
  

 

 

 

 

 

 

 

 

 

 

 

Evgenii Kucheruk 

 

CODE COVERAGE EFFECTIVENESS IN CONTINUOUS INTEGRATION OF QT 
FRAMEWORK AND PRODUCTS 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODE COVERAGE EFFECTIVENESS IN CONTINUOUS INTEGRATION OF QT 
FRAMEWORK AND PRODUCTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evgenii Kucheruk 
Bachelor's Thesis 
Spring 2021 

         Information Technology 
Oulu University of Applied Sciences



  

3 

ABSTRACT 

Oulu University of Applied Sciences 
Degree Programme in Information Technology 
 

 
Author(s): Evgenii Kucheruk 
Title of Bachelor's Thesis: Code Coverage Effectiveness in Continuous Integration of Qt 
Framework and Products. 
Supervisor(s): Kari Jyrkkä 
Term and year of completion: Spring 2021 Number of pages: 43 
 

 
This Bachelor's thesis explores the effectiveness, importance, and implementation of the 
automated software checking using code coverage of Qt framework and products. The thesis is a 
continuation of company-oriented projects, including initial preparations such as getting code 
coverage results manually for the different framework versions (baseline) and fixing system 
environment problems for the operating systems.  
 
The primary purpose of the thesis is to automate code coverage procedures. Thus, it will be easy 
for The Qt Company to track how patches and releases impact code coverage results in general. 
Knowing the code coverage results is essential for The Qt Company because higher coverage 
shows that the product sustainability improves and helps with marketing purposes. 
 
As a result of company-oriented projects, it was clear that knowing trends of code coverage and 
measuring it manually helped teams inside the company keep an eye on the changes and impact 
before the actual release of the framework product happens. 
 
The results of the thesis work provided evidence that increasing code coverage, in general, would 
prevent future bugs and improve the maturity of the product. 
 
 
 
 

Keywords: Code Coverage, Continuous Integration, The Qt Framework, Quality Assurance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

4 

ACKNOWLEDGEMENT 

First and foremost, I would like to thank my supervisors from The Qt Company and OAMK: Asmo 

Saarela and Kari Jyrkkä, respectively: this work would not have been possible without your endless 

support. Their prodigious knowledge and ample experience have encouraged me in all the time of 

my research and daily life. My deepest gratitude extends to The Qt Company colleagues who 

helped me along the way, as well as the professors from OAMK. 

 

Additionally, I would like to thank my dearest friends whom I met years before and during my 

studies. Thank you for supporting me. It is my pleasure to know each one of you. 

 

To my family and the love of my life: thank you for your endorsement and having faith in me. There 

are no words that can describe my gratitude and love towards you. 



  

5 

CONTENTS 

1 INTRODUCTION ...........................................................................................................................7  

2 CODE COVERAGE .......................................................................................................................9 

3 CONTINUOUS INTEGRATION SYSTEM ARCHITECTURE ................................................... 10 

4 IMPLEMENTATION PLAN  ........................................................................................................ 12 

5 WEEKLY REPORTS .................................................................................................................. 17 

5.1 Week 24 .......................................................................................................................... 18 

5.2 Week 25 .......................................................................................................................... 19 

5.3 Week 26 .......................................................................................................................... 21 

5.4 Week 27 .......................................................................................................................... 24 

5.5 Week 28 .......................................................................................................................... 25 

5.6 Week 29-31 ..................................................................................................................... 27 

5.7 Week 32 .......................................................................................................................... 29 

5.8 Week 33-34 ..................................................................................................................... 30 

5.9 Week 35-37 ..................................................................................................................... 33 

5.10 Week 38 .......................................................................................................................... 35 

5.11 Week 39-41 ..................................................................................................................... 37 

5.12 Week 42-44 ..................................................................................................................... 38 

6 CONCLUSION ............................................................................................................................ 40 

REFERENCES .................................................................................................................................. 41 

 

 

 

 

 

 

 

 

 



  

6 

GLOSSARY 

 

LCOV A graphical front-end coverage testing tool for gcov. It collects gcov data for 

multiple source files and creates HTML pages containing the source code 

annotated with coverage information. It also adds overview pages for easy 

navigation within the file structure. (3) 

GCС (GNU Compiler Collection) – is a compiler system produced by the GNU Project 

supporting various programming languages. GCC is a key component of the GNU 

toolchain and the standard compiler for most projects related to GNU and Linux. 

(4) 

G++ (GNU C++ Compiler), The C++ compiler. (5) 

GCOV A test coverage program. It is used in concert with GCC to analyze programs to 

help create more efficient, faster running code. (6) 

FrogLogic 

Coco 

 

A cross-platform and multi-language code coverage tool. Automatic source code 

instrumentation is used to measure test coverage of statements, branches, and 

conditions. (7) 

qmake a utility that automates the generation of makefiles. Qmake generates a Makefile 

based on the information in a project file. (8) 

CMake An open-source, cross-platform family of tools designed to build, test, and package 

software. CMake is a build-system generator. (9) 

CI in this thesis, referred to as the "Continuous integration team" of The Qt Company. 

Coin in this thesis, referred to as the "Continuous integration system" of The Qt 

Company. 

 



  

7 

1 INTRODUCTION 

The purpose of this diary-based thesis is to show what tasks and challenges are happening weekly 

inside The Qt Company. The main target is to implement an automated code coverage system. 

However, since the work is done inside the research and development area, it is not possible to 

choose only one topic or goal because priorities might change daily and other tasks might become 

more important at the given phase; thus, the diary-based version of the thesis was the only right 

choice due to its flexibility. 

 

The importance of code coverage is hard to underestimate. Generally, code coverage is a measure 

of code that is executed with the tests. Generally, the benefits of using a code coverage tool to 

check your products are: 

 

1. Find out which parts of the code are covered with tests. 

2. Find the parts which are missed/not tested 

3. High code coverage points to a well-written and testable code 

4. High code coverage is crucial to investors (higher the coverage – more trust in the product) 

5. High code coverage matters for some customers (especially if the product is used in the 

areas where safety matters the most). (1) 

 

Keeping track of code coverage can be done manually, however, it takes human hours to build, run 

the tests, and collect the data. Thus, automation is not only crucial to free people from doing that 

but also to track all the changes with all the releases/patches, which manually would take an entire 

day of work to provide the report. 

 

The Qt Company is a global software company based in Espoo, Finland, with a strong presence in 

more than 70 industries and is the leading independent technology behind millions of devices and 

applications. Qt is widely used by major global companies and developers around the globe, which 

is being achieved through its cross-platform software framework. Technologies of The Qt Company 

are being used by approximately one million developers worldwide with a single software code 

across all operating systems, platforms, screen types. From desktops and embedded systems to 

business-critical applications, in-vehicle systems, wearables, and mobile devices connected to the 



  

8 

Internet of Things. (2) For example, high code coverage is important in the automotive industry, 

which requires the highest safety.  



  

9 

2 CODE COVERAGE 

Code coverage is a way of using analytics to get an idea of how well an application was tested (or 

measure a test suite quality). The purpose of software testing, in general, is to improve the quality, 

and code coverage is one of the tools that can lead towards better code. It is, undoubtedly, 

impossible to find all faults in an application and state that there are none. Usually, testing is treated 

as follows: on the one hand, there is a cost of future testing, writing test cases, and on the other 

hand are potential losses of faults in the future. 

 

In the actual case scenario, based on the experience from the different research studies and work-

related tasks, there are controversial statements on whether code coverage is beneficial or not.  

For example, according to the survey, once code coverage was implemented inside the IBM 

Company, it increases test suite quality (15). Another research article states that there is some 

evidence that code coverage works in practice and leads to a positive outcome in terms of quality; 

however, a different approach was used (using mutation testing method) (16). Last but not least, it 

was proven that there is a correlation between statement coverage and a number of bug fixes (17). 

Thus, for the given scenarios, code coverage was proven to be an effective analysis tool. 

 

Nevertheless, it should also be mentioned that, for example, in L. Inozemtseva and R. Holmes's 

study, code coverage does not show a strong correlation with test suite effectiveness (18). 

 

Some works claim that the answer to "is code coverage effective" is dependent on different factors 

and variables (e.g., size of the project) (19). 

 

Summarizing the given statements, it is safe to say that code coverage effectiveness is based on 

various factors: programming language itself, tools that are used to measure code coverage, type 

of code coverage (MC/DC, Branch, Statement, etc.), size of the project and many more different 

things. For The Qt Company, code coverage was chosen as the analyzing tool in addition to the 

variety of different methods of testing.  



  

10 

3  CONTINUOUS INTEGRATION SYSTEM ARCHITECTURE 

The company has implemented a continuous integration system that includes building the given 

module or entire Qt framework and running the tests. However, the implementation of code 

coverage measurements and collecting the data were not part of the automation system. Until now, 

it has been done manually.  

 

To this day, the continuous integration system helps developers and testers schedule a build that 

will be done on a virtual machine (VM) without the need of a user to interact with that (except 

running with the pre-defined parameters). It helps to save time, avert the human factor that can 

cause errors, keep the runs on the pre-defined machines, configurations, and specifications.  

Figure 1 below illustrates the workflow of the continuous integration system.  

 

 

 FIGURE 1. Example process flow. 

 

The process to run is: 

 

1. A user defines the needed parameters, versions, tested OS in the Continuous integration 

system (Coin). 

2. A User schedules the build to start the integration process. 



  

11 

3. Webserver sends a message to a Workitem Factory, which parses the information and 

creates a matching set of workitems to perform all requested tasks, includes creating, 

provisioning and running test/build instructions on the VM. 

4. A Workitem factory sends the workitems to the scheduler to be executed. 

5. A Scheduler requests a suitable VM instance from Open Nebula Hadwarepool (ONHWP) 

6. ONHWP forwards the request to Open Nebula over Open Nebula REST API to create a 

suitable VM. 

7. Open Nebula Controller (ONC) creates a suitable VM. 

8. When VM is created, its address is returned to ONHWP by the ONC. 

9. Scheduler/ONHWP uploads Agent code to create the VM. An agent spawns up and 

registers back to ONHWP on the same connection. 

10. An agent requests a Storage IP address from Nameserver. 

11. An agent stores test/build logs to Storage and any defined build artifacts such as created 

executables, libraries, etc. 

12. Log process is uploaded to the coin website in real-time, so a user can check it while the 

build is going or after the integration passed. 

 

 

The continuous integration system helps the company to build and run the tests of the products. 

Since the process takes several hours to build the framework and run the tests, it is possible to set 

the needed parameters or configurations that need to be tested and check the result in the evening 

without any interference because each step is executed with the code. Moreover, it helps to avoid 

"human-related" factors as, for example, a person could forget to run a certain script. Besides, one 

person can start several builds with different frameworks or configurations at the same time and 

work with another project. 

 

The continuous integration system is certainly helpful in many aspects. However, code coverage 

phase was never included in that.  



  

12 

4 IMPLEMENTATION PLAN 

4.1 Project plan 

As stated before in chapter 1, the main goal of the project is to implement a separate continuous 

integration system that will include the code coverage feature. The plan goes as follows: 

 

1. Implementation of the personal continuous integration system (clone the existing one). 

2. Add the feature that will enable the code coverage. 

3. Code what the feature will do, the correct execution order. 

4. Ensure that builds and tests are running well for every integration. 

5. Create the script to archive the code coverage results and transfer them to the fileserver 

with the timestamp. 

 

The company has a common continuous integration system in which developers can run the 

specific framework version with the given parameters on various platforms. However, in this project, 

it was needed to create a personal system to make changes to the automation. It is essential for 

several reasons: 

 

1. If the changes are needed, the system must be restarted; thus, it may cause problems with 

the running builds. 

2. To save time, builds are not running again for the same configurations but are copied from 

the artifacts from the previous successful runs if the SHA1s are comparable. It is not 

possible to use these because code coverage measurement files are not part of the 

repository. 

3. The build system in general. For precision, code coverage measurements must be done 

at one place for the entire build system (from the parent folder), but it has been done 

separately for simplicity and time. 

 

 Thus, it is necessary to create an environment specifically for the code coverage to not interfere 

with the default procedures. 



  

13 

4.2 Manual process to reproduce 

Before doing the measurement part itself, it is crucial to understand how the builds and tests are 

happening inside the continuous integration system. Thus, the logs of the successful runs would 

be helpful. This process can be divided as follows: 

 

1. Preparation of the machine itself, which include: 

 

1.1. Clone the binaries of the Qt Framework from the git repository. 

1.2. Set up the environment (run the provisioning scripts which will install the needed 

dependencies) 

 

2. Configure the Qt Framework with the needed parameters. This process will change the .pro 

files accordingly to the given configurations (for example: to enable code coverage, "-gcov" 

should be executed as one of the configuration parameters. This parameter applies "-g0 -Wall 

-fprofile-arcs -ftest-coverage" to the CXX_FLAGS). 

3. Build the Qt Framework. 

4. Tests execution. 

5. Start the code coverage execution process, which will include the following steps: 

 

5.1. Run the LCOV from the parent folder to collect the data into one file. 

5.2. "Clear" the file that was produced from the previous step to exclude the unwanted folders, 

files, and unnecessary information. 

5.3. Run the "genhtml" feature to generate the HTML report (One of the way to convert the 

data to the human-readable format) 

 

The explanation of each step: 

 

1. Preparation of the machine. In this part has to be decided which operating system or framework 

needs to be tested. For simplicity and generalization, it was planned to use Ubuntu 18.04, 

which goes perfectly with Qt 5.12.8. This phase requires cloning the repository from git and 

installing LCOV (sudo apt-get install lcov). 

 

1.1. Download the Qt Framework (in this example, it will be downloaded from the git) 



  

14 

1.2. System preparation. Each Qt version (if downloaded from git) with the provisioning scripts 

done by the CI team. The scripts contain all the necessary software and dependencies to 

build Qt. Every script has a number, which shows the order in which they should be 

executed. If the purpose of the given run is to check the code coverage, it is essential to 

check that GCC, G++, and GCOV are using the same version. Otherwise, it will not work 

due to different programming syntax. Figure 2 shows the provisioning scripts for Qt 5.12.8.  

 

 

FIGURE 2. Provisioning scripts for the Qt 5.12.8 (Ubuntu 18.04) 

 

2. Since Qt has dozens of configuration parameters, for precision and repeatability, figure 3 

shows the configuration parameters were used for each run:  

 

 

FIGURE 3. Configuration parameters for the Qt 5.12.8 

 

3. The building is done by running the "make" command after the configuration. At this phase, all 

the source code, as well as tests, are being built. Build can be done with the power of all existing 

cores by providing -jX as the argument, in which X = number of cores. This will speed building 

time significantly. 

4. The test phase implies running the autotests. Figure 4 shows the needed command to start the 

execution of the tests phase.  

 

 

FIGURE 4. Starting the tests for the Qt 5.15.8 



  

15 

 

"make check" runs the tests, "-j1" sets to run the test using a single core (it is needed because 

some tests could not be executed while running them in parallel, which will increase the amount 

of failed or flaky tests up to 10 times). "-i" stands for "ignore errors", thus, tests will continue to 

run even after failed execution. Lastly, ">testslog.info 2>&1" is needed to write logs into the 

"testslog.info" file. This will include passed, failed, skipped, and blacklisted tests.  

5. Now comes the coverage part. The coverage data files are created at the build (files with the 

.gcno postfix) and test (files with the .gcda) phases. The first one contains information to 

reconstruct the basic block graphs and assign source line numbers to blocks. The second file 

contains arc transition counts, value profile counts, and summary information. (10) 

5.1. The next step is to combine the profiling files (.gcno and .gcda) into one (because each 

object file creates .gcno and .gcda files correspondingly). Figure 5 shows how to do so. 

The result of this program is the "reportdata.info" file which holds still raw but combined 

data. 

 

 

FIGURE 5. Combining the profiling files under the qt5 (parent) directory into the 

"reportdata.info" file. 

 

5.2. The next step is to clear all unnecessary and irrelevant files from the report because raw 

data from the previous step also contains code coverage of the system files, tests itself, 

.moc files, etc. To filter the file, the command in Figure 6 needs to be executed:  

 

 

FIGURE 6. Clearing the .info file from the irrelevant data. 

 

5.3. Finally, it needs to be converted from the raw data to the human-readable (HTML in this 

example) format. Figure 7 shows the command that needs to be executed to create the 

HTML report.  

 

  

FIGURE 7. Generation of the HTML report 



  

16 

 

5.4. After the execution, the sample result should look like it is shown in Figure 8. 

 

 

 

FIGURE 8. Example extract from the LCOV code coverage report. 

 

The LCOV tool is helpful because it shows the general information about the code coverage 

and the exact places that were not executed by the tests, and how many times specific parts 

of code were accessed, as shown in Figure 9. The red color states that the code was not 

executed, while the blue background shows that tests could reach that part of the code and 

how many times that part was executed. 

 

 

FIGURE 9. Example detailed code coverage report of the random file. 

4.3 Tool choice for the project 

In this thesis, the tools that are used to collect code coverage data are gcov and FrogLogic CoCo. 

Ideally, the second tool should have been used for the entire project. However, due to incorrect 

output within the massive project (whole Qt 5 Framework), it was decided to use gcov for its 

simplicity (since the provided information was enough and it was used already in the previous 

projects). As for the Qt SafeRenderer and Qt Design Studio, since the project is smaller, it was 

better to use the FrogLogic CoCo tool. This tool is better because it provides an expanded version 

of the report. It is also possible to generate different kinds of code coverage reports that the default 

gcov tool cannot produce (14). 

 



  

17 

In addition to that, FrogLogic CoCo tool uses "source code coverage", while GCOV works on the 

GCC level (binaries). 



  

18 

5 WEEKLY REPORTS 

After the preparation of the plan and showing the manual execution, which is required to get code 

coverage data, the actual work can be started. Each week will contain a summary of the tasks that 

were done. Moreover, it will include findings, problems, and a way to fix them, preparations, and 

other things that might be useful. Since this is a diary-based thesis, some more planning for the 

different projects can be done in the upcoming weeks. 

 



  

19 

5.1 WEEK 24 

Implementation of the continuous integration system has begun. At the initial planning, it was 

decided that the first target system would be Ubuntu 18.04 and the Qt 5.12.8 because it was done 

several times manually. It was planned that before reaching code coverage part, there is a need to 

check that the default process works as intended and without errors. The difference between a 

personal continuous integration system and a default one is that the first one requires running the 

entire module in one place. In contrast, the second one splits the build into the different modules.  

 

Realization plans were as following: 

 

1. Discuss with the CI team about creating a personal, tweakable coin instance. In the future, 

other teams might use this so it will not interfere with the streamlined process. 

2. Prepare the plan for configuration, build, test, gather the data, filter the irrelevant 

information, and transfer it to the fileserver. 

3. Compare the results with the manual runs, ensure that system works well, and data is 

reliable. 

4. Create the script which will install the LCOV tool (not the part of the default provisioning 

scripts) and sets the versions of gcov, GCC, and G++ to match each other. 



  

20 

5.2 WEEK 25 

The week began with the actual implementation of the personal continuous integration system. The 

machine and configurations with the personal credentials were created. However, it operates as 

the default one. Thus, tweaking of the system is required.  

 

As stated before (Chapter 3), the first step is to run everything in the same (parent) folder. Since 

this personal instance is based on the working one, it splits modules automatically. In that case, a 

unique parameter had to be created with the platform instruction configuration. Figure 10 shows 

how the feature was stated 

 

 

FIGURE 10. Adding the code coverage feature to the personal coin instance. 

 

Adding "CODECOVERAGE" as the feature, when executed from the personal Coin instance, runs 

not the default "platformInstruction" but a specially created one. This change will affect only build, 

test, and actual code coverage phases, while the configuration is held by the coin system itself 

since there is a proper way to put them beforehand. 

Ideally, the process should be done as follows: 

 

1. Run "make" to build the Qt Framework itself. There is no need to specify how many cores 

need to be used because the coin initially sets "build (ninja)" flags. There is no need to run 

the provisioning scripts because the coin will take the "tier 2" machine with the provisioning 

pre-installed for the specified version of the Qt Framework. 

2. Run "make check" to run the tests. At that point, since it is done by the coin and logs are 

available online, there is no need to specify forwarding them to the file. Moreover, the "-i" 

argument is irrelevant because the system repeats tests up to 5 times if there was an error 

or a failure in the process. In addition to that, if the code coverage parameter itself causes 

some tests to fail, there is another option on the coin that will not stop the tests from running 

after an unsuccessful run.  

3. Use the LCOV to provide code coverage information as well as filtering the data. 



  

21 

4. Generate the HTML report, transfer that to the server (archived, so it will save the space 

on the HDD. The name of the archive should be the timestamp from the run) 

5. Provide the link to the report at the end of the log file. 



  

22 

5.3 WEEK 26 

Meanwhile, by the request from the different teams, it was decided to switch the priorities to help 

to create the report for the customers with the different versions of the Qt Framework. In addition 

to that, it was requested to help with the code coverage of the Qt Design Studio using the FrogLogic 

code coverage tool. It is different because it provides more information to an end-user, reads not 

only C++ and C code but also the QML.  

 

Creating reports for the customers using different versions is trivial; the only difference is to use a 

newer version of the compiler. The main problem was to update-alternatives, so GCC, G++, and 

GCOV use the same version. The gcov was never used by the Qt before, but it comes as part of 

the GNU Compiler Collection, thus, it was never matched to the latest version, which has to be 

done manually if the different versions of the compiler were installed previously. It is done with the 

command shown in figure 11:  

 

 

FIGURE 11. Changing the gcov version with the update-alternatives. 

 

The last number is the priority or "importance", so the higher the value – the higher priority. 

 

Talking about Qt Design studio, the process is different compared to the GCOV+LCOV coverage. 

The FrogLogic tool is a standalone program with the graphical user interface. While doing the 

company-oriented projects, it was the second goal to measure code coverage using the FrogLogic 

software. The problem was that it was comparable with most of the modules, but others were not 

providing the coverage files properly. Thus, it was decided to postpone the project because it 

requires a lot of manual tweaking. 

 

As it is mentioned above, to enable gcov, it is needed to make changes inside the .pro files 

(changing CXX flags), while for the FrogLogic steps to enable the coverage are: 

 

1. Install the FrogLogic tool itself. It is necessary to have the license server inside the 

environmental variables for verification. 



  

23 

2. Adding COVERAGESCANNER_ARGS and wrappers to the $PATH (Ubuntu) 

3. Clone repository, configure, then run qmake recursively from the qtbase/bin folder with the 

"CONFIG += testcocoon" which will include testcocoon.prf file. For different purposes, it 

might be needed to change the file accordingly. 

4. Build and test as usual. This phase will generate csmes (information needed for the 

coverage measurements) and csexe (results of code execution) files (11). 

5. After tests are finished, Figure 12 shows command needs to be executed to merge all the 
csmes files into one:  
 

 
FIGURE 12. Merge coverage measurements files into one. 
 

6. To combine the data with the results of the code execution, it is required to run the 
command, shown in Figure 13:  
 

  
FIGURE 13. Merge the coverage measurements with the results of code execution. 

 

7. To open the merged file, the "coveragebrowser" command should be used. The sample 

result should look like Figure 14:  

 

 

FIGURE 14. Example output of the coveragebrowser. 

 



  

24 

8. It is also possible to generate the HTML report using coveragebrowser GUI. The result will 

look as shown in figure 15. It is possible to generate different types of reports depends on 

the needs and what was requested. Usually, the most important one would be Line 

coverage since it covers most of the information that customers are looking for, while other 

reports are mostly for the developers to find out which part of the code is not working 

correctly. 

 

 

FIGURE 15. An example of the HTML report using the FrogLogic Code Coverage tool. 

 



  

25 

5.4 WEEK 27 

The necessary part for the Qt Design Studio code coverage was done; however, it might continue 

in the future. 

 

From this week onward, it was requested to produce code coverage reports for the Qt Safe 

Renderer. This is one of the essential modules because it provides a solution for rendering the 

safety-critical information in functional safety applications based on Qt (12). 

 

Thus, it is important that code coverage of the module would be as close to the perfect result as 

possible, which means it is vital to check it after every change is pushed to the repository. The 

prototype of the automated code coverage system was done before. However, it did not cover 

additional modifications to the project. Thus, it was requested to check code coverage for the entire 

module with the most recent update. 

 

After the installation of the QSR project, it was noted that the results are not as great as the nightly 

runs were producing daily. Moreover, some tests were failing, which should not be the case for that 

particular project. After receiving help from the QSR team, two errors were spotted: 

 

1. Default git version did not point to the needed version (fixed by changing to the dev branch) 

2. The .prf file was pointing to the previous branch, which was incorrect. 

 

After fixing them, it was possible to produce the following results, which are reliable: 

 

 

FIGURE 16. An example of the QSR project code coverage report using the FrogLogic Code 

coverage tool. 



  

26 

5.5 WEEK 28 

Some trial runs using the personal continuous integration system were done, but the results were 

far from success. By default, a machine splits the building modules and do them separately, while 

the code coverage case on personal coin build must be done from the one directory (top-level 

build). Figure 17 shows a modular split of the Qt5 integration. 

  

 

FIGURE 17. Coin example modular split. 

 

At this point, it does not matter that different modules are being built properly because the "top-

level" build happens inside the qt/qt5 run, which is failed. For the main qt/qt5 run, the feature 

"CodeCoverage" is enabled. The code that is triggered by this feature is shown in figure 18. 

 

  

FIGURE 18. Python code which triggers with the "CodeCoverage" feature 

 

The continuous integration system does provisioning, preparation of the environment, and 

configuring by itself, so the steps which need to be coded are: 

 

1. Enter the "Source directory". 

2. Run the "make" command to build the entire Qt. 

3. Run "make check" to execute the tests 

4. Run "qsdktest" to fail on purpose because it is not the last step, and the machine needs to 

be accessed to check the logs/failures/change environment and restart the run, etc. 



  

27 

 

However, at this point, failure was not on the 4th step, which is "failure on purpose", but at the test 

phase. Flaky tests most likely caused these errors, but it is not certain now; further investigation 

needs to be done. 

 

The current plan is to achieve a successful integration that includes the rest needed code coverage 

additions and modifications of the code. 



  

28 

5.6 WEEK 29-31 

The given weeks did not move the progress any forward, but it was noticed that failure happens in 

different phases from time to time. The most problematic are the building failures since they are 

the ones that needed to be investigated further while test failures occur even on the default coin 

system.  

 

The default coin system goes folder-by-folder and builds everything in parallel, then combines into 

the artifacts and runs the tests while the personal instance uses one machine to build the entire 

product in one place. That gave an idea to try to split the build phase by modules that did not show 

any success. Getting rid of the building errors was the priority task at that point. And the problem 

was caused by the "-gcov" feature that was enabling the code coverage. Figure 19 shows the errors 

produced in the sample build. 

 

 

FIGURE 19. Sample build errors caused by the gcov. 

 

The figure shows that the first error at the building phase happens because of the "undefined 

reference to '__gcov_exit'". However, that situation does not occur when building the Qt using the 

default CI system or personal virtual machine.  

 

The next logical step was to run the configuration without using the "-gcov" feature and run the 

build. As was expected, no errors at the building phase occurred, but the failure happened at the 

testing phase. That could be either a wrongly configured system, flaky test, or building/configuration 

error. Thus, running the standard build would be the correct way to see what type of errors are 

occurring. 

 



  

29 

However, the project with the implementation of the automated code coverage instance was 

postponed because QSR-related tasks and the feature release of the Qt 6 has taken priority. 

 

A different report was created for the QSR project, which has shown the accurate data which 

developers will use to make the product even better. 



  

30 

5.7 WEEK 32 

The week began with the news about the upcoming Qt 6 release. Since it has become the "number 

one priority", the implementation of the automated code coverage continuous integration system 

was postponed. To begin with, it was decided to generate the report using the following 

configurations: Ubuntu 20.04, qmake, default configuration parameters, and LCOV to convert the 

data to the HTML format. It was also decided that Qt version 5.15.0 would be a baseline to compare 

the results between Qt 6 and Qt 5.15.0.  

 

Even though starting from Qt 6.0, it uses a different building system (CMake), it was decided to 

make the first report using qmake to check the raw comparison. The CI team provided a new 

machine with Ubuntu 20.04, and the next step has been to run the provisioning scripts for that.  

 

Firstly, it was decided to collect the 5.15.0 data. The reason to make it a baseline is to compare the 

following data with some reliable, stable source, and using the previous building system (qmake), 

so that was the target for the company to track changes comparing these two versions. Both Qt 

5.15.0 and Qt 6.0 were using the same machine, the same configurations, environmental variables 

to exclude that differences were caused by the environment itself and not the code. Since the new 

device was used for the given task (Ubuntu 20.04), provisioning scripts had to be executed which 

changed the version of the GCC, G++, and GCOV to 9.3.0 as well as many different installations, 

but this one is the most important. After the provisioning is done, the default routine goes as follows: 

 

1. Configuration of the Qt with the given parameters 

2. Build the Qt. 

3. Run the tests. 

4. Collect code coverage results. 

 

The first three steps went as they should but collecting code coverage results was not successful. 

The only things that were changed comparing to the previous code coverage runs are the Ubuntu 

version and the GCC version. Ubuntu version 20.04 was selected as the primary OS for that task; 

thus, downgrading the GCC version was the only logical way.  



  

31 

5.8 WEEK 33-34 

As the continuation of the previous week, the first thing that was done is to downgrade the version 

of the GCC from 9.3.0 to 9.1.0, which was tested with LCOV before. Since changing the GCC does 

not change the default process of the building and testing (steps to reproduce), the results were 

ready, and data was collected for Qt 5.15.0. The same routine came to the Qt 6.0. However, the 

folder structure changed slightly, and not all the modules were ready for release yet. As a result, 

the data was collected for the essential modules only using qmake as the building tool. The 

comparison between the versions was reported to the development team inside The Qt Company. 

 

One of the developers noted that qmake data is helpful; however, since the company plans to 

change the building system from qmake to CMake, the Qt 6.0 data should be collected using 

CMake.  

 

For CMake, steps are a bit different compared to the standard build using qmake. Since it was the 

first attempt gathering the code coverage data, it was decided to try with a single module first (Qt 

base). A few tries went wrong for the following reasons: 

 

1. The building process is different. At first, the configuration is done, as is shown in figure 

20. Even though it works and provides the output, the configuration should be done with 

CMake file itself. 

 

 

FIGURE 20. The wrong configuration process that was used for the first few attempts to 

build the Qt 6.0. 

 

2. Enabling the code coverage by exporting the CXXFLAGS did not provide the needed 

effect; thus, it must be done manually (will be explained later) 

3. Configuration (using "-cmake") should be done inside the qtbase folder itself (not inside 

the parent folder as it used to be for qmake) 

 

After several unsuccessful attempts, the correct way was found, and the steps to reproduce are: 



  

32 

 

1. Start the configuration with CMake file itself, not the usual way. Figure 21 shows the 

command that needs to be executed. This will create the CMakeCache.txt file and will do 

the configuration according to the given arguments. 

 

  

FIGURE 21. The correct configuration process for the Qt 6.0 using CMake 

 

2. Change the "CMakeCache.txt" file to include the code coverage flags. While running the 

actual build, firstly, this file is checked. If some changes occurred compared to the default 

file, it will re-run the configuration (and save the edited parameters) and then execute the 

building itself. At this stage, configuration flags should look as it is shown in figure 22. 

 

 

FIGURE 22. Changing the CXX flags to enable code coverage of the module. 

 

3. Start the build by running the commands in figure 23. 

 

  

FIGURE 23. Starting the build using CMake. 

 

4. Start the tests by running the "ninja test" command. 

5. Collect the code coverage data using LCOV. 

 

While building and running the tests, no errors occurred, but LCOV could not collect the data 

because CMake uses GCC 9.3.0 still even though the primary GCC version of the machine (which 

was set before) is 9.1.0. From this, to get the code coverage results GCC of the system should 

match the version that it was built with. However, upgrading the GCC back did not have any impact, 



  

33 

and it was decided to try to upgrade the version of the LCOV since the GCC 9.3.0 data is 

incomparable with the LCOV 1.14. 

 

According to the official LCOV website (3), the latest LCOV version is 1.14. Another way to collect 

the data is by using the FrogLogic Code coverage tool.  

 

The FrogLogic tool had some problems with gathering the data as well (it was spotted in the 

different projects earlier while collecting code coverage results for the entire Qt, not the separate 

modules like QSR). This means that LCOV was the only proper way to do so at the moment. 

Although the official version was still 1.14, the Github version for the LCOV 1.15 was released the 

same week 33 (13). 

 

Returning the GCC to 9.3.0, upgrading the LCOV to v.1.15, and re-running the build did not produce 

any error at the start, so the last step is to run LCOV and check if any errors would appear at this 

stage. As it was expected, it helped, and the data for the Qt 6.0, only Qt Base module using CMake 

was collected, filtered, and shown to the developers. 



  

34 

5.9 WEEK 35-37 

A new task was introduced in week 35. Because the Qt 6 release was coming and help with spotting 

building/testing errors was required. Before this stage, the default coin system had only 2 cases of 

the different runs: green – successful integration, red – failed integration. Since week 35, an 

additional parameter was added, which is an "insignificant" integration case using the brown color. 

This feature is helpful since it keeps the integration running even if failures appear during the 

building or testing phase. Thus, the process of finding bugs and failing tests would be more 

straightforward, and they could be reported and fixed as soon as possible. At the first stage, it was 

decided to track Ubuntu 20.04 and openSUSE with the dev. version of the Qt (latest available 

release, Qt 6 Alpha/Beta versions) and 5.15 since these two operating systems and framework 

versions are the most important ones. For each operating system, corresponding Jira tasks were 

created. Each of these tasks is connected to the subtasks (reported bugs) that need to be fixed. 

  

Releasing the Qt 6 was the most important priority at that time, and the effort from most of the 

different teams was crucial for that project. For the insignificant case, the job was to report either 

bugs are appearing during the build phase (P0, blocker, needs to be fixed as soon as possible) or 

bugs during the tests (P1/P2). Figure 24 shows passed and insignificant coin runs. 

 

 

FIGURE 24. Passed and insignificant coin runs. 

 

The insignificant feature was applied only to the Qt 5.15 and Qt 6.0 dev branches so it would not 

affect the previous Qt versions. If the insignificant feature was enabled, but no bugs or errors 

appeared during the build or tests, it will be shown as passed (green), but if the human interaction 

is required to report/check – brown. 

 



  

35 

As a result of the first three weeks with the "insignificant" task, five bugs were reported with the 

connection to the main task of the Ubuntu, two bugs for the QEMU, and much more had JIRA 

tickets already; some were fixed right away. Ideally, all the bugs for the given versions should be 

connected to the main task, which would make the tracking easier and keep the things in one place; 

however, the main goal is to fix them, which is ongoing. This "insignificant" task helps the company 

to make the product even better before the release. Continuation with the task is essential, and that 

someone keeps an eye on the insignificant runs would significantly improve the quality and the 

timing of the future release. 

 



  

36 

5.10 WEEK 38 

As a logical continuation of the week 33-34 task to collect the information for the Qt6 using LCOV 

should be done not only for the QtBase module (even though it is the most important one) but for 

the entire framework. Since the version of the Qt6 is still in pre-alpha, it does not support top-level 

builds, and modules have to be built one-by-one starting from the QtBase. The way to build and 

enable collecting the LCOV data is slightly different from the previous qmake runs. After cloning 

and initialization of the repository, the steps are the same as it has been for the week 33-34 (until 

the test phase). 

 

After the QtBase is ready, the next task is to do the same for all the different modules 

included/ported already to the Qt6 pre-alpha version. QtBase should be done first since all other 

modules are dependent on it. For example, to build the QtDeclarative, the following steps should 

be done: 

 

1. Inside the folder, run the command from figure 25.  

 

 

Figure 25. Command to configure the QtDeclarative module with the parameters used to 

configure the QtBase. 

 

2. To enable code coverage, CXX flags need to be enabled inside the CMakeCache file (the 

steps were explained above). 

3. Initiate the building process. 

 

The only difference is in the first step. After building all the modules, the next step is to execute the 

test, which should be done inside each folder one-by-one with the command "ninja test" and collect 

code coverage information using LCOV, which is the same as it was for Ubuntu 18.04.  

 

As a result, code coverage report for the Qt 6 using CMake was created. Since Qt 6 is different, 

some more modules or additions were added, some modules were deprecated/changed. To see 



  

37 

the actual situation better, it was more efficient to create an excel file to compare the corresponding 

folders or modules. The general information might not be useful since lots of changes happened.  

 

For example, the general code coverage of the entire Qt 6.0 is higher than the Qt 5.15.0. However, 

it does not mean that all of the modules are like that because a different essential module coverage 

might be lower, so this module should be investigated more. 

 

Thus, this information could be valuable for the developers to cover the weak spots of the product. 



  

38 

5.11 WEEK 39-41 

Since the target of the company is to make the first release of the Qt 6 either the same or even 

better in terms of code coverage, the task is to check the future releases (alpha, beta, release 

candidates) and how does code coverage is changing with that. Meanwhile, the work with the 

insignificant coin runs and reporting the bugs was continuing in parallel. Ideally, each release 

should have improved coverage comparing to the previous one. At this point, three code coverage 

reports for the Qt 6 were collected during these three weeks, and the increasing trend was easily 

spotted.  

 

The good thing about insignificant runs and code coverage as the pair is that fixing the insignificant 

failed tests improves the code coverage. On the other hand, a higher coverage of the module could 

lead to fewer failed tests/bugs in the future. Nevertheless, this could be misleading and cause the 

"survivorship bias" since some modules (for example, Qt Quick 3d) are tested not with the auto-

tests but with the Lancelot Graphics Testing. Hence, even though some modules have lower code 

coverage percentages, it is still tested, but differently. 

 

The given weeks mainly included generating code coverage reports which include the most recent 

patches/releases or reporting the insignificant build/test failures. In addition to the Ubuntu and 

SLES, Windows insignificant flag was included. 

 

Even though nothing new happened during these weeks, the routine quality assurance work before 

the release is valuable and helpful. 



  

39 

5.12 WEEK 42-44 

After releasing the first beta version of Qt 6, a significant bug appeared that caused several tests 

to fail and drastically decreased the code coverage percentages. The reported issue was a blocker 

both for the future release and code coverage results in general since the bug was affecting the 

most crucial essential module to have about a 5% decrease in the coverage. The development 

team is responsible for fixing that bug. 

 

Returning to the QSR project, it is much easier to automatize the task since the job is done not by 

the coin job but with the cron task, which triggers the script. Cron is a time-based job scheduler in 

Unix-like computer operating systems that helps run tasks periodically at fixed times, dates, or 

intervals. For the QSR project, a server runs the script that creates a FrogLogic report for the main 

part of the code. Nevertheless, the entire code coverage report should track the changes inside the 

entire structure of the code. The bash script that is triggered by the cronjob is defined as follows: 

 

1. Include the codecoverage.pri file (.pri stands for project include file) to the .pro files. The 

first one (.pri) enables code coverage (by including the feature in the .pro file), the second 

one (.pro) is the building instructions (profile) of the module. Thus, while the build will be 

executed, the coverage will be included as well. This is done for one module inside the 

project and will be extended to all the .pro files inside the root folder of the Qt Safe 

Renderer. 

2. Execute build and tests. 

3. Collect the code coverage data from the parent folder. 

4. Copy the results to the fileserver with the folder name given as the timestamp to distinguish 

the results. 

 

Theoretically, this is how the implementation of the automatization should be done. Still, since the 

gathering of the results does not take as much time as the code coverage data for the entire main 

Qt framework, this could be postponed and done manually. For now, the main tasks are keeping 

an eye on the insignificant coin runs and creating the code coverage report for the newer Qt 6.0 

version after the critical bug would be fixed. On the other hand, helping the QSR project team is 

also vital since, as was stated before, the project is highly code coverage dependent.  

 



  

40 

Besides, Qt 6.0 beta v.1 and v.2 were released at this time. Even though the previously mentioned 

bug has not been fixed yet, the second version of the code coverage data was collected since the 

difference between the alpha and beta releases is significant. Some modules were excluded from 

the main repository and no longer supported, and some structural changes happened. The 

collected information was shown to the developers to do future investigations. 

 

Later in the process, the bug was fixed, but a valuable lesson was learned - a single bug can stop 

the release and drastically reduce code coverage values. After the fix, code coverage results not 

only returned to the previous level but with every beta release the numbers were higher. 



  

41 

6 CONCLUSION 

The main topic of the thesis is code coverage effectiveness. Using the methods and the way of 

showing the code coverage results, it was proven that code coverage data is valuable for the 

company. For example, after gathering the code coverage data for the QSR team, developers could 

easily spot the parts that were not tested that well, and, in addition to that, pointed to a bug that 

was not found before. Different teams also started to use that and improve the maturity and stability 

of the code. The additional purpose of the thesis was to show how code coverage helps to find 

weak spots of the code or how bugs affect the framework in general. From the perspective of the 

company, the results of the project were considered successful and meaningful: it helped to 

increase the test coverage (by finding which parts of the code were not executed by the test cases), 

as well as finding new bugs or finding how bugs were associated with the code coverage data 

(week 42-44). 

  

Even after the thesis, code coverage will take a considerable part of the quality assurance point 

inside the company to prove that the product is functional, well-tested, and checked. For the entire 

framework, gcov tool will be used in the close releases, but for the variability, different 

measurements, and deeper analysis, FrogLogic CoCo is the tool of choice. In the future, it is 

planned to use FrogLogic tool for the entire Qt Framework and automate it. 

 

Even though automation was chosen as the second primary goal initially, since the work was done 

in the RnD area, it was hard to predict which tasks would take priority in a month or two. Thus, the 

content was changing. The diary-based thesis was proven as the best choice for that. In the future, 

automatization can be considered as the task to make an automated code coverage report not only 

for the QSR project but for the entire Qt Framework.  



  

42 

REFERENCES 

1. "10 Reasons Why Code Coverage Matters". Date of retrieval 01.08.2020 

 https://codeburst.io/10-reasons-why-code-coverage-matters-9a6272f224ae 

2. The Qt Company website. Date of retrieval 01.08.2020  

https://qt.io/company 

3. LCOV official website. Date of retrieval 19.11.2020 

http://ltp.sourceforge.net/coverage/lcov.php 

4. GCC Wikipedia page. Date of retrieval 10.12.2020 

https://en.wikipedia.org/wiki/GNU_Compiler_Collection 

5. Using the GNU Compiler Collection (GCC). Date of Retrieval 10.12.2020 

https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/G_002b_002b-and-GCC.html 

6. Introduction to gcov. Date of Retrieval 10.12.2020  

https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/Gcov-Intro.html 

7. FrogLogic website. Date of retrieval 12.12.2020  

https://www.froglogic.com/coco/ 

8. qmake manual. Date of retrieval 12.12.2020 

https://doc.qt.io/qt-5/qmake-manual.html 

9. CMake website. Date of retrieval 12.12.2020 

https://cmake.org/ 

10. Brief Description of gcov Data Files. Date of retrieval 07.06.2020 

https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html 

11. Squish Coco. Instrumentation. Date of retrieval 01.08.2020 

https://doc.froglogic.com/squish-coco/latest/tutorial.html#sec24 

12. Qt Safe Renderer Overview. Date of retrieval 01.08.2020 

https://doc.qt.io/QtSafeRenderer/qtsr-overview.html 

13. Linux-test-project/lcov github page. Date of retrieval 14.08.2020 

https://github.com/linux-test-project/lcov/releases/tag/v1.15 

14. Difference between Squish Coco and gcov/LCOV. Date of retrieval 16.02.2020 

https://www.froglogic.com/coco/faq/#Miscellaneous 

15. P. Piwowarski, M. Ohba and J. Caruso, "Coverage measurement experience during 

function test," Proceedings of 1993 15th International Conference on Software 

Engineering, 1993, pp. 287-301, doi: 10.1109/ICSE.1993.346035. 

https://codeburst.io/10-reasons-why-code-coverage-matters-9a6272f224ae
https://qt.io/company
http://ltp.sourceforge.net/coverage/lcov.php
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/G_002b_002b-and-GCC.html#G_002b_002b-and-GCC
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/Gcov-Intro.html
https://www.froglogic.com/coco/
https://doc.qt.io/qt-5/qmake-manual.html
https://cmake.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html
https://doc.froglogic.com/squish-coco/latest/tutorial.html#sec24
https://doc.qt.io/QtSafeRenderer/qtsr-overview.html
https://github.com/linux-test-project/lcov/releases/tag/v1.15
https://www.froglogic.com/coco/faq/#Miscellaneous


  

43 

16. Code Coverage for Suite Evalutaion by Developers. Date of retrieval 18.04.2021 

https://core.ac.uk/download/pdf/192426648.pdf 

17. I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen, "Can testedness be 

effectively measured?" in FSE, 2016, pp. 547– 558. Date of retrieval 19.04.2021 

18. L. Inozemtseva and R. Holmes, "Coverage is not strongly correlated with test suite 

effectiveness," in ICSE, 2014, pp. 435–445. Date of retrieval 16.04.2021  

19. A. S. Namin and J. H. Andrews, "The influence of size and coverage on test suite 

effectiveness," in Proceedings of the Eighteenth International Symposium on Software 

Testing and Analysis, ser. ISSTA '09. New York, NY, USA: ACM, 2009, pp. 57–68. Date 

of retrieval 16.04.2021 

 

 

https://core.ac.uk/download/pdf/192426648.pdf

