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1 INTRODUCTION
The ability to accurately predict the situation of the hospitalized patient in the future

brings invaluable information both for enhancing patient care and more efficient use of

hospital resources. One of these situations of interest is patient deterioration and its

early detection. As a response to this need different scoring systems have been devel-

oped to analyze the severity of a patient’s condition inside and outside the Intensive Care

Unit (ICU) (Morgan et al. 1997, Rapsang & Shyam 2014).

The scoring systems, despite providing good information, have some limitations. They

are calculated based on a few variables and hence can not consider each patient’s charac-

teristics separately. That is why critical evaluation of these scores is needed before any

decisions towards treatment (Keegan et al. 2011). Furthermore, these scores are calcu-

lated based on the patient’s situation at that specific time and therefore can not take into

account the temporary changes of the variables (Bouch & Thompson 2008).

The emergence of Electronic Health Record (EHR) systems in which the medical data

could be stored and accessed, enabled more advanced Machine Learning (ML) and Deep

Learning (DL) methods to be used in prediction tasks in healthcare such as prediction

of patient deterioration, length of stay in the hospital, readmission and other clinical

events (Bright et al. 2012, Bronzino & Peterson 2014).

EHR systems contain information on patients’ vital signs such as heart rate, respiration

rate, blood pressure, and oxygen saturation that are calculated from Electrocardiogram

(ECG), Impedance Pneumogram (IP), Invasive Blood Pressure (IBP), and Photoplethys-

mogram (PPG) biomedical signals. These signals are monitored by the bedside monitor-

ing solution devices but they are not stored in the EHR themselves. laboratory test results,

list of allergies, medication, and doctors’ notes on the patient are other useful information

that is stored and can be found in the EHR as well (Aspden 2004).

The main input to scoring systems and computer-based prediction systems has been the

EHR data (Bright et al. 2012). The biomedical signals have not been utilized in the predic-

tion tasks. The first study for uncovering the potentials of biomedical signals in predicting
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patients deterioration was done by Haahti (2019) where she used long sequences of wave-

form signals as the input to the predictive models to explore the potentials of the signals

in predictive tasks in clinical decision making.

These signals have a raw format and they are large in size, therefore they are challenging

for humans to analyze. That is why providing a digestible output from these signals after

being analyzed by deep learning models would give value to the data that a human can’t

easily analyze.

This study is the continuation of the work done by Haahti (2019) in which a novel ap-

proach is implemented to combine the usage of EHR data and biomedical waveform as

inputs to predictive models.

Haahti (2019) had clearly defined deterioration as mortality to start with and formulated

the prediction task as a binary classification using three non-invasive signals (ECG, IP,

and PPG) as inputs to neural network models. These three signals are concurrent temporal

sequences that represent the patient’s state.

The prediction models utilize one hour of ECG, IP, and PPG signal as the input to pre-

dicting models, resulting in very large input sizes that create challenges for deep learning

models. However, there are characteristics in these signals such as arrhythmia that are not

present in the EHR data (Haahti 2019).

In this study, six different vital signs (Heart Rate, Respiration, Systolic Blood Pressure,

Diastolic Blood Pressure, Pulse Oximetry, and Temperature) from EHR data are used.

For each vital sign, eleven different statistics are extracted from the EHR data. Then a

few suitable models for binary classification of structured data are fit to the data and the

model with the best performance is selected.

The deep learning model developed by Haahti (2019) is trained with the cohort of this

study and then prediction probabilities gained from that model is fed as an extra feature

to the best model of the former step.

The thesis includes the following chapters. This chapter continues by explaining the vital
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signs. In Chapter 2 the related work done formerly is discussed. In chapter 3 the dataset

used in this study is explained. In chapter 4, the methodologies used in the experiments

of this thesis are described. Chapter 5 details the experiments conducted in this thesis

and Chapter 6 includes the results. In Chapter 7 the methods and the results of this study

are discussed in comparison to the former relevant research. Finally, in chapter 8 thesis

summary and the conclusions are given.

1.1 Background
In this section, first, patient monitoring in the ICU is explained. Then some ideas about

the prediction of patient deterioration in the ICU are discussed. And finally, the vital signs

used in this study and their corresponding biomedical signals are explained.

1.1.1 Patient Monitoring in the ICU

The need for improving patient records in the hospitals was first addressed in 1991 in the

General Accounting Office (GAO) report (Dick et al. 1997). These systems were referred

to as computer-based patient records. In which three major benefits of implementing an

automated medical reporting system for health care were identified.

First, improvement in data access, faster data retrieval, higher quality data, and more ver-

satility in data display would enhance healthcare delivery. Second, electronically captured

information could facilitate research programs and help for better outcomes. Third, auto-

mated patient records could reduce cost and enhance the productivity of the staff which

could lead to higher hospital efficiency (Dick et al. 1997).

Later in 2003, the U.S. Institute of medicine defined an EHR system as "an EHR system

includes longitudinal collection of electronic health information for and about persons,

where health information is defined as information pertaining to the health of an individual

or health care provided to an individual" (Institute of Medicine (US) 2003).

The patients who are admitted to ICU are usually in very critical situations (Nates et al.

2016). In the ICU usually, a set of probes are connected to the patient, through those

the biomedical signals are captured. Three of these signals are ECG, IP, and PPG. From

these signals, the vital signs such as Heart rate, respiratory rate, and oxygen saturation
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are calculated and recorded in the EHR with certain frequencies. Furthermore, EHR

includes other information such as comments written by doctors and nurses about the

patient, patient’s laboratory test results, medication lists, and possible allergies (Medicine

et al. 2003). The waveforms of biosignals are not saved in the EHR.

1.1.2 Prediction of patient mortality

The EHR data is structured data that is derived through rule-sets from the waveforms. In

this process, a lot of information from the waveforms is neglected. Therefore, the aim is

to study if waveforms as unstructured data can improve the performance of the models

when used as a combination with EHR data. As the initial step, we consider death as

deterioration because labeling the death is simple as it is clear what has happened before

and after the event. Later a similar approach can be used for predicting other deterioration,

organ failures, etc. Here the idea is that if using a combination of the waveform and EHR

outperforms the use of either EHR data or waveforms.

It might be perceived that predicting the deterioration might be a lot more useful in the

ward than in the ICU. Because in the ward the number of caregivers is less and this

information in the ward can help in bringing more attention to the patients with a higher

chance of deterioration as well as helping the care providers in decision making whether to

transfer the patient to the intensive care or for example decide if surgery is needed.

However due to a lot more frequent measurements in the ICU, the amount of data gen-

erated there is much larger compared to the ward and high care, so that is why the ICU

has been the interest of machine learning communities to conduct their research and make

their algorithms for the ICU. Besides there has been an interest in the ICU to evaluate the

severity of a patient’s illness, sometimes referred to as mortality based on their test results

within 24 hours of their admission even before machine learning has kicked in.

Several scoring systems such as Simplified Acute Physiologic Score (SAPS II), Multiple

Organ Dysfunction Syndrome (MODS), Acute Physiology and Chronic Health Evalua-

tion (APACHE II), Sequential Organ Failure Assessment (SOFA), Logistic Organ Dys-

function (LOD), and several others have been developed and have been used with certain

accuracies (Haddadi et al. 2014, Baue et al. 1998). These scoring systems aimed to clas-
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sify patients into different groups based on illness severity or risk of mortality. So, as it is

perceived in this track of research the value proposition is bringing attention and optimiz-

ing the use of hospital resources. This can help in better decision-making, giving the care

at the right time, and reducing hospital costs (Bates et al. 2014).

The machine learning algorithms developed for the ICU are to replace these scoring sys-

tems with the hope of bringing more ease of use and better accuracy. Current algorithms

that do the scoring tend to predict the overall situation of a patient. The protocol of giving

care is not altered but by classifying the patients, the aim is to improve productivity and

this is helping the patients indirectly.

However, what if we would like to predict what happens to the patient in a few hours and

aim to help the patient directly. Meaning an action in the form of treatment can be done

by the health providers based on this prediction. For example, the algorithm can predict

a patient’s deterioration and specify the reasons for that. Or specifically, predict an organ

failure providing the reasons. In this case, the value proposition can be defined as directly

helping the patient.

Doing this requires a lot more effort to understand and consider the caregivers’ thoughts

in the phases of making the technology from brainstorming to the product release.

In the following, the five vital signs and their corresponding biological signals are ex-

plained to give an overview.

1.2 Vital Signs
The main vital signs that are measured by health professionals are Pulse rate, respiratory

rate, blood pressure, Pulse Oximetry, and body temperature. In this chapter, these vital

signs are briefly covered. In the ICU these vital signs are measured by bedside monitoring

devices. In the figure 1 a bedside monitoring system in the ICU is shown. More specifi-

cally the sensor probes attached to the patient’s body sense the signals and send them to

the acquisition modules connected to the patient monitors. After the signals are processed

the vital signs signals and values are shown on the monitors’ screen.
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Figure 1. A monitoring solution system in the ICU (Gehealthcare.com 2021)

1.2.1 Pulse or Heart Rate

Pulse or heart rate is the number of times one’s resting heart beats per minute. The usual

range for heart rate is between 60 and 100 but the heart rate can change minute to minute.

While exercising the heart rate can reach 130-150 beats per minute (Åstrand & Ryhming

1954).

In the intensive care, the heart rate is calculated from monitoring the electrocardiogram

(ECG or EKG). The standard form of ECG consists of 12 leads. In the hardwire ECG,

electrode pads are attached to the patient’s chest. Then lead cables are connected to these

pads from one side and to the bedside monitors from the other side. Out of the 12 leads in

standard ECG, six of them are placed on the legs and arms. These leads are called "limb

leads". The other 6 leads are placed on the precordium and they are called "precordial

leads" (Cadogan 2021). Figure 2 shows the placement of ECG leads on the body.

There are several methods for calculating the heart rate from the ECG. One of them is the

square count method. There is a grid on the paper on which the ECG is printed. This grid

is in form of small and large squares. Every 5x5 small squares make a large square. In the

square count method, the sequence of 300-150-100-75-60-50-43-38-33 is followed.

When the signal is recorded with the speed of 25 mm/s, if the distance between two peaks

in ECG is one big square then the heart rate is 300 bpm. If the distance between two peaks
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Figure 2. The locations of leads in a 12-lead ECG each giving a different view of the hearts electrical
activity. The leads are divided into three groups: six precordial leads (V1, V2, V3, V4, V5, V6), three limb
leads (I, II, III), and three augmented limb leads (aVR, aVL, aVF) (Randazzo 2016)

Figure 3. Sample ECG and IP signals and correspondingly calculated respiration phases and
tachogram (Młyńczak et al. 2017)
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is two big squares, then the heart rate is 150 bpm. If the distance between two peaks is

five large squares then the heart rate is 60 bpm (Proven 2019).

The second method would be counting the small squares. When signal is recorded with

the speed of 25 mm/s, then the heart rate is calculated using the following formula:

Heart Rate =
1500

Number of small squares
(1)

In Eq.1, the formula for this calculation is given. As an example, if the distance between

two peaks in the ECG is 25 small squares, then the heart rate would be 60 bpm. Eq.2

shows this fraction (Proven 2019).

Heart Rate =
1500
25

= 60 bmp (2)

In the bedside monitoring, the ECG signal is received by the monitor, the heart rate is

calculated according to the algorithm the monitor uses, and then it is displayed on the

screen.

1.2.2 Respiration Rate

The number of breaths one takes per minute is called respiratory rate. The normal respi-

ration rate for an adult is between 12 to 20 breaths per minute at rest. The respiration rate

of under 12 or over 25 is considered abnormal (Grenvik et al. 1972). In the ICU the res-

piratory rate is usually measured with gas modules connected to the bedside monitoring

systems. Figure 3 shows the ECG and Respiration signals.

1.2.3 Blood Pressure

The blood pressure can be obtained using non-invasive or invasive methods. Invasive

methods are Arterial Blood Pressure (ABP), Central Venous Pressure (CVP), and Pul-

monary Artery Catheter (PAC). The most common ways for measuring Non-Invasive

blood pressure (NIBP) is air-filled upper arm cuffs. This approach can be used for mea-

suring both systolic and diastolic pressures (Fortino & Giampà 2010, Li-wei H. et al.
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2008).

Blood pressure is recorded as systolic over diastolic blood pressure. Systolic blood pres-

sure is when the heart contracts and pumps the blood. Systolic pressure is the peak pres-

sure. Diastolic pressure is when the heart relaxes and getting filled with blood. Diastolic

pressure is the lowest pressure. The unit of measuring blood pressure is mmHg. The

normal blood pressure for an adult is 120
80 mmHg (Tholl et al. 2004, Madell 2018).

Hypertension or high blood pressure puts more stress on the heart and the vessel walls.

This increases the possibility of stroke or heart attack. Hypotension or low blood pressure

causes dizziness or fainting due to less than needed blood circulation (Madell 2018).

The blood pressure can be measured manually but in the ICU it is done with the NIBP

machine. For this, the cuff is first placed on the patient’s arm. Then the blood pressure

measurement is started by pressing the start button on the machine. The device automat-

ically inflates and deflates. The systolic and diastolic blood pressures are measured and

shown on the device’s screen.

1.2.4 Pulse Oximetry

Pulse oximetry is measured by a pulse oximeter and it is a non-invasive method for mea-

suring one’s oxygen saturation. Oxygen saturation is defined as the fraction of oxygenated

hemoglobin relative to total hemoglobin (oxygenated + deoxygenated) in the blood. To

function properly the human body requires a very accurate amount of oxygen in the blood.

95–100 percent of oxygen saturation in the blood is the normal amount (Alfred 2020,

Sinex 1999).

1.2.5 Temperature

In the ICU the core temperature accurately estimated using the reliable equipment. The

patient’s core temperature can be measured using invasive or non-invasive methods. In

a non-invasive method, a temperature probe is placed on the forehead of the patient that

senses the temperature and sends the signal to the patient monitor. Then the temperature is

displayed on the monitor’s screen (Mazgaoker et al. 2017, Cronin & Wallis 2000).
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Figure 4. Temperature Probe (Draeger.com 2019)

Figure 4 shows the temperature probe on the patient’s forehead.
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2 RELATED WORK
Like in many other areas digitization in healthcare has provided an enormous amount of

data. Analyzing and implementing applications based on this data is to generate value as

well as improve the clinical care practices. However, the increased number of research in

the field of big data in healthcare does not correspond to the number of applications used

in clinical care.

Because the focus of this study is the ICU, this review is started by briefing the process

of collecting data and data analysis in the ICU. Then some examples of machine learning

models used successfully in the ICU are covered. Finally, some of the challenges for these

models to be implemented effectively in the ICU are discussed (Carra et al. 2020). The

use of EHR in the ICUs has brought big datasets to consist of categorical data, time series,

continuous variables, etc. The data is aggregated in the EHR from bedside monitors, doc-

tor notes from their observations, etc. The complexity, variety, and size of these datasets

make it difficult for a human to interpret (Carra et al. 2020). However, they represent a

new source of knowledge (Angus 2015).

This new source of knowledge can potentially enhance different areas in healthcare in

terms of improving prognostication, developing new diagnostic tools, and personalized

patient treatment (Obermeyer & Emanuel 2016). The desired outcome would be devel-

oping decision support systems that automatically extract the features from EHRs, do

the required processing and finally, show the results on the screens in a digestible for-

mat (Obermeyer & Emanuel 2016).

In the ICUs the patients are monitored in a continuous manner. This data along with clin-

ical observations is saved in the EHR. Furthermore, there are still many unknowns about

critical illnesses characterized with high-degree of uncertainty (Ghassemi et al. 2015)

and scarce clinical evidence (Sanchez-Pinto et al. 2018). Therefore there is a need for

data-driven insights to help with the critical illnesses (Citerio et al. 2015, Olson et al.

2015).

To benefit from the potentials of data in the ICU, data professionals and clinicians should
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conduct a close collaboration for the correct use and interpretation of data. To interpret

the data correctly, a good understanding of pathophysiological mechanisms and the stan-

dard clinical procedures is required. Because the data can be affected by human errors and

missing values. Also, the data can be biased by the standard clinical procedures. There-

fore a data quality check is necessary before any analysis (Carra et al. 2020). Based on

the problem that needs to be solved a variety of different machine learning algorithms can

be applied to the data collected from the ICU to identify the patterns in the data. These

algorithms are first trained using a part of the data to find the patterns and then apply what

they have learned to the new data.

The quality and quantity of the input features play a big role in the performance and

accuracy of the method. In a process called "feature engineering" the input features are

chosen. They can be selected by domain expertise, statistically, or both. To enhance the

algorithm performance and statistical power the most informative input features should

be selected (Carra et al. 2020). For choosing the right algorithm for the problem, there

are four main questions to be asked:

• What is the target of analysis?

• What is the quality and nature of the data?

• What is the complexity of the problem to be solved?

• What is the amount of available data?

The problem can be classified first in more generic terms such as classification or regres-

sion. Under each class there are different algorithms to be chosen depending on the type

of input data and complexity of the problem. A more complex algorithm may require

more data and be less explainable. The more interpretable algorithms would have higher

chances of being accepted in the clinical practices. Therefore selecting less complex al-

gorithms is favorable.

Model validation is the other important aspect. The model should be validated first in-

ternally and then externally. The internal validation is during the training phase and it
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aims to avoid overfitting and enhancing the model performance. Then in external valida-

tion, the model is checked with the dataset that the model has not seen before. Here the

aim is to assess how well the model can generalize also how clinically valid the results

are (Foster et al. 2014).

After the external validation, two other tests must be performed before using the algo-

rithms in the clinical environment

• Comparing the model accuracy against the accuracy of the current “gold standard”.

This "gold standard" can be an estimate by clinical experts, a model in use that is

developed formerly or a bio-maker (Carra et al. 2020).

• Prospectively validating the model at the bedside in a completely blinded setting.

Having large datasets from different clinical centers would be beneficial in this

stage. Furthermore, before model implementation other aspects such as epidemiol-

ogy, the difference in health systems, and how the pattern for practices should be

taken into account to gain a realistic model performance (Carra et al. 2020).

The transparent reporting of model performance in clinical use is necessary. The Trans-

parent Reporting of a multivariable prediction model for Individual Prognosis Or Diagno-

sis (TRIPOD) guidelines provides best reporting practices (Collins et al. 2015). A few fac-

tors such as decision curves (Vickers & Elkin 2006), relative utility analysis (Baker 2009)

for using the model at various risk thresholds, and calibration to measure the expected and

predicted probabilities are important in model performance (Collins et al. 2015).

Various prognostic scores have been developed so far for baseline risk evaluation, out-

come prediction, illness severity characterization, benchmarking (Salluh & Soares 2014)

and ICU performance evaluation (Collins et al. 2015, Carra et al. 2020). Two of the prog-

nostic scores are SOFA (Vincent et al. 1996) and APACHE II (Knaus et al. 1985). These

scores have three main limitations to be used for patient management in the ICU (Carra

et al. 2020).

• Calculating these severity scores, there is an assumption that at the baseline, the
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patient’s physiological values are normal and a certain deviation from these normal

values will lead the patient to a specific class. However, there are differences in

patients’ baseline physiology and this is not considered in these scoring methods,

which might lead to the patient’s misclassification in the ICU (Deliberato et al.

2018).

• There is a need for these scores to be updated periodically according to the changes

in the medical practice

• These scores don’t consider how the patient situations evolve in the ICU during

the stay, they are only calculated based on the data from the few first hours of the

patient’s stay.

On the contrary, models created based on the EHR data in the ICU can address these lim-

itations because they can include information about the whole stay. They can be easily

updated and recalibrated (Carra et al. 2020). ICU beds are limited resources in several

countries (Rhodes & Moreno 2012). ICU admissions are among the most expensive

phases of the hospital stay. Therefore there has been an interest to bring more produc-

tivity to the way the ICU beds are used. In this regard, good admission, readmission, and

discharge policies can make an improvement (Rhodes et al. 2012).

Machine learning algorithms have been used for different types of predictions such as

readmission and mortality in the ICU. Rojas et al. (2018) developed a gradient-boosted

model to predict ICU readmissions using EHR data. The developed model achieved a bet-

ter performance than Stability and Workload Index for Transfer Score (SWIFT) (Farmer

et al. 2006) and the Modified Early Warning Score (MEWS) (Reini et al. 2012).

The analysis of the data collected in the ICU can bring new insights about diseases and

patient management. Shillan et al. (2019) found out that from the 258 studies conducted

on the use of machine learning techniques in the ICU, 29.8% targeted at predicting the

complications, 27.1% aimed at predicting the mortality, 16.7% focused on developing

prognostic models and 11.2% were about patient classification (Carra et al. 2020). Since

this thesis work focuses on mortality a review of the relevant studies is given in the fol-

23



lowing.

Calvert et al. (2016) developed an algorithm called AutoTriage to predict medical inten-

sive care unit mortality using the clinical variables in EHR. They used Multiparameter

Intelligent Monitoring in Intensive Care (MIMIC)-III dataset (EW 2016) with a cohort

size of 9683 patient records. They used eight commonly measured vitals in ICU, heart

rate, pH, pulse pressure, respiration rate, blood oxygen saturation, systolic blood pres-

sure, temperature, and white blood cell count. Their AutoTriage 12 h mortality prediction

achieved an AUROC value of 0.88 (95% confidence interval 0.86 to 0.88).

Ye et al. (2020) built several machine learning models to predict mortality in critically

ill patients with diabetes. They built and ran Logistic regression, Random Forest, Ada

Boost, Gradient Boosting, XGBoost, ANN, Majority Voting and yielded the AUROC

of 0.82%, 0.86%, 0.84%, 0.83%, 0.87%, 0.86%, 0.87% respectively. Their cohort con-

sisted of 9954 patients with type 1, type 2, secondary and gestational diabetes. They got

their data from MIMIC-III and there were 9954 patients in the MIMIC-III with different

types of diabetes and their data set had a prevalence of 1164 (11.69%) deaths and 8790

(88.31%) survivals. They also utilized natural language processing algorithms and de-

veloped Knowledge-guided Convolutions Neural Networks (CNN) to clinical notes for

predicting mortality.

Kong et al. (2020) used the records of 16,688 sepsis patients from the MIMIC-III dataset

to predict the in-hospital mortality of sepsis patients in the ICU using machine learning

models. In their cohort, there were 2949 (17.7%) patients who passed away during the

hospital stay and 13739 (82,3%) patients who survived the hospital stay. They built Lasso,

Random Forest, Gradient Boosting, and logistic regression models for mortality predic-

tion and achieved the AUROC of 0.829, 0.829, 0.845, 0.833 respectively. For building

their models they used 86 predicting variables consisting of demographics, laboratory

tests, and comorbidities.

Almost all of the studies found in this review used EHR data to predict mortality in

the ICU. The only study that used biomedical waveforms to predict mortality was done

by Haahti (2019) as the first attempt to use long high-frequency signals to predict mortal-
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ity in the ICU using deep learning models. At the time of this writing, no studies were

found that had used a combination of EHR and biomedical waveforms to predict mortal-

ity. Therefore this study is the first one to explore this topic. Before finishing this chapter

some of the limiting factors in using the AI algorithms in the ICU are discussed.

Even though many machine learning models have been recently made, only a few appli-

cations of them are currently used in ICU for clinical practices. Besides, the clinical value

of these models has been assessed only by a few randomized clinical trials.

The lack of AI applications in the ICU can be associated with several factors. Machine

learning, like any new discipline, needs to gain the trust of clinicians, this can be achieved

through transparency, effective reporting, and encouraging replicability (Vollmer et al.

2020, Fenech et al. 2018). Another important factor that associate with gaining the clin-

ician’s trust is the model’s interpretability, or how the model provides insights about the

input features that contribute to the decision-making process mostly, and to what extent.

Many algorithms have been developed during the former years to make the models inter-

pretable (Doshi-Velez & Kim 2017).

The model’s trustworthiness depends on its interpretability level, which is determined by

center-specific policies and patient consultation results. The algorithms should be useful,

besides being trustworthy. There have been several models made without solving any

meaningful problems clinically (Vollmer et al. 2020). Therefore, researchers and health-

care personnel for delivering useful and clinically effective algorithms are essential.

Another limitation of AI algorithms in clinical use is that they are usually trained on a

specific population dataset, and therefore they can not necessarily heterogeneously be a

real-world generalization (Vollmer et al. 2020, Fenech et al. 2018). This can cause inac-

curacy in applying these algorithms to certain minorities. The factors mentioned above

along with ethical and privacy concerns and the economical demand of ICU digitization

are some of the limiting factors in the spread of AI applications in ICU.
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3 DATA

3.1 Data Description
The data utilized in this thesis work has been collected from 3/2013 to 12/2015 in 5

adult ICUs at the University of California, San Francisco (UCSF) medical center located

in Parnassus Heights neighborhood in San Francisco, California, United States. On this

campus faculty, staff, students, and others are engaged in patient care, research, and teach-

ing.

The data contains both EHR and Waveforms. EHR data contains 8 tables. These tables

are called Encounters, Diagnoses, FlowsheetRowDim, Flowsheetvaluefact, Lab, medi-

cation_orders, Patients, and Procedure_order. Each of these tables contains specific in-

formation about the patients. The data is fully anonymized so there are no identifying

particulars or details from the patients. This dataset is owned by GE Healthcare and it is

not publicly available. This dataset was used by Haahti (2019) in her research towards

her thesis work.

In the dataset, there are both Patient_ids and Encounter_ids. Once a patient is admitted

to the ICU a Patient_id and Encounter_id is created for them. Next time the same patient

is admitted a new Encounter_id is created for them. Since, during the data collection

period some patients might have visited for care several times, therefore, the number of

Encounter_ids are more than the Patient_ids.

The EHR dataset consists of 2320 patients, counted from the number of unique Pa-

tient_ids. With some of the patients being admitted more than once the number of en-

counters is 5650, counted from the number of unique Encounter_ids. Waveforms are not

measured or collected for all the patients in the dataset.

For the total number of 2241 patients, the waveforms during their ICU stay exist in the

dataset with varying numbers of signal waveforms collected per patient. For 2221 patients

both EHR and waveforms are available in the dataset. The signals considered in this study

are ECG, IP, and PPG. Table 2 shows the number of records available for the patients.
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Table 2. Number of records available for the patients in the dataset

Cohort number of patients
Electronic Health Record (EHR) 2320
Waveforms and EHR 2221
Waveforms 2241

Electrocardiogram (ECG) 2241
Impedance Pneumogram (IP) 2240
Photoplethysmogram (PPG) 2240

3.2 Construction of Data
In this section first, the information each table provides is explained. Second, the map-

pings between the tables are discussed. From the tables in the dataset, the Encounters

table includes the patient discharge information and it is used for labeling the data. The

FlowsheetValuefact table contains all the vitals measured for patients and it is used for

extracting the vitals in feature engineering.

3.2.1 Encounters

The Encounters table includes information about the hospital admissions such as admis-

sion and discharge dates, reason of admission, Diagnosis-Related Group (DRG) patient

consist in, hospital service required, and discharge disposition. Both Patient_id and En-

counter_id information is available in this table. The number of unique Patients_ids in

this table is 2317. This table consists of 5650 rows and 27 columns.

3.2.2 Diagnoses

The Diagnosis table consists of the diagnosis of the patient. This table has 230980 rows

and 35 columns.

3.2.3 FlowsheetRowDim

FlowsheetRowDim table contains the keys for the variables measured from the patients.

In this table, each variable has a key in form of a number and a name. For example, the

key for PULSE is 38524, the key for RESPIRATIONs is 39413 and the key for BLOOD

PRESSURE is 32710. Using these keys the measured values can be extracted for a Pa-

tient_id in the timestamp that is measured. The FlowsheetRowDim consists of 5487 rows

representing 5487 different variables and 9 columns.
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3.2.4 Flowsheetvaluefact

The table Flowsheetvaluefact contains vital measurements by date and time. The num-

ber of unique variables in the flowsheetRowKey column is 7280 that indicates not all

of the variables are defined in the FlowsheetRowDim table. The number of variables

calculated from FlowsheetRowDim is 5487 and most of them are measured in nominal

values. Variables include routine Vital Signs such as blood pressure, pulse, respiratory

rate, and temperature. Also other variables like cardiac output, cardiac rhythm, Intracra-

nial Pressure (ICP) readings, and systemic vascular resistance. This table also contains

information about drugs, laboratory test results, and patient demographics. This table

contains 50450780 rows and 11 columns. The number of unique Patient_ids in this table

is 2317.

3.2.5 Lab

The Lab table describes laboratory measurements and tests. The number of rows in the

LAB table is 2660829 and the number of columns is 28.

3.2.6 medication_orders

The medication_orders table includes information such as the medication order start time,

end time, quantities, and doses. This table contains 562814 rows and 32 columns.

3.2.7 Patients

The Patients table contains patients’ demographics information such as age, race, gender,

marital status, and preferred language. The number of rows in this table is 2320 that

indicates the total number of patients in this dataset and the number of columns in this

table is 13. The Encounter_ids are not captured in Patients.

3.2.8 Procedure_order

The Procedure_order table has records of the medical procedures. It has information such

as the date and time of the procedure and the name of the procedures conducted. This

table has a total number of 2767462 rows and 40 columns.
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Table 3. The demographics of patients

Demographics number of patients(%)
Total patients 2317
Gender

Male 1207(52%)
Female 1110(48%)

Patient_Status
Alive 2033(88%)
Deceased 284(12%)

Total encounters 5650

Table 4. Age and length of stay

Statistic Age(years) length of stay(days)
Mean 63 8.6
Median 65 5.3
Standard_deviation 15.8 11.9

3.3 Patient Demographics
The demographics for all the patients having EHR data present in this study is demon-

strated in table 3. The number of patients based on the Patients table is 2320. However, the

information of 3 patients is missing from the Encounters table. Because the Encounters

table is used to label data, the demographics are calculated using this table.

3.4 Study Cohort
The study cohort is built by considering the patients that the normal vital signs Blood

Pressure, Pulse, Respiratory Rate, and Temperature are measured for them and exist in

the dataset. As mentioned before each patient could have visited the ICU several times

and that is why the number of Encounter_ids is more. In this study when dealing only

with EHR data the Encounter_ids are used. There are in total 5650 Encounter_ids in

the dataset out of that 284 encounters led to death while in 5366 encounters the patients

recovered.

Flowsheetrowvalefact table that is used for extracting the vitals includes the information

for only 5621 encounters that can be divided into two classes of dead and alive (284 dead,

5366 alive). Out of these encounters, for eight of them, all the vitals are not recorded.

Therefore the cohort is built with 5613 encounters.
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When dealing with EHR data, the Encounter_ids are used instead of Patient_ids. The time

period from patient admission to the ICU until the time of disposition is the length of stay.

If all the vitals assumed in this study are measured for the encounter of that patient, that

encounter is included in the cohort otherwise it is omitted.

3.5 Waveforms
The dataset includes waveform for 2241 patients, in addition to EHR data. The number

of biomedical signals measured or available in the dataset varies. In this study, the focus

is on three non-invasive waveforms of ECG, IP, and PPG that were selected and used

by Haahti (2019)

• There are ECG signals measured from multiple leads in the dataset and sampled

with the sampling frequency of 240 Hz. However, only the second lead is used

in the study done by Haahti (2019) since usually the morphology of P wave, QRS

complex, and T waves are best seen in the second lead (Morris et al. 2009).

• IP is measured from the same electrodes as ECG with the sampling frequency of

60 Hz. The IP signal is then upsampled to 240 Hz to be aligned with ECG sig-

nal (Haahti 2019).

• PPG is measured with a pulse oximeter with a sampling frequency of 60 Hz. Then

the signal is upsampled to 240 Hz to have the same sampling rate as the IP and ECG

signals (Haahti 2019).

Form the whole number of patients, 2320, both waveform and EHR data are available

for only 2221 patients. ECG, IP, and PPG signals are measured for almost all of these

patients who have both EHR data and waveforms.

All the prepossessing on the waveforms are done by Haahti (2019) with detailed informa-

tion on the discontinuities in the waveform data and the inclusion criteria for building the

cohort.
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4 RESEARCH METHODOLOGY
In this section, first, the prediction task is defined. Second, window selection for labeling

the data is addressed followed by prepossessing the data.

4.1 Prediction Task
The problem is defined as a binary classification one. The target is to predict if the patient

in the prediction time window stays alive or dies. Also, this problem is considered as a

supervised learning problem and the data is labeled according to the time windows that

are detailed in the following sections.

4.2 Time Window Selection
In the first part of the study, using only the EHR data, there are two types of windows

selected for doing this prediction task. The first one is called a data extraction window

or in short, a data window, and the second one prediction window. The data window

starts right after the patient is admitted to the ICU and the measurements are started. The

data window is selected to be five hours for this study. The prediction window comes

right after the data window, during its time span the situation of the patient is going to be

predicted. In this study, the prediction window is selected to be 13 hours.

In the second part of the study for combining the biomedical waveforms and the EHR

data, the data window for EHR is set to five hours. During these five hours, one hour

of biomedical waveforms data is used that creates a big amount of data. After the data

window, there is a one-hour gap follows by 12 hours of prediction window. The change

in the size of the prediction window is done to make it possible to elaborate on the work

done by Haahti (2019) and being able to compare the results.

The prediction window size selections can be problem-specific or arbitrary. In this study,

a fixed size for the prediction window is selected. The data window can be shorter or

longer as well as what is set in this study. The window sizes can be considered as a

hyperparameter as well to be optimized later. The challenge would be that for each set

of window sizes new data labeling and feature engineering should be done. Being able to

create a model working with dynamic window sizes can be proposed for the future.

31



Figure 5. Labeling the EHR data

4.3 Data Prepossessing
The data is located in several different tables. All the values regarding the measurements

are in the "value" column of the "Flowsheetvaluefact" table. The patient info and the

value for that measurement are depicted in one row of the table. Different values are

corresponding to different values available in the table, and they don’t have the same

measurement frequency.

4.3.1 Making the data ready

First to label the data the Encounters table is used, because this table has a column called

"Encounter_Discharge_Disposition" and it contains the information if the patient has de-

ceased or not. Using this info the data can be labeled.

Every patient’s stay in the ICU is used to create several instances by using data extrac-

tion and prediction windows. As mentioned earlier there are two connected windows, a

data extraction window for five hours and a prediction window for 13 hours. These two

windows are rolling forward for one hour at a time to create a new instance until the dis-

position time is reached. For each instance, if the patient has died during the prediction

window, that instance is labeled as one otherwise as zero. This is shown in Figure 5.

For combining the EHR data and the waveforms the labeling is done similarly. The only

difference is that the prediction windows are for twelve hours here and a one-hour gap

is set between the data extraction window and the prediction window. This is shown in

Figure 6.

After labeling the data, the features are selected. Six vitals, Heart Rate, Respiration,

Systolic Blood Pressure, Diastolic Blood Pressure, Pulse Oximetry, and Temperature are
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Figure 6. Labeling the EHR data and Waveform

chosen and for each of them, eleven statistics are calculated during the data window. So

in total 66 features are gained. Table 7 in the Experiments section shows these statis-

tics.

Then the task in prepossessing is to create a table containing the encounters in the cohort

with all the features.

4.3.2 Low/High Range

A static range is used to filter out the vital values that are outside this range. These ranges

are shown in table 8 in the experiment section.

4.3.3 Data Scaling

Some of the machine learning algorithms are sensitive to data scaling especially the ones

that use gradient descent as the optimization algorithm. To ensure the smooth movement

of gradient descent towards the minima with the rate of updated steps for all the fea-

tures, the data is scaled before being fed to the model. The data can be normalized using

Eq.3:

X
′
=

X−Xmin

Xmax−Xmin
(3)
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for standardization the Eq.4 can be used:

X
′
=

X−µ
σ

(4)

There are also standardization and normalization packages in the scikit-learn library.

4.3.4 Missing Data Imputation

Because of the frequency of measurements for the vitals, during our five-hour data win-

dow, some of the values are not available. For filling the missing data forward fill-

ing method is used. The forward filling is to fill each missing value with its previous

value.

4.4 Class Imbalance
Class imbalance in a binary classification problem means that the number of examples-

disease non-disease cases- in the dataset are not the same. This can be also referred to as

prevalence or the frequency of the disease.

The class imbalance is common in medical datasets that can be addressed by different

methods. One of the methods is to give different weights to each class while building the

loss function, more weight to the less frequent class and less weight to the more frequent

class to make a balance.

The other method that can be used is resampling. This can be done as undersampling of

the examples of more frequent classes or oversampling of the less frequent class to make

a balance.

4.5 Metrics
The two main performance metrics commonly used with medical datasets are AUROC

and AUPRC. These two metrics are important metrics when it comes to the evaluation

of classification problems. Also, they are useful metrics when there is a class imbal-

ance.
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Table 5. Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Table 6. Performance Metrics

Performance metric Formula

Accuracy T N+T P
T N+FP+FN+T P

True Positive Rate (TPR), sensitivity, recall T P
FN+T P

True Negative Rate (TNR), specificity T P
T N+FP

False Positive Rate (FPR) FP
T N+FP

False Negative Rate (FNR) FN
FN+T P

Positive Predictive Value (PPV), precision T P
FP+T P

Negative Predictive Value (NPV) T N
T N+FN

To be able to understand the AUROC and AUPRC metrics, the confusion matrix should be

explained first. Dealing with a binary classification problem, there would be four different

outcomes. Prediction of a positive sample correctly will result in a True Positive (TP) and

incorrectly will result in False Negative (FN). In the same manner, prediction of a negative

sample correctly will result in a True Negative (TN) and incorrectly will result in a False

Positive (FP) (Alpaydin 2014).

Table 5 shows a confusion matrix. Based on the confusion matrix several different met-

rics can be measured. Table 6 shows some of these metrics. Accuracy is a common

metric that measures how many samples are classified correctly. However, in medical

settings, because medical data sets are usually imbalanced, the measuring accuracy is not

as useful.

Sensitivity and recall or True Positive Rate (TPR), measures the proportion of actual pos-

itives to all predicted positives. Specificity or True Negative Rate (TNR), measures the

proportion of actual negatives to all the predicted negatives. False Positive Rate (FPR) and

35



False Negative Rate (FNR) can be measured in the same manner as TRP and TNR (Al-

paydin 2014).

To classify between two classes a binary classification model requires a threshold. There-

fore a fixed threshold is set to calculate the metrics. A change in the threshold means

a change in the metrics which makes it difficult to compare the performance of models

based on the metrics. The alternative approach for evaluating the performance of models

is to use a threshold-free approach. Receiver Operating Characteristic Curve (ROC) and

the Precision-Recall Curve (PRC) are examples of this threshold-free approach (Saito &

Rehmsmeier 2015).

4.5.1 AUROC

The ROC curve is a plot of the TPR against the FPR at all possible thresholds and shows

the trade-off between specificity and sensitivity. The ROC curve of a classifier with ran-

dom performance is a diagonal line going from (0,0) to (1,1) and can be taken as a base-

line. The area under the ROC curve can be measured and shown as a single score that

is called Area Under Receiver Operating Characteristic Curve (AUROC). For example, a

classifier with random performance has an AUROC value of 0.5 while a perfect classifier

would have an AUROC of 1 (Saito & Rehmsmeier 2015).

4.5.2 AUPRC

The PRC curve is a plot of PPV against TPR at all possible thresholds. The area under the

PRC curve can be calculated and shown as a single score called Area Under Precision-

Recall Curve (AUPRC). The baseline for AUPRC is equal to the fraction of positives

(number of positive examples / total number of examples). This means that different

classes have different AUPRC baselines. For example, the AUPRC baseline for a class

with 20% positives is 0.2, therefore, obtaining an AUPRC of 0.35 for this class is rea-

sonable. On the other hand, a class with 60% positives has an AUPRC baseline of 0.6,

so obtaining an AUPRC of 0.30 on this class is not reasonable (Saito & Rehmsmeier

2015).

For balanced data sets, the ROC curve and AUROC are more informative. However, for

highly imbalanced datasets, the PRC curve and AUPRC are considered more informa-
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tive (Saito & Rehmsmeier 2015, Sahiner et al. 2017). In this study, both AUROC and

AUPRC values are used to evaluate the models’ performance.

4.6 Models
Different models are used in this study. Because the problem is a binary classification,

logistic regression (LR) is used as the first model to fit the data and provides a basic

understanding of the problem. Furthermore, because explainability and interpretability

are important in medical settings the tree-based models are used due to their richness in

this aspect.

The tree-based models have shown a high performance with the structured data in the

Kaggle competitions. From the tree-based models, Random Forest is used from the bag-

ging pack, and Gradient Boosting (GB) and Extreme Gradient Boosting (XGB) are used

from the boosting pack.

For training the models on the waveforms, deep learning models developed by Haahti

(2019) are used. Waveforms are considered unstructured data. One hour of waveform

data creates a big chunk of data.

Finally for combining the EHR data and waveforms, the predictions from deep learning

models are taken and fed to one of the tree-based models as a new feature along with the

other features.

4.6.1 Logistic Regression

Since we define our problem as a supervised-learning binary classification to predict if a

patient is going to die or recover, the first algorithm to experiment with is Logistic Re-

gression. This algorithm is chosen because of its simplicity and wide usage in supervised-

learning binary classification problems. In the following, the logistic regression algorithm

is described. In logistic regression, the target or dependent has only two possible classes.

That is why it is binary where 1 shows success and 0 failure.

The Logistic Regression can address a multi-class classification problem as well, however,

in this writing, only the binary classification is explained. There are several elements in
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the Logistic Regression algorithm such as hypothesis, cost function, decision boundaries,

and gradient descent that need to be understood.

In Logistic Regression the classes are linearly separable and the following formulas are

used to calculate the probabilities of samples belonging to each class:

p(c = 1|x;w,b) =
1

1+ e−(wT x+b)
= ŷ (5)

for the first class, and

p(c = o|x;w,b) = 1− p(c = 1|x) = 1− ŷ (6)

for the second class, where in Eq. 5 and Eq. 6 x is the input vector, w represents the

weights and b is a bias term. The weights and bias are the parameters for the logistic

regression model z = wT x+b. c = 1 denotes the positive class and ŷ shows the probabil-

ities for the inputs belong to the positive class. c = 0 denotes the negative class and 1− ŷ

shows the probabilities for the inputs belong to the negative class.

Logistic Regression model uses a sigmoid function to map the linear equation z=wT x+b.

Eq. 7 shows this sigmoid function:

g(z) =
1

1+ e−z (7)

The loss function for the Logistic Regression model can be written as:

L(ŷn,yn) =−(ynln(ŷn)+(1− yn)ln(1− ŷn)) (8)

where ŷn is the model output and yn is the label.

An average of the losses of each input can be calculated for the approximation error
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between the label and the predicted output.

E(W,b) =
1
N

N

∑
n=1

ln(ŷn,yn) =−
1
N

N

∑
n=1

(yn ln(ŷn)+(1− yn) ln(1− ŷn)) (9)

This total loss function shown in Eq. 9 should be minimized and this is done iteratively

with gradient descent, since there is no closed form solution for that. The parameters are

initialized randomly and then they are updated step by step as shown in Eq. 10 and Eq. 11.

∇w is the partial derivative of E(W,b) in respect of W and ∇b is the partial derivative of

E(W,b) in respect of b.

w← w−λ∇wE(w,b) (10)

Eq. 10 shows how w is updated, and

b← b−λ∇bE(w,b) (11)

Eq. 11 shows how b is updated.

As explained, Logistic Regression is the most widely used model for binary classification

problems. However, due to its simplicity, the accuracy gained from training such a model

has its limitations. To gain better accuracy different techniques are used.

• Different algorithms: In this method, different types of algorithms are trained and the

average is taken from them. This method can work well however, each separate

algorithm should be built and trained. This will increase the amount of time used

on solving the problem dramatically.

• Different training sets: In this method, new training sets should be collected and used

along with the initial training set. However, this approach might be viable in many

cases because it requires access to more data that is not usually available at the

desired time.

• Bagging: Bagging stands for bootstrap aggregation. Bootstrap is a method in statistics
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that measures the uncertainty of the estimate. Bagging causes the variance to de-

crease a bit and bias to increase a bit. But the change in variance is more than the

change in bias. Decision trees are high variance and low bias, so bagging is suitable

because it decreases the variance for a slight increase in the bias (stanfordonline

2020).

• Boosting: Boosting is the other method of ensemble learning in which a bunch of weak

learners like decision trees are ensembled for better performance. In this method,

each new learner is only trained with the observations that have not been trained

effectively by the previous learners. This technique ensures accurate predictions on

the vast majority of observations, not only on the easiest ones. So, if an individual

model in the team is unable to make good predictions, the other N-1 models will

be most likely be able to compensate for it. Boosting is used primarily for reducing

bias, and also variance (z_ai 2020c, Breiman 1996).

The machine learning algorithm is called to have a high bias when it can’t find the rela-

tionship of data points well, or in the other words, the algorithm can’t generalize well.

That is when underfitting happens.

The machine learning algorithm is called to have a high variance when the accuracy

gained from fitting different sets varies. For example, the algorithm fits the training set

well but not the test set. A model with high variance and low bias is called an overfitting

model.

The desired models are the ones with low bias and low variance. This means the model

fits different sets of data well.

4.6.2 Decision Tree

Decision trees are non-parametric models that can be used both for regression and clas-

sification. In this study, they are used for classification. This means adding new features

does not increase the number of model parameters. Decision trees consist of nodes and

branches. Nodes are where the features are evaluated and the split happens. There are

three different types of nodes.
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1. The root node, this is where the decision tree starts, so this node stays on top and

evaluates the feature that splits the data best.

2. Intermediate nodes, these are the nodes used for evaluation of features and they are

one layer lower than the root node.

3. Leave nodes, these are where the predictions happen. These are the final nodes in a

decision tree.

In each node of a decision tree, the features in the training set are evaluated based on

certain metrics, and training set splitting is done using the one feature that provides the

best performance. The metrics that are usually used for classification problems are Gini

index or Entropy (z_ai 2020a).

Decision trees are easy to use and they have high interpretability. They require fewer data

comparing to the other machine learning algorithms and they can tolerate missing data.

On the other hand, they can easily overfit the training data. Also, they are weak learners

and don’t perform well on prediction tasks, that is why they are usually used for creating

ensemble models like Random Forest (RF) and Extreme Gradient Boosting (XGB).

4.6.3 Random Forest

Random Forest is an example of bagging ensembling. They are non-parametric models

that can be used both for regression and classification. In this study, they are used for clas-

sification. Random Forest ensembles many decision trees. Decision trees are considered

weak learners. This is done to achieve a better performance than any of the individual

learners. The decision trees are easy to explain however they tend to overfit. Therefore

they can perform well on the training data but not well on an unseen set of data. Prun-

ing the tree can help with the overfitting problem but on the other hand, can reduce the

algorithm predictive power.

Random Forest is a forest of these trees, using the simplicity of each tree and the flexibility

of the ensembling method, Random Forests have better performance than decision trees.

Also, they are not as susceptible to parameter tuning as decision trees are. However,
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their interpretability is worse than decision trees. Random Forests are usually built-in 3

phases:

• Phase 1: To create a bootstrapped dataset for each of the trees in the forest

For creating a random forest, there is a need to train N decision trees. For training

each of the trees a random sample is collected from the training set. The size of

the random sample can be smaller or equal to the size of the training set. In ran-

domizing process one data point can be selected more than once. This process is

called bootstrapping that the samples are selected with replacement. This random

sampling and training of each tree with a sample reduces the overfittig (z_ai 2020b).

• Phase 2: To train the forest with the random datasets we created in phase 1

Random Forest that is built of decision trees works best if the individual trees are

not correlated. So to add more randomness at each node only a subset of all the

features are selected and evaluated. Therefore for building each tree two levels of

randomizing are used, the first one on the data and the second one on the features.

This helps to reduce the variance and achieving a better performing model. Then

the same process is done for each of the N decision trees in the random forest (z_ai

2020b).

1. A bootstrapped data is created for each decision tree.

2. Each of the bootstrapped data created in the first step is used for creating a

decision tree, however, only a subset of features in that data will be used to

split on.

3. These steps would be repeated for making a forest with a variety that deter-

mines the excellence of random forest over any single decision tree.

For using the Random Forest for prediction, we predict with each of the trees and

then aggregate the results. In terms of classification, aggregation means finding the

mode of prediction. This method of first bootstrapping the data and then aggregat-

ing the predictions is called bootstrap aggregation or bagging. As an example, a
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Random Forest consisting of 500 decision trees in our classification problem, if 50

of the decision trees predict the patient’s death and 450 predicts patient survival, the

most frequent prediction, here patient’s survival is the Random Forest prediction.

• Phase 3: To make predictions with Random Forest

To make predictions with Random Forest we feed each individual tree with the

observations for which we like to have a prediction. Then sum up the predictions

from each tree to get an aggregated prediction (z_ai 2020b).

4.6.4 Gradient Boosting Models

Boosting works in a way that the N models present in the group are trained sequen-

tially with consideration to the previous model performance on the data. If the previous

model did not do a good job on data observations, the weights of that data observa-

tion increases. This helps the subsequent models focus on the challenging data obser-

vations (z_ai 2020c).

Sometimes boosting models are trained with fixed weights for each learner and instead

of assigning an individual weight to each sample, the models are trained to predict the

difference of previous predictions on the samples and their real values. This difference is

called residual (z_ai 2020c).

Gradient Boosting (GB) Models operate by sequentially training the weak learners, adding

more estimators, and predicting the residual errors made by the previous estimators in-

stead of adapting the data weights. Due to this, all the weak models have the same im-

portance. In Gradient Boosting models most of the time, fixed-sized trees are used as

base predictors. And these models use a learning rate to reach the results (z_ai 2020c).

A comprehensive mathematical explanation of Gradient Boosting is given by Natekin &

Knoll (2013) and Friedman (2002).
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4.6.5 Extreme Gradient Boosting Models

Similar to Gradient Boosting, in Extreme Gradient Boosting the trees are fit to the resid-

uals of the predictions of the previous trees. The difference is that instead of using fixed-

size decision trees used in Gradient Boosting, Extreme Gradient Boosting uses a different

kind of trees that are called XGBoost trees. These trees are built by calculating similarity

scores for the observations that reached a leave node. XGBoost allows regularisation that

can reduce the possibility of individual trees and as a consequence the ensemble model

being overfitted. XGBoost models are well optimized to provide the best use of compu-

tational resources (z_ai 2020c, Chen & Guestrin 2016)

4.6.6 Deep Learning Models

The deep learning model used in this study is a Convolutional Recurrent Neural Network

(CRNN) more specifically a Convolutional Neural Network-Long Short-Term Memory

(CNN-LSTM) model that was developed by Haahti (2019). Figure 7 shows an illustration

of this CNN-LSTM model structure that has six convolutional blocks, a Long Short-Term

Memory (LSTM) layer, and a dense layer.

Figure 7. CNN-LSTM model structure (Haahti 2019).
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4.7 Baseline Models
In this study Logistic Regression model is taken as the baseline model and the perfor-

mance of other models is compared to that.
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5 EXPERIMENTS
Amazon Web Services (AWS) are used for this study. The data is located in AWS Simple

Cloud Storage (S3) and the computations are done on the AWS Elastic Computing (EC2).

Amazon Athena is used for getting quick queries by giving Structured Query Language

(SQL) commands for the initial data exploration.

Utilizing the EC2 instance, the data is fetched from S3 using Spark Python API (PySpark).

Also, the s3fs package makes it easy to read .CSV files into pandas data frames from S3 to

EC2 instance and write pandas data frames into .CSV files from EC2 instance to S3.

To be efficient and cost-effective in using the cloud resources first a smaller EC2 instance

was created and then based on the need the upgrade was done. In this study, three different

types of instances were used. First, t2.micro was used for getting familiar with AWS, then

t2.2xlarge was created to train models with the EHR data, and finally g3.8xlarge was used

for training the deep learning models with waveform inputs.

The programming language used for prepossessing the data and developing the models is

Python. PySpark and other commonly used packages such as SciPy, NumPy, and Pandas

are used to prepare the data. For developing the models scikit-learn is used. Also, deep

learning models were developed using Keras API, a Python deep learning library, with

TensorFlow backend.

As our problem is a supervised learning binary classification, the first task is to label the

data. The Encounter_Discharge_Disposition column in the Encounters table contains the

categorical data regarding patient status at discharge. One of the categories in this column

is if a patient is deceased. This information is used to label the data in the time windows

explained in chapter 4.3.1.

Then, data cleaning and prepossessing are done. The vital parameters that are used in the

feature engineering part are in the "Flowsheetvaluefact" table "value" column. One of the

main tasks in prepossessing is to prepare the data in the format that can be used by the

models.
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The original data contained both the Patient_id and Encounter_id. Each patient could

have been admitted to the ICU multiple times making the number of Encounter_ids more

than the Patient_ids. In this study, the Encounter_ids are used when dealing with EHR

data. Then for combing the EHR data and waveforms the Patient_ids are used because

the work done by Haahti (2019) is based on Patient_ids. Therefore to be able to use

the biomedical waveforms and built models in that study a cohort containing the same

Patient_ids is made.

As explained in the methodology section the data window for EHR data is set to five

hours and for the biomedical waveforms for one hour. The features taken from the EHR

data are engineered during these five hours of the data window. The prediction window

is set to twelve hours. The duration of the data window and prediction window can be

considered problem-specific hence it can be changed. They can also be considered as

hyperparameters and be tuned to provide the windows that will result in the best model

accuracy.

To extract the features, six separate vitals are considered and for each of them eleven

different statistics are calculated during the data window time span. All the features are

brought in the table 7. When combining the biomedical waveforms and EHR data, the

predictions from the deep learning models trained with biomedical waveforms are con-

sidered as an extra feature along with the other features extracted from EHR data.

Table 7. Features extracted from EHR data

Heart Rate Respiration Systolic
Blood
Pressure

Diastolic
Blood
Pressure

Pulse
Oximetry

Temperature

Mean Mean Mean Mean Mean Mean
Median Median Median Median Median Median
Mode Mode Mode Mode Mode Mode
Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev
Last Value Last Value Last Value Last Value Last Value Last Value
First Value First Value First Value First Value First Value First Value
Delta Delta Delta Delta Delta Delta
Min Min Min Min Min Min
Max Max Max Max Max Max
10th %tile 10th %tile 10th %tile 10th %tile 10th %tile 10th %tile
90th %tile 90th %tile 90th %tile 90th %tile 90th %tile 90th %tile
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For each vital, an upper and a lower range is used. The ranges are static and they are

brought in the table 8.

Table 8. Lower and Upper ranges for the vitals

Vital Lower range Higher range
Heart Rate 20 250
Respiration 10 100
Systolic Blood Pressure 10 300
Diastolic Blood Pressure 10 300
Pulse Oximetry 25 100
Temperature 50 111.2

The data is prepared in one table for all the Encounter_ids with all the extracted features.

If one of the vitals is not measured for an Encounter_id, that Encounter_id is eliminated

from the study. The total number of Encounter_ids in the Encounter table is 5650 (284

dead and 5366 alive), from this amount the vitals are measured for 5621 Encounter_ids

in the Flowsheetvaluefact table. In total for 8 Encounter_ids, the vitals are not measured

fully so they are removed and the study is done using the 5613 Encounter_ids.

The data is split into a development set and a test set with a ratio of 80/20 percentages.

Then the development set is split into train and validation set with the ratio of 80/20.

The test data is kept intact. The train validation set is used for training the model and

performing the initial evaluations. After that, 5-fold cross-validation is done on the whole

development set.

The 80/20 split is done patient-wise to ensure that all data windows from a patient can

only be found in one of the sets. This is done to ensure that the model validation is always

done with the patients that the model is not trained on. Before data is fed into the models,

it is standardized utilizing the StandardScaler library of scikit-learn. Also, performance

metrics are calculated using the scikit-learn package.

First Logistic Regression is tried as a simple model for the binary classification task.

Then for improving the performance some of the ensemble methods are tried. From the

bagging set, Random Forest is used and from the boosting set, Gradient Boosting and

Extreme Gradient Boosting are used.
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Each model is first trained using a fixed 80 percent of the development set and its perfor-

mance is measured using the 20 percent of the development set. Various hyper-parameters

are used to provide an initial understanding of the models. This is for building a founda-

tion for the model selection to be used in cross-validation.

Then the model is trained with the whole development set using 5-fold cross-validation.

To fine-tune the model parameters BayesSearchCV package of scikit-optimize is used.

Finally, when the model with the best parameters is achieved, the performance is evaluated

upon the test set.

For evaluation of the model performances, the AUROC and AUPRC are used due to

an imbalance in the data and that they are commonly used metrics in medical settings.

For each run, the performance metrics are computed and a mean, median, and standard

deviation for the metrics are captured. Based on these metrics, the models with the best

performance selected and retrained with the whole development set. Final models are

evaluated with the test set.

To combine the EHR and waveforms a new cohort consisting of 1875 patients, 1500

patients in the development set and 375 patients in the test set is built. A CRNN model

built already by Haahti (2019) is trained using 1000 of these patients. Then a prediction

is done with the other 500 patients. These predictions are added as a new feature to the 66

features extracted from EHR data. This new dataset is then used for training the Logistic

Regression and the ensemble methods.

49



6 RESULTS
In this section, the results of conducting this study are presented. This section is divided

into two parts. In the first part, the results are gained using only EHR data and the best

model is identified. In the second part, the results using a combination of EHR data and

biomedical waveforms for that best model and Logistic Regression model are demon-

strated.

6.1 Cross-Validation Results
In this section, the cross-validation results for all the models are presented. First, only

EHR data is used for training the models and the cross-validation results for the four

models, Logistic Regression, Random Forest, Gradient Boosting, and Extreme Gradient

Boosting are shown. The model with the best performance is selected and then it is

trained with the combination of EHR and waveforms along with the Logistic Regression

model.

6.1.1 EHR data

Table 9 and Table 10 show the mean, median, standard deviation, minimum and maximum

AUROC, and AUPRC performances for the models in the 5-fold cross-validation using

the EHR data as the input. Figure 8 visualizes the cross-validation results.

Comparing the AUROC and AUPRC values in the Mean column of tables 9 and 10 show

the Extreme Gradient Boosting model achieves the best performance both in terms of

AUROC and AUPRC. For example, the XGB models show a performance of 2.3% higher

performance in AUROC and 22.2% in AUPRC comparing to the Random Forest which is

the second-best model. This increase is 20.27% in terms of AUROC and 175% in terms of

AUPRC comparing to the Logistic Regression that is taken as a base model here. Figure 8

visualizes the cross-validation results for the four models.

6.1.2 EHR data and waveforms

In this section, the XGB model as the best performing model and Logistic Regression

as the baseline model are trained EHR and waveforms. To do this these two models are

first trained with EHR data only and then they are trained with EHR and waveforms.
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Table 9. The statistics gained in cross-validation of the models present in this study

AUROC
Model Mean Median sd Min Max
LR 0.74 0.74 0.03 0.70 0.78
RF 0.87 0.86 0.02 0.86 0.91
GB 0.86 0.87 0.02 0.84 0.88
XGB 0.89 0.89 0.02. 0.86 0.92

Table 10. The statistics gained in cross-validation of the models present in this study

AUPRC
Model Mean Median sd Min Max
LR 0.04 0.05 0.01 0.02 0.05
RF 0.09 0.08 0.02 0.07 0.13
GB 0.07 0.06 0.01 0.05 0.09
XGB 0.11 0.12 0.03 0.06. 0.15

Here a new cohort only with a smaller number of patients is used. And the results are not

comparable to the last section that all the patients were used to train the models. However,

the XGB model still shows the best performance with the cohort. The statistics of other

models are not brought to tables for simplicity.

Figure 8. The AUROCs and AUPRCs for the cross-validated LR, RF, GB, and XGB models. The red dots
show the individual validation results and the blue dots show the mean value of the cross-validation results
for each model.

Tables 11 and 12 show the AUROC and AUPRC for XGB and Logistic Regression mod-

els with less number of patients that have all the vitals measurements and the wave-

forms.
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Table 11. The statistics gained in cross-validation of the models present in this study for only EHR

AUROC
Model Mean Median sd Min Max
LR 0.75 0.77 0.10 0.59 0.90
XGB 0.85 0.85 0.09. 0.71 0.97

Table 12. The statistics gained in cross-validation of the models present in this study for only EHR

AUPRC
Model Mean Median sd Min Max
LR 0.11 0.03 0.15 0.02 0.41
XGB 0.27 0.10 0.22 0.07. 0.58

Tables 13 and 14 show the cross-validation results for combining the EHR data and the

waveforms as inputs to the models. This combined input improves the performance of the

XGB model in training by 1.17% in terms of AUROC and archives a similar performance

in terms of AUPRC. Also, the performance improvement for the Logistic Regression

model in the training is 5.3% in terms of AUROC and 27% in terms of AUPRC.

6.2 Test Results
In this section, the results gained from evaluating the models with the test set are pre-

sented. In the first part, all the models are trained with the whole EHR data and then

evaluated with the test set.

In the second part, the model with the best performance and the base model are trained

with the new cohort first only with EHR data and then with EHR and waveform data

combined. Then their performance is evaluated by the test set.

6.2.1 EHR data

Table 15 summarizes the AUROC and AUPRC scores for the four models evaluated with

the test set. These models are trained with the whole training set and then evaluated with

Table 13. The statistics gained in cross-validation of the models present in this study for EHR and waveform

AUROC
Model Mean Median sd Min Max
LR 0.79 0.82 0.11 0.59 0.93
XGB 0.86 0.86 0.09 0.71 0.98
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Table 14. The statistics gained in cross-validation of the models present in this study for only EHR and
waveform

AUPRC
Model Mean Median sd Min Max
LR 0.14 0.10 0.12 0.04 0.36
XGB 0.27 0.11 0.22 0.08. 0.62

Table 15. The statistics gained in testing of the models present in this study

Model AUROC AUPRC
LR 0.736 0.041
RF 0.877 0.095
GB 0.845 0.058
XGB 0.882 0.090

the test set. Figures 9, 10, 11, 12, 13, 14, 15, and 16 show the AUROC and AUPRC for

Logistic Regression, Random Forest, Gradient Boosting and Extreme Gradient Boosting

models when they are evaluated by the test set.

6.2.2 EHR and waveforms

In this section, the results of evaluating the models with the test set using both EHR and

waveform are presented. First XGB and LR models are trained with the EHR data of

the new cohort and evaluated with the test set. Then these two models are trained with

both EHR and waveform data. Then evaluated with the test set. These two results are

compared to see how much improvement combining the EHR data and waveform data

provides.

Table 16 summarizes the AUROC and AUPRC scores for the XGB and LR models eval-

uated with the test set. These models are trained with only the EHR data in the training

set of the new cohort and then evaluated with the test set.

Table 17 summarizes the AUROC and AUPRC scores for the XGB and LR models

evaluated with the test set. These models are trained with the EHR data plus wave-

form in the training set of the new cohort and then evaluated with the test set. Fig-

ures 17, 18, 19, 20, 21, 22, 23, and 24 show the AUROC and AUPRC for Logistic Re-

gression, and Extreme Gradient Boosting models when they are evaluated against the test

set.
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Figure 9. The AUROC for LR using whole EHR Figure 10. The AUPRCs for LR using whole EHR

Figure 11. The AUROC for RF using whole EHR Figure 12. The AUPRCs for RF using whole EHR

Figure 13. The AUROC for GB using whole EHR Figure 14. The AUPRCs for GB using whole EHR
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Figure 15. The AUROC for XGB using whole EHR Figure 16. The AUPRCs for XGB using whole EHR

Table 16. Results of evaluation of models with the test set,only EHR

Model AUROC AUPRC
XGB 0.851 0.262
LR 0.709 0.189

Table 17. Results of evaluation the models with the test set, EHR + waveforms

Model AUROC AUPRC
XGB 0.877 0.289
LR 0.761 0.272

Figure 17. The AUROC for LR, part of EHR Figure 18. The AUPRC for LR, part of EHR
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Figure 19. The AUROC for XGB, part of EHR Figure 20. The AUPRC for XGB, part of EHR

Figure 21. The AUROC for LR, part of EHR+W Figure 22. The AUPRC for LR, part of EHR+W

Figure 23. The AUROC for XGB, part of EHR+W Figure 24. The AUPRC for XGB, part of EHR+W
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Combining the EHR and waveform data improves the performance of the XGB model by

3% and the performance of the LR model by 7.3% in terms of AUROC. Also, the per-

formance concerning AUPRC increases by 10.3% for XGB and 44% for the LR model.
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7 DISCUSSION
In this study, a machine learning model using the structured data of EHR and unstructured

data of biomedical signal waveforms is developed. The objective is to predict mortality

in the ICU.

A CRNN model developed by Haahti (2019) is used to do the prediction part based on the

large window of waveform data. Then the output of the CRNN model is fed as a feature

along with the other features extracted from the EHR to an XGB model. In this section

first, the study achievements are described and analyzed. Then, in the second part, some

of the limitations and considerations concerning the study settings are introduced.

7.1 Performance of the Proposed Model
This study aims to explore the possibility of combining non-invasive signals and EHR

data to predict mortality. First, a model is created using only the EHR data with the

whole dataset and the best model reached the performance of 0.88 in AUROC that is the

same as the performance achieved by Calvert et al. (2016) using their AutoTriage model,

1.15% higher than the performance achieved by Ye et al. (2020) and 4.15% higher than

the performance achieved by Kong et al. (2020) using XGB model. As mentioned in

the related work the first two studies used the MIMIC-III dataset with nearly 10000 ICU

patients and the third study used the same dataset with more than 16000 patients, however,

this study reached the same or higher level of performance with less than 2500 patients in

the dataset.

The combination of waveforms and EHR data is tested on the high performer model that

is XGBoost and the base model that is the Logistic Regression. The performance of both

the high-performance model and the base model is improved when the combination of

EHR and waveforms are used as the input compared to using only EHR data or only

waveform data.

The CNN-LSTM model developed by Haahti (2019) can achieve an AUROC of 0.84 and

an AUPRC of 0.27 using three biomedical signals. The XGBoost model developed in this

study that is more explainable and less computationally expensive can achieve AUROC
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of 0.851 and AUPRC of 0.262 using only EHR data within the same cohort. These two

results might not be directly comparable because the two studies are using a different

number of vitals, and it is not the goal of this study. Combining the EHR and waveform

inputs, the developed model can achieve an AUROC of 0.877 and an AUPRC of 0.289.

This is 4.4% higher in terms of AUROC and 7.03% higher in terms of AUPRC compared

to the CNN-LSTM model developed by Haahti (2019). Also, this is 3% higher in terms

of AUROC and 10.3% higher in terms of AUPRC compared to the similar model fed only

with the EHR data.

Haahti (2019)’s study was the first attempt of its kind to use long high-frequency sig-

nals with a novel approach, as the previous studies on mortality used only the EHR data

or short periods biomedical signals up to 30 seconds. This study as well uses a novel

approach to combine biomedical signals and EHR data to improve the performance of

models and it is the first study done in this category. This study aims to use all the

possibilities of extracting all the information in the waveform data plus EHR and it is

significantly different from the existing research, introducing new possibilities in clinical

decision-making.

Although in this study combining the biomedical signals and EHR data already improved

the performance of the developed model. There is still potential for further exploration in

the future for more improvements.

Having a small dataset, 1000 patients to train the deep learning models and 500 to get the

predictions is a limitation, and having more data can help the model to generalize better.

Also, only one method was used for combing the data however in the future other methods

can be used. For example, a multi-modal deep learning model can be used in the future

with inputs of EHR and biomedical signals.

7.2 Limitations
Conducting this study, there are some limitations concerning the methods selected and

the data. In the following sections, these limitations are discussed.
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7.2.1 Data Availability and Quality

Due to varying clinical practices in different hospitals, the studies conducted with the data

received only from one site, don’t usually show a good generalization when they are tested

with datasets from other sites. For example, the data used in this study is from UCSF that

is only one site.

Also, data quality plays an important role. For example, the waveforms in this dataset

have discontinuities. The amount of noise these discontinuities impose and the effect of

them on the results is unknown (Haahti 2019). The models are trained with this dataset

containing discontinuities in the waveforms. Therefore, the performance of these models

when they are tested with waveforms without discontinuities is unknown.

For the models to be able to generalize better, the data should be collected from differ-

ent sites in different regions. Besides the dataset is relatively small. Especially when it

comes to training the neural network a development set of 1500 patients with a positive

prevalence of 3.4% makes it hard for the model to generalize well. In combining the EHR

data and biomedical signal waveforms only 1000 patients were used to train the neural

network and the other 500 for making predictions to be fed in the next model. This setup

makes it even more challenging for the neural network to generalize.

With a larger dataset usually, the model would achieve a better generalization, therefore

having more data could improve the results of this study. Also, access to more data makes

it possible to use longer data windows and follow the temporary changes in the signals in

a longer time span. Longer data windows are also useful when the changes are happening

slowly that can’t be seen in a short data window.

7.2.2 Prepossessing the Data

The waveform data used as an input to train the deep learning model was preprocessed

before being fed to the model. Usually, deep learning models can do the preprocessing

in the first layer if they have a large amount of data. Because of the limited number of

patients preprocessing was done before feeding the data to the model (Haahti 2019). Fur-

thermore, there are alternatives for each step of preprocessing. For example, imputation
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could be done with more advanced methods and data normalization could be done dif-

ferently. That is why the methods used in this study might not be optimal. Although the

methods selected for this study are based on previous studies and research, better methods

could be found by exploring other possibilities.

7.2.3 Selection of models

Haahti (2019) argues that a combination of CNN and RNN was logical to use to train the

waveform data. Because the convolutional and pooling layers make it possible to use a

large window of data as input. Besides the recurrent layer makes it possible for the model

to learn temporal dependencies of sequences of data. However, there is a huge amount

of variation when it comes to the deep learning models. Therefore more research and

experimentation might lead to other good approaches.

Also, CRNNs come with a huge number of hyperparameters. Hyperparameter tuning was

done to a decent level for CRNNs, LR, RF, GB, and XGB models. However, there might

be still room for improvement in this area.

7.2.4 Prediction Task Setting

Prediction tasks usually bring more challenges in comparison to classification tasks. This

is due to the uncertainty about the existence of the target in the data that makes the labeling

task challenging and questionable. In this study, the discharge time was used as the time

of death for labeling the data. However, it is not guaranteed that this time shows the exact

time of death.

It is suggested that in the future, the other severe conditions leading to death in case no

treatment is given, be considered in the prediction task. However, this is a complicated

task with the current dataset because there is limited information about the conditions

of patients. In case this approach is taken, labeling should be done with lots of dili-

gence.

The 12-hour prediction window, 5-hour data window, and one-hour gap might not be

optimal. These can be considered as hyperparameters in future studies as well. Especially

when it comes to the biomedical signal waveforms parts, it is unknown when exactly the
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death signs appear in the waveform. Therefore, it is not known how far in the future can

be predicted.

Haahti (2019) research shows that the model reaches its best performance 8 to 10 hours

before the death event. This means that the signs of deterioration are showing themselves

several hours before death. This suggests an early detection of the deterioration can be

possible.
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8 CONCLUSIONS
The study proposed a novel method for exploring the added benefits of combining the

EHR data and biomedical waveforms received from non-invasive signals in training ma-

chine learning models for predicting mortality in the ICU.

Logistic Regression, Random Forest, Gradient Boosting, and Extreme Gradient Boosting

models for fitting the EHR data were implemented and evaluated. The data collection for

the model training was done during a five-hour window. Out of these models, XGBoost

showed the best performance.

A number of sixty-six features were extracted by using six vital signs of Heart Rate, Res-

piration, Systolic Blood Pressure, Diastolic Blood Pressure, Pulse Oximetry, and Temper-

ature. For each of these vitals, eleven different statistics were calculated.

A logistic Regression model was considered as the baseline model and the performance

of the other models mentioned above was compared to the performance of the base

model.

A CRNN based model that was implemented for fitting the waveform data using a one-

hour window of waveform data by Haahti (2019) was used in this study to predict the

probabilities of patients mortality. These probabilities were used as an additional feature

along with the other features to train the XGBoost and Logistic Regression model.

This study was the first attempt to combine long high-frequency signals and EHR data to

make longer-term predictions of patient state. The input for the CRNN model consisted

of three non-invasive and commonly measured signals (ECG, IP and PPG) for one hour

period. The predictions of the CRNN model then were fed to the XGBoost model along

with the other sixty-six features.

The models proposed by this study that were fed by both EHR and waveform data out-

performed the baseline model by 15.2% in terms of AUROC and by 6.25% in terms of

AUPRC. They also outperformed the CRNN models developed by Haahti (2019) by 4.4%

in terms of AUROC and 7.03% in terms of AUPRC, as well as the same models when
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they were fed only with EHR data by 3% in terms of AUROC and by 10.3% in terms of

AUPRC.

In this study, one method for combining the EHR and biomedical waveform data was

proposed. There are other ways that can be used such as giving both EHR and biomed-

ical waveforms as inputs to a deep learning model. Besides having access to a dataset

consisting of more patients, the deep learning models can generalize better. This study

proposes these approaches for future work to fully unleash the potentials of combining

the biomedical waveforms and EHR data in predicting patient mortality.
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