑑

𝑉𝑝𝑙,𝑅𝑑
− 1]

2
𝐴𝑤

2

4 · 𝑡𝑤
) ·

𝑓𝑦

𝛾𝑀0
  (12)  

 being 𝐴𝑤 the area of the web cross-section. 

2.4.3.3 Buckling resistance 

When a beam is either properly restrained or has a certain type of cross-section, such as 

square or circular hollow sections, they are not very susceptible to lateral-torsional 

buckling by default [3, p. 190]. Happen the beam to fail these conditions, verification 

against the phenomenon is required. Thus, it must be guaranteed that 𝑀𝐸𝑑 ≤ 𝑀𝑏,𝑅𝑑 

(12)[3, eq. (7.29)] being 𝑀𝐸𝑑 the design value of the moment and 𝑀𝑏,𝑅𝑑 the design 

buckling resistance moment, which can be defined as [3, eq. (7.30)]: 

  𝑀𝑏,𝑅𝑑 = 𝜒𝐿𝑇 · 𝑊𝑦 ·
𝑓𝑦

𝛾𝑀1
              (13)  

where 𝜒𝐿𝑇 is the reduction factor for lateral-torsional buckling, 𝑊𝑦 the class ap-

propriate section modulus and 𝛾𝑀1 the safety coefficient (see Table C2 in Ap-

pendix C). 

As to the calculation of the reduction factor 𝜒𝐿𝑇, two procedures can be applied: the 

general approach, or a more refined approach for doubly symmetrical I- / H-shaped pro-

files. 

1. General Approach 

The reduction factor is given by the following expression [3, eq. (7.31)]: 
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𝜒𝐿𝑇 =
1

𝜙𝐿𝑇 + √𝜙𝐿𝑇
2 − �̅�𝐿𝑇

2

    being    𝜒𝐿𝑇 ≤ 1      (14)
 

The term  𝜙𝐿𝑇 being defined as [3, eq. (7.32)]: 

                𝜙𝐿𝑇 = 0.5 · [1 + 𝛼𝐿𝑇(�̅�𝐿𝑇 − 0.2) + �̅�𝐿𝑇
2 ]                                         (15)  

where 𝛼𝐿𝑇 is the imperfection factor corresponding to the appropriate 

buckling curve [3, p. 191] obtained as detailed in Table 7. 

And the relative slenderness for lateral-torsional buckling �̅�𝐿𝑇 being defined 

as [3, (eq. 7.33)]: 

                    �̅�𝐿𝑇 = √
𝑊𝑦 · 𝑓𝑦

𝑀𝑐𝑟
                                (16)  

where 𝑀𝑐𝑟 is the elastic critical moment for lateral-torsional buckling 

based on gross cross-sectional properties (see Equation (20)) [3, p. 191]. 

2. Method for I- / H- Shaped Profiles 

The reduction factor is given by the following expression [3, eq. 7.34]: 

𝜒𝐿𝑇 =
1

𝜙𝐿𝑇 + √𝜙𝐿𝑇
2 − 0.75 · �̅�𝐿𝑇

2

    being    𝜒𝐿𝑇 ≤ 1 and  𝜒𝐿𝑇 ≤ (1 �̅�𝐿𝑇⁄ )
2
   (17)

 

The term  𝜙𝐿𝑇 being defined as [3, eq. 7.35]: 

      𝜙𝐿𝑇 = 0.5 · [1 + 𝛼𝐿𝑇(�̅�𝐿𝑇 − 0.4) + 0.75 · �̅�𝐿𝑇
2 ]                              (18)  

And the relative slenderness defined as Equation (16). 

If considering the moment distribution between the lateral restraints of the member, 

a factor 𝑓 can be applied to the reduction factor as 𝜒𝐿𝑇/𝑓 [3, p. 193], defining the 

term 𝑓 according to [2] as: 

       𝑓 = 1 − 0.5(1 − 𝑘𝑐) [1 − 2(�̅�𝐿𝑇 − 0.8)
2
]    being  𝑓 ≤ 1             (19)  
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 Table 7. Recommended values for lateral torsional buckling curves. Adapted from [3, Tables 7.2-7.4]. 

Stability curve a b c d 

𝛼𝐿𝑇 0.21 0.34 0.49 0.76 

GENERAL APPROACH: 

Cross-section Limit Stability curve 

Rolled I-sections 
ℎ/𝑏 ≤ 2 a 

ℎ/𝑏 > 2 b 

Welded I-sections 
ℎ/𝑏 ≤ 2 c 

ℎ/𝑏 > 2 d 

Other cross-sections − d 

METHOD FOR I-/H-SHAPED PROFILES 

Cross-section Limit Stability curve 

Rolled I-sections 
ℎ/𝑏 ≤ 2 b 

ℎ/𝑏 > 2 c 

Welded I-sections 
ℎ/𝑏 ≤ 2 c 

ℎ/𝑏 > 2 d 

 

where 𝑘𝑐 is a correction factor depending on the moment distribution as 

according to Figure 4 [3, Tab. 7.5]. 

Figure 4. Correction factors 𝒌𝒄. [3, Table 7.5] 
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The elastic critical moment 𝑀𝑐𝑟 can be calculated as [2, Annex F]: 

𝑀𝑐𝑟 = 𝐶1

𝜋2𝐸𝐼𝑧
(𝑘𝑧𝐿)2

· {[√(
𝑘𝑧

𝑘𝑤
)
2 𝐼𝑤

𝐼𝑧
+

(𝑘𝑧𝐿)2𝐺𝐼𝑡
𝜋2𝐸𝐼𝑧

+ (𝐶2𝑧𝑔 − 𝐶3𝑧𝑗)
2
 ] − (𝐶2𝑧𝑔 − 𝐶3𝑧𝑗)}      (20) 

where 𝐶1, 𝐶2, 𝐶3 are bending moment diagram shape-dependant coefficients, 𝑘𝑤 and 

𝑘𝑧 are the effective length factors that deal with warping end restraint and rotation, 

𝑧𝑔 is the distance between the load application point and the shear centre or neutral 

axis and 𝑧𝑗 is an asymmetry parameter [3, Eq. (7.39)]. 

For further calculation details for either the elastic critical moment or its parameters, 

refer to [3, pp. 193-199].  

2.4.4 Members in compression 

For the case of members working predominantly in compression, as is the case of col-

umns, it is necessary to assess its column buckling available strength (𝑁𝑏,𝑅𝑑) to deter-

mine the safety of the element. 

The first step after the correct classification of the cross-section according to its axial 

loading is to determine the elastic critical buckling load (𝑁𝑐𝑟) [3, Eq. (6.3)] about both 

its strong and weak axes as follows: 

      𝑁𝑐𝑟 =
𝜋2𝐸𝐼

𝐿𝑜
2 

                              (21)  

where 𝐿𝑜 stands for the unbraced member length along the studied axis.  

Once the elastic critical buckling stress has been determined, the relative slenderness �̅� 

[3, Eq. (6.26)] of each of the member’s axes can be evaluated as: 

      �̅� = √
𝐴 · 𝑓𝑦

𝑁𝑐𝑟 
                              (22)  

Note: For class 4 sections, 𝐴𝑒𝑓𝑓 [3, pp. 116,117] is to be used instead of 𝐴. 
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Using Table 8 the stability curve of the section is obtained alongside an imperfection 

factor 𝛼: 

Table 8. Stability curve and imperfection factor in compression. Adapted from [3, Table 6.3a] and [2, Table 6.1]. 

Stability curve a0 a b c d 

𝛼 0.13 0.21 0.34 0.49 0.76 

Hot-rolled I sections: 

Limit Axis 

Stability curve 

S 460 Other steels 

ℎ 𝑏⁄ > 1.2 

𝑡𝑓 ≤ 40 𝑚𝑚 y-y a0 a 

z-z a0 b 

40 𝑚𝑚 ≤ 𝑡𝑓 ≤ 100 𝑚𝑚 
y-y a b 

z-z a c 

ℎ 𝑏⁄ ≤ 1.2 𝑡𝑓 ≤ 100 𝑚𝑚 
y-y a b 

z-z a c 

𝑡𝑓 > 100 𝑚𝑚 
y-y c d 

z-z c d 

 

Being the stability curve correctly classified, a reduction factor 𝜒 can be calculated as 

previously formulated in Equations 14 and 15. Thus, with that reduction factor an 

available column buckling strength 𝑁𝑏,𝑅𝑑 value can be obtained as follows: 

      𝑁𝑏,𝑅𝑑 = 𝜒 · 𝐴
𝑓𝑦

𝑦𝑀1 
                              (23)  

Note: For class 4 sections, 𝐴𝑒𝑓𝑓 [3, pp. 116,117] is to be used instead of 𝐴. 

Safety is then verified when both conditions 𝑁𝑐𝑟 > 𝑁𝐸𝑑  (24) and 𝑁𝑏 > 𝑁𝐸𝑑(25) are 

true for the member’s weakest axis.  

It is important to note that the buckling effect (thus, the verification of 𝑁𝑏) can be ne-

glected if either �̅� ≤ 0.2 (26) or 𝑁𝐸𝑑 𝑁𝑐𝑟⁄ ≤ 0.04 (27) happens to be true. 
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Figure 5. Beam design according to European standards flow chart. (Jordi Mata Garcia, 2021) 

Figure 6. Members under compression to European standards flow chart. (Jordi Mata Garcia, 2021) 
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3 METHOD 

The method to study the applications of the diverse analytic techniques reviewed in the 

previous chapter will be as follows: 

1. A scenario will be proposed and the possible solutions suggested accordingly.  

2. The traditional method of analyses will be conducted to determine the design 

values affecting the structure such as shear forces, moments, stresses, among 

many others.  

3. Then, regulations established in the European standards on how structural design 

should be conducted within the European Union will be applied to each structur-

al component to determine the ultimate safety of the structure. 

4. Each structure will then be designed and analysed using computer software. 

Main results will be compared and studied concerning the individual suitability 

of each method in the specified scenario. 

5. An estimation of the most suitable solution will be conducted, and discussion 

will be made on how to improve each design and on what factors could contrib-

ute to the selection of one solution over another. 

 

3.1 Scenario proposal 

The following scenario is considered: 

• A structure is needed to allow pedestrians to cross over a gap, sized 30 meters 

long and 10 meters deep. Thus, the required structure is a bridge. 

• The safety measures concerning pedestrian bridge loads [5] indicate that a pe-

destrian bridge must hold a total live load of 4 𝑘𝑁/𝑚2. The dead and resulting 

total load will be calculated and the profiles readjusted through simulation. 

• There are no constraints concerning the number of columns required, their 

placement or the distance. They will be adapted according to the bridge design 

specifications. 

• A common bridge deck will be used for all bridges, consisting of three platforms 

sized 10 𝑚 × 4 𝑚. Each platform will be composed of three evenly spaced lon-
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gitudinal supporting beams, while the girders will be placed according to the 

support placement requirements. 

• Beam cross-sections will be restrained to I-shaped beams for all the beams pre-

sent in the structure, while its dimensions will depend entirely on the safety con-

ditions established by the Eurocode 3 analyses.  

• Structural reinforcement will be ignored by reason of pure beam analysis. Fas-

teners/bolts and welded joints will be assumed as perfect with higher resistance 

to failing than the beam members. 

3.2 Proposed solutions and initial analyses 

Three different structures are suggested to tackle the given scenario each of them requir-

ing a different approach to be analysed: simply supported beam bridge, simple cantile-

ver bridge and truss bridge. 

3.2.1 Bridge deck design 

The bridge deck used by all the different bridge designs consist of a thin 10 𝑚 ×

4 𝑚 metal plate to serve as a surface for the live load, three longitudinal beams of 10 𝑚 

length that will carry the main weight of the thin plate and two or three 4 𝑚 long beams 

to act as girders on each end and placed below the beams depending on the situation.  

 

This will create a one-way slab system [1, p. 58] that 

will distribute the load as shown in Figure 7 being so 

that the dark grey area will be the load supported by 

the central beam, represented as CD in the figure, and 

the rest of it distributed evenly to the side beams AB 

and EF. It is then observable that the central beam will 

be the critical component from the bridge deck struc-

ture as it will have to support 8 𝑘𝑁/𝑚 while the side 

beams will support half the amount. 

 

 

Figure 7. Weight distribution on a one-

way slab system. Adapted from [1, fig.2-

11(b)] 
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Thus, the central beam can be represented as: 

 

 

 

 

 

 

The maximum design shear force 𝑉𝑒𝑑 and moment 𝑀𝑒𝑑 can then be calculated as  𝑉𝑒𝑑 =

8𝑘𝑁 𝑚⁄  ·10 𝑚

2
= 40 𝑘𝑁 and 𝑀𝑒𝑑 =

8𝑘𝑁 𝑚⁄  ·(10 𝑚)2

8
= 100 𝑘𝑁 · 𝑚.  

 

According to the aforementioned one-way slab system, it is manifest that the shear and 

moment forces acting on the side beams will be half of those acting on the central beam.  

 

Like so, the girder beams could be represented as: 

 

 

 

 

 

 

 

 

Which will produce a maximum shear of 𝑉𝑒𝑑 = 40 𝑘𝑁 and moment of 𝑀𝑒𝑑 = 40 𝑘𝑁 ·

𝑚 on the beam. Despite this direct analysis not being accurate for every bridge model as 

it will depend on the column placement, it is the worst-case scenario when assuming 

evenly spaced supports.   

Figure 10. Bridge deck 3D design. Dimensions in meters. (Jordi Mata Garcia, 2021) 

Figure 8. Deck’s central beam ideal representation. (Jordi Mata Garcia, 2021) 

Figure 9. Deck girder-beam ideal representation. (Jordi Mata Garcia, 2021) 
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3.2.2 Simply supported bridge 

On an initial investigation and due to the deck spans being 10 𝑚 long, the most logical 

column placement is at the union of said spans thus resulting in two-column joints as 

depicted in Figure 11.  

At each column joint, there are then different possibilities concerning the number of 

supporting members. Being the deck light material-wise due to it being a pedestrian 

bridge it is safe to assume that both the environmental forces and the live loads travers-

ing it will create a considerable rocking motion effect on the platform. In consequence, 

a single column system is not recommended as it will be exposed to sudden unexpected 

bending forces that may cause the beam to suddenly fail, hence a double-column system 

is the next best option cost-effective wise since it will provide enough stability to com-

pensate the bending effort without compromising the stability of the structure. Its 

placement, nevertheless, will be on the edges of the light and dark grey areas depicted in 

Figure 7 (at 1 𝑚 from the side edge of the deck) for a more even distribution of the act-

ing forces.  

The compressive force acting on each of the columns will then be each of the reactions 

on the girder beam, which due to symmetry are both of 40 𝑘𝑁. 

  

Figure 11. Simply supported bridge representation. (Jordi Mata Garcia, 2021) 
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3.2.3 Simple cantilever bridge 

Despite most of the cantilever bridges being built with the help of trusses to adequately 

distribute and balance the loads, on a span of 30 𝑚 that is very ineffective since the 

space required by both the support structures and the suspended middle part are very 

large. Therefore, a simple cantilever structure will be used: 

As can be seen from Figure 12,  the structure is in fact a double cantilever, each of the 

side loads balancing each other. 

This structure offers the possibility of a single column base 

at the cost of the column beams taking not only pure com-

pressive force as in the simply supported bridge but also 

bending stress created by the cantilever beam situation pro-

duced once the force is divided. Assuming again a double-

column system, the 40 𝑘𝑁 received from the girder beam 

will be divided as shown in Figure 13, rendering that 𝐹𝑐 =

35.78 𝑘𝑁 and 𝐹𝑏 = 17.89 𝑘𝑁, the latter creating a bending 

moment of 200 𝑘𝑁 · 𝑚 on the beam. 

  

Figure 12. Simple cantilever bridge representation. (Jordi Mata Garcia, 2021) 

Figure 13. Cantilever column 

forces. (Jordi Mata Garcia, 2021) 
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Figure 15. Pratt truss bridge design with forces. Red is compression, blue is tension. (Jordi Mata Garcia, 2020) 

3.2.4 Truss bridge 

Truss bridges are likely one of the preferred options when it comes to short gaps due to 

their ease of assembly and their weight-carrying capabilities without the need for sup-

ports. 

Despite the many different truss bridge designs, the Pratt truss was the one chosen for 

the initial design due to the critical components in the bridge being purely in compres-

sion and the possibility of below-deck clearance to keep things in the simplest of ways. 

The bridge will then be divided into 6 sections, two of them being triangular sections at 

each end of the bridge and 5 𝑚 × 5 𝑚 square sections for the middle four sections with 

diagonal supports as described in Figure 14. 

The reason for choosing squared sections is that having 45° angles on the diagonal 

beams help minimise the forces in both tension and compression members. Since modi-

fying that angle decreases the forces in either the tension or compression members 

while increasing the opposite, the most optimal design to have the structure based on 

members under compression yet keeping it minimal is the chosen 45° angle. 

Breaking down the forces inside the design following the traditional analysis results in: 

Figure 14. Pratt truss bridge design. (Jordi Mata Garcia, 2020) 
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As observed in Figure 15, most of the longest members of the structure are kept under 

tensile load. This is beneficial as beams are prone to buckle under compressive forces, 

an effect that gets increased dramatically fast with the length of the member. Thus, upon 

initial inspection, the critical components to be studied will either be the end diagonal 

members under 169.7 𝑘𝑁 of compressive force or the top members enduring 216 𝑘𝑁 of 

compressive force.  

It is important to note that this calculation is made assuming that the total load of 

4 𝑘𝑁/𝑚2 is distributed evenly between each side of the truss and then acting solely on 

the joints. With the help of COMSOL software, it is possible to evaluate the effects of 

an evenly distributed load of 8 𝑘𝑁/𝑚 on the half truss structure analysed in Figure 15, 

observing that all the forces detailed in the figure get reduced by about 15%. For the 

sake of assuming the worst-case scenario, the forces detailed in Figure 13 will be taken 

as the ones acting in the structure. 

3.2.5 Failure analysis applied to the critical components 

According to the traditional calculations, the maximum bending stress 𝜎𝑚𝑎𝑥 [7, Eq. (6-

12)] can be calculated according to: 

      𝜎𝑚𝑎𝑥 =
𝑀𝐸𝑑 · 𝑐

𝐼
                                                                                                         (28)      

where c is the distance from the neutral axis to the outermost side on the bending 

axis on the cross-section. 

Similarly, the maximum shear stress 𝜏𝑚𝑎𝑥 caused by the shear force 𝑉𝐸𝑑 [7, Eq. (7-3)] is 

obtained as follows: 

    𝜏𝑚𝑎𝑥 =
𝑉 · 𝑄𝑚𝑎𝑥

𝐼 · 𝑡
                             (29)       

where 𝑄𝑚𝑎𝑥 is the maximum first moment of inertia of the cross-section. 

 

Note: all the calculations will be made with the use of an Excel sheet where all the re-

quired calculations have been automated depending on loads, boundary conditions, 

cross-section profiles and steel category. Refer to Appendix E for more information. 
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3.2.5.1 Bridge deck – Central Beam 

According to the values obtained in section 3.2.1 and using Equations 28 and 29, there 

is a possibility of evaluating the impact that 𝑀𝐸𝑑 and 𝑉𝐸𝑑 may have on the I-beam cross-

section according to the IPE standards in terms of bending and shear stress based on a 

traditional stress analysis as shown in Table 9. It is easily observable that the limiting 

stress is the bending stress, which is an expected outcome when having a lengthy simply 

supported beam. 

Table 9. Profile - stresses based on the traditional analysis. (Jordi Mata Garcia, 2021) 

Profile IPE220 IPE240 IPE270 IPE300 IPE330 

𝝈𝒎𝒂𝒙 [𝑴𝑷𝒂] 396.83 308.33 233.16 179.51 140.19 

𝝉𝒎𝒂𝒙 [𝑴𝑷𝒂] 42.90 37.18 31.15 26.18 22.53 

 

There are many different steel categories depending mostly on its yielding stress, rang-

ing from 235 𝑀𝑃𝑎 up to 450 𝑀𝑃𝑎. For the sake of simplicity, the lesser yielding stress 

steel (S 235) will be assumed thus establishing the material’s yielding stress at 

235 𝑀𝑃𝑎. 

That assumption establishes, then, that IPE270 is the smallest profile that can be used 

since the maximum stress that it endures is barely below the yielding stress. If a certain 

safety margin is to be supposed, IPE330 is the next safest option since it is below 75% 

that of the yielding stress of the material. 

However, when the maximum permitted deflection 𝛿𝑚𝑎𝑥 obtained from Figure 3 is 

compared to the limit condition deflection caused by a uniform distributed load on the 

beam 𝛿𝐿𝑖𝑚 as in Table 6: 

        
𝛿𝐿𝑖𝑚𝐼𝑃𝐸330

𝛿𝑀𝑎𝑥𝐼𝑃𝐸330

≤ 1;       
𝛿𝐿𝑖𝑚𝐼𝑃𝐸330

𝛿𝑀𝑎𝑥𝐼𝑃𝐸330

=

5
384 ·

𝑊 · 𝐿4

𝐸 · 𝐼𝑦

𝐿/400
= 1.69                                                                                                          

 

The safety condition is failed; thus a different profile is needed. The smallest profile to 

satisfy that condition is the IPE400, hence the analysis will proceed with it. 

Having it classified as a Class 1 cross-section the plastic analysis can be carried out on 

its own without any reduction affecting its resistance. 
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Through Equation 9 and Table 5 it is obtained that the design plastic shear resistance is 

𝑉𝑐,𝑅𝑑𝐼𝑃𝐸400
= 579.21 𝑘𝑁 and the moment capacity 𝑀𝑐,𝑅𝑑𝐼𝑃𝐸400

= 307.15 𝑘𝑁 · 𝑚. Both 

values being bigger than the design values, it is confirmed that the beam will retain its 

full plastic capacities with ease. 

As per the elastic critical moment, knowing that it is a simply supported beam with free 

ends and with a uniform distributed load applied on the top flange of the beam, it is ob-

tained through Equation 20 that 𝑀𝑐𝑟𝐼𝑃𝐸400
= 107.85 𝑘𝑁 · 𝑚. That value is greater than 

the design moment value 𝑀𝐸𝑑 proving that the beam is indeed resistant to elastic defor-

mation. 

Finally, for the buckling resistance verification of the beam, there are two alternatives as 

specified in section “2.3.3.3 – Buckling resistance”: the method for I-shaped profiles or 

the general approach. If the method for I-shaped profiles is used, Equation 13 renders 

that 𝑀𝑏,𝑅𝑑𝐼𝑃𝐸400
= 100 𝑘𝑁 · 𝑚. Despite that being deemed as safe per the method, when 

using the general approach it is obtained that 𝑀𝑏,𝑅𝑑𝐼𝑃𝐸400
= 86.5 𝑘𝑁 · 𝑚, making it fail. 

This does not explicitly mean that the beam is unsafe as it fulfils the analysis dedicated 

exclusively for its profile shape. Yet, to guarantee maximum safety in the most critical 

component, the IPE450 profile will be chosen as the definitive profile shape for all the 

beams present in the bridge deck component. 

3.2.5.2 Simply supported bridge – Column 

The main threat to a member that endures compressive forces, such as columns and pil-

lars, is buckling failure. As per the traditional analysis, the elastic critical buckling stress 

𝑁𝑐𝑟 can be obtained through Equation 21 while applying a certain effective length factor 

to the length of the member depending on the boundary conditions.  

To serve as an example, a cantilevered beam would have a factor of 𝐾 = 2. Using said 

values and knowing the column would sustain an axial load of 𝑁𝐸𝑑 = 40 𝑘𝑁, an 

IPE160 profile can endure a buckling force of 𝑁𝑐𝑟𝐼𝑃𝐸160
= 45 𝑘𝑁 in its strong axis mak-

ing it a good candidate to a reasonable extent.  
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Nonetheless, if proceeded with the Eurocode 3 safety conditions it is revealed through 

Equation 23 that this profile can only offer a total column strength of 𝑁𝑏,𝑅𝑑𝐼𝑃𝐸160
=

13.38 𝑘𝑁, making it inadequate for safety.  

The smallest profile that can offer an available column strength so that 𝑁𝑏,𝑅𝑑 ≥ 𝑁𝐸𝑑 is 

an IPE240, with a total amount of 𝑁𝑏,𝑅𝑑𝐼𝑃𝐸240
= 54.09 𝑘𝑁. 

3.2.5.3 Simple cantilever bridge – Column 

As in the previous situation, the column will withstand a vertical force coming from the 

girder of 𝐹 = 40 𝑘𝑁, yet as described in section “3.2.3 – Simple cantilever bridge” that 

force is divided into two components: an axial load of 𝑁𝐸𝑑 = 35.78 𝑘𝑁 and a bending 

point load of 𝑃 = 17.89 𝑘𝑁, the latter creating a shear force of 𝑉𝐸𝑑 = 17.89 𝑘𝑁 and a 

bending moment of 𝑀𝐸𝑑 = 200 𝑘𝑁 · 𝑚 at the base of the beam. 

For the compressive part, the analysis proceeds in the same fashion as in the previous 

case yet considering that the length of the beam is now 𝐿 = 11.18 𝑚. This agrees with 

the previous analysis, indicating that IPE240 is the smallest profile able to produce an 

available column strength greater than the axial load applied. 

As per the buckling resistance, it is uttermost important to establish the alignment or 

orientation of the beam. If the bending moment happens on the strong axis y-y, the re-

sistance of the beam will be several times higher than if the bending moment takes plac-

es along the weak axis z-z.  

Just on the grounds of showing an example, the biggest IPE profile IPE600 will have a 

moment capacity of 𝑀𝑐,𝑅𝑑𝐼𝑃𝐸600
= 825.32 𝑘𝑁 · 𝑚 on its strong axis but only of 

𝑀𝑐,𝑅𝑑𝐼𝑃𝐸600
= 114.12 𝑘𝑁 · 𝑚 on its weak axis, making it unsuitable to take the design 

moment of the beam. Similarly, the maximum deflection in the beam in its strong axis 

will be 𝛿𝑀𝑎𝑥 = 0.0431 𝑚 just under the limit deflection value 𝛿𝐿𝑖𝑚 = 0.0447, mean-

while on its weak axis could reach 𝛿𝑀𝑎𝑥 = 1.18 𝑚. 

Based on the maximum deflection of the beam, the only suitable profile is the IPE600, 

which will prove to be a suitable candidate by having a buckling resistance of 

𝑀𝑏,𝑅𝑑𝐼𝑃𝐸600
= 589.72 𝑘𝑁 · 𝑚. As observable, the limiting factor in this critical compo-

nent is the deflection endured due to the bending moment more than the moment itself. 
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3.2.5.4 Truss Bridge – Members under compression 

In the case of the truss bridge, there are two possible critical components: 

1. Horizontal member: 𝑁𝐸𝑑1
= 216 𝑘𝑁, 𝐿𝑜1

= 5 𝑚. 

2. Diagonal member: 𝑁𝐸𝑑2
= 169.7 𝑘𝑁, 𝐿𝑜2

= 7.071 𝑚. 

For case number 1, the smallest profile that can endure 𝑁𝐸𝑑1
 is IPE270 with an available 

column strength of 𝑁𝑏,𝑅𝑑1
= 282.61 𝑘𝑁.  

For case number 2, the smallest profile that can endure 𝑁𝐸𝑑2
 is IPE300 with an available 

column strength of 𝑁𝑏,𝑅𝑑1
= 214.67 𝑘𝑁.  

As predicted, the diagonal members are the critical components in truss bridges. Thus, 

the IPE300 profile will be the one used for the beams that make up the bridge. 

 

3.2.6 Summary of beam profile selection according to Eurocode 3 

Bridge deck:      IPE450. 

Simply supported bridge column:   IPE240. 

Simple cantilever bridge column:   IPE600. 

Truss bridge members:   IPE300. 
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3.3 COMSOL Methodology 

The COMSOL analyses will be performed using the Structural Mechanics module ad-

don. 

A 3D stationary study will be performed on a multi-physics interface composed of a 

beam interface to act as the beam skeleton of the structure and a shell interface to act as 

the thin plate that carries the load applied to the structure. This will enable the “Mul-

tiphysics” interaction analysis, where “Shell-Beam” connections can be established over 

the shared edges of the beams and the thin plate with an offset established at half the 

height of the beam to indicate that the load of the thin plate is applied on the top flange 

of the beam. 

In the study, it is very important to establish the correct orientation of the cross sections 

as the structures are designed according to the specifications of the I-beam profiles and 

using their strong axis. A wrong orientation may result in weaker structures. 

As per the simulation of the deck beam interactions, a symmetry physic is applied to the 

joint between the longitudinal beams using axis 3 as the symmetry plane normal. Since 

a free end physic behaviour cannot be applied as the software does not accept an easy 

implantation of two beams resting on the same girder section, the symmetry physics al-

low the beams not to be continuous and thus creating wrong bending moments.  

As a final note, since the software does not allow a roller support as a standard support 

system, a “prescribed displacement” fixture is applied to one end of the bridge allowing 

the displacement only in the longitudinal direction of the beam to create the roller sup-

port effect.  
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4 RESULTS 

All analyses were performed with an Extra-fine meshing to guarantee accurate results. 

4.1 Bridge deck 

An initial analysis using COMSOL standard of the critical component with an IPE450 

cross-section profile under an edge load of 8𝑘𝑁/𝑚 with a pinned near end and roller-

supported on the far end rendering 𝜎𝑀𝑎𝑥 = 70𝑀𝑃𝑎, 𝜏𝑀𝑎𝑥 = 10.54 𝑀𝑃𝑎 and a deflec-

tion of 𝛿𝑀𝑎𝑥 = 15.63 𝑚𝑚, agreeing greatly with the results obtained in section 3.2.1 – 

Bridge deck design taking into consideration the cross-sectional properties of the beam.  

When analysing the whole bridge deck, a thin plate of 10 𝑚𝑚 of the same steel S235 

material will be used on top of the beams to simulate the beam flooring. This approach 

is not real since, in a real-life application, the deck would be a corrugated plate of very 

light metal, concrete or even a sandwich layered metal to serve as the base for the 

pavement, yet the weight carried by the plate to the beams is enough to produce a realis-

tic dead load. 

Nevertheless, when the whole deck is simulated taking into consideration the weight of 

the component members the values in the same critical member are modified, rendering 

a maximum deflection of 𝛿𝑀𝑎𝑥 = 9.90 𝑚𝑚, a maximum bending of 𝑀𝑀𝑎𝑥 = 65.7 𝑘𝑁 ·

𝑚 and a maximum shear force of 𝑉𝑀𝑎𝑥 = 19.73 𝑘𝑁. Upon inspecting the stresses in the 

same element, a slight increase is appreciated in the normal stress appreciated where 

𝜎𝑀𝑎𝑥 = 76.13𝑀𝑃𝑎 meanwhile, on the other hand, the shear stress halved its value 

for 𝜏𝑀𝑎𝑥 = 5.30 𝑀𝑃𝑎. This is due to not only the effect of gravity on the members but 

also the interaction between the members creating an axial load in the members.  

Also, as seen in the same Figure as the natural deflection of the plate also creates torsion 

in the side members as depicted in Figure 16, generating a lateral displacement of 

10 𝑚𝑚. This will create some warping stress on the side members, represented through 

the first principal stress in Figure 17. It can be observable in Figures 18 (Normal Stress) 

and 19 (von Mises stress), though, that the central beam is still the critical component. 
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Figure 16. Bridge deck - Torsional moment analysis in COMSOL. (Jordi Mata Garcia, 2021) 

Figure 17. Bridge deck – first principal stress analysis in COMSOL (Jordi Mata Garcia, 2021). 
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Figure 19. Bridge deck - von Mises stress analysis in COMSOL (Jordi Mata Garcia, 2021). 

Figure 18. Bridge deck - Normal stress analysis in COMSOL (Jordi Mata Garcia, 2021). 
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4.2 Simple bridge 

The simulation of an individual support beam shows an evenly spread axial force load 

equal to the input thus adding no information to the situation.  

In an ideal situation, due to the even load from both sides as the spans are both equal in 

shape and load the only force the column will endure is a vertical load as seen in Figure 

20. In a more realistic approach, small lateral bending can occur due to the live load 

crossing the bridge. To simulate such a situation, the bridge structure can be simulated 

having the central span with a slightly higher load so each column section has to bend 

and warp, as seen in Figure 21.  

The structure shows no big change, except on an increase of the von Mises stress espe-

cially on the joints of the side beams, indicating the shear stress to be the main cause of 

possible failure. The central beam seems to remain stable, most likely due to the whole 

deck structure balancing its stresses out. The appearance of such a small torsion moment 

in the column section indicates that the structure is very stable despite the live load loca-

tion. 

 

 

 

 

 

 

 

 

 

 
Figure 20. Simply supported bridge - whole structure von Mises stress analysis with equal loads in COMSOL. De-

formation scaled by 150x. (Jordi Mata Garcia, 2021) 
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There is an increase, though, in the axial load sustained by the columns due to the con-

sideration of the dead load of the structure itself. The increase is, though, not substan-

tial, and the now 86 𝑘𝑁 are easily sustained by the strong axis of the column, which has 

an actual strength capacity of around 760 𝑘𝑁. The weak axis of the column would only 

sustain the possible rocking of the deck and could be easily addressed through the addi-

tion of a cement structure around the beam, bracing along the column section or increas-

ing the cross-section size on the beam. Nonetheless, the profile will stay the same. 

 

  

Figure 21. Bridge deck - whole structure von Mises stress analysis with middle-span load increased by 1.5x in COM-

SOL. Deformation scaled by 150x. (Jordi Mata Garcia, 2021) 

Figure 22. Simply supported bridge. (Jordi Mata Garcia, 2021) 
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4.3 Simple cantilever bridge 

In a similar way as to the simply supported bridge, the addition of gravity increases the 

axial load in the support section of the bridge. In this instance, though, the much bigger 

cross-section takes the change with little to no effect. 

It is also observable, as shown in Figure 23, that the deck structure and support pinning 

at the “cantilevered” end of the column prevents most of the bending caused in the col-

umn which was the critical reason for the choosing of the IPE600 cross-section profile. 

It could be optimised and reduced according to the simulation inputs; still, it is wisest to 

stick to the Eurocode 3 safety measures, thus the chosen profile will stay. 

 

  

Figure 24. Simple cantilever bridge. (Jordi Mata Garcia, 2021) 

Figure 23. Simple cantilever bridge - whole structure von Mises stress analysis with equal loads. Deformation scaled 

by 200x. (Jordi Mata Garcia, 2021) 
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Figure 26. Truss bridge. (Jordi Mata Garcia, 2021) 

4.4 Truss bridge 

Due to the effect of gravity, it becomes apparent that the critical component of the truss 

structure has morphed from the diagonal starting element to the middle section top 

beam as seen in Figure 25. This is due to the effect of gravity pushing all the forces 

more to the centre. It is also remarkable that all the components under the heaviest stress 

are the members in compression, thus proving this bridge to be very adequate for the 

initial purpose of this analysis. 

The axial load acting on the central beam has been increased from 216 𝑘𝑁 to 268 𝑘𝑁, 

yet the beam’s available strength is 393 𝑘𝑁 thus providing more than enough room for 

that change to happen without compromising the integrity of the bridge. 

 

  

Figure 25. Truss bridge von Mises analysis in COMSOL. (Jordi Mata Garcia, 2021) 
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4.5 Result comparison on minimum beam profiles 

Table 10. Result comparison on minimum beam profiles between Eurocode 3 and COMSOL. 

Eurocode 3 IPE Max Stress Factor of Safety 

Bridge deck – Central beam IPE450 76.1 𝑀𝑃𝑎 3.1 

Simply supported bridge - Column IPE240 82 𝑀𝑃𝑎 2.8 

Simple cantilever bridge - Column IPE600 13.3 𝑀𝑃𝑎 17.7 

Truss – Critical beam IPE300 50.6 𝑀𝑃𝑎 3.1 

COMSOL    

Bridge deck – Central beam IPE450 76.1 𝑀𝑃𝑎 3.1 

Simply supported bridge - Column IPE300 33.5 𝑀𝑃𝑎 7.0 

Simple cantilever bridge - Column IPE450 47.6 𝑀𝑃𝑎 4.94 

Truss – Critical beam IPE300 50.6 𝑀𝑃𝑎 3.1 

 

5 DISCUSSION 

5.1 Limitations 

The findings of these studies have to be seen in the light of some limitations. The soft-

ware tools used for the analyses were licensed as student version, thus removing many 

of the software capabilities. In the case of the SolidWorks software, the student version 

only includes very basic simulation tools where assemblies could not be analysed and 

supports could only be fixed, hence the entirety of the structure could only be analysed 

by incorporating it into a single combined part. This created many issues with the mesh-

ing at the intersection of the beams due to their filleted I shape that could only be solved 

by simplifying the joints as a “block”, thus creating small interferences in the produc-

tion of the result. This also resulted in extra time used only in the refining of the struc-

ture to avoid the meshing process taking excessive long times due to the software being 

unable to specify what parts of the structure were causing problems since it could only 

refer to the entire combined body.  
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Furthermore, SolidWorks could only produce von Mises stress and displacement anal-

yses on the designated structures. This, despite providing a great deal of information, 

was a setback since most of the times the reaction between elements and moments pro-

duced in their different axes were needed to be able to confirm the correct simulation or 

to address some of the potential issues. 

Fortunately, due to the combined capabilities of COMSOL and SolidWorks, the struc-

tures could be simplified enough, as its individual required components analysed to ob-

tain an adequate idea of the critical component’s behaviour.  

Still, it is difficult to establish the real impact on the whole combined structure as only 

estimations can be done on the propagating forces due to some lacking features in both 

software applications due to their licensing. 

Concerning a more refined and accurate bridge selection, further analyses had to be 

considered concerning mode analysis. These analyses are very defined for the bridge 

structure type and would require a study that goes beyond the limits of this document as 

to the resistance of the structure to resonating frequencies and step excitation, the type 

of fastening and joints between members, amongst many others. The study is con-

strained to beam structural analysis and structural interaction between them. 

5.2 Bridge deck 

The analyses revealed the forces drawn from the initial analysis to be greater than those 

present in the beam once in the structure. Thus, even though the possibility of choosing 

a smaller profile accordingly, the IPE450 is the safest profile to choose to ensure the 

structure’s proper stability.  

Stability could be further improved by adding smaller beams in-between the main 

beams and specially girders to reduce the amount of torsion and bending taking place in 

the structure. That could help to further reduce the size of the main profiles, yet the 

weight of the bridge would increase exponentially. For the sake of simplicity, the design 

of the deck will remain as discussed. 

The total weight of the bridge deck is 6398.12 𝑘𝑔, using a total of 0.82 𝑚3of steel.  
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5.3 Simply supported bridge 

From the combination of analyses, there can be a discussion about the columns being 

able to safely support the final combined load. According to a strict interpretation of the 

Eurocode 3 safety analysis, the columns are in fact not able to withstand the axial load 

safely as the weak axis has an available strength of 54 𝑘𝑁, almost 30 𝑘𝑁 less than the 

actual axial load.  

The discussion is, then, what effects to take into consideration. As per the assumptions 

made, no increase in the profile is needed as there is no sideways rocking thus the only 

rocking sustained by the structure is placed on the strong axis. In a real-life application, 

the column would be reinforced to ensure stability or entirely replaced by a reinforced 

concrete structure as it is cheaper and reliable in this simple bridge applications.  

In conclusion, if the safety condition is applied the beam should be replaced by an 

IPE300 beam to withstand the new axial load. Taking this profile as the final choice, 

each column would weigh 422.41 𝑘𝑔, not including joint and base structures. 

The total final weight of the simply supported bridge is 20884 𝑘𝑔 of 𝑆235 steel. 

5.4 Simple cantilever bridge 

In opposition to the simply supported bridge, the discussion would concern the possible 

reduction of the column profile. By understanding the actual behaviour of the beam and 

applying the Eurocode 3 standards, the profile will then be changed to an IPE450, hence 

resulting in an individual column weight of 845.2 𝑘𝑔. 

The total final weight of the simple cantilever bridge is 22575.16 𝑘𝑔 of 𝑆235 steel. 

5.5 Truss bridge 

The total volume of steel used by the truss bridge is 3.59 𝑚3, resulting in a total of 

28181.5 𝑘𝑔.  
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6 CONCLUSIONS 

At first glance, the most cost-effective bridge option is the simply supported bridge, as 

even with the increased size of its column cross-section weights barely 20 tonnes, mean-

ing cheapest materials. When compared to the cantilever bridge it does not show big 

flaws or differences other than the axial load reduction concerning the column section 

due to them being half the size in comparison and the placement of the base of the col-

umns, which would make the bridges suitable for different scenarios in which there is 

an obstacle of any sort that forces the columns to be based only in the centre of the gap 

or anywhere but the centre. 

The truss bridge clears the need for supports in the gap, which states why was it a very 

popular choice when having to cross deep gaps or bodies of water. It is also very robust, 

and the best-prepared choice to withstand transversal rocking motions. Still, it being as 

heavy can induce some problems on the base sections at the beginning and ending sec-

tion of the bridge, making it unsuitable in the presence of not stable terrain, as observa-

ble by the analysis in Figure 25. When compared to 21 and 23, it is observable that the 

first two bridges have little to no load at the bridge entry and exit bases. 

In conclusion, the lack of structural reasons other than best suitability for the required 

scenario proves the Eurocode 3 standard codebook to be an extremely powerful tool to 

design safe and lasting structures, as there was little to no need of changing the compo-

nents specifications once the verifications were applied to the critical components after 

the finite element analyses were produced.  

The COMSOL software tool was extremely useful in order to determine the interaction 

between the different elements on the structure. For example, in the case of the bridge 

deck it is very difficult to determine the extent of the torsion moment created due to the 

thin plate bending under the load and deforming the side beams. Thanks to COMSOL 

that warping can be quantized and properly evaluated as to whether the members can 

safely take those moments or not and to further optimise the structural members to be 

scored in an adequate range of safety as observed in Table 10.  
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APPENDIX A  

Fixed-End Moments Table 

 

  



 

 

APPENDIX B 

Design properties of IPE profiles according to Eurocode 3 

 

  

Figure B1 & B2. Properties of IPE cross-sections and steel material. [3, Table 1.1] 



 

 

  

Figure B3. [6] 



 

 

APPENDIX C 

Shear Areas 

• Rolled I- and H- shaped sections, with load parallel to the web: 

𝐴𝑣 = 𝐴 − 2𝑏𝑡𝑓 + (𝑡𝑤 + 2𝑟)𝑡𝑓 

Rolled channel sections, with load parallel to the web: 

𝐴𝑣 = 𝐴 − 2𝑏𝑡𝑓 + (𝑡𝑤 + 𝑟)𝑡𝑓 

• Rolled T-shaped section, with load parallel to the web: 

𝐴𝑣 = 𝐴 − 𝑏𝑡𝑓 + (𝑡𝑤 + 2𝑟) 𝑡𝑓 2⁄  

• Welded T-shaped section, with load parallel to the web: 

𝐴𝑣 = 𝑡𝑤(ℎ − 𝑡𝑓 2⁄ ) 

• Welded I-, H-shaped and box sections, with load parallel to the web: 

𝐴𝑣 = 𝜂 ∑(ℎ𝑤𝑡𝑤) 

• Welded I-, H-shaped, channel and box sections, with load parallel to the flanges: 

𝐴𝑣 = 𝐴 − ∑(ℎ𝑤𝑡𝑤) 

• Rolled rectangular hollow sections of uniform thickness with load parallel to the 

depth: 

𝐴𝑣 = 𝐴 · ℎ (𝑏 + ℎ⁄ ) 

• Rolled rectangular hollow sections of uniform thickness with load parallel to the 

width: 

𝐴𝑣 = 𝐴 · 𝑏 (𝑏 + ℎ)⁄  

• Circular hollow sections and tubes of uniform thickness: 

𝐴𝑣 = 2𝐴 𝜋⁄  

where 𝐴 is the cross-section area, 𝑏 and ℎ are the overall width and depth, respec-

tively, ℎ𝑤  is the depth of the web, 𝑟 is the root radius, 𝑡 is the thickness (always take 

minimum value in case of not constant web thickness) and subscripts 𝑓 and 𝑤 are 

related to the flange and the web, respectively. Coefficient 𝜂 is defined in EN 1993-

1-5, recommending 𝜂 = 1.2 for S235 to S460 steel grades and 𝜂 = 1.0 for the rest, 

though it can be conservatively assumed equal to unity. [3, pp. 187-188] 



 

 

APPENDIX D 

Excel Spreadsheets 

 

 

 

Figure D1. Eurocode 3 verification spreadsheet for bending with evenly spaced loads. (Jordi Mata Garcia, 2021) 

Figure D2. Eurocode 3 verification spreadsheet for members in compression. (Jordi Mata Garcia, 2021) 



 

 

 

 

 

 

 

 

 

 

Figure D3. Eurocode 3 verification spreadsheet for bending in cantilevered beams. (Jordi Mata Garcia, 2021) 

Figure D4. Truss structure calculator. (Jordi Mata Garcia, 2021) 


