

.NET Core 3.1 & .NET 5

Performance benchmarking in Web API use

Tero Hyttinen

Bachelor’s thesis

May 2021

Information and Communication Technologies

Bachelor’s Degree Programme in Information and Communication Tech-
nology

 Description

Hyttinen Tero

.NET Core 3.1 & .NET 5, Performance benchmarking in Web API use

Jyväskylä: JAMK University of Applied Sciences, May 2021, 34 pages.

Information and Communication Technologies. Bachelor’s Degree Programme in Information and Commu-
nication Technology.

Permission for web publication: Yes

Language of publication: English

Abstract

The aim of this study was to compare the performance of two Microsoft .NET (Core) product versions.
Previous version upgrades to .NET (Core) had seen performance improvements over their preceding ver-
sion. The need for performance assessment arose from software company RockOn’s software project, dur-
ing which a new version of the used .NET (Core) product was released. It was argued should the project
switch to use the newer software version.

The main task was to gather performance data of the company’s used software platform with the then cur-
rent version and with the upgraded and version. To accomplish the task, quantitative research method was
used to gather performance data of the software using two different software testing tools. Software tests
were divided in to two separate sections. Practical web API performance was tested with load testing tool
on the company’s produced software application. Non-practical code level tests were done on a separate
software application.

The load test result for the application web API performance saw 160 % speed reduction for the new soft-
ware version due to software application irregularities. The code level performance saw increase for the
new version from 0,76% to 94,63%.

By analyzing the results it was concluded that the new .NET version had performance benefits over the
older .NET version. The application anomalies and inconsistent load test data lead to deem the load test
results as unreliable while the code level test results proved to be in line with findings by other data and as
such were regarded as reliable.

Keywords/tags (subjects)

Microsoft .NET, performance testing, performance, software testing, benchmarking

Miscellaneous (Confidential information)

 Kuvailulehti

Hyttinen Tero

.NET Core 3.1 & .NET 5, Suorituskykyvertailu Web API käytössä

Jyväskylä: Jyväskylän Ammattikorkeakoulu, toukokuu 2021, 34 sivua.

Tieto- ja viestintätekniikka. Insinööri (AMK), tieto- ja viestintätekniikka.

Verkkojulkaisulupa myönnetty: Kyllä

Julkaisun kieli: Englanti

Tiivistelmä

Opinnäytetyön tavoitteena oli verrata suorituskykyä kahden Microsoftin .NET (Core) version välillä. Aikai-
semmat .NET (Core) versiopäivitykset olivat tehneet ohjelmistoalustaan suorituskykyparannuksia. Tarve sel-
vitystyölle lähti ohjelmistoyritys RockOn Oy:n ohjelmistoprojektista. Projektin aikana Microsoft julkaisi uu-
den version projektissa käytetystä ohjelmistosta. Tarvittiin selvitys olisiko uuden version tuoma oletettu
suorituskykyhyöty riittävä projektin ohjelmiston siirtämiseksi uudelle versiolle.

Tehtävänä oli tuottaa suorituskykydataa käytetystä ohjelmistoalustan silloisesta versiosta sekä ohjelmisto-
alustan uudesta versiosta. Suorituskykydataa tuotettiin käyttämällä kvantitatiivisia menetelmiä hyödyntä-
mällä kahta eri ohjelmistotestausohjelmaa. Ohjelmistotestit jaettiin kahteen itsenäiseen osioon. Käytännön
verkkosovelluksen käyttöliittymän suorituskykyä testattiin RockOn:n tuottamaan applikaatioon käyttämällä
kuormitustestausohjelmistoa. Yleistä kooditason suorituskykyä testattiin erillisellä applikaatiolla.

Verkkosovelluksen käyttöliittymän kuormitustestauksessa havaitut epäsäännöllisyydet johtivat uuden ver-
sion 160 % hitaampaan suorituskykyyn. Yleinen kooditason suorituskyky oli mittauksissa 0,76% - 94,63%
nopeampaa uudessa versiossa.

Saaduista tuloksista voitiin päätellä suorituskyvyn nousseen .NET:n uudessa versiossa. Kuormitustestaustu-
losten epäsäännöllisyydet johtivat tulosten luotettavuuden kyseenalaistamiseen ja tulosten hylkäämisen.
Kooditason suorituskykytestien tulokset olivat linjassa ulkopuolisen testitulosten kanssa ja siten niitä voi
pitää luotettavana.

Avainsanat (asiasanat)

Microsoft .NET, suorituskykytestaus, suorituskyky, ohjelmistotestaus, testaus

Muut tiedot (Salassa pidettävät liitteet)

1

Contents

1 Introduction .. 4

2 Method ... 5

2.1 Performance & testing .. 5

2.2 Testing tools .. 6

2.2.1 Selection process ... 6

2.2.2 Apache JMeter ... 7

2.2.3 BenchmarkDotNet ... 7

2.3 Environment .. 8

2.3.1 Measured system... 8

2.3.2 Software and .NET ... 8

2.3.3 Hardware ... 9

2.4 Test plan and tests .. 9

2.4.1 Test plan ... 9

2.4.2 Practical tests ... 10

2.4.3 Non-practical tests ... 10

2.5 Test environment .. 11

2.5.1 Tested applications .. 11

2.5.2 Operating system ... 11

2.5.3 JMeter test build .. 11

2.5.4 BenchmarkDotNet ... 17

2.6 Tests .. 23

2.6.1 JMeter .. 23

2.6.2 BenchmarkDotNet ... 24

3 Results ... 25

3.1 Reported values .. 25

3.2 Practical load test results (JMeter) ... 25

3.3 Non-practical test results (BenchmarkDotNet) .. 26

4 Analysis ... 27

4.1 Comparison of results ... 27

4.2 Reliability ... 28

2

5 Discussion.. 29

References .. 31

Appendices ... 33

Appendix 1. Measurement tables .. 33

Figures

Figure 1. Test tool JMeter. .. 7

Figure 2. Test tool BenchmarkDotNet logo. ... 8

Figure 3. Dotnet info. .. 9

Figure 4. JMeter test plan. .. 12

Figure 5. JMeter setUp Thread Group. ... 13

Figure 6. JMeter Header Manager. ... 13

Figure 7. JMeter HTTP POST request. ... 14

Figure 8. JMeter Thead Group Get. .. 15

Figure 9. JMeter HTTP GET request. ... 16

Figure 10. JMeter Simple Data Writer. ... 16

Figure 11. Simple Data Writer options. .. 16

Figure 12. .NET Benchmarks project tree. .. 17

Figure 13. Benchmarks.csproj. .. 18

Figure 14. Program.cs ... 18

Figure 15. Newtosoft serializer. .. 19

Figure 16. System.Text.Json serializer. ... 19

Figure 17. TestObjectModel. .. 20

Figure 18. BenchMarkTests.cs. ... 20

Figure 19. Serialize/deserialize tests. .. 21

Figure 20. Mock ApiService test. ... 22

Figure 21. String pattern test. ... 22

Figure 22. JMeter example test run. ... 23

Figure 23. JMeter report director. .. 24

Figure 24. JMeter html report... 24

Figure 25. BenchmarkDotNet test report. .. 25

Tables

Table 1. Endpoint1 load test results. .. 25

3

Table 2. Endpoint2 load test results. .. 26

Table 3. Code level performance results. ... 26

Table 4. Code level .NET 5 speed relative to .NET Core 3.1. ... 27

Table 5. Combined endpoints weighted total relative difference. ... 28

4

1 Introduction

The aim of this work was to provide comparative performance data of two versions of Microsoft ‘s

open-source software platform .NET. Versions tested in this work were .NET Core 3.1 and .NET 5.

Thesis contractor required data about the performance of the specified versions of the software.

Collected data would be analyzed and used in evaluating their software architectural choices.

The open-source .NET is a free, cross-platform software application building platform. As a soft-

ware platform .NET is widely liked and popular (Ramel, 2019) with over “18%” (Datanyze, n.d.) of

market share in server software space powering servers worldwide. Systems running .NET Core 3.1

versions would potentially have beneficial performance increases by upgrading their system ver-

sion to .NET 5. By using .NET 5 version developers and service providers could produce more user-

friendly applications and services.

System performance is one of the key attributes used to evaluate user-experience of a software

application (Mifsud, n.d.), therefore software applications that are more performant than their

counterparts, have a greater success in achieving better overall usability.

.NET 5 is Microsoft’s strategic move in unifying .NET platforms and is the successor to .NET Core

3.1 and the proprietary .NET Frameworks. The shift to move all .NET products under one product

name clarifies “.NET Ecosystem confusion” (Luijbregts, 2018).

The number of people using .NET Core 3.1 applications is unknown but is estimated to be signifi-

cant, justified by the market share data reported by Datanyze (n.d.), this coupled with .NET Core

3.1 being a Long Term Support (later LTS) version which end of support date stated by Microsoft

(n.d.) is December 3, 2022. Due to the longer software support times, LTS versions are generally

regarded as preferrable versions to base software projects on, while non-LTS version updates can

make significant improvements over LTS versions, many are hesitant to upgrade their system ver-

sions.

5

Using quantitative research method, it was show in the conducted performance measurements,

that in selected code level test workloads .NET 5 is from 0,7% up to 94% faster than .NET Core 3.1.

2 Method

2.1 Performance & testing

Defining the meaning of performance is varied depending on the source. Definition by Cambridge

dictionary (n.d.) describe performance as “how well a person, machine, etc. does a piece of work

or an activity”. This definition leaves a lot to be desired for in clarity. At minimum two sub-defini-

tions are needed to understand what performance is.

Definition for “well” is needed. “Well” or simply “good” is something positive depending on the

viewpoint and is usually the desired outcome. To have an understanding how to conclude some-

thing as “well” the negative of “well” must be somewhat known. The opposite of “well” defining

word could be “bad” or the phrasing “not well” and is usually the undesirable outcome dependent

on the viewpoint.

Good and bad are highly relative terms which imposes a problem to performance measurement

process. Every observer has their own relative viewpoint, resulting in multiple different perfor-

mance results of any judged subject. Relativity of observers is ruled out by selecting a single

agreed viewpoint. This viewpoint sets a framing in which are defined attributes in how perfor-

mance is judged. Defining attributes removes subjectivity of the observation and sets an objective

viewpoint to the measurements.

To get meaningful performance data, the object, metrics, measured data, methods and environ-

ment has to be defined. Clearly defined object answers the question what the object being meas-

ured is. Measured data is a selected property or properties from the object’s properties available

for observation. Observation methods selected, can have an effect in how the measurements are

conducted. Assessing observing methods impact on the measured system is useful in selecting the

most useful methods of measurement. Environment has a direct impact on the resulting data and

therefore consideration is to be upheld analyzing results. This process identifies aspects from the

measured object, while leaving other possible factors outside.

6

Judging any system performance, outside affecting factors has to be assessed. Outside factors can

be direct or indirect. Assessing outside factors, factors can be further identified by dividing them

into factors that are alterable and to those are not. Out of those further assessment can be made

by estimating how much of an impact the factors have on the measured system. Impactful factors

are to be considered in the identification process.

Once the viewpoint is set and quantifiable meaningful data can be resulted with stable measure-

ment methods, one can start assessing the performance of a system. A result observed in an isola-

tion does not produce interesting analysis of any system. An arbitrary result can not be said to be

neither “good” or “bad” if there is no scale to place results. Justification for performance testing

results can be made to either serve as a baseline data or if pre-existing is available for comparison.

Though comparing results with different environments may provide an indication of the perfor-

mance of a measured system, conclusions might not lead to expected outcomes.

This underlines the relativity of performance testing as a system assessment tool. Results in a cer-

tain environment applies to tested environment only.

2.2 Testing tools

2.2.1 Selection process

Tools selected for this work were Apache JMeter and BenchmarkDotNet. Some time was used to

research online sources for different testing tools available. Load testing tools suitable for perfor-

mance testing purposes are varied and somewhat plentiful. In researching the toolkit, tools were

found with both free open-source and commercial licenses.

Microsoft (2019) lists 10 load testing tools in their ASP.NET documentation pages. Instead of doing

our own tool comparison, pre-existing tool reviews can be found online. Site like Baeldung.com

has a load testing tool comparison article by Doyle (2021) where some load testing tools were

compared and rated for points. JMeter was one of the rated tools and received a good score.

Code level benchmarking tools on the other hand are scarce, although some alternatives to Bench-

markDotNet were found. Tools like Perfx or NBench could have been used, but strong positive

7

sentiment towards BenchmarkDotNet swayed the selection for it.

Main aspects behind choosing these tools were non-commercial licensing, ease of use, online tool

reviews and availability of tool specific additional material.

2.2.2 Apache JMeter

JMeter, figure 1, is a multi-purpose cross-platform open-source software testing tool. The

software has a GUI for test building purposes and supports As a Java application JMeter can be run

on any platform that supports Java. Current requirement for Java support is Java 8 or higher.

Figure 1. Test tool JMeter.

2.2.3 BenchmarkDotNet

For code level performance testing BenchmarkDotNet version 0.12.1 was used. Toub (2020) de-

scribes BenchmarkDotNet as a “canonical” tool in .NET testing. BenchmarkDotNet current 0.12.1

version listed in Microsoft’s package manager Nuget (n.d.) has nearly 1.8 million downloads. Fig-

ure 2 displays the BenchmarkDotNet logo.

8

Figure 2. Test tool BenchmarkDotNet logo.

2.3 Environment

2.3.1 Measured system

The system tested serves Application Programming Interface (later API) endpoints for automated

data integrations and uses Model-View-Controller (later MVC) for the user interface (later UI). For

data accessing Entity Framework Core (later EF Core) is used. As the database provider for the sys-

tem, in-memory provider was used. In-memory database is created every time the application is

started. Using in-memory database also reduces the outer systems effects on the testing results.

2.3.2 Software and .NET

Figure 3 shows the test platform’s .NET information. Runtime for .NET Core 3.1 3.1.13. Runtime for

.NET 5 5.0.4. .NET SDK version 5.0.201. Operating system Windows 10 Pro 20H2 version 10.0.1904.

Visual Studio 2019 Community version 16.9.3 was used as the development platform. Git BASH a

GNU bash, version 4.4.23(1) was used to execute application builds.

9

Figure 3. Dotnet info.

2.3.3 Hardware

The hardware for was provided by the thesis contractor. Dell 5450 laptop with 32Gb of random

accessed memory (later RAM), Intel Core i7-9850H central processing unit (later CPU) running at

2.60GHz and 512GB Non-Volatile Memory Express (later NVME) hard drive. The system was at all

times plugged in in the power outlet and ‘Power mode’-was selected in the battery options.

2.4 Test plan and tests

2.4.1 Test plan

The scope of this work set a clear framing for the test plan. The plan consisted testing the two ver-

sions, gather data and analyze the results. The metrics selected for the measurements was the

10

processing speed of the selected tasks. Tasks would result in millisecond (ms) and nanosecond (ns)

times being recorded. Test were divided into two categories: practical and non-practical. Practical

in this context meaning testing the application’s main purpose, web API performance testing. Non-

practical tests test more general workload, but which are relevant processes in the application.

Two parts of the system were identified as points of interest. Practical testing targeted the main

section, the applications API-layer. Non-practical tests targeted the secondary subjects, the

mocked ApiService.cs class and the more general workloads: string pattern matching and serializa-

tion/deserialization using two different serializers.

2.4.2 Practical tests

Load and stress tests can be used for example in evaluating software applications operating capac-

ity, sufficiency of infrastructure, peak user load sustainability, maximum concurrent user, and

scalability. Load testing in this work context was used to find out a baseline for request-response

times of the application.

Practical load tests targeted the applications API-layer with the load testing tool JMeter. The API-

layer is of great interest in performance testing in an API centered application. The system API-

layer serves clients with API-endpoints to data accessing. Targeting testing to the API-layer pro-

vides meaningful data of the system applications main purpose performance. Load testing the API-

endpoint with the tool gives data of the overall performance of the system regarding the main

function of the application. JMeter measures request-response times of HTTP requests send to the

application.

2.4.3 Non-practical tests

To test more generalized workloads, a few workloads were identified in the application data pro-

cesses which were selected to testing. To test the selected workloads, the methods were ported

and tested in a separate .NET project. This would give more isolated data about the workloads

processed by the system that could then be compared against the two versions.

11

Workloads tested in this manner were: serializing and deserializing data objects, string pattern

matching and mocking the applications ApiService class. Serializing and deserializing is a process of

making a string representation of data model object and vice versa. String pattern matching is task

of comparing a defined string pattern from a string data. Mock ApiService test tests fetching the

data from the main applications API-endpoint /api/addresses using a HTTP client, and deserializing

the data.

2.5 Test environment

2.5.1 Tested applications

To get meaningful data out of the tests, debugging code used by the developing software is not

wanted or needed in performance tests. To achieve debug codeless code for testing, release builds

of the application and the separate benchmarking project were built using Visual Studios default

release build configurations. Aside from removing the debugging code, the compiler can make sig-

nificant alterations to the produced machine code by evaluating the code resulting in more opti-

mized software applications.

2.5.2 Operating system

Normal operation by the testing platform is referred to as noise. This system noise can have an af-

fect to the testing process. Noise generated by the system is unavoidable and steady baseline

noise is usually not a problem. Unsteady noise spikes on the other hand can drastically alter test

result data. When recording milli- or nanosecond resolution timeframes, small test platform noise

anomalies can cause big variations to the resulting data. To minimize this test platform noise, non-

test critical applications were shutdown. Normal operating system idling background applications

were left running.

2.5.3 JMeter test build

Figures 4 to 12 show the JMeter test built to test the applications endpoint1 /api/companies. Fig-

ure 4 shows the opened test plan named benchmark5.jmx. Test build for endpoint2 /api/ad-

dresses is the same in structure but differs in HTTP requests count, target url and sent HTTP POST

json object.

12

In the test plan are two thread groups. The “setup Thread Group” is a setup type thread group en-

suring it will be executed before the regular thread group. HTTP POST request were sent first to

the application to insert data to the application database which would then be ready to be re-

quested by HTTP GET request.

As per JMeter best practices listed in the tool’s user manual section 16.7 (JMeter, n.d.), reducing

tool resource usage the “View Results Tree” listeners display name is greyed meaning it is set in

disabled state and therefore is not run during actual test run. While useful in test building phase

“view results” listeners should not be used during the load test.

Figure 4. JMeter test plan.

Thread group settings defines the requests JMeter will execute in the thread groups HTTP request.

Figure 5 shows the thread groups configuration with thread count set to 40 and the loop count to

10, in total of 400 requests will be executed by the thread group. Inside the thread group are

added a Config Element HTTP Header Manager “HTTP Header Manager” and a Sampler type HTTP

Request element named “HTTP POST item”.

13

Figure 5. JMeter setUp Thread Group.

Figure 6 shows example header managers settings. One header named “Content-Type” with value

“application/json-simple” is added. Headers configured here are used by the thread groups HTTP

request elements.

Figure 6. JMeter Header Manager.

HTTP request sampler in the setup thread group has the required settings for the HTTP request

shown in figure 7. Protocol, server name, port number, HTTP Request and path configures the

request as a POST type request targeting local environment in port 5001. Below in the Body Data

tab is the Javascript Object Notation (later JSON) data structure. JSON object depicts a complex

type object sent in the HTTP POST request body.

14

Figure 7. JMeter HTTP POST request.

HTTP POST request alters the tested systems database state by making requests to add data into

the database. To get reliable data out of the load tests, the database state has to be the same be-

15

fore each test run. To achieve steady database base starting point state the tested application in-

stance was restarted after every test run. Restarting the application reinitializes the non-persistent

in-memory database.

Thread Group Get in figure 8 is configured with 100 threads with 100 loop count totaling 10000

requests. Single GET request is responded by a list of ten objects from the application API.

Figure 8. JMeter Thead Group Get.

Configuration for HTTP GET request in figure 9 is set up as a GET type HTTP request to local

environment targeting api/companies endpoint in port 5001.

16

Figure 9. JMeter HTTP GET request.

Simple Data Writer in figure 10 is a listener type element which can be used to save test result

data.

Figure 10. JMeter Simple Data Writer.

While JMeter saves test result data in plain CSV, Simple Data Writer can be configured to save

data in XML format as depicted in figure 11.

Figure 11. Simple Data Writer options.

17

2.5.4 BenchmarkDotNet

.NET Benchmark project tree for non-practical test depicted in figure 12 shows the needed files to

conduct the code level benchmarking tests. The project is setup as a basic .NET console applica-

tion. An empty console application starts with the Program.cs file in the project tree where the

rest of the files are added.

Figure 12. .NET Benchmarks project tree.

Figure 13 shows the projects csproj file. This file holds the relevant project information. In <Target-

Frameworks> tags are the targeted frameworks. Defining both target frameworks here builds both

application target version with single build command.

18

Figure 13. Benchmarks.csproj.

The main program entry point in .NET project is the Program.cs. Main() method in figure 14 is set

to run the BenchmarkDotnet’s BenchmarkRunner. When the application is launched the Bench-

markRunner executes the BenchmarkTests defined in BenchmarkTests.cs class.

Figure 14. Program.cs

Newtonsoft serializer in figure 15 with serialize/deserialize methods used to serialize/deserialize

data model objects.

19

Figure 15. Newtosoft serializer.

.NET serializer in figure 16 with serialize/deserialize methods used to serialize/deserialize data

model objects.

Figure 16. System.Text.Json serializer.

20

Figure 17 depicts the test object defined which was used by the serializer tests.

Figure 17. TestObjectModel.

BenchMarkTests.cs class in figure 18 is where all the benchmarking tests are defined. [MemoryDi-

agnoser] tells the benchmark to gather memory data, [Orderer(SummaryOrderPolicy.Fast-

estToSlowest)] orders results from fastest to slowest.

Figure 18. BenchMarkTests.cs.

21

Serialize/Deserialize tests in figure 19 were done using two different JSON serializing providers.

Newtonsoft serializer and .NET provided System.Text.Json serializer. TestObjectSerialized string is

used in deserializeing tests and the instantiated testObject is used in serializing tests.

Figure 19. Serialize/deserialize tests.

The functionality of the applications ApiService class was mocked in the tests. The test in figure 20

creates an HTTP client and sends a GET request to local endpoint /api/companies. Api responses

with a serialized json list of 10 items. Then the serialized list is deserialized to list of view model

items. Endpoint /api/addresses was also targeted.

22

Figure 20. Mock ApiService test.

EmailPatternSearch test in figure 21 tests the speed of string pattern matching. The variable

_emailPattern defines the pattern to be matched. The string variable _data was sourced from Juá-

rez (2021) public regex-benchmark GitHub project, it contains the string data to where the email

pattern is matched. The function returns the count of matches found in the _data.

Figure 21. String pattern test.

23

2.6 Tests

Test were run so many times that at least three stable results could be recorded. Of the three rec-

orded runs deemed stable the mean values of each data were taken into account.

2.6.1 JMeter

Two API endpoints were tested with the load testing tool with following setups: endpoint 1,

/api/companies, 400 POST and 10 000 GET requests, endpoint 2, /api/addresses, 4 000 POST and

100 000 GET requests. JMeter tests were run in non-GUI mode. Non-GUI mode test were run with

command: jmeter -n -t <testfilename> -l <logfilename>. Figure 22 show an example test output

from console view.

Figure 22. JMeter example test run.

After every test run using command: jmeter -g <logfilename> -o <directoryname>, was used to

generate a directory and a html report from each runs log file. The generated directory with the

html report file depicted in figure 23 contains files needed to display the data in browser.

24

Figure 23. JMeter report director.

Resulting html has data in different charts, depicted in the figure 24 is the report opened in

browser with the total statistic view of a test run.

Figure 24. JMeter html report.

2.6.2 BenchmarkDotNet

Running BenchmarkDotNet tests is straightforward and simple to execute. Building a release build

of the benchmark application and running the resulted dll with the command: dotnet <applica-

tion>.dll.

BenchmarkDotNet identifies the BenchmarkRunner in Program.cs class and will start executing the

25

tests. After tests are run the results are printed in the console output. Following figure 25 depicts

an example BenchmarkDotNet test run result report.

Figure 25. BenchmarkDotNet test report.

3 Results

3.1 Reported values

Of the gathered data, each test runs mean values are reported here, full measurement tables of

the test runs in Appendix 1. To get mean values, the equation 𝑀𝑒𝑎𝑛 =
𝑠𝑢𝑚 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠

𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡
 was used.

3.2 Practical load test results (JMeter)

Practical test results for endpoint1 show calculated averages in Table 1. Longer response times for

.NET 5 was observed for both HTTP GET and POST request types.

Table 1. Endpoint1 load test results.

endpoint1 /api/companies/

Request type Time (ms) .NET Core 3.1 Time (ms) .NET 5

HTTP GET 56,47 78,07

HTTP POST 1577,81 1958,53

HTTP total 114,98 150,40

26

Practical test results for endpoint2 in Table 2 presents the calculated averages. Endpoint2 results

show interesting data about the application. Almost 3 times longer HTTP GET response time rec-

orded for .NET 5 is a peculiar finding. Response time for HTTP POST request was similar in both

versions of the application.

Table 2. Endpoint2 load test results.

 endpoint2 /api/addresses/

Request type Time (ms) .NET Core 3.1 Time (ms) .NET 5

HTTP GET 26,37 74,45

HTTP POST 20,48 19,14

HTTP total 26,48 72,33

3.3 Non-practical test results (BenchmarkDotNet)

BenchmarkDotNet reports results as averages as the number of samples can vary a lot between

the tested methods and test runs. .NET Core 3.1 non-practical test calculated averages in Table 3.

Table 3. Code level performance results.

Test Time (ns) .NET Core 3.1 Time (ns) .NET 5

SerializeNewtonsoft 1100,3 1030,7

DeserializeNewtonsoft 1956,3 1748,3

SerializeSystemTextJson 744,9 593,7

DeserializeSystemTextJson 1047,73 922,47

EmailPatternSearch 938166,7 50420,0

MockApiServiceGetList 1962,0 1947,0

27

4 Analysis

4.1 Comparison of results

Some of results gathered were expected and some a bit surprising. Results was analyzed by com-

paring the .NET Core 3.1 result mean values with .NET 5 result mean values by applying the for-

mula:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (5 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 − 𝐶𝑜𝑟𝑒 3.1 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒) / 𝐶𝑜𝑟𝑒 3.1 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

The resulting table 4 shows the .NET 5 values relative to .NET Core 3.1 values, where negative

value denotes .NET 5 is faster to .NET Core 3.1.

Table 4. Code level .NET 5 speed relative to .NET Core 3.1.

.NET 5 speed relative to .NET Core 3.1

Test Percentage difference

SerializeNewtonsoft -6,33 %

DeserializeNewtonsoft -10,63 %

SerializeSystemTextJson -20,30 %

DeserializeSystemTextJson -11,96 %

EmailPatternSearch -94,63 %

MockApiServiceGetList -0,76 %

The practical API load tests resulted in more unexpected results. While improved performance was

expected from.NET 5 over .NET 3.1 Core, the opposite was recorded. To get the total weighted rel-

ative difference following equations were used:

𝐻𝑡𝑡𝑝 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
(5 ℎ𝑡𝑡𝑝 𝑟𝑒𝑞. 𝑚𝑒𝑎𝑛 − 𝐶𝑜𝑟𝑒 3.1 ℎ𝑡𝑡𝑝 𝑟𝑒𝑞. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝐶𝑜𝑟𝑒 3.1 𝑚𝑒𝑎𝑛

28

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 ℎ𝑡𝑡𝑝 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

= (𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡1 ℎ𝑡𝑡𝑝 𝑟𝑒𝑞. 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓.∗ 𝑤𝑒𝑖𝑔ℎ𝑡1

+ 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡2 ℎ𝑡𝑡𝑝 𝑟𝑒𝑞. 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓.∗ 𝑤𝑒𝑖𝑔ℎ𝑡2)

Table 5 shows the weighted difference percentages, where positive value means .NET 5 slower

performant than .NET Core 3.1. The resulting performance difference recorded was surprising. The

seeming speed regression of the regarding the HTTP GET request .NET 5 was not investigated in

this work. The anlyze revealed a problem in the application that needs to be solved.

Table 5. Combined endpoints weighted total relative difference.

.NET 5 weighted total difference relative to .NET Core 3.1

HTTP request Percentage difference

HTTP GET 169,22 %

HTTP POST -3,78 %

HTTP total 160,17 %

4.2 Reliability

As a good practice the meaningfulness and the reliability of the testing and the process was ques-

tioned throughout the work. In the context of this work, recorded results are somewhat reliable.

The data gathered can be compared between the tested versions and results in indication of the

applications current states performance in the tested environment.

During the practical load tests an application bug was recorded when testing the endpoint1 of the

application. This resulted in unreliable data being recorded from endpoint1. Since the bug pre-

sented in both versions tested, the data is somewhat comparable in this work context. The perfor-

mance discrepancy of the practical and the non-practical performance where .NET 5 was more

performant than .NET 3.1 Core and practical performance is too significant to regard the load tests

reliable. The load test discrepancy in performance paired with the non-practical MockApiService

test results, in which the API-layer was called by the test methods HTTP client, .NET 5 had similar

29

results as .NET Core 3.1, also raises suspicion of anomalies in the load tests caused by unknown

factor.

The non-practical tests done with BenchmarkDotNet were inline and confirmed the findings made

by Toub (2020), that .NET 5 has performance advantages over .NET Core 3.1. Non-practical tests

resulted in more expected outcome and as a whole are regarded as reliable.

5 Discussion

Performance testing is an interesting part of the software testing field. It provides almost endless

set of problems and test variations. Starting this work with zero experience in performance test-

ing, at first seemed challenging but the problem presented itself as an intriguing one to solve.

Upon taking the work, the project seemed quite vast with many different subsections requiring

expertise in their respective parts. While researching the subject the depth of performance testing

as a testing field became clear. The level of detail, scale, and resolution in which things can be

measured by can be overwhelming. Dissecting the problem into smaller sections, more clearly de-

fined set of tasks started to appear.

Interestingly the well-defined scope by the thesis contractor greatly aided in the planning phase of

the work. The scope targeted performance differences of two versions of the same software in

Web API use. The required steps to achieve the scope target then consisted of researching what to

measure and how get the required data, what environment or environments can be used, what

tools are suitable for the purpose, how to conduct the tests and analyze data.

The setup part of the test plan was to select the tools and build the tests. Some errors in the test

building phase were identified. The load test plan using the complex object sent in the HTTP POST

request targeted at /api/companies had resulted in LINQ errors in the application, this resulted in

longer processing times in both HTTP GET and HTTP POST requests in this endpoint. Data gathered

in this endpoint is somewhat skewed but still comparable between versions. The other endpoint

/api/addresses tests were included after finding the error. Second endpoint performed drastically

30

better with simpler object. Building the non-practical tests was fairly straightforward task of iden-

tifying operations in the application process flow and writing those methods in to the testing pro-

ject.

Implementation phase of the work was to run the built tests and record the results. Release builds

of the application and benchmark projects were built for the tests. More planning could have been

used in recording the gathered data to make the data processing in excel sheets easier. The data

copy pasted from the tools resulted in wrong formatting requiring data reinputting in properly for-

matted cells. Manual input is never a good option if it can be avoided.

Analyzing the data was comparing the calculated average results. This would give the contractor

meaningful information of the data gathered about the measured speed differences between the

software versions of the application and code level performance.

Finishing the work gave some insight into software performance testing to the worker. The issue

of software performance testing can be greatly taken more in-depth. In this work scope the more

in-depth approach was not practical to be applied nor in the scope context.

31

References

BenchmarkDotNet. (n.d.). BenchmarkDotNet. Accessed on 18 February 2021. Retrieved
https://benchmarkdotnet.org

Cambridge dictionary. (n.d.). PERFORMANCE | meaning in the Cambridge English Dictionary. Ac-
cessed on 19 April 2020. Retrieved https://dictionary.cambridge.org/dictionary/english/perfor-
mance

Datanyze. (n.d.). ASP.Net market share. Datanyze. Accessed on 18 February 2021. Retrieved
https://www.datanyze.com/market-share/programming-languages--67/asp.net-market-share

Doyle, K. (2021, February 21). Gatling vs JMeter vs The Grinder | Baeldung. Accessed on 18 Febru-
ary 2021. Retrieved https://www.baeldung.com/gatling-jmeter-grinder-comparison

Guru99. (n.d.). Performance testing process. Accessed on 18 February 2021. Retrieved
https://www.guru99.com/performance-testing.html#5

Guru99. (n.d.). What is performance testing. Accessed on 18 February 2021. Retrieved
https://www.guru99.com/performance-testing.html#1

JMeter. (n.d.). Apache JMeter - User's Manual: Best Practices. Accessed on 11 May 2021. Retrieved
https://jmeter.apache.org/usermanual/best-practices.html#lean_mean

Juárez, M. (2017, September 10). Accessed on 6 April 2021. Retrieved https://github.com/mari-
omka/regex-benchmark/blob/master/input-text.txt

Luijbregts, B. (2018, January 8). The .NET Ecosystem Demystified. Accessed on 26 April 2020. Re-
trieved https://stackify.com/net-ecosystem-demystified/

Microsoft. (2019, April 5). ASP.NET Core load/stress testing. Accessed on 25 April 2021. Retrieved
https://docs.microsoft.com/en-us/aspnet/core/test/load-tests?view=aspnetcore-5.0

Microsoft. (n.d.). .NET Core and .NET 5 Support Policy. Accessed on 25 April 2021. Retrieved
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

Mifsud, J. (n.d.). The Difference (And Relationship) Between Usability And User Experience. Usabil-
itygeek. Accessed on 22 April 2021. Retrieved https://usabilitygeek.com/the-difference-between-
usability-and-user-experience/

Nuget. (n.d.). NuGet Gallery | BenchmarkDotNet 0.12.1. Accessed on 12 April 2021. Retrieved
https://www.nuget.org/packages/BenchmarkDotNet/

Ramel, D. (2019, April 9). .NET Core Is 'Most Loved' Framework in Stack Overflow Survey. Visual
Studio Magazine. Accessed on 18 February 2021. Retrieved https://visualstudiomagazine.com/ar-
ticles/2019/04/09/so-survey.aspx

https://benchmarkdotnet.org/
https://dictionary.cambridge.org/dictionary/english/performance
https://dictionary.cambridge.org/dictionary/english/performance
https://www.datanyze.com/market-share/programming-languages--67/asp.net-market-share
https://www.baeldung.com/gatling-jmeter-grinder-comparison
https://www.guru99.com/performance-testing.html#5
https://www.guru99.com/performance-testing.html#1
https://jmeter.apache.org/usermanual/best-practices.html#lean_mean
https://github.com/mariomka/regex-benchmark/blob/master/input-text.txt
https://github.com/mariomka/regex-benchmark/blob/master/input-text.txt
https://stackify.com/net-ecosystem-demystified/
https://docs.microsoft.com/en-us/aspnet/core/test/load-tests?view=aspnetcore-5.0
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://www.nuget.org/packages/BenchmarkDotNet/
https://visualstudiomagazine.com/articles/2019/04/09/so-survey.aspx
https://visualstudiomagazine.com/articles/2019/04/09/so-survey.aspx

32

Toub, S. (2020). Performance Improvements in .NET 5. .NET Blog. Accessed on 18 February 2021.
Retrieved https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/

Trianz. (2020). Why Master Data Management is a Business-Critical Topic. Accessed on 18 Febru-
ary 2021. Retrieved https://www.trianz.com/insights/why-master-data-management-is-a-busi-
ness-critical-topic

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://www.trianz.com/insights/why-master-data-management-is-a-business-critical-topic
https://www.trianz.com/insights/why-master-data-management-is-a-business-critical-topic

33

Appendices

Appendix 1. Measurement tables

JMeter Api-endpoint load test measurement tables.

.NET Core 3.1 endpoint1 /api/companies

HTTP total
(samples

10400) (ms)

HTTP GET
(samples

10000) (ms)

HTTP POST
(samples 400)

(ms)

Run1 107,1 50,18 1530,1

Run2 119,35 59,62 1612,61

Run3 118,5 59,61 1590,72

.NET Core 3.1 endpoint2 /api/addresses

 HTTP total
(samples

104000) (ms)

HTTP GET
(samples

100000) (ms)

HTTP POST
(samples

4000) (ms)

Run1 27,17 26,03 29,53

Run2 25,96 26,37 15,77

Run3 26,32 26,72 16,16

.NET 5 endpoint1 /api/companies

 HTTP total
(samples

10400) (ms)

HTTP GET
(samples

10000) (ms)

HTTP POST
(samples 400)

(ms)

Run1 153,87 80,6 1985,45

Run2 150,39 76,81 1989,79

Run3 146,95 76,82 1900,37

.NET 5 endpoint2 /api/addresses (ms)

 HTTP total
(samples

104000) (ms)

HTTP GET
(samples

100000) (ms)

HTTP POST
(samples

4000) (ms)

34

Run1 72,47 74,6 19,21

Run2 72,15 74,27 19,09

Run3 72,37 74,5 19,12

Relative weight table.

 Sample size Weight

weight1 10400 0,090909

weight2 104000 0,909091

BenchmarkDotNet benchmark measurement tables.

.NET Core 3.1 benchmarks (ns)

SerializeSys-
temTextJson

DeserializeSys-
temTextJson

SerializeNew-
tonsoft

Deserial-
izeNewtonsoft

EmailPat-
ternSearch

MockA-
piServiceGetList

Run1 745,1 1022,3 1103 1981,7 925400,0 1950,0

Run2 744,6 1053,9 1130,9 1926,7 940800,0 1969,0

Run3 745 1042,7 1067 1960,5 948300,0 1967,0

.NET 5 benchmarks (ns)

SerializeSys-
temTextJson

DeserializeSys-
temTextJson

SerializeNew-
tonsoft

Deserial-
izeNewtonsoft

EmailPat-
ternSearch

MockA-
piServiceGetList

Run1 594 911,1 1067,8 1745,3 50540,0 1936,0

Run2 601,7 931,3 1014,6 1741,8 50330,0 1958,0

Run3 585,4 925 1009,7 1757,8 50390,0 1947,0

