

Use of Procedural Audio in Unity
Eetu Tähtinen

BACHELOR’S THESIS May 2021 Media and Arts Music Production

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in Media and Arts Music Production TÄHTINEN, EETU: Use of Procedural Audio in Unity Bachelor's thesis 54 pages, appendices 2 pages May 2021
The objective of this study was to investigate procedural audio as a sound design tool in Unity. Procedural audio, which means real-time sound synthesis, is put into context with other sound design techniques and compared to those by examining its benefits and disadvantages. The practical part consists of a virtual reality gallery project that dives deeper into techniques of creating sounds using procedural audio and ways of creating ever-changing, unique soundscapes in a non-linear environment. The thesis explores Pure Data, visual programming language for multimedia, that was used to create procedural audio for the virtual reality gallery. Different objects and tools found in Pure Data are thoroughly covered and explained how they can be used for synthesis, waveshaping and alike to achieve complex soundscapes that could be further modified. In the thesis’ practical project, four different rooms created for a virtual reality gallery were taken under inspection on how the procedural audio was created for them and what the steps were to get all the sounds to play in Unity. The thesis provides some general guidelines for creating procedural audio as well as different resources for compiling Pure Data patches to work in different platforms Unity offers.

Key words: procedural audio, sound design, Pure Data, Unity

3

CONTENTS

1 INTRODUCTION .. 5

2 PROCEDURAL AUDIO AS A SOUNG DESIGN TOOL 7

2.1 Procedural audio in the context of other sound techniques 7

2.1.1 Recorded sound ... 7

2.1.2 Sequenced sound ... 8

2.1.3 Synthetic sound .. 9

2.1.4 Generative sound ... 10

2.2 Real-time creation of sounds.. 11

2.2.1 Rules and live input .. 11

2.2.2 Advantages of procedural audio ... 12

2.2.3 Disadvantages of procedural audio 13

3 PROGRAMMING WITH PURE DATA .. 15

3.1 Introduction to Pure Data ... 15

3.2 Common Pure Data objects ... 16

3.3 Building patches ... 16

4 PROCEDURAL AUDIO IN PRACTICE ... 18

4.1 Project: Kaleidoscopers – First steps ... 18

4.1.1 Analysing the required sounds ... 18

4.1.2 Determining the most important sound attributes 19

4.1.3 Devising a strategy to procedurally create the sounds 20

4.2 Project: Kaleidoscopers – Building patches with Pure Data 23

4.2.1 Aramis’s room... 24

4.2.2 Misa’s room .. 25

4.2.3 Minh’s room .. 27

4.2.4 Anna’s room ... 31

4.3 Project: Kaleidoscopers – Importing patches into Unity 44

4.3.1 Compiling Pure Data patches into C source code 44

4.3.2 Building Unity plugins ... 46

5 DISCUSSION ... 50

REFERENCES .. 51

APPENDICES .. 53

Appendix 1. VR-Gallery Procedural Audio Compilation 53

Appendix 2. Bubble Sound Comparison ... 54

4

GLOSSARY

ADSR Stands for Attack, Decay, Sustain and Release. A

common type of audio envelope used in music
production

BPM Stands for Beats Per Minute. Tells the number how
many beats are played in a minute

Float number Number with decimal point
Granularity Very detailed, small part sound consists of
Linear media Type of multimedia that has distinct beginning and end

e.g., a movie
MIDI Short for Musical Instrument Digital Interface. Standard

music technology protocol that connects digital music
instruments

Non-linear media Type of multimedia that allows interaction with the
consumer e.g., a videogame

QA Quality assurance. Tests programs and products to
ensure their quality meets the requirements

5

1 INTRODUCTION

Sound has played important role in games and other non-linear media from the
very early days as developers and players have constantly been looking for new
ways to provide information to the player through audio to deepen the
immersion to games. From the first bleeps and bloops, sounds in games have
gone through massive steps to get to the point where they are now. While there
have been various types of audio recording and implementing methods over the
years, use of recorded sound has held its place as the industry standard for a
long time. Its ease of use, accessibility and gentle learning curve has made it a
valid option in nearly every linear and non-linear media. Even though it has its
advantages, the ever-growing expectations among consumers require new
ways to create content that offers unique, interesting, and interactive
soundscapes in the highly contested industry.

To fill the expectations, sound designers may have many different goals when
trying to create an experience using sound. These goals could be anything from
adding audible feedback such as clicking sound when the user presses a button
to creating immersion with a believable, emotionally involving experience where
the user can forget about the outside world. There are various kind of sound
design methods that are used to create different types of sounds from music
and ambience sounds to sound effects, all of which help to achieve the set
goals. All the methods and techniques have their own advantages and while
there is no one correct way to create sounds, the flexibility of procedural audio
allows to both build sounds from scratch and make use of sound engine inside
the digital experience, creating exciting possibilities. (Hillerson 2014, 14).

Instead of using recorded audio material, procedural audio uses real-time sound
synthesis which can generate its own sound that is ever-changing. If a sound of
many different explosions is needed, one way could be to record tons of stuff,
or, instead use complex model of an explosion in sound-generation application
that allows to create infinite number of variations. This method could go even
further where the model reacts to different parameters controlling the explosion
sound, creating even more variation than a library full of explosion samples.

6

(Hillerson 2014, 14). Creating sounds with this type of procedural approach is
based on using the most compact set of rules where large amounts of audio
data is created from a few rules. Procedurally creating audio real-time means
little data storage which makes extremely small memory footprint, thus making it
more performant. Even though procedural audio has its advantages, some
might argue that synthetic sound is not as realistic as real-world sounds. (Knox
2019).

7

2 PROCEDURAL AUDIO AS A SOUNG DESIGN TOOL

2.1 Procedural audio in the context of other sound techniques

Instead of using recorded audio material, procedural audio uses real-time sound
synthesis which can generate its own sound that is ever-changing. It is often
mistaken for procedural sound design which relies entirely on recorded sound
and is not capable of generating sound on its own, unlike procedural audio is
(Crawford 2018). Both techniques apply to computer generated sound effects
and music which have applications in interactive audio systems, particularly in
video games, but in other non-linear media as well (Farnell 2007, 1). Procedural
audio has been around from the very beginning of game development, in fact it
used to be the only way to create sounds as the consoles’ hardware were fairly

primitive, thus creation of sounds was merely limited to what the hardware was
capable of producing (Crawford 2018).

To understand better the concept of procedural audio, it is needed to consider it
in the context of other sound techniques and in the terms of recorded,
sequenced, interactive, synthetic, generative and AI sound (Farnell 2007, 1).
The following section will look at these other sound design techniques and how
they compare to procedural audio in how they are used and what makes them
different.

2.1.1 Recorded sound

Traditional audio technology is based on recording where real-world sounds are
captured with a microphone and further mixed and processed into a finished
form (Farnell 2007, 1). Whether it is a piece of music or sound effect, this type
of audio is linear, meaning it has a set duration with fixed beginning and end
point. The sound is always the same regarding its content and duration,
meaning it has always the same elements in the same order at the same point
in time and space (Nil 2019). Even though there are many ways to manipulate
the sound such as pitch and playback speed, it does not change the linear

8

nature of pre-recorded audio material. Procedural audio is different in the way
that it is created real-time during the experience. As it does not have a set
predefined duration, it is possible to create and manipulate the audio content
real-time by changing order and pitch or timbre of its elements however desired,
making it non-linear. (Nil 2019.)

Recorded audio consists of data where the values are a time sequence of
amplitudes, usually measured about 44,000 times per second. A common
technology, sampling, is when these samples are played back from start to
finish in the same order and rate in which they were recorded. In recorded
sounds, there is always a distinction between the data and the device or
program that replays it. Good example would be MP3’s which are thought as
songs and MP3 players as the devices that turn the data back into sounds,
reproducing the recorded sound. Procedural audio, however, may not need to
store any data at all, in fact, it can be thought of as just the program which
contains the data and means to create audio. (Farnell 2007, 1.)

2.1.2 Sequenced sound

Sequenced sound can be thought as of something between recorded sound
and interactive sound. Whereas recorded sound is strictly linear, sequenced
sound has elements and possibilities for interactivity. This method is widely
used in music production today for various genres like hip-hop, rock and pop
where the sounds themselves are recorded clips of individual instruments or
vocal lines, which are layered together in a sequencer. (Farnell 2007, 2). The
sequencer allows to re-arrange the recorded instruments or vocals and play
them back in a fixed order, giving it some form of interactivity (Picture 1).

When talking about non-linear media e.g., games, the player can somewhat
change the music’s or sound’s structure through their actions within the game.

This has been part of games from the very early days like in Super Mario Bros
(Nintendo 1985) where the tempo increases as time runs out on the player. In-
game actions can trigger cues that could change the order and timings of the

9

musical elements and thus has interactive elements to it even though the
sounds themselves are fixed. (Collins 2009, 8–9.)

PICTURE 1. Example of a sequenced sound (Loyola n.d.)

2.1.3 Synthetic sound

When talking about synthetic sound, it means that sound is created entirely from
nothing using equations which convey some functions of time and no other data
is needed. Synthesisers, either by software or hardware, produce audio
waveforms with dynamic shape, spectrum, and amplitude characteristics which
can be used to reproduce real instrument sounds or sound effects, or completely
imaginary ones. Combination of sequencers and synthesisers is mainly used in
techno and dance music but is also used to create anything from ambient sounds
to real-life sounds like rain, wind, or thunder. Through synthesis, it is possible to
create just about anything imaginable as long as equations for certain sounds are
figured out. (Farnell 2007, 3). This type of synthetic sound is the basis for all the
procedural audio.

10

2.1.4 Generative sound

As the name states, generative sound is created through some process that
generates the sound instead of a human composing it. The term itself is
abstract and includes many others like algorithmic, procedural and AI sound, all
of which share the same generative nature and so they are usually talked about
as the same thing. Definition for generative sound usually is that it requires no
input, or the input is given only initial conditions before execution and with
further input, it can alter existing sound or start a new one. If compared to
sequenced composition which is laid out in advance and does not change,
generative composition happens as the program runs. (Farnell 2007, 3.)

Generative sound can be split into few different approaches: stochastic sound,
algorithmic sound, and AI sound. Stochastic sound is based on probabilistic or
statistical rules and often uses random or chaotic data, which is subsequently
filtered, much like in subtractive synthesis where great amounts of data is
present at start which are selectively thrown away to achieve desired sound.
Stochastic sound may be generative or interactive since user input can be used
to alter the parameters of the generating equation or the filters that operate on
the generated data. (Farnell 2007, 4.)

Algorithmic sound refers to a process or system that evolves based on a set of
rules. Unlike in stochastic data, rules usually display some sort of order, e.g.,
based on mathematical functions and numbers that can be used to create
melodies for example. In normal computing algorithms are desired to terminate
as quickly as possible and with least number of steps to return a value, whereas
in algorithmic sound the desired effect is opposite, to keep the algorithm running
as long as possible through its steps. With just few lines of code or characters,
algorithmic sound can define many hours of evolving sound. Like in synthesis,
algorithmic sequencer uses equations that create functions of time, however,
unlike waveforms, they are rarely periodic. Where synthesis is usually about
sounds produced at waveform level under careful control, algorithmic sound is
about the data that is used to control these waveforms in the matter of creating
harmonies and melodies. (Farnell 2007, 4-5.)

11

AI, artificial intelligence, sound is referred to a class of algorithmic methods that
are more complex than the mathematical sequences. All algorithms have
memory to some degree, to store intermediate variables like few of the last
values computed which are usually discarded right away to save memory. The
AI system gains intelligence by learning from new inputs and so the synthesis
process is modified as new experiences occur. As AI sound has extra
knowledge data, some might argue that it breaks the definition of procedural
sound being purely a program. (Farnell 2007, 7.)

2.2 Real-time creation of sounds

Procedural audio and sound design expert, Andy Farnell, stated that “Procedural

audio is non-linear, often synthetic sound, created in real time according to a set
of programmatic rules and live input.” (Farnell 2007, 14). Unlike traditional
recorded audio, procedural audio does not have a set duration with fixed ending,
meaning it is non-linear and to some degree, time independent. Sound is
generated real-time by computers, synthesizers and alike which can be
programmed, enabling to split the audio object into small elements which gives
new opportunities for interactivity that traditional methods do not. (Nil 2019).
Following sections will look through methods of creating sounds real time, as well
as the advantages and disadvantages of them.

2.2.1 Rules and live input

Procedural audio is based on a system which takes input and maps it to some
output following certain, set rules. When talking about games, input could be
regarded as the initial state that can change based on the player actions. It
could represent a physical quantity like velocity or a game state like proximity to
some object or actor (Farnell 2007, 12). The input is passed through a set of
programmatic rules, an algorithm, that is sort of a recipe to define the properties
of the audio object that is created. The properties and behaviours of this created
object can be varied through live input from the user or through an autonomous
system that does not need user input to change. (Nil 2019). After the input is

12

passed through a set of rules, it is mapped to an output which could be either
an audio signal or a trigger for other audio signals (Farnell 2007, 12).

The followed rules can be split into two parts: control structure and synthesis
structure, where some set of control data plays the synthesis structure. One
could think of a piano and its player, where the player is control structure that
basically controls what is played, whereas the piano is the synthesis structure,
creating the sounds (Picture 2). This type of control and synthesis structure
allows for a very high compression ratio where large amounts of audio data is
created from a few rules. This aim to create sound using the most compact set
of rules makes the key difference between purely synthetic and procedural
audio. (Knox 2019.)

PICTURE 2. Visual representation of control structure and synthesis structure
(pngarea n.d.)

2.2.2 Advantages of procedural audio

There are many benefits when it comes to using procedural audio as a part of
sound design in games or other non-linear media. Much of it comes to computer
performance as creating audio on-the-fly means little data storage, saving vast
amount of computer memory (Crawford 2018, Fournel 2012). By using
procedural audio, the need to prepare and record multiple separate sound files is
gone. In traditional sound design methods, the sound files always have the same
audio characteristics when triggered, which makes them repetitive unless

13

multiple iterations of the same sound are made (Nil 2019). Procedural audio,
however, can provide almost infinite number of variations to sound effects with a
minimal memory usage (Fournel 2012.)

Asset management becomes easier when there are not thousands of files that
need to be tagged, edited, or normalised which means faster development after
creating few algorithms to your toolbox. Because of the nature of procedural
sounds, they do not really have beginning and ending like linear audio files have,
which makes them easy to play on a loop. In a practical study by Berrak Nil, it
was found that the procedural approach gave more flexibility when designing
simple air conditioner system with three different speed options for the AC. By
first creating and algorithm, parameters and necessary audio components,
procedural approach gave the opportunity to try different values for different
speeds easily without having to record completely new audio files each time new
speed option was added. (Nil 2019.)

As procedural audio is artificially generated, it can provide great number of
possibilities for interactivity. Audio objects can be split into elements it consists
of, then use their granularity to control various aspects of a sound. Synthesizing
sounds from scratch on the fly gives opportunities for interactivity traditional
methods do not, whether based on generative algorithm or user interaction. (Nil
2019.)

2.2.3 Disadvantages of procedural audio

Like many things, procedural audio has its downsides. As procedural audio saves
vast amount of memory, creating sound real time has its toll on the CPU,
especially when playing several instances concurrently. It is possible to reduce
the CPU cost by using procedural audio only on certain sounds, the ones closer
to the listener or the ones needing more variation. (Fournel 2012). As audio is
created using synthesis, the outcome might not be as realistic when compared to
sounds in reality. Besides lack of realism in certain sounds, the learning curve
with procedural audio is quite steep and coming up with algorithms might be quite
time consuming. (Nil 2019, Fournel 2010).

14

Implementing a procedural audio system can confront a lot of problems with
optimizing and cooperating with other subsystems, such as animation, physics
etc., requiring more interaction between sound designers, game designers,
programmers, and QA’s. Bug testing is a lot simpler when using audio samples

as the number of possible bugs is far less as they do not include such great
amount of input parameters that could cause problems as in procedural
approach. (Fournel 2012.)

There is still a lot of technical and creative issues with procedural audio as it is
still lacking standardised development platform and skilled individuals in the big
picture. Even though there are ways to use procedural audio in games, there is
still no user-friendly middleware or tools to use them with game engines. (Fournel
2012). This might also be due to fear factor where both sound designers and
composers worry about procedural audio replacing them as it can generate its
own sound without requiring any input (Fournel, 2010.)

15

3 PROGRAMMING WITH PURE DATA

3.1 Introduction to Pure Data

Pure Data is a real-time graphical programming environment for audio, video
and graphical processing that is used for composition, audio analysis and sound
effect creation for example. In Pure Data patches are created by connecting
boxes, most basic units of functionality, together into diagrams that are used to
represent the flow of data as well as perform the operations made in the
diagram. As the program itself is always running, there is no separation
between writing the program and running the program. (Flossmanuals n.d.).

While traditional text-based programming can be powerful, it is often found non-
intuitive among many sound- or visual artists. Being a graphical programming
environment, Pure Data can do what the lines of code do by using visual
objects that can be manipulated on-screen. Much like analogue synthesizers
could use patch cables to produce sounds, Pure Data can create new patches
by placing different visual objects on the screen and combining them (Picture
3). These objects can change by connecting them together or sending them
messages to do certain functions. This allows for real-time synthesis meaning
that changes can be made even when the program is running and so being able
to see or hear the results immediately. (Flossmanuals n.d.).

PICTURE 3. Analogue synthesizer patching as equivalent for Pure Data
patches (Moog n.d.)

16

3.2 Common Pure Data objects

Pure Data offers a great variety of visual audio objects than can be used to
manipulate audio. These include different kinds of messages and numbers that
are used for controlling the objects. The practical part will go through a lot of
different objects, but for making everything easier to understand when going
forward, this section will list some of the most important and widely used visual
audio objects (Picture 4).

PICTURE 4. Commonly used visual audio objects in Pure Data

3.3 Building patches

As mentioned, Pure Data is used to manipulate visual objects on screen,
connecting them into a system that produces some desired effect. The visual
objects could be referred to as atoms, all of which have their particular job,

17

whether it is sending messages to other atoms, holding numbers or configuring
and controlling objects. Pure Data file is called a patch and it is a textual data file
containing information how these atoms are connected and configured. When
opening a patch in Pure Data, graphical representation is displayed in its own
window. (Hillerson 2014, 15). When going further with the patches, it is good to
keep in mind that objects with tilde (~) sign in the end mean that they deal with
signals, creating sounds. If the object does not have a tilde sign, it is only used to
pass information or numerical values.

In the patch, atoms can be moved around the screen, connected to each other,
values adjusted and so on. The visual design allows to easily reproduce patches
and understand flow of audio through the system which makes it easier to explain
the different functions happening in the patch than if there was only code to look
at. Learning Pure Data is a great way to learn how to build sounds in general as
the visual programming environment makes it easy to see and understand what
is going on. (Hillerson 2014, 15). To successfully build patches, Pure Data mostly
uses 3 different atoms: Objects, Messages and Numbers.

Objects are the most important building blocks for everything happening in the
patch. On their own, they can already generate sound unlike the other 2. Even
though messages and numbers are used to control these objects, they are not
necessary for the patch to work as objects themselves can include arguments
such as numbers. Messages are used to pass information to the objects, most of
the time being number information, like setting a frequency for an oscillator or
telling an object to start or stop. Even though messages can be widely used to
pass number information to objects, number boxes are better for changing values
on the fly. Messages have predefined numeric values whereas number boxes
can change their value as frequently as desired. Even though there are more to
Pure Data than these 3 atoms, they form the base for everything happening in
the patches.

18

4 PROCEDURAL AUDIO IN PRACTICE

4.1 Project: Kaleidoscopers – First steps

This practical part will demonstrate how I made sounds to virtual reality gallery
using procedural audio in Pure Data. The gallery was made as a degree show
for fine art students’ final tasks. All of them had their ideas on how the rooms

would look like and some ideas what kind of sounds or music they would like. I
was one of two sound designers creating sounds for this gallery that consists of
12 rooms in total, all of which look different and have corresponding
soundscapes. The following sections will present 4 different rooms where the
soundscapes varied from ambient sounds to dance music (Appendix 1).

The virtual gallery was built in Unity so first and foremost I had to find a way to
implement these sounds into the game engine as they could not be played as
audio files due to procedural audio’s generative nature. After trying out couple

different approaches, I found out that the combination of Unity and Pure Data
required least amount of coding to get the sounds working and so I chose Pure
Data to create the sounds. Later, I will explain thoroughly how to combine these
two programs to easily make procedural system work in Unity.

The thesis will go through all the steps for making the sounds and how
everything was planned out on each individual room, however, the following
steps will give better understanding how to approach the creation of procedural
audio in general.

4.1.1 Analysing the required sounds

When trying to recreate sounds, whether the sounds are nature-like e.g., wind,
animals etc. or something more musical like drums, the ideas of sounds must
be broken down to pieces. I will explain more about the individual planning of
each room later and so this section will give more of an overview on how to use
different kind of listening modes to achieve desired sounds.

19

According to Michel Chion, theorist and composer, there are 3 modes of
listening: causal, semantic, and reduced (Chion 1994, 25). To critically analyse
the required sound, one must use a combination of something called causal and
reduced listening. Causal is the most common mode of listening, where the
point is to gather information about the cause or origin of a sound. If source is
not visible this type of listening helps to categorise the source e.g., human,
animal, machine, but also form opinions about personality or character for
example. If the source is visible, it can provide additional information about the
source object e.g., whether a metal can is filled with liquid or if it is empty. (Knox
2019.)

Reduced listening on the other hand focuses on the acoustical traits of a sound,
independent of cause or meaning (Chion 1994, 29). By combining causal and
reduced listening modes, it is possible to identify the source and evaluate
acoustical content and technical quality by focusing on relative balance,
frequency content of elements, timing, etc. One example could be a storm
sound where causal listening allows to break the sound into originating sources
– wind, rain, thunder etc. whereas reduced listening allows to analyse the traits
of the sounds: their loudness, dynamic amplitude variations, noisiness,
harshness and so on. (Knox 2019). This type of critical listening helps to create
the desired sounds, especially if trying to replicate something from real world.

4.1.2 Determining the most important sound attributes

After critically analysing the required sound using causal and reduced listening,
next step is to determine the most important sound attributes or traits in terms of
what contributes most to the characteristics of that sound. I will take bubble
bursting sound for an example, which happens when a surfacing bubble’s

surface breaks. When looking at a frequency content of a single bubble
bursting, the sound consists of low frequency beginning which ramps up to a
higher frequency whereas amplitude slowly rises until the bubble bursts and it
decreases again (Picture 5).

20

PICTURE 5. Visual presentation of amplitude and frequency of a bubble sound

Looking at Picture 5 above, blue colour shows the waveform of the bubble
bursting sound whereas purple colour represents the spectrogram of the same
sound, showing frequency over time instead of amplitude. As seen from the
right side’s frequency scale, the bubble sound starts from around 125Hz and
exponentially increases pitch up to around 1kHz as the bubble bursts. Time
scale on the bottom of the picture shows that everything here happens quite
fast as the whole sound only lasts 0.2 seconds.

This is only one example and so pitch and speed of the sound of course
depends on the size of the bubble and other variables such as liquid elasticity,
pressure, height in water etc. When creating multiple bubbles, many concurrent
low- and high-pitched sounds for big and small bubbles are played in random
timing. (Farnell 2010, 422-423). Using this information allows to proceed to the
last part which is for the actual methods for creating sounds.

4.1.3 Devising a strategy to procedurally create the sounds

Last step is to devise a strategy to create the desired sounds algorithmically
using software like MaxMSP or Pure Data. I will proceed with the bubble
example as the sound attributes that create the sound are covered. The Pure

21

Data patch will consist of forementioned control structure for creating the
bubbles on random intervals as well as synthesis structure to create the bubble
sounds. The model itself tries to replicate the sound file that was examined
before (Appendix 2.)

First thing to look at is the control structure of this patch as it is fairly simple
(Picture 6). Starting from the top there is a toggle-object that can either start or
stop the whole patch. When turned on, it starts a metronome. The metronome
generates a random number from 0 to 199, every 200 milliseconds. The random
number is then passed to an object called moses which outputs only numbers
that are below 100. As the random-object generates numbers from 0-199, the
moses lets through only every second number on average, creating
randomness for the intervals between bubbles.

PICTURE 6. Control structure of bubble sound generator

Synthesis structure is a bit more complicated (Picture 7). Starting from the top
again, there is a bang object which is pretty much the basis for everything
happening in Pure Data. Every time a bang happens, it sends out messages
and actions forward. After a bang there is an amplitude envelope on the left side
of the picture that tries to replicate the waveform that was examined before. It
has a line~ and *~ object which together create an exponential ramp for the
amplitude. The messages line~ receives, make the amplitude go to value of 1,
meaning full amplitude, over a time of 150 milliseconds. It once again creates a
bang with a delay of 160 milliseconds after which the value goes back to 0 over
a time of 40 milliseconds. If thinking about basic ADSR envelope, the attack is
150 milliseconds, after which the sound sustains at the same level for 10
milliseconds and then decays down to 0 over 40 milliseconds. This makes the
whole length of the sound 200 milliseconds or 0.2 seconds, the same as in the
first spectrogram example.

22

PICTURE 7. Synthesis structure of bubble sound generator

Now looking at the middle section, there is the same idea happening, instead
exponential envelope is created for the pitch. It goes to value of 1, meaning
highest pitch over a time of 180 milliseconds. Right after it reaches full pitch the
value goes back to zero so that every time new sound is triggered, it starts from
a low frequency. Once again it goes through line~ and *~ objects to osc~ object
which creates the actual sound. This object generates a sine wave which gets
its frequency from the *~ 1000 object. The section on the right once again
generates a random number between 0-199 and adds +900 to it which is sent
out to the *~ 1000 object, creating some randomness for the frequency of the
bubble sound.

The signal from amplitude envelope is multiplied with pitch envelope by using *~
object which is needed every time when combining 2 signals. The combined
signal then goes to hip~ object which creates a high-pass filter, cutting off
anything below 120Hz. Finally, the whole sound is multiplied by 0.5, halving the
amplitude and then fed to dac~, which outputs the signal. The control structure
and synthesis structure are then combined, creating the bubble generator
(Picture 8).

23

PICTURE 8. The whole structure of bubble sound generator

While this may seem complicated at first, using the forementioned objects can
already create very advanced soundscapes with procedural nature. I will go
through some more objects later on, but these will cover the basics most of the
time.

4.2 Project: Kaleidoscopers – Building patches with Pure Data

This section will go through all the Pure Data patches I made for the VR gallery
with explanations of why I did what I did. I will start off with more simpler
patches and progress towards the advanced patches to make it easier to follow
what is happening.

24

4.2.1 Aramis’s room

For Aramis’s room, he wanted something soft, gentle, and ambient for the
music, so it would not be anything too attention drawing (Picture 9).

PICTURE 9. Screenshot of Aramis’s room

Starting from the top, loadbang object is used to output a ‘bang’ message when

the patch is opened to start everything up. It starts a metronome that generates
a random number from 0 to 15 every 2,5 seconds. This number is passed on to
select object that toggles on a metronome based on which number is
generated. If the generated random number is 0, it starts the leftmost
metronome and if the generated random number is 15 it starts the rightmost
metronome and so on. The second time the same number is randomly
generated, it toggles the metronome off, so all the sounds are not playing at the
same time. This metronome together with a line~ object controls the volume of
a sinewave oscillator that goes up and down on a 5 second span, creating soft
sounds with long attacks and decays.

All the sinewave oscillators have the same idea on how they work, the
difference being they all have different frequencies. Starting from the left,
frequencies rise so that they create notes on D, E, F, G, A, B♭ and C. These
combined create a D minor scale that is played in 2 octaves. All of the
oscillators are combined with a *~ object that multiplies the volume with 0.05,
making the overall level sensible (Picture 10).

25

PICTURE 10. Pure Data patch for Aramis’s room

4.2.2 Misa’s room

Misa did not have any suggestions regarding the sound, but the main idea was
a colourful room with toys that have changeable body parts and so I wanted to
make something creepy and oppressive (Picture 11). The patch is split into two
parts: distorted drone and warm drone. The idea of distorted drone is to have a
lot of randomness in sounds and volume levels whereas warm drone is used to
fill up the empty spaces and give warmness to the sound.

PICTURE 11. Screenshot of Misa’s room

26

Distorted drone once again starts with loadbang that turns on a metronome.
This time the metronome is controlled by a random object that changes the
metronome interval. The metronome connects to a random object that plays 1
of 4 notes. It goes to mtof object which is an easy way to change midi values to
frequencies. The frequencies are then passed on to a phasor~ object, which
works much like osc~ object that was covered before, however, instead of
creating a sinewave, it creates a sawtooth wave. This phasor~ is combined with
another set of phasor~ objects that are played after a randomized delay. The
phasors are pretty much alike, however, the other one has a tiny difference in
the frequency making them sound slightly detuned.

The combined signal is passed on to vcf~ object that creates a resonant band-
pass and low-pass filter. The filter’s center frequency is changed to a random

value between 0 and 399 every 0.7 seconds to give lot of variation to the sound.
Few delwrite~ objects are used to create delays to the signal line which are
later read in the signal by the delread~ objects. Finally, the signal is multiplied
by 0.08 to reduce the volume before outputting the sound.

The ‘warm drone’ part of the patch has a loadbang that starts 2 metronomes,
one with 5 second intervals and the other with 4 second intervals, creating
varying rhythm for the sounds. They both choose randomly from few different
note values that are once again passed through mtof object to phasor~ object
that creates sawtooth wave with changing note. It goes through a lop~ object
that creates a low-pass filter at 100Hz after which the signal is fed onto *~
object and combined with a volume envelope. The volume envelope has the
same idea as in the bubble sound generator example; every time the note
changes, the volume goes to full value over a span of 0.5 seconds. After
another 0.5 seconds of sustain, it decays down to zero in 1 second. The signals
are then multiplied by 0.5 and passed on to delwrite~ object that once again
creates a delay line. Through a couple of low- and high-pass filters, the signal is
multiplied to its final volume and fed to output (Picture 12).

27

PICTURE 12. Pure Data patch for Misa’s room

4.2.3 Minh’s room

For Minh’s room, he wanted something slow and atmospheric to create a
comfortable and relaxing environment (Picture 13). The main patch is split into
two parts; slow pad that has synths with long attacks and decays and a generator
for glimmering sounds.

PICTURE 13. Screenshot of Minh’s room

28

Slow pad starts with loadbang that turns on multiple metronomes. On the left-
hand side, the other metronome bangs a note value every 250 milliseconds and
the other one creates a bang every 4 seconds that goes to a subpatch called ‘pd

synth’. The right-hand side of slow pad is pretty much the same, only difference
being in the note values of the synths and metronomes that are used to provide
more variation to the sound. The ‘pd synth’ subpatch is used to keep the main
patch nice and tidy by having all the necessary objects inside the subpatch. In
this case the synthesis structure for the slow pad is held inside the ‘pd synth’ as

their content are all identical to each other and so they would take massive
amount of space in the main patch (Picture 14).

PICTURE 14. Pure Data patch for Minh’s room

The ‘pd synth’ subpatch starts with an inlet that receives the bang generated

every 4 seconds in the main patch. The patch acts as an additive synth as there
are 5 sinewave oscillators that are similar to each other. Firstly, the middle inlet
creates a bang which goes into a random object with an argument of 100. The
randomized value is divided by 300, 400 or 500, depending on the oscillator, so
that the value is sensible enough to be passed on to the volume multiplier. The
left inlet is used to get the midi note value into the ‘pd synth’ from the main

patch. The note value goes to a * object that gets multiplied with randomized
value from 0 to 4, creating randomized octaves for the oscillators. The signal

29

with randomized octaves and volumes are then passed on to outlet~ so that the
signal is accessible in the main patch (Picture 15).

PICTURE 15. The ‘pd synth’ subpatch

The outlet signals of the subpatches are multiplied with a small value to reduce
the overall volume, after which the signal is combined with a line~ object that
acts as the volume envelope for the pads. The volume goes from 0 to 1 on a 2
second span and back to 0 on another 2 second span. The right-hand side of
the ‘slow pad’ has a bit different values so that the time for the volume to go up
takes 3 seconds and another 3 seconds to go back to zero. The signal is then
passed on to hip~ object that creates a high-pass filter to cut out some
unwanted low frequencies and finally, after a delay line, the signal is sent to
output (Picture 14).

Besides ’slow pad’ there is a section for glimmering, magical sound in the patch.
It starts with a loadbang after a 5 second delay so that the slow pad gets to start
first before bringing in the glimmering sound. The delay goes to random object
that generates a number from 0 to 2999, that is used as the metronome’s rate in

milliseconds. The created bang goes to two objects: metro 2500 and random
250. The metronome is used to create random number from 0 to 9999 that is

30

used as the sinewave oscillator’s frequency. The generated number goes
through an object called ‘moses’ that has a value set to 7000. It works as sort of
a floodgate so that any value under 7000 will be disregarded and so only
numbers from 7000 to 9999 are passed on to the oscillator.

Now, as mentioned, the created bang goes to a random 250 object as well. It
has the same idea that only numbers from 150 to 250 gets passed through
moses which will then be used as the following metronome’s argument. Using

this kind of combination of random- and moses objects allows great amount of
randomization for the sound. Like covered before, the metronome goes to a set
of objects that are connected to the line~ object that acts as the volume
envelope for the glimmering, making the sounds only 30 milliseconds long. The
glimmering signal is then passed on to hip~ object to cut any unwanted sounds
below 7000Hz. After a volume multiplier, delay line and low-pass filter, the
signal is sent to another subpatch called ‘pd pan’. It works as a randomized

panner for the glimmering sound to go from far left to far right (Picture 16).

PICTURE 16. Randomized panner for glimmering sounds

The panner creates a random number from 0.0 to 0.9 every 300 milliseconds.
The value defines the amount of panning so if the number is 0, the pan is hard
left and on 0.9 the pan is on the right, meaning value of 0.4 would be in the
middle. Basically, the value defines how much the volume is multiplied by on
the right side and the left side is subtracted from that. The sounds are passed
through outlets back to the main patch where they are sent to the output.

31

4.2.4 Anna’s room

For her room, Anna wanted a dark nightclub feeling with funky dance music
playing in the background which was by far the biggest challenge of all the
patches due to so many different elements (Picture 17). This patch will be broken
down into many smaller pieces that will together form the overall soundscape,
starting from the different subpatches that can be found in the main patch.

PICTURE 17. Screenshot of Anna’s room

The subpatch ‘pd kick’ starts with a 460 millisecond, i.e., 130 bpm metronome
that builds the base for all the rhythmic sounds that are played in Anna’s room.

The metronome then goes to 2 different directions. The left branch is used to
control the volume of the kick as it uses line~ object to go from 0.5 to 0 over 460
milliseconds. The right branch is used to control pitch over time as it has the same
idea with the line~ object. The value goes to mtof~ object after which it is
multiplied with 0.9 to pitch it down a bit. The pitch scale is combined with sine
scale and the signal is passed on to osc~ object to create the actual kick sound.
The left branch and right branch are combined and scaled for a reasonable output
level before sending them to outlet~ (Picture 18).

32

PICTURE 18. The ‘pd kick’ subpatch

Next up is the bass patch called ‘pd bass’. This one is rather simple: once again

it starts with metro 460 object that goes into 2 ways. Straight done from the metro
is a basic volume envelope where it takes 150 milliseconds for the bass to reach
value of 1 to give some more room to the kick. On the left side int 1 and +1 objects
are used as a counter that resets every 8 beats. The bass plays a simple 2-note
melody created with osc~ object. The signals are then combined before going to
the outlet (Picture 19).

PICTURE 19. The ‘pd bass’ subpatch

33

Next one is a subpatch called ‘pd hats’. The patch is divided into regular hi-hats
and randomized, fast hi-hats. The structure is nearly the same in both, where
loadbang is used to give values to vcf~ object that creates a resonant band-pass
filter to white noise generator. They are then passed on through high-pass filter
to *~ object which is once again connected to line~ that is used to control volume
over time. The regular hi-hats follow the same 130bpm tempo, though it is
delayed by half the amount, so it plays in off-beat. The randomized hi-hats have
double the tempo instead, to help fill the soundscape. After a bang, float object
can be found in the patch that is used to pass certain values to the message line~
receives.

There are $ signs in the message that receive whatever value there is in the f
object and can so change some parts of the message in real-time. The numbers
line~ objects receive mean that the value starts at 0. It then goes to value of 1 in
2 ms. Then after 2ms, it goes to 0.4 in X ms. Then back to zero over X amount of
time. The X means whatever number the float object has. For the regular hi-hats
it is always at 80, whereas in randomized the float value is randomized, creating
different length hi-hats. After a delay-line, the hi-hats are passed on to the outlet
(Picture 20).

PICTURE 20. The ‘pd hats’ subpatch

34

For the last rhythmical element, there is a subpatch called ‘pd claps’. It is divided

into 2-beat clap and 2-bar clap, which are pretty much identical, main difference
being the normal clap happens every 2 beats and the other one every 2 bars to
work as sort of a double clap. The claps are generated from white noise that is
both high-pass filtered, and low-pass filtered after which they go to *~ object. This
object is connected to ‘pd envelope’ which acts as the volume envelope for the

clap. The ‘pd envelope’ is triggered in 920ms intervals on the normal clap and
3680ms interval on the double clap after which they are both delayed so that they
do not play on the first beat. After some volume multipliers, they are passed on
to the outlet~ (Picture 21).

PICTURE 21. The ‘pd claps’ subpatch

The ‘pd envelope’ itself is rather simple as well but was made as its own subpatch

to save some space. It has 4 nearly identical volume envelopes, all of which
happen after a short delay from one another. The first 3 line~ objects start with
value of 1 and after 3ms of delay they drop down to 0 in a span of 20ms. These
sounds are very short and so they create snappiness to the clap, whereas the
last line~ object is a bit different as the decay time is 150ms, giving the clap its
body. All the line~ objects go to subsequent *~ objects that together create a
smoother amplitude curve to the sound, before going to outlet~ (Picture 22).

35

PICTURE 22. The ‘pd envelope’ subpatch

Now that all the rhythmical elements are covered, the disco needs some synths.
There are quite a few different synths playing in Anna’s room, all of which follow

the same logic with melodies but the sound envelopes or sounds themselves
vary. Starting off with ‘pd synth1’ there is right away subpatch called ‘pd melody’

that is used in most of the synths. It goes to an int object that once again works
as a counter. The counter goes up to 22, after which it resets. Every time a bang
is played inside the ‘pd melody’, it adds a number to the counter. The number
then goes to sel object that plays a corresponding midi note depending on which
number the counter is currently at (Picture 23).

36

PICTURE 23. The ‘pd synth1’ subpatch

Before going further, it is worth to look at the ‘pd melody’ subpatch to understand

how the melody is played. There is a 3680-millisecond metronome, same one as
the double clap, that plays the notes on a span of 2 bars (Picture 24). While the
patch may look complicated, the idea is very simple. It plays a series of bangs on
varying delays. If the delay between bangs is 460 milliseconds it equals one beat,
i.e., quarter note. If the delay is 230 milliseconds it equals half beat, i.e., eighth
note and so on. All these consecutive notes are played during those 2 bars after
which they go to the outlet and so back to the main patch. The bangs happening
in this subpatch are summed in the counter and passed on to the sel object where
the actual midi notes are played, meaning that this subpatch is only responsible
for the timings and lengths of the notes.

37

PICTURE 24. The ‘pd melody’ subpatch that plays a 2-bar melody

Now, going back to ‘pd synth1’ the midi values go to ‘t f b’ object, which stands

for ‘trigger float bang’. This object is used to send both float values as well as

bangs. The left outlet of the object sends a float number that comes from the sel
object, whereas right outlet is used to send a bang forward. The float number is
changed to frequency that is passed on to phasor~ object for a sawtooth
generator. The signal then goes to previously covered vcf~ object where the
center frequency is controlled over time by using the line~ object which allows
the use of filter envelope, instead of using envelope just for the volume. The
signal then goes to a high-pass filter that is once again connected with line~
object to control the volume envelope. After the volume is set to good level, it is
then passed on to outlet~ (Picture 23).

For the second synth, the patch uses something called wavetable synthesis. It is
common way of creating synth sounds in DAWs, however, it is a bit more
complicated here. Next patch, ‘pd wavetable1’ has pretty much the same

structure than ‘pd synth1’. It has the same melody and notes playing, though this
time the phasor~ object is affected by tabread~ wavetable.

Pure Data’s built-in oscillators such as osc~ and phasor~ are only able to
generate sine- and sawtooth waves and so wavetable synthesis is required to
create different waveforms. By combining multiple different sine waves, it is
possible to generate the waveforms of a saw, triangle, or square wave. When
written to an array object, these waveforms can be played back as an oscillator
(Flossmanuals n.d.). Next to the wavetable, there is a message saying wavetable
sinesum 2051. It basically adds up a bunch of sinewaves that together generate

38

the square wave. This type of waveform is created by only using odd-numbered
harmonics such as 1,3,5,7 etc. while even harmonics are set to zero. Without
going too deep into the mathematics, the list of numbers starts from 1, then 0,
then 0.333, then 0, then 0.2 and so on. The more harmonies are added to the
waveform, the more it looks like a square. Once the wavetable is created, the rest
of the patch is pretty much identical with ‘pd synth1’, only with some different

values in some places (Picture 25).

PICTURE 25. The ‘pd wavetable1’ subpatch

Next synth, ‘pd synth2’ is nearly identical to the first one. This time there are 2
phasors instead of one, with the other one slightly detuned. Besides phasors
there is an osc~ object as well to give more pluckiness to the sound. The filter
envelope values are bit different again and there is one extra volume envelope

39

just before the outlet. The first volume envelope is used for each individual note
as the bang that triggers it happens every time the counter changes its number.
The extra volume envelope is not dependent of when the notes changed as it
always follows the 130bpm metronome. This is used for sidechain type of effect
with slow attack and fast decay. This signal then goes to the outlet (Picture 26).

PICTURE 26. The ‘pd synth2’ subpatch

Next, there is a plucky sinewave synth ‘pd synth3’. It is nearly identical with ‘pd

synth2’ with extra volume envelope to achieve sidechain type of effect. Instead

of phasors it uses 2 osc~ objects with the other one having double the frequency.
The first oscillator uses the same path as before, going through the vcf~ filter,
however, the double-frequency oscillator goes straight to the multiplier object
without going through the filter to keep the overall sound brighter. After
multiplying, the signals are passed on to the outlet~ (Picture 27).

40

PICTURE 27. The ‘pd synth3’ subpatch

With 2 synths left, ‘pd synth4’ is a little bit different now. It follows the same idea
than the previous ones, however, the melody is a bit different. There are 10 steps
in the melody instead of the previous 11 ones and this patch only plays 3 different
notes instead of the usual 5. This synth is more used as a background, rhythm
synth. The overall structure is quite the same, 2 detuned sawtooths and 1 extra
sinewave oscillator with a bit different frequency. After going through low-pass-
and high-pass filters, they go to *~ object that once again connects to line~ object
to create the volume envelope for the notes. After that it is passed on to outlet
(Picture 28).

41

PICTURE 28. The ‘pd synth4’ subpatch

Now for the last piece of Anna’s room. It is a second wavetable synth that plays
a 3-note melody where the sound is changing every time it plays. The melody is
played every 3680 milliseconds, or 2 bars as usual. From the metronome the line
is split into two ways. The right path is where the wavetable functioning is: it
chooses randomly whether it plays a square wave or a sawtooth wave. If the
generated number is 1, it creates a sawtooth wave and if the number is 0, it
generates a square wave. This way the sound has some variation to it every time
it plays.

On the left path, 3 descending midi notes are played subsequently that creates
the melody for this patch. They go to the usual t f b object and again to the
tabread~ object that reads the waveforms generated in the wavetable. The center
frequency of the filter has a bit different look than usual as it has a ‘pack’ object.

This works sort of like the $ sign does, meaning the initial argument can be
changed real-time. This pack object works as the filter envelopes decay, where it

42

is randomized every time the melody is played. With some high-pass filtering and
volume envelope, the signal then goes to the outlet (Picture 29).

PICTURE 29. The ‘pd wavetable2’ subpatch

Now, the main patch that sums all the subpatches together is quite simple. It has
a metronome of 14720 milliseconds, meaning 8 bars, and a counter that counts
from 0 to 2. The counter goes to a selector object which has divided all the
individual elements into sections so that everything would not start at the same
time and play so forever. The first section has ‘pd synth1’, ‘pd wavetable’ and ‘pd

synth2’. The pd synth1 and pd wavetable are connected to the selector with a

toggle object, which starts when the counter hits 0 and stops when it hits 0 again
and so on. The pd synth2 has a bang instead so once it starts, it never stops.
This is to make sure there is at least one synth playing always.

So once the patch is opened, 8 bars of synths are played alone at first. Then
comes in the second section that has all the rhythmical elements; kick, bass, hi-
hats, and claps. Here the kick, bass and claps are connected to a bang, meaning
once they start, they never stop. The hi-hats are separated so that the normal hi-
hats are toggled on in the second section whereas the fast, randomized hi-hats

43

are toggled on in the third section. This is to keep the elements varying and
interesting. For the last section, there is left ‘pd wavetable2’, ‘pd synth3’ and ‘pd

synth4’. Here the pd wavetable2 and pd synth4 are connected to a toggle and pd
synth3 is connected to a bang. This variation in different sections and
toggles/bangs allows for interesting, varying soundscape so that it is not just an
8-bar loop. All the synths, meaning section 1 and 3 are connected to a long delay
that acts almost as a reverb, whereas rhythmical elements are connected to a
shorter delay. After the delays everything is set to nice overall level before going
to dac~ (Picture 30).

PICTURE 30. The main patch for Anna’s room

44

4.3 Project: Kaleidoscopers – Importing patches into Unity

Now that all the patches are done in Pure Data, next step is to get them into Unity.
In order to use procedural audio in Unity or any other game engine like Unreal
Engine, there are few steps that needs to be done for the patches to work. It took
quite a lot of trial and error to import the patches into Unity but following these
next steps it should be rather simple thing for anyone to do.

4.3.1 Compiling Pure Data patches into C source code

When using procedural audio in Unity, first thing to do is compile the patches into
a form it understands. There are couple different ways this can be done but I
followed the same routine for all my patches as I found it the easiest way to do
that requires least amount of coding. I used an online compiler made by Rebel
Technology that is free and open for anyone to use. It turns Pure Data patches
into C source code that can be used to build plugins the game engines support
(Rebeltech 2018). It is worth noticing that there are some limitations on objects it
works on and so some of the patches could have been done in a simpler way at
some points but nearly all the objects it does not support, can be created in some
other way.

The online compiler offered by Rebel Technology uses Heavy compiler, a python-
based dataflow audio programming language that is used to generate C/C++
code (Github 2018). I will go through the steps on how one could compile their
own Pure Data patches to work in Unity. First step is to create an account and
from there go to ‘My Patches’ and ‘Create patch’ (Picture 31).

PICTURE 31. Creating a patch using Rebel Technology’s online compiler

45

After clicking ‘Create patch’ you need to upload the Pure Data patch that is
compiled. At this point, only thing that needs to be made sure is that the
Compilation Type is set to heavy (Picture 32).

PICTURE 32. Uploading Pure Data patch and using heavy compilation

Now after clicking ‘Save and Compile’, you will be taken to patch details page

from where you can download the C source if everything is fine with the patches
and it does not create any errors (Picture 33).

PICTURE 33. Created download link for the patch in the bottom left corner

46

4.3.2 Building Unity plugins

After downloading the C source code, it is time to build the plugins Unity requires.
I will only go through the process of creating Unity plugins to Windows, however,
there are ways to create plugins for MacOS, Android etc. (Github 2018). There
are few things required for the compiling to work; Visual Studio 2015 which is a
code editor, and MSBuild 14.0 which is a platform for building applications Visual
Studio uses. I will not be going too much into theory with this but only show the
required steps to build the plugins.

First step is to download Visual Studio 2015 and MSBuild 14.0. Visual Studio can
be installed anywhere on the computer, however, I suggest installing MSbuild in
C:/Program Files (x86)/ if you are using a 64-bit version of Windows. After having
these installed, it is time to open the folder that was created by using the Heavy
compiler. For this example, I will be using the one created for Minh’s room, but

the procedure is same for every room. The main folder includes all sorts of
subfolders, but we are only interested in the unity folder inside of it (Picture 34).

PICTURE 34. The downloaded folder that includes unity subfolder

Inside the unity folder, there is a subfolder called vs2015 that includes 3 objects.
AudioPlugin_Hv_Minh is used to create Audio Mixer plugin inside Unity that
allows to change volume, attenuation and so on for the procedural patch.
Hv_Minh_AudioLib is used to create the running .dll plugin itself and
Hv_Minh_Unity creates the C# code that handles all the functions and how the
plugins work (Picture 35). These are the necessary objects to create C# code
and .dll plugins Unity uses to run procedural audio.

47

PICTURE 35. Necessary objects to create C# code and .dll plugins

Now, compiling will be done using command prompt. This can be done by clicking
the navigation field inside vs2015 folder and typing cmd, that will open up a
command prompt with the directory it was opened from (Picture 36).

PICTURE 36. Opening a command prompt for the vs2015 folder

Next step is to paste a line of text that basically tells MSBuild to build the needed
plugins. Right after the existing path, this line of text can be pasted into the
command prompt:

"C:/Program Files (x86)/MSBuild/14.0/Bin/MSBuild.exe"
/property:Configuration=Release /property:Platform=x64 /t:Rebuild
Hv_Minh_Unity.sln /m

It is worth noticing that if the MSBuild exists in another path, it must be replaced
with the correct one. Also, the ‘Hv_Minh_Unity.sln’ must be replaced with

48

whatever the last object is called in the vs2015 folder. After pasting the text,
command prompt should have all the necessary information in order it to compile
(Picture 37).

PICTURE 37. All the information needed in command prompt

Now pressing enter, it should compile the information and if everything goes
correctly, after some seconds it tells the build succeeded. The results of the build
are placed inside the unity folder, inside a subfolder called ‘build’. From there you

can now find one script (.cs) object and two plugins (.dll) that Unity needs (Picture
38).

PICTURE 38. Built script and plugins inside the unity folder

These 3 objects are everything needed to run procedural audio in Unity. Inside
your Unity project, it is a good practice to create a folder within the Assets
directory called Plugins. Inside that folder, put in the 3 objects that were created
with the build. It is enough to drag and drop the script to any game object in the

49

scene and it will automatically create the audio source with volume, pitch, panning
options etc. (Picture 39). Now when pressing play, the patch should start playing.

PICTURE 39. Unity project including the 3 required objects

50

5 DISCUSSION

Sound design in games and other non-linear media has gone through major steps
over time. As the expectations and attention to detail concerning sound are
growing all the time, sound designers are constantly looking for new and creative
ways to provide information and immerse the player even better. Real-time
creation of sounds, procedural audio, can be used to tackle these demands as it
can save time and resources of sound designer. It has been around from the very
beginning of game development, in fact it used to be the only way to create
sounds. It was a necessary step to include sound in games as there simply was
not enough RAM to use sound assets, instead they had to be programmed. Ever
since hardware got better, use of sound assets took over and only recently,
procedural approach has made steps to become more user-friendly option for
sound designers with new advances in popular middleware technology.
(Crawford 2018).

In my practical project, procedural audio was used to create different kind of
soundscapes to a virtual reality gallery. Using real-time synthesis to create the
soundscapes and music allowed for a unique, ever-changing audio even though
it created some challenges. For certain, ambient-like sounds, procedural audio
worked really well but replicating real-world sounds such as instruments proved
to be a challenge. It is safe to say creating a 10-instrument dance track took a lot
more time than it would have in a regular way using recorded audio. Unity
implementation also showed that while use of procedural audio is possible in
game engines, it still requires quite a lot of work, at least the first time. As
development platforms for procedural audio are becoming better and more
available to sound designers, combining these older and newer techniques could
be the key for more cohesive, immersive soundscape in a non-linear
environment.

51

REFERENCES

Andersen, A. 2016. Why Procedural Game Sound Design is so useful – demonstrated in the Unreal Engine. Published on 18.1.2016. Read on 7.1.2021. https://www.asoundeffect.com/tag/procedural-sound-design/ Chion, M. 1994. Audio-vision: sound on screen. New York: Columbia University Press. Collins, K. 2009. An Introduction to Procedural Music in Video Games. Contemporary Music Review 28, 8–9. Crawford, D. 2018. What is Procedural Audio? Published on 25.2.2018. Read on 11.1.2021. https://daracrawford.com/new-blog-3/what-is-procedural-audio Farnell, A. 2007. An introduction to procedural audio and its application in computer games. Published on 23.9.2007. Read on 28.1.2021. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.2707&rep=rep1&type=pdf Farnell, A. 2010. Designing Sound; Procedural Audio for Games and Film. MIT Press. Flossmanuals. N.d. Generating Waveforms. Read on 28.4.2021. http://write.flossmanuals.net/pure-data/generating-waveforms/ Flossmanuals. N.d. Graphical Programming. Read on 27.4.2021. http://write.flossmanuals.net/pure-data/graphical-programming/ Flossmanuals. N.d. Pure Data Introduction. Read on 27.4.2021. http://write.flossmanuals.net/pure-data/introduction2/ Fournel, N. 2010. Procedural Audio for Video Games: Are we there yet? Read on 18.2.2021. https://www.gdcvault.com/play/1012645/Procedural-Audio-for-Video-Games Fournel, N. Sound Designer. 2012. Interview on 4.6.2012. Interviewer Nair, V. Github. 2018. The heavy hvcc compiler for Pure Data patches. Updated 21.9.2018. Read on 27.4.2021. https://github.com/enzienaudio/hvcc Github. 2018. Building Unity plugins. Updated 17.8.2018. Read on 27.4.2021. https://github.com/enzienaudio/hvcc/blob/master/docs/05.unity.md Hillerson, T. 2014. Programming Sound with Pure Data: Make Your Apps Come Alive with Dynamic Audio. Raleigh: Pragmatic Programmers.

https://www.asoundeffect.com/tag/procedural-sound-design/
https://daracrawford.com/new-blog-3/what-is-procedural-audio
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.2707&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.2707&rep=rep1&type=pdf
http://write.flossmanuals.net/pure-data/generating-waveforms/
http://write.flossmanuals.net/pure-data/graphical-programming/
http://write.flossmanuals.net/pure-data/introduction2/
https://www.gdcvault.com/play/1012645/Procedural-Audio-for-Video-Games
https://github.com/enzienaudio/hvcc
https://github.com/enzienaudio/hvcc/blob/master/docs/05.unity.md

52

Klang, M. 2018. Compile Pure data patches with free online Heavy compiler. Published on 12.9.2018. Read on 27.4.2021. https://www.rebeltech.org/2018/09/12/compile-pure-data-patches-with-free-online-heavy-compiler/ Knox, D. Senior lecturer. 2019. Games Sound Design: Generative systems, Procedural Audio. Lecture. Glasgow Caledonian University on 22.10.2019. Glasgow. Loyola University. Avid Pro Tools Bootcamp. Read on 28.4.2021. https://pacs.loyno.edu/avid-protools-bootcamp Moog. N.d. Product catalogue. Read on 28.4.2021. https://www.moogmusic.com/products/matriarch Nil, B. 2019. Procedural Audio on the Web: Part One. Published on 17.8.2019. Read on 15.2.2021. https://medium.com/@berraknil/procedural-audio-on-the-web-part-one-166462e7be1e Pngarea. N.d. Piano player silhouette. Read on 28.4.2021. https://www.pngarea.com/view/e848c033_piano-keyboard-png-piano-player-silhouette-png-png/

https://www.rebeltech.org/2018/09/12/compile-pure-data-patches-with-free-online-heavy-compiler/
https://www.rebeltech.org/2018/09/12/compile-pure-data-patches-with-free-online-heavy-compiler/
https://pacs.loyno.edu/avid-protools-bootcamp
https://www.moogmusic.com/products/matriarch
https://medium.com/@berraknil/procedural-audio-on-the-web-part-one-166462e7be1e
https://medium.com/@berraknil/procedural-audio-on-the-web-part-one-166462e7be1e
https://www.pngarea.com/view/e848c033_piano-keyboard-png-piano-player-silhouette-png-png/
https://www.pngarea.com/view/e848c033_piano-keyboard-png-piano-player-silhouette-png-png/

53

APPENDICES

Appendix 1. VR-Gallery Procedural Audio Compilation
https://youtu.be/mdDgqgW9gRk

https://youtu.be/mdDgqgW9gRk

54

Appendix 2. Bubble Sound Comparison
https://youtu.be/72QChAqSzcY

https://youtu.be/72QChAqSzcY

