

Tatu Kalermo

Building a Design System

Metropolia University of Applied Sciences

Bachelor of Engineering

Software Engineering

Bachelor’s Thesis

10.5.2021

Abstract

Author: Tatu Kalermo

Title: Building a Design System

Number of Pages: 21 pages

Date: 10 May 2021

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Software Engineering

Supervisors: Janne Salonen, Head of Major

The goal of this thesis was to showcase creation of a Design System using
Storybook and explore the importance of Design Systems.

Starting point of the thesis was a design library made by a designer in Figma. In
order to achieve the goal of transferring the Design System from Figma to Storybook,
research about different component libraries and Storybook was carried out.

Transferring process was started with creating smaller pieces such as design tokens
and gradually moving on from primitives to the components. All of the steps were
documented either via git or a text document.

As results a start of the Storybook Design System and instructions of using it were
created. The project continues in development as not all of the components have
been transferred yet.

The result was received well and presented in a demo for the whole company.

Keywords: React, Design System, Storybook

Tiivistelmä

Tekijä: Tatu Kalermo

Otsikko: Design Systemin rakentaminen

Sivumäärä: 21 sivua

Aika: 10.5.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Software Engineering

Ohjaajat: Janne Salonen, Osaamisaluepäällikkö

Opinnäytetyön tavoitteena oli näyttää Design Systemin luonti käyttäen
Storybook työkalua sekä keskustella Design Systemien tärkeydestä.

Lähtökohtana opinnäytetyölle oli suunnittelijan kehittämä Figma-kirjasto.
Tavoitteeseen pääsemiseksi Figma-kirjaston siirrosta Storybookiin tehtiin
tutkimusta eri komponenttikirjastoista sekä Storybookista.

Siirtoprosessi alkoi pienemmistä palasista, kuten design tokeneista, ja siirtyi
hiljalleen alkeellisista osista komponentteihin. Kaikki vaiheet dokumentoitiin joko
gitin tai tekstidokumentin avulla.

Tuloksina syntyivät Storybook Design Systemin alku sekä ohjeet sen käytöstä.
Projektin kehitys jatkuu työn jälkeen, koska kaikkia komponentteja ei saatu
siirrettyä työn aikana.

Projektin tulokset otettiin hyvin vastaan ja työn tulos esitettiin demona koko
yritykselle.

Avainsanat: React, Design System, Storybook

Contents

List of Abbreviations

1 Introduction 1

2 Design System 2

2.1 What is a Design System? 2

2.2 Benefits 3

2.3 Design + Development 4

2.4 Component library 4

3 Storybook 6

3.1 Purpose 6

3.2 Stories 7

3.3 Addons 8

4 Implementation 10

4.1 Tech stack and setup 10

4.2 Primitives 12

4.3 Components 13

4.4 Creating stories 15

4.5 Documentation 16

5 Conclusion 18

5.1 Goals 18

5.2 What’s next? 18

References 20

List of Abbreviations

DevOps Set of practices that combine software development and IT

operations. It provides continuous delivery and automation of the

processes. The goal is to shorten development life cycle and bring

different parts of the development closer together.

JS JavaScript. Programming language. One of the core technologies of

the World Wide Web.

React A JavaScript library for building user interfaces. Can be used as a

base in the development of single-page applications.

CSF Component Story Format. Open standard based on ES6 modules.

JSX JavaScript XML. Syntax extension to JavaScript. Allows usage of

HTML in React.

MDX Markdown and JSX. Format that lets you write JSX in Markdown

documents.

CSS Cascade Style Sheets. Style sheet language used for describing the

presentation of a document written in a markup language such as

HTML.

HTML HyperText Markup Language. Markup language for documents

designed to be displayed in a web browser.

CSS-in-JS Styling technique where JavaScript is used to style components.

WCAG Web Content Accessibility Guidelines. Explains how to make web

content accessible for people with disabilities. [15]

JSON JavaScript Object Notation. Lightweight data-interchange format.

NPM Node Package Manager. Package manager for JavaScript.

1

1 Introduction

Why do we need Design Systems and why are they a hot topic today?

This thesis demonstrates the implementation of a Design System from a

developer’s point of view as well as discusses the importance of Design

Systems and Storybook as a tool. The thesis was instructed by Eficode as an

internal project for a potential customer use in the future.

Eficode Oy is a Finnish software company known for their consulting and

DevOps services. They employ over 300 people in seven different countries

most of them being in Finland. Eficode offers many courses through their

academy about different tools that are related to DevOps, design, and

programming. [1] They have been part of developing Robot Framework which is

a generic open source automation framework. [2]

Idea of the Design System had been on Eficode’s radar for a while. They

wanted to have an internal Design System that could be later used in customer

cases as an example. A designer who had previous experience working with

Design Systems was found suitable for the job. He wanted to take the task of

building the internal Design System and he needed a developer to develop

components for it. After discussions and research, the language for the

storybook was decided to be React and Material UI was decided to be used as

a base for the components.

The project had initially three goals determined for it and they were:

• Design library in Figma for designers.

• React Storybook for developers and designers.

• Documentation that will help anyone setup a Design System with

storybook.

2

2 Design System

2.1 What is a Design System?

A Design System is multiple things. It’s not just a style guide or a library of

branded components. Design System should guide both designers and

developers bringing everyone on the same page. It should create a solid unified

foundation for the company’s designs and components. Typically Design

Systems have three elements. Style guide, component library and other

guidelines (e.g. accessibility).

Style guide focuses on the looks such as colours, fonts, and illustrations.

Figure 1. Material Design sample primary and secondary palette [5]

Component library shows the user how to design or develop components as

well as how to use them. Depending on the size of the Design System it may

have many other guidelines as well. These days many companies working on

3

the web are focusing on accessibility. Therefore, the Design Systems have the

best practices and principles to make sure everything is accessible. [3;4]

2.2 Benefits

A Design System has many benefits for the company and individual teams

using it. It helps to create a coherent brand for the company and its products.

Having a clear style guide will boost consistency of the products which will

make the brand more recognizable. To users components will look and feel like

the brand. Consistency leads to higher quality all around. For example, on a

website all the buttons will behave the same way and there will be no surprises

to users.

The benefits are not only limited to customers and the brand. Teams working

with the Design System avoid unnecessary misunderstandings by having a

single source of truth which they can refer to when talking with co-workers.

Avoiding mistakes coming from misunderstandings speeds up the development

process which will lead to a faster cooperation between designers and

developers. When developers don’t have to spend time wondering about the

design of the components they can focus more on the usability and

functionality. [3]

Faster cooperation is not the only thing that will speed up when using a Design

System. Developers’ implementation speeds will rise immensely when they can

use ready-made components straight from the Design System. Starting up a

project is much easier with customising already fully accessible and responsive

components. Sometimes simple components don’t even need to be customized

to use them which saves a lot of time in development.

4

2.3 Design + Development

One of the main purposes of a Design System is to help build a bridge between

designers and developers. Breaking barriers between different areas of

software development has been a hot topic over the last few years. With the

advancement of the Agile software development teams have grown more cross-

functional bit by bit.

Long gone are the days of graphic guidelines that developers must have tried to

follow without cooperation with designers. A Design System is the next level

towards a more modern software development and brand designing.

Companies have noticed the value of bringing their design teams closer to

developers and the Design Systems have helped that greatly.

2.4 Component library

One possibility when building a Design System is to use a component library as

a base of your Design System. Building your own components from the scratch

takes time and resources to accomplish. A faster and cheaper way is to use

ready-made components from a known library and customize them for your own

liking.

Bigger companies usually build their own components from scratch but for

smaller companies or personal projects using a component library saves a lot of

hassle especially considering accessibility and responsivity. Most of the popular

component libraries have fully accessible and responsive components. As a

downside customizing some of the components might be a little tedious and it

differs from library to library.

Theming is a big part of the component libraries. It allows overriding of the

default styles and therefore enables customization of the components with your

own styles. Themes allow you to customize all design aspects of your project

and are powerful tools to learn when using component libraries. In Material UI

5

this is done by using a function from the library to create a theme constant and

then wrapping the component or the whole application with the ThemeProvider

component. This is demonstrated in the listing 1 by changing the default

spacing and primary colour.

const theme = createMuiTheme({

 spacing: 4,

 palette: {

 primary: {

 main: '#ffd100',

 },

 },

});

export default function CustomStyles() {

 return (

 <ThemeProvider theme={theme}>

 <CustomCheckbox />

 </ThemeProvider>

);

}

Listing 1. Example of creating a custom theme in Material UI

6

3 Storybook

3.1 Purpose

Storybook is an open source tool for developing UI components and pages in

isolation as it is stated on the official Storybook website. What does it mean in

practice? The problems Storybook is trying to solve are quite similar to the ones

that Design Systems solve but Storybook adds extra features that Design

Systems don’t have. [6]

Let’s imagine a large project that has several front-end developers working

simultaneously on different parts of the project. They work on their own parts

and everything works as planned. Now two of the developers both have to

implement a menu button for their applications. They both implement the button

according to the design they’ve been given. They both also have to put their

buttons into the application to test if it works and how it looks like. When they

both do this, they must maintain the consistent design of the brand. See the

problem? They are both using their time to implement the same thing which

might not even look the same hence not maintaining the consistency that is

required. This is where the Storybook comes into the play. [7]

With Storybook you can more easily develop components together as a team

and maintain that consistency with your designs. When put into Storybook the

components can also be tested and viewed in isolation without a complicated

application surrounding it. If our example’s developers were using Storybook,

they could’ve implemented the button in there and tested different states in

isolation without worrying about breaking other things. One of the example’s

developers could’ve also implemented the button and the other could’ve reused

that code in his application with ease. Another major help with Storybook is the

documentation. The components have the documentation with them in stories.

[8]

7

3.2 Stories

Stories capture the components’ rendered states. They are the main building

blocks of Storybooks. Components usually have multiple stories because they

have multiple states that need to be rendered. [9]

The important thing is to have all of the files that contain the stories end with

.stories.js or .stories.ts. Below in listing 2 is an example of creating a story

named Primary for a component named Button and in figure 2 a view of the

story rendered inside Storybook.

import React from 'react';

import { Button } from './Button';

export const Primary = () => <Button primary>Button</Button>;

Listing 2. Creating a story with React

Figure 2. View of Primary button story in Storybook

8

Stories are written with CSF which is very similar to JavaScript because it’s

based on ES6. That makes it easy to use for developers and designers as most

of them have used JS. All of the components are rendered like they would be

on a website.

3.3 Addons

Addons are the major strength of Storybook. They extend its behaviour and

make it a powerful tool. There are many third-party addons as well as addons

developed by the Storybook team themself. The main ones are the essential

addons that come with Storybook by default when installed. One important

addon that is not installed by default is the Accessibility addon. These days all

of the Storybook projects should include it for an accessibility testing. Otherwise

the project manages fine with the essential addons and others could be

installed if custom things are wanted in Storybook.

Docs is the addon that adds documentation to the stories. When writing

component stories Storybook creates documentation for your story by default.

This documentation can be customized to create component specific guidelines

and usage information. This is done by using MDX to write markdown

documents with JSX in them. This allows the user to write documentation and

stories simultaneously like seen below in figure 3.

Figure 3. Documentation in Storybook [10]

9

Controls is an addon that gives the user a graphical UI to interact with a

component’s arguments without any coding. Storybook auto-generates controls

based on props in React. This could be used for showcasing a component’s

functionality for non-developers or developers wanting to explore the

component without messing with the code.

Actions addon is used to show data received by event handlers. It’s very useful

to showcase or to test clickable items and component’s that make things

happen. Viewport addon gives the user a toolbar item that lets them change the

viewport of the iframe their story is rendered in. Useful in cases you want to see

your component in mobile view for example. Backgrounds addon works

similarly but it gives an ability to change the background of the iframe. Different

custom backgrounds can be created inside a file called .storybook/preview.js.

Accessibility addon is used to test the component compliance with web

accessibility standards. As accessibility is beginning to grow more and more

important in today’s web developing this addon is a necessity. The addon tests

components with the usual accessibility tests such as a picture having a proper

alternative text. After testing it tells you if the component has passed the tests or

where the violations are. It’s very useful for simple accessibility fixes for the

components and highly recommended as it’s not part of the default installation.

All of these addons make Storybook a suitable tool for making Design Systems.

Documentation is very important when building a Design System and these

addons let you document both with text and UI elements. They’re not only

explaining how the components work via a huge text document but showing the

component in usage and how the component behaves in reality. This is what

makes the Storybook work for designers, developers and marketing as

everyone sees and feels the brand come alive. [11]

10

4 Implementation

4.1 Tech stack and setup

The project started with deciding a tech stack. React was chosen as a

JavaScript framework because of its popularity and the developer’s familiarity

with the framework. Together with React Next.js was decided to be used in the

project as well. Next.js enables server-side rendering and fast refresh that may

come in handy when the project expands.

Due to the project’s nature and resources a component library was decided to

be used as a base for the components. Using readymade components straight

from a library saves time in implementation. Different factors were considered

when choosing the right component library. Research began from looking at the

most popular React component libraries. Some of them were ruled out by

talking with co-workers of their experiences. Semantic UI for example had bad

experiences amongst the teams and was avoided because of them. The first

question was whether the biggest libraries are too bloated and big in sizes.

Counter point to that is that the smaller libraries simply don’t have enough

components to cover all the necessary ones.

After gathering information about different libraries, the biggest factor that made

the decision clear was accessibility. The goal of the project was to make fully

accessible components and the chosen library had to have accessible

components as a base. The chosen library was Material UI which is one of the

most popular libraries these days. It has WCAG compliant components and a

vast selection of components that cover the project’s necessary components

[12]. As seen in figure 4 Material UI was one of the three libraries that passed

the accessibility of the web UI frameworks test. Further testing done by the

developer of the project proved this as well.

11

Figure 4. The state of accessible web UI frameworks

Styled components was chosen as a CSS framework for the project because it

was familiar to the team and it complemented Material UI’s CSS-in-JS styling

technique. [13]

12

Setting up React Storybook is quite seamless. Using Create React App for

initializing a React app with the command line has never been easier. To have a

React Storybook set up you only need two commands as seen in listing 3.

npx create-react-app design-system

npx sb init

Listing 3. Setting up React app with Storybook

4.2 Primitives

Creating a Design System starts from building primitives. Primitives include

fonts, spacings, colours, grid and other building blocks used in UI. The designer

creates primitives in Figma. The developer’s job is to transfer the designs into

Storybook.

This is done by first creating design tokens. What are they? Design tokens are

variables made out of primitives that are stored the way they could be used

anywhere. In this project tokens were saved on a JSON file. Tokens’ main idea

is that if you want to change all of your buttons primary colour to a slightly

different colour, for example, you wouldn’t need to go through every button and

change the colour one by one. You could simply change the token’s value and

all of the buttons’ colour would change. Other plus is that every value can be

found in the same place. If someone is wondering what the primary colour 100

value actually is, he can just go look at the hex code from the tokens. Putting

every value in a token lays a good foundation for later when the values are

needed in the components. [14]

After the tokens are done it is time to create stories for the primitives. All the

colours, fonts and other primitives should be displayed clearly and nicely in the

Storybook. This is where the MDX comes to the rescue.

13

Figure 5. Eficode primary palette

As seen in figure 5 with MDX it is possible to have a square react component

showcasing a colour mixed with text that tells information of it and groups it up

with other proper colours. This displays the primitives like in Figma, but they are

easier to skim through and allow you to get extra information that you wouldn’t

necessarily otherwise get.

4.3 Components

Components are where the fun begins because they have to be implemented

and functional. When doing the components, it is very important to

communicate with a designer to make sure the components look and behave

like they are meant to in the design. Transferring a component from Figma to

Storybook has three steps.

First step is inspecting the component in Figma. It includes getting familiar with

the design and taking a look at the styles. Convenient thing in Figma is that you

can see the CSS from there and have a glimpse of how it could look like. From

experience it is better to get to know things thoroughly before diving into the

implementation. No one likes to back-pedal when they realize they’ve

implemented the component not according to the design.

14

Second step is finding a corresponding component from the library. This means

going to the library’s web page and looking at the documentation. In this

project’s case the library is Material UI. The key is to find a way to customize

the default components to look like the custom design. With Material UI this

happens via theming. In the project theme.js was created for this purpose.

Having all of the overrides in the same file makes editing them easier.

Third step is the actual implementation of the component with React. With a

ready-made component coming from a library this means importing a

component and customizing it. Things to remember are not breaking the

accessibility and keeping the components as simple as possible.

import { Button, ThemeProvider } from '@material-ui/core';

import theme from '../utils/theme';

import { createMuiTheme, withStyles } from '@material-ui/core/styles';

import { tokens } from '../tokens/Tokens.json';

export function PrimaryButton(props) {

 const PrimaryButton = withStyles({

 root: {

 background: `${tokens.color.primary100}`,

 border: 0,

 padding: '8px 24px',

 minWidth: '84px',

 width: `${props.width}`,

 '&:hover': {

 background: '#F1AE03',

 },

 '&:disabled': {

 background: '#F5F5F6',

 },

 },

 })(Button);

 return (

 <ThemeProvider theme={theme}>

 <PrimaryButton disableRipple disabled={props.disabled}>

 {props.children}

 </PrimaryButton>

 </ThemeProvider>

);

}

Listing 4. Button.js PrimaryButton component implementation

Customizing the component in Material UI can be done with withStyles method

that takes a base component from the Material UI and customizes it with the

CSS provided. In listing 4 the PrimaryButton component is customized this way.

Notice that the CSS inside the withStyles is not a typical CSS code like it would

be written in a normal .css file. For example, normally you would write minimum

15

width property in CSS as “min-width: 84px” but in CSS-in-JS you write it as

“minWidth: ‘84px’”. This little syntax difference is hard to get used to at first but

after some time comes naturally like the normal one. Material UI components

also have default props that can be used to remove default effects or in the

PrimaryButton case the ripple effect. The “disableRipple” prop sets the property

to true which removes the normal ripple effect coming with the Button.

4.4 Creating stories

Putting the components to the Storybook has been made very easy for

developers and it shows. Only thing that is required is to have the story file

ending with .stories.js or .stories.mdx if mdx is wanted. To make things simpler

a good naming convention is to name your stories with the same name as your

component. In the project Button component was created in Button.js.

Corresponding story file for the Button was named Button.stories.js to make it

clear which component’s story it is.

import React from 'react';

import {

 PrimaryButton,

} from '../components/Button';

export default {

 title: 'Components/Button',

 component: PrimaryButton,

 argTypes: {

 children: { control: 'text' },

 disabled: { control: 'boolean' },

 },

};

export const Primary = (args) => <PrimaryButton {...args}></PrimaryButton>;

Primary.args = {

 children: 'Text',

 disabled: false,

};

Listing 5. Button.stories.js Primary Button story

The Primary Button story is created by first importing a PrimaryButton

component from Button.js as seen in listing 5 and then using the imported

component to export a constant that the Storybook will use to render the story

as seen in figure 6.

16

Figure 6. Primary Button story in Storybook

The controls are added to the story to test the props that the PrimaryButton

takes in. It is done by first inside the default export describing the types of args

that will be used, then giving the args as props to the PrimaryButton. In this

example it allows the user of the Storybook to edit the text in the button and

disable the button with the controls. Controls can be seen in use at the bottom

of the figure 7 below.

Figure 7. Controls addon in Primary Button story

4.5 Documentation

The project had more goals than just creating a functional Storybook and a

Design System. Being an internal project one of the biggest goals of the project

was to make documentation for learning purposes. Eficode as a firm highly

values education of their employees and all the projects are seen as learning

opportunities.

17

Everything was documented from the start. Code was documented on a

Bitbucket repository using git to have a clean version control of the Design

System. Bitbucket’s advantage is its flexibility and a JIRA integration. For the

guides and all the other documentation, a text document was created in Google

Docs. Step-by-step guides for both designers using Figma and for developers

using Storybook were gathered in the document. The guides had detailed

instructions about installing the necessary tools, setting up Storybook and

building components.

The main idea of the documentation was that anyone who reads the instructions

will know how to setup a Storybook and be able to use it wherever they need it.

As a bonus it’s spreading knowledge of why Storybook is needed and

advantages of it.

When finished the documentation will be cleaned up and put on Confluence for

the whole company to see. Learning new things as a developer and as a

company is important. As new tools and opportunities rise in this modern high

paced fast-growing world of programming getting to know things and testing if

they work or not is very valuable for everyone. That is also the reason why

documentation although hated by some is very important to do.

18

5 Conclusion

5.1 Goals

The project had three major goals. The first goal of creating a Design System in

Figma was completed fully.

The second goal of creating a Storybook was partially completed. The

Storybook was successfully setup and is working. All the primitives were

transferred from the design to the Storybook. All of the components are not

transferred to the Storybook yet as their implementation takes time. The second

goal is a work in progress and its development will continue.

The third goal of creating documentation was fully completed as well. The

documentation has all the necessary guides and instructions for starting a

Storybook. Although the documentation is completed it may be refined and

cleaned up in the future when the project continues.

The project was a success. First demo of the project was held remotely, and the

project was presented in front of 200 employees through a Zoom meeting. The

development still continues on and the project will stay open for now.

5.2 What’s next?

More plans for the project have already been discussed and will be discussed in

the near future. Being an internal project, the project has no deadline or time

goals. Employees will work on the project when they have time for it between

the customer cases and when they are free. As the second goal was not fully

completed its development will continue until all the components are transferred

to the Storybook.

The next step after that is to bring DevOps to the project as well. The goal is to

have a working pipeline for the Storybook and possibly a public web page

hosted online for the Design System. One other possibility is the creation of a

19

NPM package, enabling the use of the components in any internal or external

project. As a big DevOps company Eficode wants to make the project

automated with necessary tools to make it a complete package for potential

customer use in the future.

Possibility of training videos as an extension of the documentation has been

discussed as well. It could be an opportunity to fully capture what it is like to

work on a Design System and better the communication between the designers

and developers.

Better communication means better results. That is what the Design System

comes down to. Improving the look, consistency and speed by creating a single

source of truth that makes the communication more fluent.

20

References

1 Eficode [online]. Available from: https://www.eficode.com/who-we-are
[Accessed 27 March 2021]

2 Wikipedia. Eficode [online]. Available from:
https://fi.wikipedia.org/wiki/Eficode [Edited 22 March 2021] [Accessed 27
March 2021]

3 Uxmisfit.com [online]. Available from:
https://uxmisfit.com/2019/03/26/what-is-a-design-system-everything-you-
need-to-know/ [Edited 26 March 2019] [Accessed 3 April 2021]

4 UX Collective [online]. Available from: https://uxdesign.cc/everything-you-
need-to-know-about-design-systems-54b109851969 [Edited 22 May 2018]
[Accessed 3 April 2021]

5 Material Design [online]. Available from:
https://material.io/design/color/the-color-system.html#color-usage-and-
palettes [Accessed 17 April 2021]

6 Storybook [online] Available from: https://storybook.js.org/ [Accessed 24
April 2021]

7 The software house [online] Available from: https://tsh.io/blog/storybook-js/
[Edited 23 April 2020] [Accessed 24 April]

8 Webdevstudios.com [online] Available from:
https://webdevstudios.com/2020/04/09/storybookjs/ [Edited 9 April 2020]
[Accessed 24 April 2021]

9 Storybook.js.org [online] Available from:
https://storybook.js.org/docs/react/get-started/whats-a-story [Accessed 28
April 2021]

10 Storybook.js.org [online] Available from:
https://storybook.js.org/docs/react/writing-docs/mdx [Accessed 29 April
2021]

11 Storybook.js.org [online] Available from:
https://storybook.js.org/docs/react/essentials/introduction [Accessed 29
April 2021]

12 Darek Kay [online] Available from: https://darekkay.com/blog/accessible-
ui-frameworks/ [Edited 19 December 2019] [Accessed 1 May 2021]

13 Wikipedia [online] Available from: https://en.wikipedia.org/wiki/CSS-in-JS
[Accessed 6 May 2021]

14 CSS-Tricks [online] Available from: https://css-tricks.com/what-are-design-
tokens/ [Edited 3 April 2019] [Accessed 6 May 2021]

https://www.eficode.com/who-we-are
https://fi.wikipedia.org/wiki/Eficode
https://uxmisfit.com/2019/03/26/what-is-a-design-system-everything-you-need-to-know/
https://uxmisfit.com/2019/03/26/what-is-a-design-system-everything-you-need-to-know/
https://uxdesign.cc/everything-you-need-to-know-about-design-systems-54b109851969
https://uxdesign.cc/everything-you-need-to-know-about-design-systems-54b109851969
https://material.io/design/color/the-color-system.html#color-usage-and-palettes
https://material.io/design/color/the-color-system.html#color-usage-and-palettes
https://storybook.js.org/
https://tsh.io/blog/storybook-js/
https://webdevstudios.com/2020/04/09/storybookjs/
https://storybook.js.org/docs/react/get-started/whats-a-story
https://storybook.js.org/docs/react/writing-docs/mdx
https://storybook.js.org/docs/react/essentials/introduction
https://darekkay.com/blog/accessible-ui-frameworks/
https://darekkay.com/blog/accessible-ui-frameworks/
https://en.wikipedia.org/wiki/CSS-in-JS
https://css-tricks.com/what-are-design-tokens/
https://css-tricks.com/what-are-design-tokens/

21

15 W3.org [online] Available from: https://www.w3.org/WAI/standards-
guidelines/wcag/ [Accessed 8 May 2021]

https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/

	1 Introduction
	2 Design System
	2.1 What is a Design System?
	2.2 Benefits
	2.3 Design + Development
	2.4 Component library

	3 Storybook
	3.1 Purpose
	3.2 Stories
	3.3 Addons

	4 Implementation
	4.1 Tech stack and setup
	4.2 Primitives
	4.3 Components
	4.4 Creating stories
	4.5 Documentation

	5 Conclusion
	5.1 Goals
	5.2 What’s next?
	References

