

Automated Security Testing Utilizing

Continuous Integration and

Continuous Delivery Technologies

Pyry Koskela

Bachelor’s thesis
May 2021
Information and communication technologies
Programme in Information and Communications Technology

Description

Author(s)

Koskela, Pyry
Type of publication

Bachelor’s thesis
Date

May 2021

Language of publication:
English

Number of pages

55 + 8
Permission for web

publication: Yes

Title of publication

Automated Security Testing Utilizing Continuous Integration and Continuous Delivery
Technologies

Degree programme

Programme in Information and Communication Technology

Supervisor(s)

Saharinen, Karo; Nevala, Jarmo

Assigned by

Liveto Group Oy

Abstract

The circumstances of the year 2020 created a need for pushing everything and everyone
online. To adapt to the situation at the required pace, the swift transition of existing
systems and workflows from physical to digital was inevitable. However, the rapid
development of new services resulted in the infrastructure not cutting the mustard in
terms of information security and cybersecurity.

The objective was to develop and implement a security testing construct to secure the
Client’s expanding server and service infrastructure. The requirements specified for the
security testing system were the ability to automate the testing implementation and adapt
it to the Client’s agile development workflow while making it as cost-efficient as possible.

The solution consisted of a containerized vulnerability assessment framework deployed
into a dedicated server, designing and developing a CLI (Command-Line Interface) tool for
remote interaction, and hooking the Client’s CI/CD pipeline with the security testing
service.

As an outcome of this constructive research approach, the Client’s infrastructure includes a
security testing service regularly scanning the servers against weaknesses with an ever-
growing number of vulnerability tests.

The objective was achieved, and the solution provides a solid base for the Client’s security
testing. To further improve the reliability of the system, additional scanning tools could be
implemented to run alongside.

Keywords/tags (subjects)

Cybersecurity, Testing, Automation, DevOps, DevSecOps, OpenVAS, GVM, Python, Docker,
Container

 Miscellaneous (Confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

Kuvailulehti

Tekijä(t)

Koskela, Pyry
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2021

Sivumäärä

55 + 8
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: Kyllä

Työn nimi

Automatisoitu tietoturvatestaus jatkuvan integraation ja jatkuvan toimituksen
teknologioita hyödyntäen

Tutkinto-ohjelma

Tieto- ja viestintätekniikka

Työn ohjaaja(t)

Karo Saharinen, Jarmo Nevala

Toimeksiantaja(t)

Liveto Group Oy

Tiivistelmä

Vuoden 2020 olosuhteet loivat tarpeen siirtää kaiken Internettiin. Sopeutuaksemme tilan-
teeseen sen vaatimalla tahdilla, oli välttämätöntä muuttaa olemassaolevat järjestelmät ja
työnkulut nopeasti fyysistestä digitaaliseen muotoon. Uusien palveluiden nopeatempoi-
sen kehityksen seurauksena infrastruktuurit eivät kuitenkaan enää olleet vaadittavalla
tasolla tieto- ja kyberturvan suhteen.

Tavoitteena oli kehittää ja toteuttaa tietoturvatestausrakenne Toimeksiantajan laajene-
van palvelin- ja palveluinfrastruktuurin turvaamiseksi. Tietoturvatestausjärjestelmälle ase-
tetut vaatimukset olivat testauksen automatisoitavuus, integraatio Toimeksiantajan kette-
rän kehitystyön menetelmiin sekä mahdollisuuksien mukainen kustannustehokkuus.

Ratkaisu koostui eriliselle palvelimelle asennetusta kontitetusta haavoittuvuusskannerista,
skannerin etäkäyttöön tarkoitetun komentorivityökalun suunnittelusta ja kehittämisestä,
sekä Toimeksiantajan jatkuvan integraation ja jatkuvan toimituksen (CI/CD) kanavan liittä-
misestä testauspalveluun.

Tämän konstruktiivisen tutkimuksen tuotoksena Toimeksiantajan infrastruktuuriin kuuluu
tietoturvatestauspalvelu, joka skannaa palvelimien heikkouksia säännöllisesti jatkuvasti
lisääntyvien haavoittuvuustestien avulla.

Tavoite saavutettiin ja ratkaisu tarjoaa vankan perustan Toimeksiantajan tietoturvates-
taukselle. Järjestelmän luotettavuuden parantamiseksi voitaisiin rinnalle ottaa muita skan-
naustyökaluja.

Avainsanat (asiasanat)

Tietoturva, Testaus, Automaatio, DevOps, DevSecOps, OpenVAS, GVM, Python, Docker, Kontti

Muut tiedot (salassa pidettävät liitteet)

http://www.finto.fi/
https://intra.jamk.fi/opiskelijat/opinnayte/Sivut/Opinnäytetyön%20julkisuus%20ja%20salassapito.aspx
https://intra.jamk.fi/opiskelijat/opinnayte/Sivut/Opinnäytetyön%20julkisuus%20ja%20salassapito.aspx

1

Contents

1 Introduction ... 6

1.1 Motivation ... 6

1.2 Client .. 6

2 Research Design ... 8

2.1 Research Problem ... 8

2.2 Research Question .. 8

2.3 Research Methods ... 9

3 Theory .. 10

3.1 DevOps .. 10

3.1.1 Continuous Integration, Delivery, and Deployment 11

3.1.2 DevSecOps .. 11

3.2 Vulnerability Scanners ... 12

3.2.1 Requirements and Comparison .. 12

3.2.2 Greenbone Vulnerability Management.. 14

3.3 Tools .. 15

3.3.1 Google Cloud Platform ... 15

3.3.2 CircleCI .. 16

3.3.3 Nginx ... 16

3.3.4 Python ... 17

3.3.5 Docker ... 17

4 Implementation .. 21

4.1 General .. 21

4.2 Greenbone Vulnerability Management .. 22

4.2.1 General ... 22

4.2.2 Containerization ... 22

4.2.3 Configuration .. 23

4.3 GCP Compute Engine ... 26

4.3.1 General ... 26

4.3.2 Configuration .. 27

2

4.3.3 Domain Name and SSL/TLS Certificate ... 28

4.4 Nginx Reverse Proxy .. 30

4.4.1 General ... 30

4.4.2 Configuration – HTTP & HTTPS ... 31

4.4.3 Configuration – GMP Passthrough ... 36

4.5 GMP Tool ... 37

4.5.1 General ... 37

4.5.2 Development .. 38

4.5.3 Development – CLI Tool.. 42

4.6 CI/CD .. 45

4.6.1 General ... 45

4.6.2 Configuration – CircleCI .. 45

4.6.3 Configuration – Server .. 47

5 Results ... 48

6 Conclusion .. 50

6.1 Reliability ... 51

6.2 Challenges ... 51

6.3 Further Research ... 51

References ... 53

Appendices .. 56

Figures

Figure 1. Greenbone Vulnerability Management basic architecture. 15

Figure 2. Containers compared to virtual machines (What is a Container? N.d.) 18

Figure 3. Docker architecture (Docker overview n.d). ... 19

Figure 4. Dockerfile creates layers to Docker Image (Schenker 2018, 69). 20

Figure 5. Security testing flow topology. .. 21

Figure 6. Greenbone Vulnerability Management containerized architecture. 23

Figure 7. Modified Dockerfile for gvmd. ... 25

3

Figure 8. The containers are started with a docker-compose command. 26

Figure 9. GCP Compute Engine system specifications. ... 27

Figure 10. Firewall rule to allow GMP. ... 28

Figure 11. Docker-compose.yml file for Nginx used in obtaining the SSL/TLS

Certificate. .. 29

Figure 12. Nginx.conf for obtaining the SSL/TLS Certificate. 29

Figure 13. Certbot.sh. ... 30

Figure 14. Obtaining Let’s Encrypt SSL/TLS certificate with Certbot. 30

Figure 15. Greenbone Vulnerability Management architecture with reverse

proxy. .. 31

Figure 16. Nginx docker-compose.yml file. .. 32

Figure 17. Nginx configurations formatted with Tree-command. 32

Figure 18. Nginx.conf file. ... 33

Figure 19. Nginx default.conf file.. 34

Figure 20. Nginx ssl.conf file. .. 35

Figure 21. Nginx proxy.conf file. ... 35

Figure 22. HTTPS is working with the SSL/TLS certificate. 36

Figure 23. Nginx gmp.conf file. ... 37

Figure 24. Successful authentication response from GVM. 38

Figure 25. Gmp get_targets method’s output for one target. 39

Figure 26. GMP tool listing target information. ... 40

Figure 27. Starting a task using the GMP tool. ... 40

Figure 28. The relevant part of the scanner configuration’s response in Python

shell. .. 41

Figure 29. Gmp.py help page generated by Argparse. ... 42

Figure 30. Adding a target using gmp.py. ... 43

Figure 31. Added target in GVM web interface. ... 43

Figure 32. Adding a task using gmp.py. .. 43

Figure 33. Added task in GVM web interface. .. 44

Figure 34. Adding a task and starting it immediately. .. 44

Figure 35. The GVM web interface shows the started task as requested. 44

Figure 36. CircleCI job for setting updated host. .. 46

Figure 37. CircleCI workflow’s configuration. ... 47

4

Figure 38. Bash script to fetch updated hosts and start a scanning task. 48

Figure 39. Example of a GVM vulnerability report. .. 49

Tables

Table 1. Liveto’s turnover from 2016 to 2019 (Liveto Group Oy n.d.) 7

Table 2. Vulnerability scanner comparison .. 13

5

Abbreviations

API Application Programming Interface
CaaS Containers as a Service
CD Continuous Delivery, Continuous Deployment
CI Continuous Integration
CLI Command Line Interface
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
FaaS Function as a Service
GCP Google Cloud Platform
GMP Greenbone Management Protocol
GSA Greenbone Security Assistant
GSE Greenbone Source Edition
GUI Graphical User Interface
GVM Greenbone Vulnerability Management
GVMD Greenbone Vulnerability Manager Daemon
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol over Transport Layer Security
IaaS Infrastructure as a Service
IOCTA Internet Organised Crime Threat Assessment
NVT Network Vulnerability Test
OpenVAS Open Vulnerability Assessment Scanner
OS Operating System
OSP Open Scanner Protocol
OWASP Open Web Application Security Project
PaaS Platform as a Service
PPA Personal Package Archive
RAM Random Access Memory
REST Representational State Transfer
SaaS Software as a Service
SCAP Security Content Automation Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
VCS Version Control System
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

6

1 Introduction

1.1 Motivation

Every day more and more services are brought online. Services that may contain

sensitive information of the people using them. Passwords, social security numbers,

credit card details, classified information regarding their health. Any information that

can, and with a great chance, will be used against them if gotten into the

untrustworthy hands of a wrongful person.

While a global pandemic has shoved people back into their comfy houses, neither

cybercriminals nor their malicious actions are held back by it. Instead, during the year

2020, cybercrime has been lifting its head. Society must adapt to new ways of doing

things; everything has to be done online. In a scenario like this, society is at its

weakest. As Europol points out in their Internet organised crime threat assessment

IOCTA 2020 (2020, 13): “many individuals and businesses that may not have been as

active online before the crisis became a lucrative target.” (ibid.)

As the systems, processes, and workflows of the physical world are suddenly bound

to shift into the digital one, the reliability and security of the rapidly developed

functionality-first services may be questioned. This study was done to reduce the

issues mentioned above within the Client organization.

The object of this thesis was to design, develop and implement a cost-efficient

security testing solution with automation capabilities. The process included a

dedicated server for the testing software and designing and developing a custom tool

to interact with it remotely without using the graphical user interface.

1.2 Client

Liveto Group Oy is a Helsinki domiciled company founded in late 2014, with the

primary industry being events (Liveto Group Oy n.d.). It provides a platform with the

7

needed tools for each type of event, whether it is on-premise, virtual, or a hybrid.

Event organizers are able to create and manage events and sell their tickets, food &

beverages along with other merchandise within the same platform. The cloud

business model is SaaS, Software as a Service. (Liveto n.d.)

The company employs around 20 people, most of whom work at the office located in

Jyväskylä. The turnover of Liveto has been increasing steadily, roughly 50 percent

every year (Table 1). (Liveto Group Oy n.d.)

Table 1. Liveto’s turnover from 2016 to 2019 (Liveto Group Oy n.d.)

From the start of the year 2020, the global pandemic brought the Event industry to a

near shutdown via restrictions. The Finnish Government (Government 2020)

declared in a press release that “Public gatherings are limited to no more than ten

persons, and it is recommend [sic] to avoid spending unnecessary time in public

places.” This restriction led to remarkable changes in the characteristics of the

industry. Due to these reasons, Liveto started to develop a solution for migrating live

events online.

As Liveto’s cloud infrastructure began to grow in terms of server and service

quantities, and developers’ resources were concentrated on functionalities, concerns

regarding cybersecurity started to rise. Fortunately, due to the company’s growth,

73 000 €

120 000 €

179 000 €

270 000 €

2016 2017 2018 2019

8

resources allocated to the enhancement of cybersecurity were more openly available

as well.

2 Research Design

2.1 Research Problem

The research problem studied in this thesis was how to perform agile security testing

of cloud services. Prior to this thesis, the Client’s infrastructure was not tested

regularly with security scanners or penetration testing tools, making it prone to

potential vulnerabilities and attacks. Due to the agile nature of development, the

Client’s staging and production environments could be updated multiple times a day;

thus, there should be a sensible way of implementation for time-consuming security

testing other than on every change of the codebase. Lastly, the implementation’s

expenses should be as low as possible.

2.2 Research Question

This thesis aims to provide answers to two research questions, which are derived

from the research problem. The questions are as follows:

1) How to implement cost-efficient security testing for cloud services?

2) How to automate the implemented security testing in an agile environment?

Measurement

The concept of cost-efficiency is very vague when not defined appropriately.

Therefore, the cost-efficiency in this thesis was measured with two resources: money

and time. These include the price of the used tools and the developer’s time

consumed when using the construct. Time equals money so, the time of the

9

engineering work done to achieve a working implementation must be taken into

account when measuring the efficiency.

2.3 Research Methods

To answer the research questions, a suitable research method had to be chosen. The

two most common research methods are quantitative and qualitative, which are the

basis for plenty of other research approaches and trends.

Quantitative research can be chosen when the variables of the research path, like

sample sizes, are known, and the results can objectively be measured. The study

usually includes surveys to gather research material, and it follows the research plan

strictly. (Kananen 2015, 68-70.)

Qualitative research is usually chosen when there is little or no knowledge of the

research subject, which leads to new information and questions during the research.

With the constantly appearing new questions, the qualitative methodologies may

appear to get cyclic in order to get comprehensive answers for the research

questions. (ibid., 69-71.)

Often studies in the information technology industry include products developed

during the research process. There is no dedicated research method used for these

studies, but they use multi-methodological, so-called blended or mixed

methodologies instead (Kananen 2012, 19). This thesis strived to provide a solution

for a problem by designing and developing; therefore, the suitable blended

methodology to be chosen was constructive research.

The constructive research approach is a methodology to provide constructs -

concrete solutions for concrete, real-life problems. Unlike the results of a traditional

research, a construct is not discovered but instead invented, developed and created.

As Lukka (2001) describes, the study results in “innovative constructs” that include

“all the human-created artifacts” which may share the base with something existing

10

but still provides new value, like an artificial language, the Morse code, for example.

(ibid.)

The solution created from a construct can be evaluated using a three-level market

test. The levels are defined as follows:

1) The solution works in the subject organization.

2) The solution has been implemented in multiple organizations.

3) The organizations using the solution are objectively doing better than the
organizations that are not using the solution.

(Ojasalo, Moilanen & Ritalahti 2015, 68.)

The study aims to fulfill the first level, and at the time, the solution will only be

available for the Client organization. However, the implementation shall be done

with such quality in mind that it could be implemented in other companies as well.

Research material

The study’s research material was primarily gathered from the documentaries of the

used tools and technologies, blog posts, and previously done research and

publications regarding the subject of security testing and automation solutions.

3 Theory

The theory chapter reviews the concepts, tools, and technologies that are needed for

the study, or are already in use within the subject environment, thus restricting other

technology choices.

3.1 DevOps

There is no exact definition for DevOps. There are very different opinions on what it

comprises but at its core, it is a software development workflow philosophy and a

11

mindset bringing development-oriented people closer to operations workers,

including system, network, and other types of administrators and IT professionals.

DevOps has evolved from the “agile” development model, and it aims to enhance the

ability to deliver higher quality services with a nimbler pace. (Abildskov 2020; Asay

2017; Mueller 2010; Sharma 2017, xxviii.)

3.1.1 Continuous Integration, Delivery, and Deployment

For a philosophy, DevOps includes a lot of technical tools and practices that ought to

help with the process of enclosing the gap of IT departments. The most desired

approach must be the automation of all the possible procedures. These procedures

usually include merging the new changes to the code base, building the code, and

deploying the application into the testing and production environments. The

automation can be achieved by applying few practices called Continuous Integration

(CI), Continuous Delivery (CD) and Continuous Deployment (CD), most commonly

bundled together and referred to as CI/CD. Delivery and Deployment are often

mistakenly used interchangeably and overlapped depending on the context, and

identical abbreviations do not make it easier.

The CI/CD (Delivery) process intends to integrate committed code into the version

control, test and build the software, and finally deliver a new release to be deployed

by the Operations staff. CD (Deployment) takes the process one step further than

Continuous Delivery and proceeds to deploy the software onto the servers without

any human interaction. These automated procedures are mostly called pipelines.

(Sharma 2017, 16-18.)

3.1.2 DevSecOps

DevSecOps intends to include the aspect of security within the development process;

for example, assessing and acknowledging the threats and risks, and learning secure

practices for coding are actions that could be taken. Traditionally security and

security scanning is concentrated on the finished application in the production

environment and is wholly separated from the development process. DevSecOps

12

suggests that the security could be automated as well, utilizing the existing CI/CD

pipelines. (Matteson 2017.)

Viitasuo (2020) developed a tailored security testing pipeline containing static and

dynamic analysis tools and a penetration testing tool. The security testing was

integrated into the subject organization’s deployment pipeline. Viitasuo did not state

the time the pipeline takes to complete, but it is most likely a very notable amount.

Depending on the tools used, security testing can be somewhat time-consuming,

meaning that it may not be ideal to be performed inside the CI/CD pipeline – not on

every code change. Of course, it depends on the subject organization’s business’s

nature. This thesis aimed to get the best of both worlds and implement security

testing to the development life cycle without affecting the pipelines’ processing

times and developers’ workflow significantly. An alternative for the straightforward

pipeline solution was to be implemented.

3.2 Vulnerability Scanners

3.2.1 Requirements and Comparison

Vulnerability scanners endeavor to expose any underlying flaws and weaknesses in

the subject systems. A suitable scanner tool has to be chosen for the project to

succeed. Starting from the most critical one and considering the study’s goals, The

requirements for the vulnerability scanner are as follows:

1) The vulnerability scanner chosen shall be open-source.

2) The tool must be able to be self-hosted on-premises / on virtual hardware.

3) Has the ability to schedule security scans, automate the tool and communicate with
it programmatically.

4) Preferably free of charge.

5) If a stripped-down version of a commercial tool, minimum restrictions for the
vulnerability scanning.

13

The four tools chosen for the comparison in Table 2 are the ones that were most

commonly met on different lists of top-rated vulnerability scanners, both free and

paid versions. The only open-source tools are Greenbone Vulnerability Manager

(GVM) and Zed Attack Proxy (ZAP), which is provided by the Open Web Application

Security Project (OWASP). Both are self-hosted, automatable, and free of charge

(OpenVAS n.d; OWASP Zed Attack Proxy n.d).

Table 2. Vulnerability scanner comparison

Tool Open-source Self-hosted Automation Additional info
Price /
Year

Greenbone
Vulnerability
Management
/ OpenVAS

Yes Yes

Scheduled
scans,
documented
management
protocol / API

The most used
open-source
vulnerability
assessment tool

0 €

InsightVM No Yes
Scheduled
scans

$25/year/asset ~ 500 €

Nessus
Professional

No Yes
Scheduled
scans

The de-facto
vulnerability
assessment tool

3 368 €

OWASP Zed
Attack Proxy

Yes Yes
Documented
API

Mostly web
vulnerabilities

0 €

As “Proxy” in the name implies, ZAP is a tool designed for intercepting traffic

between the user’s browser and the web application, and the security testing utilities

are mainly built on top of this feature. GVM, on the other hand, is more of a

framework and provides a broader spectrum of functionality in terms of network and

system security testing, though lacking in the web application area.

Even though the Client’s product is a web application, the infrastructure in the

background is something to be taken into account as well, and in the best scenario,

both tools would be implemented. As a result of the comparison, GVM was chosen

to fulfill the study’s requirements.

14

3.2.2 Greenbone Vulnerability Management

Greenbone Vulnerability Management, GVM, is a comprehensive open-source

framework for governing a company’s cybersecurity domain. The most critical

functionalities include the scanner tool with different intrusion levels and the CVSS

(Common Vulnerability Scoring System) ratings for every scanned host. GVM was

formerly widely known as OpenVAS (Open Vulnerability Assessment System), which

was included in a default “hacker-distro” Kali Linux - explaining a part of the tool’s

popularity (Ansari & Najera-Gutierrez 2018, 64.) The company behind the

vulnerability scanner, Greenbone Network, was brought to the name due to

rebranding, and around that time, it was excluded from Kali’s default toolbox.

OpenVAS was forked from the code base of Nessus, a popular vulnerability

assessment tool by Tenable, as it went commercial. In contrast, the starting price

point for Nessus is 3368 € per year, while GVM is free (Nessus professional n.d.)

OpenVAS (Open Vulnerability Assessment Scanner) is still the default scanner module

used in GVM. (OpenVAS n.d.)

GVM uses a community feed to update the NVTs (Network Vulnerability Test) and

the SCAP (Security Content Automation Protocol) data on a daily basis. This ensures

there are always the latest tests available, and newly discovered vulnerabilities can

be found as soon as possible. According to the CEO of Greenbone Networks, Dr. Jan-

Oliver Wagner (2019), there are well over 50 000 NVTs for GVM to use, and the

number is ever-growing.

GVM offers a graphical user interface known as Greenbone Security Assistant to add

target groups, create tasks, and handle the configurations of the vulnerability scans

via a web browser. After the scans, GVM provides the user with a scan report

including CVSS ratings, the relevant CVE records, and mitigation solutions for the

possible vulnerabilities.

GSA uses a management protocol GMP (Greenbone Management Protocol) to

communicate with the GVM internals, GVMD (GVM daemon) to be precise. GVMD is

15

the brain of the system, controlling the scanners, databases, and processing of the

data.

The basic topology of GVM includes all the services installed on the same host or

container, as seen in Figure 1. This is the configuration achieved by installing GVM

using the official repositories or compiling the application from the source code

without modification.

Figure 1. Greenbone Vulnerability Management basic architecture.

3.3 Tools

3.3.1 Google Cloud Platform

GCP is a Google’s product providing cloud computing solutions in the forms of IaaS,

PaaS, CaaS, and FaaS (Infrastructure, Platform, Container, and Function as a Service).

Among many other services, GCP includes Compute Engine, Kubernetes Engine, and

Cloud Storage, which are in the Client’s use. (About Google Cloud services n.d.)

16

Compute Engine & Kubernetes Engine

Google Compute Engine provides an IaaS for hosting virtual machines. Google

provides all the resources, but there is no administering included; the client is in total

control of the VMs and the scaling of their resources. With Google Kubernetes

Engine, the client is able to run their containerized applications without having to

administrate the host systems as it does in Compute Engine. Kubernetes Engine does

use and automate Compute Engine instances to run the containers. (ibid n.d.)

3.3.2 CircleCI

CircleCI is a versatile DevOps tool for running CI/CD pipelines. It provides an

opportunity to run the integration and delivery “jobs” in dedicated VMs or Docker

Containers. CircleCI allows the developer to access the pipeline with an SSH

connection to ensure efficient debugging of jobs. The tool claims to be fast due to

allowing parallel runs for workflows and caching unchanged information, like

dependencies and container images of prior tasks. The Client uses CircleCI with most

of their code repositories to run the tests and perform the deployment. (About

CircleCI n.d.)

3.3.3 Nginx

Nginx is open-source web server software, which is famous for its speed and

lightweight resource usage. Among Apache, Nginx is the most popular tool used for

web serving, load balancing, and reverse proxying. (What is NGINX? N.d.)

Reverse Proxy

A reverse proxy resides in front of a variable number of servers, acting as the

endpoint that a client wants to connect to; it is considered to provide better security.

When a reverse proxy is implemented, the client will not directly contact the server

providing the requested service. Reverse proxy listens for the clients’ requests,

catches them, and then requests the correct server behind the proxy. From the

client’s perspective, the requested service is provided by the reverse proxy. (What Is

A Reverse Proxy? N.d.)

17

As the reverse proxy is the only server that the clients will contact directly, it is

efficient to use it as the SSL/TLS terminator. Meaning that HTTPS connections are

established between the proxy server and the client, rather than separately with the

actual endpoints. (What is NGINX?. N.d.)

3.3.4 Python

Python is a high-level interpretable programming language used often in

automation-scripting, data-analytics, machine learning, and even web applications. It

is an object-oriented language but can be used for procedural and functional

programming as well. Among the information and cybersecurity scene, Python is a

prevalent language. (General Python FAQ n.d.; Seitz 2014, foreword.)

Besides Python’s standard library, there are three additional modules needed to

communicate with GVM. “Gvm-tools” is used to establish the connection and

transmit the commands between the client and GVM’s management daemon (Gvm-

tools n.d). The other libraries, “icalendar” and “pytz”, are used to create schedules

for GVM tasks with the standard internet calendaring system (ICalendar n.d).

At the time of the study, the latest Python version available natively for the

development environment was 3.8, which was used when developing and testing the

tool. The tool includes syntax and functionality not able to be run on preceding

versions of Python 3. The most essential newly introduced functionalities in Python

3.8 are the Walrus operator and Positional-only parameters. (What’s New In Python

3.8 n.d.)

3.3.5 Docker

Docker is an open-source software platform that allows a quick and efficient way for

programmers to create an isolated application bundled with all of its dependencies in

a container and consistently deliver and deploy it in any environment with a Linux

kernel. Containerization has become more and more popular for the reason that the

very container running on the developer’s machine can be deployed, for example, on

18

the production server, without worrying about the differences in the hardware or the

environment. (What is Docker? N.d; Why Docker? N.d.)

Before the era of containerization, a virtual machine (VM) was the industry’s go-to

technology for isolating a service from another. Figure 2 shows the differences in the

abstraction of containers and VMs within a host system. Every VM has a dedicated

guest operating system (OS) with a kernel installed on the hypervisor-provided

virtualized hardware. Whereas containers only virtualize the OS and share the host

system’s kernel. Therefore containerization is a lightweight solution compared to

VMs. (Containers vs. virtual machines 2019; What is a Container? N.d)

Figure 2. Containers compared to virtual machines (What is a Container? N.d.)

The concept of Docker comprises three essential elements that can be seen in Figure

3. Docker Client provides the interface for the user to communicate with the Docker

daemon (dockerd), which is listening to a REST API (Develop with Docker Engine API

n.d; Schenker 2018, 17). The two services mentioned above are often, but not

necessarily, located on the same host OS. The third service is Docker Registry, remote

storage for the Docker Images, which can be self-hosted. However, by default,

Docker uses Docker Hub, a public registry maintained by Docker themselves.

19

Figure 3. Docker architecture (Docker overview n.d).

Docker Images

The Docker overview documentation succinctly summarizes a Docker image as “a

read-only template with instructions for creating a Docker container” (Docker

overview n.d). Images are composed of layers of which the first one is a Linux

distribution, for instance, Ubuntu, Debian, or Alpine Linux for bare-bones builds. The

Docker images with only the first layer are called base images, and other images have

the opportunity to use them as parent images. Frequently the base is an official

image pulled from Docker Hub. (Schenker 2018, 61-63.)

On top of the base layer resides the needed software. For example, if the container

should act as a web server, the software could be Nginx. When using some of the

most popular software in their specific areas, an official image can be found again on

Docker Hub more often than not. These images are primarily created on top of a

base image. That is the case with Nginx as well – by pulling the Nginx image from the

official registry, one can create a container with a fully functioning web server

running on Debian.

20

Dockerfile

Dockerfiles are the blueprints for building the Docker Images. As seen in Figure 4, the

instructions are very close to what one could run on the command line to configure a

service. The containers can be fully configured using the instructions within a

Dockerfile, and one does not need to access the container for configuring or starting

a service. (Dockerfile reference n.d.)

Figure 4. Dockerfile creates layers to Docker Image (Schenker 2018, 69).

Docker Compose

As the Dockerfiles instruct the build of a single image, Docker Compose’s primary use

is to run and configure services that may contain multiple containers with

interdependencies. With a YAML configuration file, one can define the containers, or

services, included in the application with their images, ports, volumes, and other

options Docker provides for the container configuration. While Docker Compose is a

good tool for ensuring identically configured development environments for all the

developers and different machines, it can be used in automation and production

environments as well. (Overview of Docker Compose N.d.)

21

4 Implementation

4.1 General

Most of the client’s services, subjects of security testing, reside within Google’s cloud

infrastructure GCP, and that is where the security testing complex was deployed. The

deployment and security testing flow is illustrated with six steps in Figure 5. Steps

one, two, and four are part of the fundamental development and deployment path;

the developer commits their code into VCS, which then triggers the CI/CD pipeline.

The pipeline does the necessary unit and integration testing before deploying the

compiled application onto the server. Steps three, five, and six form the idea of

security testing utilizing the CI/CD pipeline. After the pipeline has successfully tested

the new change in code, in step three, it appends the relevant service’s FQDN or IP

address to a register which is regularly fetched by the security testing server. In step

number six, all the fetched hosts are put under security testing at predefined times,

for example, every night at 22:00.

Figure 5. Security testing flow topology.

22

4.2 Greenbone Vulnerability Management

4.2.1 General

For this thesis, GVM was separated into more minor services in their dedicated

containers rather than the whole complex being inside one. This decision was made

with the future and scalability in mind as the containerized testing services could be

deployed into a Kubernetes cluster later on. Kubernetes would enable expanding the

processing capacity by manipulating the number of containers running the heavy

load automatically, for example, during the security testing process. This kind of

implementation would be more cost-effective since the resources can be brought to

the bare minimum when the service is inactive. However, during the thesis-related

development, the security testing service was deployed and run within GCP Compute

Engine virtual machine with no auto-scaling capabilities.

At the time of starting the study and during the development, the latest stable

version for the security testing tool was GVM 11, and it was used for the project. A

newer version was released shortly after the end of the development process of this

thesis.

4.2.2 Containerization

There are no official Docker Images provided for GVM 11, and to create such images,

one should obtain thorough knowledge on the source code of the project in

question. Fortunately, an active GitHub user Mohammad “Admirito” Razavi (2021),

has achieved to do so and maintains a peer-reviewed code repository “gvm-

containers” including a set of unofficial GVM images. Based on the official

Greenbone Source Edition (GSE) open-source project, the source code of the

separated services is also hosted by Razavi in a Personal Package Archive (PPA). The

development of this study is based on the project in question.

As seen in Figure 6, the containerized application topology is slightly different from

the basic GVM configuration. GVM-containers project provides five containers:

gvmd, gsad, gvm-postgres, openvas, and in addition to the services included in GVM,

23

the containerized application utilizes a Redis-container to share a Docker Volume

involving a socket connection between openvas and gvmd containers. There are no

listening ports bound to the host, disallowing any incoming traffic. The incoming

traffic includes web browsers, so the user interface cannot be accessed. The

application must have a reverse proxy as the gateway for incoming traffic. However,

the traffic initiated from the inside is possible.

Figure 6. Greenbone Vulnerability Management containerized architecture.

4.2.3 Configuration

The GVM environment is deployed using docker-compose since the containers are

interdependent and correct order for the service start-ups is a necessity. The

application’s compose file (Appendix 1) comprises the five services mentioned earlier

with their needed volumes, environment variables, and configuration. However, it is

still possible to create and manage the containers separately, though it would be

quite a bit more cumbersome process.

24

All of the needed images could be pulled from Razavi’s Docker registry repository.

However, some modifications needed to be done to the images to make them work

in a suitable manner for the case. For every service needed, a Dockerfile was also

provided; therefore, it would have been unnecessary to configure the images from

scratch. In appendix 1, it can be seen that only gvm-postgres, the database, is pulled

from the registry by declaring the container’s image with “image: admirito/gvm-

postgres:11” in line 15. Other GVM containers’ images are instead created locally

using the “build” command following with the relevant path to locate the

corresponding Dockerfile. Redis uses the official image from Docker Hub.

The gvmd container’s image was built using a Dockerfile seen in Figure 7. The

difference to the provided image lies in the container’s logging and the tools that APT

installs. The image logged everything in the container’s /dev/stdout, which in this

case, would print logs to the text terminal. Although the terminal can be read outside

of the container, the outputs are not permanent. By default, GVM saves logs in a

predefined file, and that file can be shared via a Docker volume, hence the volume

”logs” in the compose-file (Appendix 1). The logging functionality was changed for all

the images that were built locally to achieve a centralized logging feed in the Docker

Volume providing information on all the components of GVM.

With the provided Docker image, GVM’s PDF-report generating exhausted the whole

system with its actions. The reason appeared to be the lack of gpgsm and xml-twig-

tools, causing the generating process to loop infinitely when parsing XML (Extensible

Markup Language), and use all memory available. The problem mentioned has been

treated in the docker-compose file as well by setting a memory limit for gvmd-

service. However, after the proper installations, it is not a necessity but a

preventative measure.

The Dockerfiles of other services follow a similar structure with gvmd’s: Their base

image is Ubuntu 20.04 Focal Fossa, Razavi’s repository is added as APT’s source, the

needed tools are installed, initialization scripts are run from a docker-entrypoint.sh

file on the containers start-up, and the service is started after the script finishes.

ENVs purpose in the GVM’s Dockerfiles is mainly to inform the user, while they are

25

not used during image building, only in the entrypoint script; thus, they can be

overridden in the docker-compose file.

Figure 7. Modified Dockerfile for gvmd.

After declaring the images in the docker-compose file, environment variables and

volumes must be configured for the containers to function. Volumes are used to

persist the data and share it between the other services. Environment variables can

set information for the service, including usernames, passwords, file paths, port

numbers, hostnames, or anything a user traditionally wants to change in system

configurations. As mentioned, possible environment variables can be written in

services’ Dockerfiles to inform the user configuring the system on available

environment variables.

Most service sections include ”depends_on” and ”restart” options, ensuring that the

containers are started in the correct order and restarted if they appear to be stopped

for any unintentional reasons, such as a fatal error in the container or a restart of the

host system. In this case, gvm-postgres is the first container to be brought up,

following by gvmd and openvas. Redis is started after the openvas container is

26

successfully started, and gsad is run when gvmd is up. Each container’s entrypoint

and command option handle the proper connecting with the application.

Options not seen on every service are ”command,” ”sysctls,” and ”privileged.”

”Command” is used to override the default commands run on the image start-up, as

with the Redis service, instead of the default TCP configuration, the service is defined

to use Unix sockets for better performance. The sockets are located in run-redis

volume, which is shared with openvas and gvmd for their connection. ”Sysctls” with

”privileged” options, one can change kernel parameters within the container. In

openvas and Redis containers, ”net.core.somaxconn” changes the number of socket

connections that can be backlogged. The default value for it is 128, while even the

start of Redis service could require over 500.

The containers can be brought up using the command “docker-compose up” (Figure

8). The application would be usable as it now is by opening a port for HTTP traffic to

the gsad container, but it was decided that some kind of proxying should be used in

between the Internet and GVM.

Figure 8. The containers are started with a docker-compose command.

4.3 GCP Compute Engine

4.3.1 General

During the development process, a GCP Compute Engine instance separated from

the client’s infrastructure was created for the service to take place on. Should there

27

be problems, it would not affect the client’s networking while being configured in the

development phase.

4.3.2 Configuration

A compact virtual machine (Figure 9) was deployed on Debian 10 image with one

virtual CPU core, 1.7 GB of RAM, and 25 GB of hard drive space. It is enough to get

everything working, but when starting to run more extensive vulnerability tests with

GVM, the resources are added as well. Both HTTP and HTTPS traffic were allowed

from the initial system configuration, but to communicate with GVM via GMP it is

necessary to create a new firewall rule. Figure 10 shows that allowing any incoming

TCP traffic to port 9390 has been enabled for the VM instances that use the network

tag “gvm.” That can be seen in the VM’s configuration under “Network tags.”

Figure 9. GCP Compute Engine system specifications.

28

Figure 10. Firewall rule to allow GMP.

After initially configuring the system, the needed additional software was installed

on the server, including Docker and Docker Compose.

4.3.3 Domain Name and SSL/TLS Certificate

A free domain name “gvmthesis.tk” was obtained from freenom.com for the

development process. The intention was to simulate the production environment as

all the routing can be done as it would be with the final product. The ports for HTTP

and HTTPS were already opened with the network tags; the only thing missing is the

SSL/TLS certificate to achieve a working HTTPS connection.

The certificate was issued using Certbot and Nginx webserver, both containerized.

The process requires an Nginx container to be brought up with a specific

configuration, and it was decided to be done with Docker Compose again. Figure 11

shows the volume containing the nginx.conf (Figure 12), and the volume that will

contain the certificate information after the Certbot container has done its work with

issuing the certificate for the server.

29

Figure 11. Docker-compose.yml file for Nginx used in obtaining the SSL/TLS Certificate.

Figure 12. Nginx.conf for obtaining the SSL/TLS Certificate.

When the Nginx container had been brought up, Certbot was run with a shell script

containing a Docker Run command (Figure 13). It can be seen in the figure that one

of the volumes is the same that is declared in Nginx’s compose file. The lines after

the image “certbot/certbot” are arguments for the program running inside the

container. The arguments include email, agreement for Terms of Service, denial for

the provider’s emailing list. Webroot path is where the certification data is placed,

and it is also the volume for Nginx. The certificate was issued without problems, as

can be seen in Figure 14.

30

Figure 13. Certbot.sh.

Figure 14. Obtaining Let’s Encrypt SSL/TLS certificate with Certbot.

4.4 Nginx Reverse Proxy

4.4.1 General

Figure 15 illustrates the reverse proxy’s purpose in this implementation: to make

GVM’s web interface available and enable the use of a management protocol GMP. It

does also add a layer of security and provide a better, future-proofed user

experience. The security comes in the form of access logs and an SSL/TLS-certificate

for HTTPS. User experience will be better when multiple different testing tools are

running on various unmemorable port numbers. By default, the gvm-containers

project runs GSAD in port 8080. With a reverse proxy, one could configure a path to

point into a particular port, for example, gvmthesis.tk/gvm. Alternatively, a host-

specific approach could be taken, for example, gvm.gvmthesis.tk.

31

Figure 15. Greenbone Vulnerability Management architecture with reverse proxy.

4.4.2 Configuration – HTTP & HTTPS

Nginx reverse proxy was installed and configured inside a container using an official

Docker Image for Nginx. While Docker Compose is a good tool for multi-container

applications, it successfully manages single containers with many different

arguments as well. As seen in Figure 16, the proxy service does have more than

enough configuration to do for a single Docker command.

In addition to Docker Compose’s options mentioned earlier, the reverse proxy uses

“ports” and “networks.” The container’s ports have to be bound with the host’s ports

to access the services from the outside. 80 and 443 are as usual for HTTP and HTTPS,

and 9390 is used to communicate with GVM without a web browser, with GMP

(Greenbone Management Protocol). The networks option gives the proxy the ability

to join the external network that was created at the start of GVM services. When the

containers are in the same network, routing can be done using the service names.

32

Figure 16. Nginx docker-compose.yml file.

The docker-compose file shows that there are multiple volumes, many of which are

binding a configuration folder. Nginx does not compel one to write separate files for

each type of configuration – everything can be put inside nginx.conf. While projects

and services become more extensive in terms of configuration lines, it is definitely a

good practice to introduce the configuration blocks in their descriptive files. The files

can be imported to the appropriate place, as has been done in this implementation.

The folders’ structure is illustrated with Tree-commands output in Figure 17.

Figure 17. Nginx configurations formatted with Tree-command.

33

The root of the configuration files is “nginx.conf” (Figure 18) which the Nginx server

reads first by default. Other configuration locations are imported there directly and

indirectly via other imported configuration files. The broadest configurations, like the

HTTP block, are placed there among the process options. The HTTP block defines the

format for log messages, location for the access log, request and response

compression with gzip is enabled, and the configurations in conf.d folder are

included, imported, in the block.

Figure 18. Nginx.conf file.

The only configuration file in the conf.d folder is default.conf file, which contains the

Server blocks as seen in Figure 19. The first Server block listens to port 80 and

recognizes “gvmthesis.tk” as server’s name. All the traffic coming to port 80 is

34

insecure HTTP, and this block’s duty is to make sure that the traffic is redirected

automatically with HTTP status code 301 to HTTPS in port 443 listened to in the other

Server block. The second block defines the primary location redirection, the SSL/TLS

Certificates, and includes the configuration (Figure 20) for HTTPS. It accepts only TLS

versions 1.2 and 1.3 since the older versions are deprecated. The “location /” block

includes proxy configuration (Figure 21) and proceeds to redirect incoming traffic to

the relevant upstream.

Figure 19. Nginx default.conf file.

35

Figure 20. Nginx ssl.conf file.

Figure 21. Nginx proxy.conf file.

In this case, the upstream is GVM, precisely the gsad-container that is a part of the

GVM complex. The Nginx container’s docker-compose file defines GVM’s default

network as an external network that allows the Upstream block to connect to the

GVM containers using only the services name. It is intended to connect the user with

a web interface to GVM, provided by Greenbone Security Assistant service, running

in the gsad container’s port 80.

After running “docker-compose up” for GVM containers and the Nginx server, it is

possible to connect to our service with a browser. In Figure 22, the requested

address “http://gvmthesis.tk” redirects to “https://gvmthesis.tk/login” with a visible

lock icon in the address bar. This kind of behavior indicates that the redirect from

HTTP port 80 to HTTPS port 443 and the SSL/TLS Certificate is working correctly.

http://gvmthesis.tk/
https://gvmthesis.tk/login

36

Figure 22. HTTPS is working with the SSL/TLS certificate.

4.4.3 Configuration – GMP Passthrough

Interaction with GVM without using the graphical web interface requires the use of

GMP. By default, the GVMD listens to port 9390/TCP, and it could be opened for the

traffic from the outside, but the better option would be to use the existing Nginx

service to pass the GMP traffic to the gvmd container. This way, all the GVM

containers can be kept behind a monitored entity. While every incoming connection

flows through a single container, it is easier to monitor access logs when they can be

separated. The web interface does communicate to GVMD with GMP as well, so all

traffic is logged in the same place on GVMD’s end. In Figure 23, GMP’s access log has

been defined to its dedicated file: gvmd_access.log, separated from the HTTP traffic.

The entire configuration is located inside a Stream block, which can be considered

similar to the HTTP block, except it forwards TCP connections. The Server block tells

Nginx to listen to port 9390 and pass the traffic to the Upstream block’s gvmd port

9390.

37

Figure 23. Nginx gmp.conf file.

4.5 GMP Tool

4.5.1 General

Human interaction is, on average, easiest to do with a graphical user interface, but

machines and software have a hard time using graphical interfaces. Fortunately,

Greenbone provides a gvm-tools library for Python, which is essentially helpful when

commanding GVM from, for example, a CI/CD pipeline. Gvm-tools does ship with a

CLI tool, but its functionality was very clunky with remote connections. With the

library, it was possible to develop a tailored tool for the needs of this project. There

are few requirements for the tool to fulfill. The remote user should be able to add

new targets and tasks with their scan configurations to GVM, list existing ones,

schedule, and start tasks. Greenbone provides technical documentation for GMP,

and it is used to ease the tool’s development process (Greenbone Management

Protocol n.d).

38

4.5.2 Development

The tool’s (Appendix 2) development began with installing the gvm-tools library with

the command “pip3 install gvm-tools”, which allows Python to import needed

functionality. The first thing that needed to be done was to establish a connection to

the server running GVM. Gvm-tools provides three ways to connect to a GVM server:

SSH, TLS, and Unix sockets. The TLS connection was chosen since it includes built-in

security and does not require any additional configuration on the GVM server. It was

already configured to listen to port 9390, which is also the default port for gvm-tool’s

TLS connection. The relevant imports for the connection are located in lines 6, 7, and

8 in Appendix 2 – TLSconnection initializes the secure connection, EtreeTransform

formats the responses as XML element trees. Gmp class is used as a context manager

for the GMP traffic in line 212.

The Gmp class includes an authenticate method, which takes username and

password as arguments and has to be successful to perform further actions. The

login function in line 187 tries to authenticate and checks from the response

message if it was successful. The response is a byte string containing data in XML

format, as it was defined, and the response status has to be retrieved using xpath.

The response in Figure 24. Successful authentication response from GVM. has been

printed with the pretty_print command imported from gvm.xml to enhance

readability.

Figure 24. Successful authentication response from GVM.

After the authentication was handled sufficiently, the first and the most

straightforward feature to implement was retrieving the list of tasks and targets.

39

Gmp class does include a method to get all data of the targets (Figure 25) and tasks,

but the amount of information exceeds what is needed to check the names of

existing subjects.

Figure 25. Gmp get_targets method’s output for one target.

The relevant data (Figure 26), including the task’s or target’s name and their ID, was

parsed from the responses with get_targets and get_tasks functions on lines 130 and

155. The result is far more readable compared to the initial response and is most

likely enough for the intended use. Although, a verbosity option could have been

implemented to change the specificity of the output. Fetching information on

schedules and scanner configurations works similarly to the aforementioned

functions.

40

Figure 26. GMP tool listing target information.

The next feature to implement was supposed to start existing tasks by giving the

task’s name as an argument. Gmp does obviously provide a start_task method, but it

takes the task’s id as an argument. This means it had to be determined which name

has which id, and luckily a function to contain both information was created earlier.

The get_task_by_name function on line 143 uses the get_tasks function to fetch the

tasks’ names and IDs, and then compares which of the pairs has the requested name

and proceeds to return the corresponding task_id to the start_task function on line

168. Figure 27 illustrates the XML response received from the server and the request

for starting a task named “gvmthesis.tk” seen via the web interface.

Figure 27. Starting a task using the GMP tool.

Creating a task requires there to be something as a target first. GVM requires a list of

hosts and a name for that target group, and there is an optional argument used to

comment on the group, as seen in the function on line 22. The function was designed

so that the user does not need to provide a name for the target group. In this case,

the name will be the same as the host argument.

41

Now that there could be added targets to have tasks, the create_task function on

line 47 was implemented. GVM requires four arguments: name, config_id, target_id,

scanner_id, and optional schedule and comment arguments. The intuitive way to

define the targets would be to use the name and to achieve that, the target_id was

fetched with the help of existing functionality, pairing targets’ name and ID, and

returning the matching ID for the name. There was only one option for a scanner at

the time: OpenVAS. Its ID is fetched from GVM, and the value’s xpath is hardcoded in

the tool.

OpenVAS scanner provides eight default scanning configurations to choose from,

each of which varies in the types and number of NVTs run, meaning the level of

features and intrusiveness. Besides the name and ID, GVM returns much unnecessary

data (Figure 28) when requesting configurations. Writing the names nor the IDs to

select the configuration is not optimal for the user. Therefore, a Python dictionary

was implemented (Appendix 3, line 4) with integers as keys and the configuration

names as their values. The get_config_id function in Appendix 2 line 33 takes the

dictionary’s key from the user and then, with the corresponding value, the scan’s

name, searches the ID pair for that value and returns it to the create_task function.

Figure 28. The relevant part of the scanner configuration’s response in Python shell.

The schedules are iCalendar objects, and they are created in Appendix 2 line 92

create_schedule function, if the requested schedule has not already be found in

get_schedule_by_name function on line 69. The Schedules are configured to run at

the following midnight and then, for example, daily or weekly.

42

4.5.3 Development – CLI Tool

As all the intended functionalities have been implemented, the features should be

possible to use via terminal as well. Python’s standard library provides a handy

module for CLI programming: Argparse. With the module, one can use command-line

options, known as flags, to achieve the wanted outcome with the program. Argparse

can raise errors if one is missing a required parameter and automatically generates a

help page, including all the flags and their options if defined. The flag options can be

seen in Figure 29 showing the help page.

Figure 29. Gmp.py help page generated by Argparse.

Figure 30 illustrates the command and output of creating a target using the

developed tool, followed by the result seen in the GVM web interface in Figure 31.

The flags used in the command are shorthands for –add-target, --host, --name, and –

comment.

43

Figure 30. Adding a target using gmp.py.

Figure 31. Added target in GVM web interface.

Now that the target has been established, a task for that target can be created.

Figure 32 shows a command creating a scheduled task using the “Host Discovery”

configuration. The GVM web interface shows a new task in Figure 33 with a weekly

schedule, and the first run being at the following midnight.

Figure 32. Adding a task using gmp.py.

44

Figure 33. Added task in GVM web interface.

Scheduled tasks cannot be run manually, but a task can be created without a

schedule, thus it can only be run manually. Figure 34 and Figure 35 show the

command to create a task and start it immediately and how it shows up in GVM.

Figure 34. Adding a task and starting it immediately.

Figure 35. The GVM web interface shows the started task as requested.

45

4.6 CI/CD

4.6.1 General

There was some configuration to do in the CI tool to get the information of the code

changes to the GVM server. The client uses CircleCI as their tool for CI/CD, and its

configuration files consist of different workflows, which include multiple jobs and

steps. The configuration files are written in YAML.

There were two options for the implementation of informing GVM:

1) Download the gmp.py (Appendix 2) tool with its requirements into every CI instance
run and individually create a task for every host changed. The tool could also be
added to every repository instead of downloading it.

2) Append the hostname of the changed server into a file located in Google Cloud
Storage. The GVM server would periodically fetch the file, and the file’s hosts would
be added to a single target and task with the gmp.py tool.

The second option was chosen to be implemented due to the fact that it could be

implemented in the CI with less configuration and without downloading any excess

tools. Google’s cloud-sdk Docker image is already used in the configuration, and it

does provide the necessary tools for accessing Google Cloud Storage. The

authentication information for Google’s services is already found in CircleCI’s secrets,

and there is no need to add the GVM server’s credentials. Adding the secrets would

have been done separately for every repository’s CI pipeline. Also, inserting the GMP

tool into every repository would lead to unnecessary work when the tool is updated

– It would be better to only have the tool in one place, in the GVM server, and

update it along with the GVM-container’s CI pipeline.

4.6.2 Configuration – CircleCI

There was not much of configuration to do to create a universal block seen in Figure

36. The CI job’s name is set-security-testing, and it runs in a Docker container built

from Google’s cloud-sdk image. Environment variables define the host to scan and

the information for authenticating to Google Cloud, which is handled in the first step.

The second step handles copying the existing file from Google Cloud Storage and

46

appending the hostname at the end of the file. The file is then updated to Google

Storage using a rsync command instead of cp, copy - this is to prevent overwriting

some other host’s update if multiple CI pipelines are being run simultaneously. Figure

37 shows the workflow configuration in the same file’s end. It states that in order to

start the set-security-testing job, the push-to-staging job has to be successfully

finished, and that the job is only run when committing code to the develop branch.

This way, the code is tested when it is not yet in production.

Figure 36. CircleCI job for setting updated host.

47

Figure 37. CircleCI workflow’s configuration.

4.6.3 Configuration – Server

On the GVM server itself, fetching the updated hosts is performed with a Bash script,

as illustrated in Figure 38. The script rsyncs the folder containing updated hosts to its

docker folder. This is where all the source code relevant to the study is stored. The

newly downloaded file is compared with the previous file, and the additional lines

are used to overwrite test_hosts.txt. The script is exited if the file is empty.

A Python virtual environment is activated, containing all the requirements for the

GMP tool to function. The insides of the file are sorted, and possible redundancies

are removed. The remaining lines are concatenated as a string that the GMP tool

accepts as an argument, and the tool is used first to create the target, then the task,

and finally to start the scanning. The TARGET_NAME variable is timestamped in

Figure 38 line 26 to tell apart the previously created targets.

The Bash script is run periodically with the help of Cron. Cron is a built-in feature in

Unix systems to run scheduled commands and scripts. The intervals can be set as one

will, for example, every day.

48

Figure 38. Bash script to fetch updated hosts and start a scanning task.

5 Results

The final product developed and implemented as a result of this thesis process is a

containerized vulnerability scanning and management service, capable of being

tasked dynamically. Tasking can be either fully automatic utilizing Continuous

Integration and Continuous Delivery pipeline or manual via a web interface or a

custom developed command-line interface program.

Whenever a developer commits into a branch chosen to be the subject for testing,

the CI/CD pipeline requests a scan for a particular host. The requested hosts are used

to define new tasks for the GVM with the developed GMP tool. After the tasks have

been successfully run, GVM provides vulnerability reports, possible mitigation

solutions, and beyond via the graphical web interface, to whom it may concern.

Every developer could review the results of the scanning. However, the person

49

responsible for the information security in the organization would be a better pick

for assessing the reports and the further actions that ought to be taken. Figure 39

represents GVM’s vulnerability reporting with the data gathered by scanning a

vulnerable demonstration server.

Figure 39. Example of a GVM vulnerability report.

50

6 Conclusion

The goal set for this Bachelor’s thesis was to develop and implement an automated

and cost-efficient security testing tool for cloud services without slowing down the

developers’ normal working flow. The study was to answer two research questions:

How to implement cost-efficient security testing for cloud services and how to

automate the implemented security testing in an agile environment.

The required cost-efficiency was achieved using platforms already in the Client’s

infrastructure: CircleCI and Google Cloud Platform; and selecting additional free-of-

charge, open-source tools, including Docker, Greenbone Vulnerability Management,

and Nginx. The efficiency can be pushed further if GVM is deployed into Kubernetes

with automatic resource scaling, hence the already containerized application. The

cost of the author’s engineering work needed to bring up a running security testing

service was, at estimate, half of the cost of purchasing a one-year license for Nessus.

The implementation retained the developers’ regular flow by informing the testing

tool that the service has been changed, rather than running the time-consuming

testing within the CI/CD pipeline.

The set requirements were met with the study’s end product, meaning that the

construct does provide a solution for the presented problem. The solution passes the

first level of the Three-level market test, mentioned in chapter 2.3, which requires

that the solution works in the subject organization. When taking the scope of the

study into account, the other levels are unachievable at this point. However, the

concept of automated security testing utilizing CI/CD technologies could quite

possibly be implemented within any organization in the industry providing software

services.

51

6.1 Reliability

GVM includes Quality of Detection metrics providing a value from 0 to 100 %

depending on the detection methods. However, the systems are scanned using only

one tool, which creates a chance of having false-positive results or undetected

weaknesses. Implementing another tool to run with GVM could drastically improve

detection reliability.

6.2 Challenges

The biggest challenges occurred while developing the GMP CLI tool. The

management protocol’s documentation is a bit lacking, and there were not many

additional discussions to be found. Many problems were solved by trial and error,

and by reading the GVM-tools package’s source code.

Also, some of the problems encountered when configuring GVM were beyond the

reach of the tool’s official documentation and required a significant amount of

knowledge in system administration or getting known to the source code of the

service.

6.3 Further Research

With the study’s implementation, GVM does not notify the user when a new

vulnerability report is available, so it must be periodically checked. The tool provides

an alert system with several methods for notifying, such as Email and HTTP Get,

among others. A practical use case for an alert would be when GVM detects a

vulnerability with a CVSS over 4.0, which is considered a medium-level vulnerability.

Some minimal changes may be insignificant to the security of services, and it could

be helpful to be able to inform the system that this service does not require testing

at this time. On the other hand, requesting immediate security testing could be

52

handled with similar actions. These actions could be handled within the CI pipeline

with, for example, using specified tags in the pull request’s commit message.

To provide an answer for the reliability issue, another vulnerability scanner tool

could be implemented to be run with GVM. A possible candidate would be OWASP

ZAP that was already mentioned in the comparison of tools. ZAP also provides an API

for automation, and it may be possible to integrate with GVM as an external scanner

software.

53

References

Abildskov, J. 2020. What is DevOps?. Blog post on Eficode webpage. Accessed on 7
May 2021. Retrieved from https://www.eficode.com/blog/what-is-devops.

About CircleCI. N.d. CircleCI docs-webpage. Accessed on 1 May 2021. Retrieved from
https://circleci.com/docs/2.0/about-circleci/?section=getting-started.

About Google Cloud services. N.d. Google Cloud docs-webpage. Accessed on 1 May
2021. Retrieved from https://cloud.google.com/docs/overview/cloud-platform-
services.

Ansari, J. & Najera-Gutierrez, G. 2018. Web Penetration Testing with Kali Linux. 3rd
ed. Birmingham: Packt Publishing Ltd.

Asay, M. 2017. It’s a decade since DevOps became a ‘thing’ – and people still don’t
know what it means. Article on The Register webpage. Accessed on 7 May 2021.
Retrieved from https://www.theregister.com/2017/12/08/devops_real_talk/.

Containers vs. virtual machines. 2019. Microsoft docs-webpage. Accessed on 16 May
2021. Retrieved from https://docs.microsoft.com/en-
us/virtualization/windowscontainers/about/containers-vs-vm.

Develop with Docker Engine API. N.d. Docker docs-webpage. Accessed on 22 March
2021. Retrieved from https://docs.docker.com/engine/api/.

Docker overview. N.d. Docker docs-webpage. Accessed on 22 March 2021. Retrieved
from https://docs.docker.com/get-started/overview/.

Dockerfile reference. N.d. Docker docs-webpage. Accessed on 1 May 2021. Retrieved
from https://docs.docker.com/engine/reference/builder/.

Duvall, P. N.d. Continuous Integration: Patterns and Anti-Patterns. PDF Document.
Retrieved from http://www.cheat-sheets.org/saved-copy/rc084-010d-continuous-
integration_1.pdf.

General Python FAQ. N.d. Python docs-webpage. Accessed on 12 May 2021.
Retrieved from https://docs.python.org/3/faq/general.html.

Government, in cooperation with the President of the Republic, declares a state of
emergency in Finland over coronavirus outbreak. 2020. Finnish government press
release 140/2020 on 16 March 2020. Accessed on 21 January 2021. Retrieved from
https://valtioneuvosto.fi/en/-/10616/hallitus-totesi-suomen-olevan-poikkeusoloissa-
koronavirustilanteen-vuoksi.

Greenbone Management Protocol. N.d. Greenbone docs-webpage. Accessed on 2
May 2021. Retrieved from https://docs.greenbone.net/API/GMP/gmp-9.0.html.

https://cloud.google.com/docs/overview/cloud-platform-services
https://cloud.google.com/docs/overview/cloud-platform-services
https://www.theregister.com/2017/12/08/devops_real_talk/
https://docs.docker.com/engine/api/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/reference/builder/
http://www.cheat-sheets.org/saved-copy/rc084-010d-continuous-integration_1.pdf
http://www.cheat-sheets.org/saved-copy/rc084-010d-continuous-integration_1.pdf
https://valtioneuvosto.fi/en/-/10616/hallitus-totesi-suomen-olevan-poikkeusoloissa-koronavirustilanteen-vuoksi
https://valtioneuvosto.fi/en/-/10616/hallitus-totesi-suomen-olevan-poikkeusoloissa-koronavirustilanteen-vuoksi
https://docs.greenbone.net/API/GMP/gmp-9.0.html

54

Gvm-tools. N.d. Gvm-tools GitHub-page. Accessed on 11 May 2021. Retrieved from
https://github.com/greenbone/gvm-tools.

ICalendar. N.d. ICalendar webpage. Accessed on 11 May 2021. Retrieved from
https://icalendar.org.

Internet organised crime threat assessment IOCTA 2020. 2020. PDF Document.
Europol. Retrieved from https://www.europol.europa.eu/activities-services/main-
reports/internet-organised-crime-threat-assessment-iocta-2020.

Kananen, J. 2012. Kehittämistutkimus opinnäytetyönä: Kehittämistutkimuksen
kirjoittamisen käytännön opas [Action research as a thesis: a practical guide to
writing action research]. Jyväskylä: Jyväskylän ammattikorkeakoulun julkaisuja.

Kananen, J. 2015. Opinnäytetyön kirjoittajan opas: näin kirjoitan opinnäytetyön tai
pro gradun alusta loppuun [Thesis writer’s guide: this is how I write a thesis or a
master’s thesis from start to finish]. Jyväskylä: Jyväskylän ammattikorkeakoulu,
Liiketoimintayksikkö.

Liveto. N.d. Liveto-webpage. Accessed on 10 January 2021. Retrieved from
https://www.liveto.io/.

Liveto Group Oy. N.d. Finder-webpage. Accessed on 22 January 2021. Retrieved from
https://www.finder.fi/Tapahtumat/Liveto+Group+Oy/Jyv%C3%A4skyl%C3%A4/yhtey
stiedot/3045895.

Lukka, K. 2001. Konstruktiivinen tutkimusote [Constructive research approach].
Metodix-webpage. Accessed on 5 May 2021. Retrieved from
https://metodix.fi/2014/05/19/lukka-konstruktiivinen-tutkimusote/.

Matteson, S. 2017. DevSecOps: What it is and how it can help you innovate in
cybersecurity. Article on ZDNet-webpage. Accessed on 9 May 2021. Retrieved from
https://www.zdnet.com/article/devsecops-what-it-is-and-how-it-can-help-you-
innovate-in-cybersecurity/.

Mueller, E. 2010 (Revised 2019). What Is DevOps?. Blog post on The Agile Admin
webpage. Accessed on 9 May 2021. Retrieved from
https://theagileadmin.com/what-is-devops/.

Nessus professional. N.d. Tenable-webpage. Accessed on 5 May 2021. Retrieved
from https://www.tenable.com/products/nessus/nessus-professional.

Ojasalo, K., Moilanen, T. & Ritalahti, J. 2015. Kehittämistyön menetelmät:
Uudenlaista osaamista liiketoimintaan [Methods of development: New kind of
expertise in business]. 3rd-4th ed. Helsinki: Sanoma Pro Oy.

OpenVAS. N.d. OpenVAS webpage. Accessed on 30 April 2021. Retrieved from
https://www.openvas.org/.

https://github.com/greenbone/gvm-tools
https://www.liveto.io/
https://www.finder.fi/Tapahtumat/Liveto+Group+Oy/Jyv%C3%A4skyl%C3%A4/yhteystiedot/3045895
https://www.finder.fi/Tapahtumat/Liveto+Group+Oy/Jyv%C3%A4skyl%C3%A4/yhteystiedot/3045895
https://metodix.fi/2014/05/19/lukka-konstruktiivinen-tutkimusote/
https://www.tenable.com/products/nessus/nessus-professional

55

Overview of Docker Compose. N.d. Docker docs-webpage. Accessed on 1 May 2021.
Retrieved from https://docs.docker.com/compose/.

OWASP Zed Attack Proxy (ZAP). N.d. ZAP’s webpage. Accessed on 10 May 2021.
Retrieved from https://www.zaproxy.org/.

Razavi, M. 2021. GVM-containers. GitHub-repository. Accessed on 6 May 2021.
Retrieved from https://github.com/admirito/gvm-containers.

Schenker, G. 2018. Learn Docker – Fundamentals of Docker 18. x: Everything You
Need to Know about Containerizing Your Applications and Running Them in
Production. Packt Publishing.

Seitz, J. 2014. Black Hat Python: Python Programming for Hackers and Pentesters.
San Francisco: No Starch Press, Inc.

Sharma, S. 2017. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a
Multi-Speed IT Enterprise. John Wiley & Sons, Inc.

Viitasuo, E. 2020. Adding security testing in DevOps software development with
continuous integration and continuous delivery practices. Jyväskylä: JAMK University
of Applied Sciences. Bachelor’s thesis. Retrieved from http://urn.fi/URN:NBN:fi:amk-
2020060316773.

Wagner, J. 2019. About Greenbone Community Feed (GCF). Greenbone community
forum post. Accessed on 1 May 2021. Retrieved from
https://community.greenbone.net/t/about-greenbone-community-feed-gcf/1224

What is a Container?. N.d. Docker’s webpage. Accessed on 22 March 2021. Retrieved
from https://www.docker.com/resources/what-container.

What Is A Reverse Proxy?. N.d. Cloudflare’s webpage. Accessed on 1 May 2021.
Retrieved from https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/.

What is Docker?. N.d. Opensource.com-webpage. Accessed on 22 March 2021.
Retrieved from https://opensource.com/resources/what-docker.

What is Nginx?. N.d. Nginx’s webpage. Accessed on 1 May 2021. Retrieved from
https://www.nginx.com/resources/glossary/nginx/.

What’s New In Python 3.8. N.d. Python docs-webpage. Accessed on 16 May 2021.
Retrieved from https://docs.python.org/3/whatsnew/3.8.html.

Why Docker?. N.d. Docker’s webpage. Accessed on 22 March 2021. Retrieved from
https://www.docker.com/why-docker.

https://docs.docker.com/compose/
https://www.docker.com/resources/what-container
https://opensource.com/resources/what-docker
https://www.nginx.com/resources/glossary/nginx/
https://www.docker.com/why-docker

56

Appendices

Appendix 1. GVM-containers’ docker-compose.yml file.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

version: ‘2.1’

volumes:

 redis-data: {}

 openvas-var-lib: {}

 gvm-var-lib: {}

 postgres-data: {}

 run-redis: {}

 run-ospd: {}

 logs: {}

services:

 gvm-postgres:

 image: admirito/gvm-postgres:11

 environment:

 PGDATA: /var/lib/postgresql/data

 POSTGRES_DB: gvmd

 POSTGRES_PASSWORD: password

 POSTGRES_USER: gvmduser

 volumes:

 - postgres-data:/var/lib/postgresql/data

 restart: always

 gvmd:

 # CONNECTED /var/run/ospd/ospd.sock

 build: ./gvmd

 environment:

 GVMD_POSTGRESQL_URI: postgresql://gvmduser:password@gvm-

postgres:5432/gvmd?application_name=gvmd

 GVMD_USER: admin

 volumes:

 - openvas-var-lib:/var/lib/openvas

 - gvm-var-lib:/var/lib/gvm

 - run-redis:/var/run/redis

 - run-ospd:/var/run/ospd

 - logs/:/var/log/gvm/

 mem_limit: 1000m

 depends_on:

 gvm-postgres:

 condition: service_started

 restart: always

 gsad:

 build: ./gsad

 environment:

 GVMD_HOST: gvmd

 GVMD_PORT: ‘9390’

 volumes:

 - logs/:/var/log/gvm/

 depends_on:

57

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

 gvmd:

 condition: service_started

 restart: always

 openvas:

 # LISTENING /var/run/ospd/ospd.sock

 # CONNECTED /var/run/redis/redis.sock

 build: ./openvas

 privileged: true

 sysctls:

 net.core.somaxconn: ‘2048’

 volumes:

 - openvas-var-lib:/var/lib/openvas

 - run-redis:/var/run/redis

 - run-ospd:/var/run/ospd

 - logs/:/var/log/gvm/

 depends_on:

 gvm-postgres:

 condition: service_started

 restart: always

 redis:

 # LISTENING /var/run/redis/redis.sock

 image: redis:5.0

 volumes:

 - run-redis:/var/run/redis

 - redis-data:/data

 command: redis-server—port 0 --unixsocket

/var/run/redis/redis.sock—unixsocketperm 755

 privileged: true

 sysctls:

 net.core.somaxconn: ‘2048’

 depends_on:

 openvas:

 condition: service_started

 restart: always

58

Appendix 2. Python program for GMP - gmp.py.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

import os

import sys

import arghandler

from gvm.connections import TLSConnection

from gvm.protocols.gmp import Gmp

from gvm.transforms import EtreeTransform

from gvm.xml import pretty_print

try:

 GVM_HOST = os.environ[’GVM_HOST’]

 GVM_USER = os.environ[’GVM_USER’]

 GVM_PASS = os.environ[’GVM_PASS’]

except:

 GVM_USER = ‘gvm’

 GVM_HOST = ‘gvmthesis.tk’

 GVM_PASS = ‘notthepassword’

def create_target(gmp, args=None):

 if not (name := args.name):

 name = args.host

 return gmp.create_target(

 name=name,

 hosts=[args.host],

 comment=args.comment

)

def get_config_id(config_index: int) -> str:

 requested_config = arghandler.SCAN_CONFIGS[config_index]

 config_resp = gmp.get_configs()

 configs = zip(

 config_resp.xpath(‘config/name/text()’),

 config_resp.xpath(‘config/@id’)

)

 for name, config_id in configs:

 if name == requested_config:

 return config_id

def create_task(gmp, args=None):

 if not (name := args.name):

 name = args.target # fallback to target

 if schedule := args.schedule:

 schedule = get_schedule_by_name(gmp, args=args)

 target = get_target_by_name(gmp, name)

 create_task_resp = gmp.create_task(

 name=name,

 config_id=get_config_id(args.scan_config),

 target_id=target,

59

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

 scanner_id=gmp.get_scanners().xpath(‘scanner[2]/@id’)[0],

 schedule_id=schedule,

 comment=args.comment

)

 if args.start_task: # with -S

 start_task(gmp, args=args)

 return create_task_resp

def get_schedule_by_name(gmp, args=None):

 schedules = get_schedules(gmp)

 if not (name := args.name):

 name = args.target

 requested_schedule = ‘{} {}’.format(name, args.schedule)

 for schedule_name, schedule_id in schedules:

 if schedule_name == requested_schedule:

 return schedule_id

 create_schedule_resp = create_schedule(gmp, args=args)

 return get_schedule_by_name(gmp, args=args)

def get_schedules(gmp) -> zip:

 schedule_resp = gmp.get_schedules()

 return zip(

 schedule_resp.xpath(‘schedule/name/text()’),

 schedule_resp.xpath(‘schedule/@id’)

)

def create_schedule(gmp, args=None):

 import pytz

 from datetime import date, datetime, timedelta

 from icalendar import Calendar, Event

 cal = Calendar()

 cal.add(‘prodid’, ‘1’)

 cal.add(‘version’, ‘2.0’)

 event = Event()

 tomorrow = date.today() + timedelta(days=1)

 event.add(‘dtstamp’,

 datetime.now(tz=pytz.timezone(‘Europe/Helsinki’)))

 event.add(‘dtstart’,

 datetime.combine(tomorrow,

 tzinfo=pytz.timezone(‘Europe/Helsinki’)))

 if freq := args.schedule:

 event.add(‘rrule’, {’freq’: freq})

 cal.add_component(event)

 if not (name := args.name):

 name = args.target

 return gmp.create_schedule(

60

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

 name=’{} {}’.format(name, freq),

 timezone=’Europe/Helsinki’,

 icalendar=cal.to_ical()

)

def get_target_by_name(gmp, requested_target):

 targets = get_targets(gmp)

 for target_name, target_id in targets:

 if target_name == requested_target:

 return target_id

def get_targets(gmp) -> zip():

 targets_resp = gmp.get_targets()

 return zip(

 targets_resp.xpath(‘target/name/text()’),

 targets_resp.xpath(‘target/@id’)

)

def list_targets(gmp, **kwargs):

 targets = get_targets(gmp)

 print(list(targets))

def get_task_by_name(gmp, **kwargs) -> str:

 if args.start_task is True:

 requested_task = args.name

 else:

 requested_task = args.start_task

 tasks = get_tasks(gmp)

 for task_name, task_id in tasks:

 if task_name == requested_task:

 return task_id

def get_tasks(gmp, **kwargs) -> zip():

 tasks_resp = gmp.get_tasks()

 return zip(

 tasks_resp.xpath(‘task/name/text()’),

 tasks_resp.xpath(‘task/@id’)

)

def list_tasks(gmp, **kwargs):

 tasks = get_tasks(gmp, **kwargs)

 print(list(tasks))

def start_task(gmp, **kwargs):

 task_id = get_task_by_name(gmp, **kwargs)

 start_task_resp = gmp.start_task(task_id)

 return start_task_resp

def get_function(args):

 if args.add_target:

61

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

 return create_target

 elif args.add_task:

 return create_task

 elif args.list_targets:

 return list_targets

 elif args.list_tasks:

 return list_tasks

 elif args.start_task:

 return start_task

def login(gmp) -> bool:

 try:

 auth = gmp.authenticate(GVM_USER, GVM_PASS)

 status = auth.xpath(‘@status’)

 if ‘400’ in status:

 print(‘login failed’)

 raise Exception

 print(‘login successful\n’)

 return True

 except Exception as e:

 print(e)

if __name__ == ‘__main__’:

 args = arghandler.handle()

 print(args)

 if len(sys.argv) > 1: # require >= 1 arguments

 function = get_function(args)

 connection = TLSConnection(hostname=GVM_HOST) # 9390

 transform = EtreeTransform()

 with Gmp(connection, transform=transform) as gmp:

 if login(gmp):

 print(function.__name__)

 out = function(gmp, args=args)

 pretty_print(out)

 else:

 print(‘Arguments required’)

62

Appendix 3. Python argument parser for GMP – arghandler.py.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

import argparse

SCAN_CONFIGS = {

 0: ‘Base’,

 1: ‘Discovery’,

 2: ‘Full and fast’,

 3: ‘Full and fast ultimate’,

 4: ‘Full and very deep’,

 5: ‘Full and very deep ultimate’,

 6: ‘Host Discovery’,

 7: ‘System Discovery’,

}

def handle():

 parser = argparse.ArgumentParser()

 exclusive = parser.add_mutually_exclusive_group()

 exclusive.add_argument(

 ‘-a’, ‘—add-target’,

 action=’store_true’,

 help=’Add a new target’

)

 exclusive.add_argument(

 ‘-A’, ‘—add-task’,

 action=’store_true’,

 help=’Add a new task’

)

 # Required Flags

 parser.add_argument(

 ‘-C’, ‘—scan-config’,

 type=int,

 choices=range(0, 9),

 help=str(SCAN_CONFIGS)

)

 parser.add_argument(

 ‘-t’, ‘—target’,

 type=str,

 help=’ID or name of the target, required with add-task’

)

 parser.add_argument(

 ‘-H’, ‘—host’,

 type=str,

 help=’IP address or hostname for new target’

)

 # Non-required Flags

 parser.add_argument(

 ‘-n’, ‘—name’,

 type=str,

 help=’Name for target/task, required with add-target and

add-task’

)

 parser.add_argument(

 ‘-c’, ‘—comment’,

 type=str,

63

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

 help=’Add comment for created object’

)

 parser.add_argument(

 ‘-S’, ‘—start’,

 action=’store_true’,

 help=’Start task’

)

 parser.add_argument(

 ‘-s’, ‘—schedule’,

 type=str,

 choices=[’now’, ‘daily’, ‘weekly’],

 help=’Set task schedule’

)

 # List flags

 parser.add_argument(

 ‘-lt’, ‘—list-targets’,

 action=’store_true’,

 help=’List target names and IDs’

)

 parser.add_argument(

 ‘-lT’, ‘—list-tasks’,

 action=’store_true’,

 help=’List task names and IDs’

)

 args = parser.parse_args()

 # Check for missing arguments

 if args.add_task:

 assert (args.target is not None

 and args.scan_config is not None),\

 parser.error(

 ‘MISSING REQUIRED ARGUMENT\n \

 -t|--target <NAME|ID> \n \

 -C|--scan-config <0-8> \n \

 WHEN -A|--add-task is set’

)

 elif args.add_target:

 assert args.host is not None,\

 parser.error(

 ‘MISSING REQUIRED ARGUMENT\n \

 -h|--host <IP|HOSTNAME> \n \

 WHEN \n \

 -a|--add-target is set’

)

 return args

