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Abstract
Despite the good performance of Crow Search Algorithm (CSA) in dealing with global optimization problems, unfortunately 
it is not the case with respect to the convergence performance. Conventional CSA exploration and exploitation are strongly 
dependent on the proper setting of awareness probability (AP) and flight length (FL) parameters. In each optimization prob-
lem, AP and FL parameters are set in an ad hoc manner and their values do not change over the optimization process. To this 
date, there is no analytical approach to adjust their best values. This presents a major drawback to apply CSA in complex 
practical problems. Hence, the conventional CSA is used only for limited problems due to fact that CSA with fixed AP and 
FL is frequently trapped into local optimum. In this present paper, an enhanced version of CSA called dynamic crow search 
algorithm (DCSA) is proposed to overcome the drawbacks of the conventional CSA. In the proposed DCSA, two modifica-
tions of the basic algorithm are made. The first modification concerns the continuous adjustment of the CSA parameters 
leading to a DCSA, where AP will be adjusting linearly over optimization process and FL will be adjusting according to 
the generalized Pareto probability density function. This dynamic adjustment will provide more global search capability as 
well as more exploitation of the pre-final solutions. The second modification concerns the improvement of CSA’s swarm 
diversity in the search process. This will lead to a high convergence accuracy, and fast convergence rate. The effectiveness 
of the proposed algorithm is validated using a set of experimental series using 13 complex benchmark functions. Experi-
mental results highly proved the modified algorithm effectiveness compared to the basic algorithm in terms of convergence 
rate, global search capability and final solutions. In addition, a comparison with conventional and recent similar algorithms 
revealed that DCSA gives superior results in terms of performance and efficiency.

Keywords Dynamic crow search algorithm · Large scale optimization · Dynamic parameters adjustment · Benchmark 
functions

1 Introduction

Optimization problems have been widely existed in sev-
eral engineering applications and science research [1]. The 
process of optimization is a selection of an optimal con-
trol vector in the objective function that can produce an 
optimal solution [2, 3]. Therefore, this solution will offer 
a better optimal physical process, as well as, lower cost, 
lower time consumption, and better performance. In the first 

time, several methods known as conventional optimization 
methods (COMs) have been proposed to solve these prob-
lems. Among these are Newton’s method, gradient descent/
ascend, scale conjugate gradient, and Nelder-Mead [4, 5]. 
COMs provide excellent performance, less time consuming, 
and can be easily implemented. Unfortunately, COMs have 
many limitations to cope with realistic and rather compli-
cated empirical optimization problems. These limitations 
make COMs inefficient and often can be trapped in to local 
optimums, which is the major drawback of methods based 
on gradient [6, 7]. Hence, there is a need of developing new 
optimization techniques [2, 8]. Furthermore, the advance of 
artificial intelligence and computer science had an impact 
on stochastic algorithms and made them more reliable to 
be applied to complex real-world optimization tasks [3, 9]. 
These approaches initialize the optimization process with a 
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set of random candidate solutions for a given problem and 
improve them over a pre–defined number of steps [5], and 
do not usually require the gradient information of problems, 
and they are not even sensitive for the selection of initial 
generation. Recently, more and more biologically-inspired 
approaches have been proposed and widely applied to practi-
cal problems [10].

Nature-inspired stochastic optimization (NISO) algo-
rithms (Both as model and as metaphor) gain wide atten-
tion from the research community for decades. These 
algorithms either mimic individual or social behavior of a 
group of animal or natural phenomena, such as biological 
processes (e.g., reproduction, mutation, and interaction), or 
take advantages from species which have had adapted their 
physical attitude, structure, and learning to fit the environ-
ment over millions of years [3, 5, 11, 12].

The NISO algorithms start the optimization process by 
creating a set of random solutions that correspond to the 
number of problem variables. The metaheusteric algorithm 
is then applied to the initial solutions. Over a few iterations 
an improved set of solution is then generated. The fitness 
of all individuals (solutions) is evaluated at each itera-
tion through the fitness function. In parallel, the resulting 
solutions are compared with those of previous iteration to 
select which solutions will be preserved to the next genera-
tion depending on algorithm strategy [10, 12]. For further 
information, the search process of meta-heuristic methods 
(MHM) is divided into two stages, exploration and exploita-
tion [13, 14]. Firstly, exploration’s aim is to lead individuals 
in the nearest region of the global solution, on other side, 
exploitation has to confine its search space into that region 
called promising area found previously to improve the solu-
tion. However, both of these stages are a trade-off and make 
the purpose of the MHM algorithms to balance between 
them to avoid getting trapped in local optima [4]. The MHM 
techniques have gained wide application in different field 
of science and engineering because their concept is simple, 
easy to implement, they proved to have quick convergence, 
great computational efficiency and are able to solve compli-
cated global optimization problems.

Meta-heuristic algorithms are divided into three cat-
egories[15]. The first category is known as evolutionary 
algorithms. This category includes genetic algorithm (GA) 
[16],differential evolution (DE) [17], imperialist competitive 
algorithm (ICA) [18],cuckoo optimization algorithm (COA) 
[19]. The second category includes non-bio heuristic algo-
rithms, such as: harmony search algorithm (HS) [20], gravi-
tational search algorithm (GSA) [21], ions motion algorithm 
(IMO) [22], sine cosine algorithm (SCA) [23], exchange 
market algorithm (EMA) [24], teaching-learning-based opti-
mization (TLBO) [25], mine blast algorithm (MBA) [26], 
soccer league competition algorithm (SLC) [27], multi-verse 
optimizer (MVO) [28].

The third category includes bio-inspired swarm intel-
ligence algorithms such as: particle swarm optimization 
(PSO) [29], crow search algorithm (CSA) [30], butterfly 
optimization algorithm (BOA)[31], salp swarm algorithm 
(SSA)[32], grey wolf optimizer (GWO) [33], whale opti-
mization algorithm (WOA) [34], ant lion optimizer (ALO) 
[35], ant colony optimization (ACO) [36], artificial bee 
colony (ABC) [37], bat algorithm (BA) [38], dragonfly 
algorithm (DA) [39], grasshopper optimization algorithm 
(GOA) [40], moth-flame optimization algorithm (MFO) 
[41], chicken swarm optimization (CSO) [42].

Askarzadeh has recently proposed a novel meta-heu-
ristic optimizer, called crow search algorithm (CSA) [30]. 
CSA is a population-based optimization algorithm. CSA 
performs based on the idea that crows save their unneeded 
food in concealing places and retrieve it when it becomes 
in state of shortage. Therefore, crows turn into researcher 
in their environment for the best food source hidden by 
one of them, CSA algorithm has a simple mechanism con-
trolled only by two parameters, that are: awareness prob-
ability (AP) and flight length ( fl ), a reason why it is easier 
to be implemented and makes it very suitable for solving 
complex optimization problems. In addition, CSA is able 
to provide optimal or near-optimal solutions for large scale 
optimization problems. Attracted by its simplicity and per-
formance, researchers in many fields have applied CSA 
for solving complex engineering optimization problems 
such as: machine placement strategy in cloud data centers 
[43], optimal resonance-free third-order high-pass filters 
[44], image segmentation process[45], optimal selection 
conductor size in radial distribution network [46], optimal 
placement of STATCOM [47].

Based on “no free lunch” theorem [48], all optimization 
algorithms have shortcoming in solving some problems, 
clarifying the point that for a given algorithm, it could be 
well appropriate for solving a problem and provides good 
solutions and not for another. Therefore, there is no way to 
know the fittest algorithm for such problem that could be 
able to reach the global optimal solution in a competitive 
time. As other population-based optimization algorithms, 
CSA suffers of weak performance in some cases such as: 
premature convergence due to a weakness in its capacity to 
explore which leads to a local optimum and low convergence 
rate. On the other hand, conventional CSA exploration and 
exploitation are strongly dependent to the proper setting of 
AP and fl. parameters. The values of these two parameters 
are fixed over the process of optimization, and there is not 
an analytical approach to adjust their best values. The miss-
ing approach to adjust the best parameters to each problem 
makes CSA search process limited and it could be frequently 
trapped into local optimum. The main motivation of this 
work is to propose a solution to overcome CSA weaknesses 
and combine them with its powerful aspects cited previously 



to extract an algorithm capable of solving a wide range of 
complex engineering optimization problems.

In this present paper an enhanced version of CSA called 
dynamic crow search algorithm (DCSA) is proposed to 
overcome the drawbacks of the conventional CSA. In the 
proposed DCSA, two modifications of the conventional 
algorithm are made. The first modification concerns the 
continuous adjustment of the CSA parameters leading to 
a DCSA. This will provide more global search capability 
as well as more exploitation of the pre-final solutions. The 
second modification concerns the improvement of CSA’s 
swarm diversity in the search process. This will lead to high 
convergence accuracy, and fast convergence rate. The effec-
tiveness of the proposed algorithm is verified through a set 
of experimental series using 13 complex benchmark func-
tions. The experimental results compared with those of other 
similar algorithms revealed that DCSA can give superior 
results in terms of performance and efficiency.

2  Background

2.1  Overview of crow search algorithm

CSA is recent population-based optimization method, devel-
oped in 2016 by ‘Alireza Askarzadeh’, as its name indicates 
this algorithm inspiration came from an intelligent behav-
ior of crows. Crows are considered among most intelligent 
animals in the world if aren’t the smartest according to [49], 
that’s owing to the fact that crow’s brain to its body ration 
is almost or bit less than that of humans, and a lot of others 
genius behaviors like, they can memorize faces, they are 
self-aware in the mirror test, they are so skilled in using tools 
depending on situations and conditions, they can solve puz-
zles, they communicate in a sophisticated way and warn each 
other in case of danger, and they always score very highly 
on intelligence tests.

Additionally, the main inspiration of CSA is a cleverness 
behavior that kept the interest of ‘Alireza Askarzadeh’ to 
develop this algorithm, in a flock of crows, each crow hide 
its extra-food in a safety place depending on its own expe-
rience, and it come back to retrieve it when finding a new 
food source becomes a difficult task, and it can remember 
the place where the food is hidden after months. Moreover, 
having a relief food source don’t prevent crows to search for 
another better food sources solicited by their greedy instinct, 
hence, crows follow each other in order to steal, when it 
comes that a crow visits its hidden place to put or retrieve 
food.

Stealing another’s food promotes the experience of 
crows and protects them of being future victims, that’s 
by taking additional precautions like moving their hid-
den places and predicting pilferer’s behavior. From an 

optimization point of view, this behavior simulates an 
optimization process, where, crows are researchers, sur-
rounding territory is search space, each position of the 
territory presents a possible solution, and quality of food 
source presents the objective function, as well as, the best 
food source is the global solution of the problem. Finally, 
fundamentals of CSA is relaying on those four points.

• Crows live in flock structure.
• Crows keep in mind their hidden places location.
• Crows follow each other to steal food.
• Crows get experience over time, so they protect their

caches from others by probability.

2.1.1  Mathematical modeling of CSA

It is assumed that the flock lives in a d-dimensional envi-
ronment including a number of crows, the number of 
crows (population size) is mentioned by N, as well as, d 
corresponds to the decision variables of the problem, at 
each iteration crows change their positions looking for bet-
ter food source, then, the position of crow i at time k (itera-
tion) in the search space is specified by a vector, 
xi,k =

[

x1
i,k
, x2

i,k
,… , xd

i,k

]

 for i  = 1,2,….,N and k = 
1,2,….,kmax, where, kmax is the maximum number of 
iterations. Each crow has a memory in which the position 
of its hiding place is memorized. At iteration k, the posi-
tion of the hiding place of crow i is defined by the vector, 
mi,k =

[

m1

i,k
,m2

i,k
,… ,md

i,k

]

 , this is the best food position that 
crow i has obtained so far.

Assume that at iteration k, a crow j wants to check its 
hidden food, according to this visit we assume also that 
there is always another crow i following it in order to 
approach crow’s j food, in this case, two possibilities may 
occur to update crow’s i position.

Case 1 crow j doesn’t note that crow i is following it, there-
fore, crow i can reach the position of crow’s j hidden place. 
As a result, the position of crow i is updated asfollow:

Where: ri is a random number with uniform distribution 
between 0 and 1, while fl indicates the flight length, pointing 
out here that fl has great effect on search procedure, choos-
ing fl lower than 1 lead the search to local solution, where 
the next step will be near to the xi,k as shown in Fig. 1a, oth-
erwise, choosing fl greater than 1 lead the search to global 
solution because the next step will be far away than xi,k to 
promote further exploration of the search space Fig. 1b. 

(1)xi,k+1 = xi,k + ri × fl ×
(

mj,k − xi,k
)



Case 2 crow j is aware that crow i is following it, thus, crow 
j will dupe crow i and move randomly in the search space in 
order to protect its food.

Both cases can be gathered in one formula by intro-
ducing AP (awareness probability) parameter as follows:

Where, rj is a random number with uniform distribu-
tion between 0 and 1, AP parameter control the algorithm 
intensification and diversification. Small values of AP 
conduct to the local search, while large values of AP con-
duct to global search (randomization).

The crows update their memory as follow:

Where f (.) symbolizes the fitness function value. Fig-
ure 2, illustrates the pseudo code of CSA.

(2)xi,k+1 =

{

xi,k + ri × fl ×
(

mj,k − xi,k
)

rj ≥ AP

a randomposition otherwise

(3)mi,k+1 =

{

xi,k+1iff
(

xi,k+1
)

is better than f
(

mi,k

)

mi,k otherwise

2.2  Related work

Since the proposition of crow search algorithm, many 
researchers have applied it in multiple optimization prob-
lems, and to boost its weak side as mentioned in introduc-
tion section some modifications were proposed on litera-
ture to improve the performance of CSA.

• Modified crow search algorithm introduced in [50],
proposes two modifications at the main CSA, first mod-
ification aim is to speed up the algorithm convergence,
for that reason when a crow wants to generate a new
position at given iteration, it must follow one of the (k)
crows having best results where (k) is defined in Eq. 4,
and not choosing randomly between N flock members,
this selection objective is to ovoid bad solutions over
iterations and can really improve the algorithm conver-
gence and time consumption, but it can also affect the
algorithm exploration in high dimension problems.

Fig. 1  fl effect on the position 
update.



Second modification is about adjusting the flight length 
parameter according to a new concept that is the distance 
between the crow i and its target crow j, moreover, second 
modification aim is to improve the algorithm exploration by 
choosing fl bigger than a threshold if the distance between 
the crow i and crow j is small, because in this case crow i 
will not improve the solution, consequently, the crow i will 
explore another area than the region where they are located, 
this modification improve the exploration but it hardly weak 
the exploitation, owing to the fact that in the last iterations 
the distance between crows get closed, and the algorithm 
still setting high values of fl , doing so the algorithm will 
not been focused in the promoted region, thus, it will not 
provide good solutions.

• Chaotic crow search algorithm introduced in [51], the
main idea of the modification made by authors, is replac-
ing the random variables of the algorithm, precisely in
the formula that generate new positions, by chaotic vari-
ables came from ten different chaotic maps, subsequently,
the algorithm will be formulated as follow.

(4)Kiter = round

(

Kmax −
Kmax − Kmin

itermax
× iter

)

Where: Ci,kandCj,k are the chaotic values resulted from 
the chaotic map at k iteration.

This modification improve the convergence rate and the 
performance of the algorithm, on the other hand, the algo-
rithm performance is only based on making a lot of tests to 
have better results, and setting proper values of chaotic maps 
can also affect the algorithm performance.

• Rough crow search algorithm RCSA introduced in [52],
authors in this article took benefits from rough set theory
and integrated it with CSA to deepen the search in the
promising region where the global solution is located.
RCSA execution is done in two steps: firstly, CSA oper-
ates as global optimization solver to approach an approxi-
mate initial solution of a global optimization problem.
Secondly, RSS (rough search scheme) is executed to
ameliorate the solution quality through the roughness of
the obtained optimal solution so far. Doing so, the rough-
ness of the obtained optimal solution can be expressed as
a pair of precise concepts based on the lower and upper
approximations which are used to compose the interval

(5)xi,k+1 =

{

xi,k + Ci,k × fl ×
(

mj,k − xi,k
)

Cj,k ≥ AP

a randomposition otherwise

Fig. 2  Basic CSA pseudo code



of boundary region. Afterward, new solutions are ran-
domly created inside this region to enhance the diversity 
of solutions and achieve an effective exploration to avoid 
premature convergence of the swarm.

3  Dynamic crow search algorithm

This section is dedicated to the new concept of dynamic 
crow search algorithm DCSA, as mentioned previously that 
basic CSA suffers of premature convergence due to a weak-
ness in its exploration capacity and low convergence rate, 
we could mention at this point over a deep analytic of basic 
CSA, that its main weakness performance came from fixed 
setting of its essential parameters AP and fl , moreover, fixed 
values of AP and fl cannot guarantee good exploration and 
exploitation in the same time or they can perform well at 
one stage of them and not another. To fix this problem two 
contributions are proposed in this article, the first one affects 
AP parameter while the second affects fl parameter to make 
them dynamic over iterations in favor of enhancing basic 
CSA performance, and extract all benefits of the search pro-
cess two stages (exploration and exploitation) to have better 
results, detailed processes are as follow:

Firstly, awareness probability will be decreased linearly 
from APmax to APmin over iterations as it is shown in Fig. 3. 
Subjected to Eq. 6, the reason why this modification is 
introduced is that in the search process first stage, it is 

greatly recommended setting relatively high values of 
APmax to stimulate further randomization in the algorithm 
search process making it exploring the global search space 
and steer the crows to a near region where the global opti-
mal solution is located. Afterwards, AP will get lower val-
ues until APmin , in this stage, AP low values promote CSA 
crows following process Eq. 1, and eliminate almost the 
randomization process, doing so, DCSA will be focused on 
exploitation phase to extract best results from the region 
approached previously, while proper setting of APmax and 
APmin has a crucial effect on DCSA performance.

Secondly, based in CSA Eq. 1 it can easily noticed that 
fl parameter is multiplied by a random number with uni-
form distribution between 0 and 1, so that fl cannot be 
a control parameter of CSA, because it’s hardly affected 
by the large random variation that’s multiplied by over 
iterations. To make fl a real control parameter of CSA so 
that it can improve basic CSA performance the following 
modification is proposed where Eq. 2 will be as follow:

Where, flc is the flight length control parameter illus-
trated in Fig. 4, and is defined as:

(6)APiter =
APmin − APmax

Itermax
× iter + APmax

(7)xi,k+1 =

{

xi,k + flc ×
(

mj,k − xi,k
)

rj ≥ AP

a randomposition otherwise

(8)flc =

{

fl ∗

[

F
(

ymax

10

)

−

(

F
(

ymax

10

)

− F
(

ymin
)

)

× rand
]

ifiter ≤ � × itermax(a)

fl ∗
[

F
(

ymax
)

−
(

F
(

ymax
)

− F
(

0.6 × ymax
))

× rand
]

else(b)

Fig. 3  AP variation and effect 
on optimization search process



Where,
fl : is the basic flight length.
τ: is time control report, bounded between 0 and 1.
F: is the generalized Pareto probability density func-

tion, while its characteristic parameters K, SIGMA, and 
THETA are set 1, 1, and 0, respectively.

y: is a discontinues regular variable between ymin and 
ymax , where ymin = 0 and ymax = 10 , this interval is divided 
in 1000 uniform variables.

As it is shown in Fig. 4, the search process exploration 
phase is taken from the beginning of iterations to � × itermax , 
to provide DCSA sufficient time amount to explore the 
overall search space without getting trapped in local opti-
mum, while flc is set randomly from the region mentioned 
previously, this is for two reasons, firstly, to not delete the 
randomization process from the basic algorithm, secondly, 
setting flc with relatively high values from the generalized 
Pareto distribution function form can control more the range 
variation of it, moreover, based on this variation range, flc 
will be most of time between 1 and basic fl so this variation 
range promotes more exploration than exploitation as men-
tioned in the background section Fig. 1. As a result, DCSA 
centers its search on exploration phase to reach the optimum 
global solution region location.

While proper setting of τ is important to guarantee a good 
balance between exploration and exploitation depending on the 
problem complexity, afterwards, in the last iterations flc gets 
always lower values less than 1 from the region where Pareto 
distribution form takes almost steady variation from sixth-
tenths ymax to ymax , because in last iterations, almost crows 
get gathered in the optimum global solution region so that flc 
low values boost more the exploitation on that region between 
the crows position that have better solutions, and don’t waste 

main exploitation task by going to other regions where they 
will not improve the solution, eventually, DCSA offers the best 
global optimization solution, over following its own instruc-
tions showcased in DCSA flowchart Fig. 5.

4  Experimental results and discussion

To validate the proposed algorithm performance, DCSA is 
applied to thirteen selected classical benchmark functions to cover 
almost all perspectives that could face an optimization algorithm, 
while a short description of them is given below. Firstly, DCSA 
is compared with the basic CSA to prove its efficiency. To boost 
more DCSA performance some experiments are carried out to 
find the best parameters adjustment of it. Moreover, for the reason 
of abundance state of the art algorithms, DCSA is compared with 
four algorithms to establish its computational effectiveness over 
them, and so GA and PSO are selected as conventional algorithms 
and two other recent algorithms SSA and BOA.

4.1  Benchmark functions

Table 1 represents the benchmark functions used in this study 
and it also mentions boundaries (B), minimum value (Min), 
dimension (D), and type (T) of each function. Functions 1 to 7 
are unimodal and they have only one optimum value, they are 
usually used to investigate the algorithm exploration capabil-
ity and the solution convergence rate while final solution is 
not so important [5, 10, 53]. However, functions 8 to 13 are 
multimodal which are characterized by their local optimums 
number increasing exceptionally as the solution dimension, 
they are usually utilized to inspect the algorithm capability 
for escaping local optimums and approaching global solution, 

Fig. 4  The flight length control 
parameter curve



while last solution is important to make sure that the algo-
rithm did not get trapped in one of them.

4.2  Parameters settings

For all following experiments population size is set to 30, 
the maximum number of iteration is set to 1000, and for each 

function, algorithms are run 25 times independently. Perfor-
mance metrics are as follow:

• Best value: is the best value that reached by an algorithm
in different runs.

Best = Min1≤i≤Nr
F∗

i
(9)

Fig. 5  Dynamic crow search 
algorithm flowchart



Where: Nr is the number of different runs and F∗
i
 is the best 

value.

• Average value: is the mean of the best values acquired by
an algorithm of different runs.

• Standard deviation: is calculated to test if an algorithm
can reach the same best value in different runs and test the
repeatability of the results.

For the sake of comparison, algorithms are ranked from 
the best to the worst according to the average value, and if 
two algorithms get the same average, the best value will be 

Mean =
1

Nr

Nr
∑

i=1

F∗

i
(10)

Std =

√

√

√

√
1

Nr − 1

Nr
∑

i=1

(F∗
i
−Mean)2(11)

the second index to rank them. Table 2 represents the most 
recommended parameters settings of all algorithms used on 
following experiments extracted from their original papers, 
except DCSA that will be detailed section by section.

4.3  Effectiveness of DCSA over CSA

To point out the overcoming contribution made by DCSA 
above CSA, following experiment runs them independently 
over former benchmark functions. DCSA parameters are set 
toAPmin = 0.01 , APmax = 0.2 , and τ = 0.9, experiment results 
are structured in Table 3, while Fig. 6 illustrates algorithms 
convergence rate of some selected functions. Results from 
Table 1, and Fig. 6 clearly showcase that DSCA outperforms 
basic CSA in all unimodal functions and all multimodal func-
tions except f7 in which DCSA does not make a real improve-
ment, this superiority is for convergence rate, quickness 

Table 1  Benchmark functions description

Fun Equation B Min D T

f1 f (x) =
∑n

i=1
x2
i

[−100, 100] 0 10 Unimodal
f2 f (x) =

∑n

i=1
�

�

xi
�

�

+
∏n

i=1
�

�

xi
�

�

[−10, 10] 0 10 Unimodal
f3 f (x) =

∑n

i=1

�

∑i

j−1
xi

�2 [−100, 100] 0 10 Unimodal

f4 f (x) = maxi
{

|

|

xi
|

|

, 1 ≤ i ≤ n
}

[−100, 100] 0 10 Unimodal
f5 f (x) =

∑n−1

i=1

�

100
�

xi+1 − x2
i

�2
+
�

xi − 1
�2
�

[−30, 30] 0 10 Unimodal

f6 f (x) =
∑n

i=1

��

xi + 0.5
��2 [−100, 100] 0 10 Unimodal

f7 f (x) =
∑n

i=1
ix4

i
+ random[0, 1] [-1.28, 1.28] 0 10 Unimodal

f8
f (x) =

∑n

i=1
− xisin

�

�

�

�

xi
�

�

�

[−500, 500] 418.9829×5 10 Multimodal

f9 f (x) =
∑n

i=1

�

x2
i
− 10cos

�

2�xi
�

+ 10
�

[−5.12, 5.12] 0 10 Multimodal
f10

f (x) = −20exp

�

−0.2

�

1

n

∑n

i=1
x2
i

�

− exp
�

1

n

∑n

i=1
cos

�

2�xi
�

�

+ 20 + e
[−32, 32] 0 10 Multimodal

f11 f (x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�

xi
√

i

�

+ 1
[−600, 600] 0 10 Multimodal

f12 f (x) =
�

n

�
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Table 2  Parameter settings of 
each algorithm

algorithm CSA GA PSO BOA SSA

parameters AP = 0.1
fl = 1.8

Roulette is used for selection
Crossover fraction = 0.9
Mutation = 0.005

C1 = C2 = 2
Wmax = 0.9

Wmin = 0.4

p = 0.3
a = 0.2
c = 0.02

Without parameters



exploration capability, avoiding local optimums, and final 
solutions.

Algorithm Index f8 f9 f10 f11 f12 f13

CSA Best
Mean
Std
Rank

-2.85E + 03
−3.26E + 03
3.01E + 02
2

5.98E + 00
1.31E + 01
3.96E + 00
2

1.66E-04
3.40E + 00
1.01E + 00
2

0.06E + 00
0.28E + 00
0.09E + 00
2

1.34E-06
0.46E + 00
0.95E + 00
2

2.33E-05
0.12E + 00
0.21E + 00
2

DCSA Best
Mean
Std
Rank

−2.31E + 03
−2.73E + 03
3.25E + 02
1

0.97E + 00
1.05E + 00
3.14E + 00
1

2.83E-06
1.11E + 00
0.93E + 00
1

0.04E + 00
0.13E + 00
0.08E + 00
1

4.10E-08
0.03E + 00
0.19E + 00
1

2.72E-08
0.01E + 00
0.02E + 00
1

4.4  Time control report and awareness probability 
decreasing influence

Proper setting of DCSA parameters can affect the algorithm 
solution process, in addition it is a tricky task to find out the 
best parameters adjustment for such a problem that could 
be different from a problem to another, this why following 
experiments will try to extract best parameters adjustment 
for each function problem. First of all, Table 4 illustrates 
results of running different ( APmax , APmin ) couples to each 
function, while τ is fixed to 0.95, and APmin is set always to 
0.01 to guarantee a best exploitation in all cases, and APmax 
is changed to handle the exploration phase. Table 5 illus-
trates results of multiple time control report parameters runs 
at each function problem, while APminand APmax are set to 
0.01 and 0.2 respectively.

Table 4 results display that various awareness probability 
bounds executed at each function provide different results
from a couple to another this for 

(

f1f8
)

 , and the best couple of
previous functions is changed along them, moreover, results 
gap is important between different couples because some 
of them make a real improvement this is for f1, f3, f4andf5 . 
On the other hand, ( APmax = 0.01 , APmin = 0.2 ) is the best 
couple for last multimodal functions due to high value of 
APmax that promote the exploration phase on this compli-
cated functions avoiding local optimums, so this couple is 
recommended for high dimensioned optimization problems. 

In the other hand, APmin should always be set at lower val-
ues to guarantee best final solutions but avoid values very 
close to zero, as well as, APmax should not exceed 0.3 value 
to not simulate further randomization into search process 
leading to worst exploration phase. Table 5 results make 
clear that good setting of τ can supply a real best solutions as 
f3, f4, f5andf8 , but it depends to the function problem where 
carrying out some trials could be useful to find the best τ 
adjustment to such a problem.

4.5  Comparison with state of the art algorithms

The proposed algorithm should be in a high range between 
the computational algorithms or this improvement does 
not make sense, for this reason DCSA is compared with 
four well known alogorithms GA, PSO, BOA and SSA 
executed in the same benchmark problems, while DCSA 
parameters are the same like in (4.3) section, results are 
giving in Table 6 as well as the convergence rate of some 
selected functions in Fig. 7. Obtained results illustrate 
that DCSA outperforms all other algorithms in almost 
all functions problems, except two unimodal functions f5 
and f7 , and one multimodal function f9 . Superiority per-
formance is manifested in fast and smooth convergence 
rate, quickness exploration capability, avoiding local opti-
mums, and best final solutions drawn from its exploitation 
capability.

Table 3  Comparison results between DCSA and CSA

Algorithm Index f1 f2 f3 f4 f5 f6 f7

CSA Best
Mean
Std
Rank

1.03E-09
1.50E-07
1.95E-08
2

2.38E-03
0.41E + 00
0.27E + 00
2

1.06E-03
0.02E + 00
0.01E + 00
2

2.60E-03
0.01E + 00
0.01E + 00
2

3.16E + 00
3.93E + 01
2.18E + 01
2

4.59E-09
2.92E-06
6.62E-08
2

2.52E + 00
3.28E + 00
0.40E + 00
1

DCSA Best
Mean
Std
Rank

4.51E-13
1.37E-11
1.83E-09
1

1.47E-05
0.01E + 00
0.04E + 00
1

4.95E-07
5.50E-04
9.46E-04
1

3.09E-05
7.70E-04
0.00E + 00
1

0.69E + 00
1.26E + 01
2.26E + 00
1

6.08E-12
8.34E-10
9.15E-10
1

2.32E + 00
3.35E + 00
0.49E + 00
2



Fig. 6  Comparative conver-
gence rates profiles



5  Conclusions

In this paper, the original CSA is improved by introduc-
ing two modifications into the main algorithm. Hence, 

DCSA gain more advantages like the algorithm search 
process becomes dynamic and promising the explora-
tion and exploitation phases independently by mean of 
adaptive parameters, DCSA convergence rate is faster 

Table 4  Comparison results of 
different AP couples

Function Index APmin = 0.01

APmax = 0.2

APmin = 0.01

APmax = 0.15

APmin =0.01
APmax = 0.1

APmin =0.01
APmax = 0.05

f1 Best
Mean
Std
Rank

2.18E-12
2.16E-10
2.95E-10
3

1.53E-12
6.62E-11
9.96E-11
2

2.11E-13
2.10E-11
3.66E-11
1

3.13E-13
2.07E-09
3.88E-09
4

f2 Best
Mean
Std
Rank

3.67E-05
0.01E + 00
0.04E + 00
2

4.73E-06
0.00E + 00
0.00E + 00
1

6.10E-05
0.01E + 00
0.02E + 00
3

7.03E-05
0.17E + 00
0.39E + 00
3

f3 Best
Mean
Std
Rank

1.65E-05
3.47Ee-04
4.25E-04
1

7.50E-07
5.65E-04
9.59E-04
2

6.83E-06
0.00E + 00
0.00E + 00
3

2.82E-04
0.02E + 00
0.05E + 00
4

f4 Best
Mean
Std
Rank

2.49E-05
0.00E + 00
0.00E + 00
2

4.25E-05
8.18E-04
8.78E-04
1

7.47E-05
0.00E + 00
0.00E + 00
3

6.16E-05
0.01E + 00
0.01E + 00
3

f5 Best
Mean
Std
Rank

2.01E + 00
1.04E + 01
1.77E + 01
2

1.79E + 00
2.43E + 01
7.55E + 01
3

1.99E + 00
1.01E + 01
1.75E + 01
1

3.07E + 00
2.60E + 01
8.17E + 01
4

f6 Best
Mean
Std
Rank

3.98E-12
2.93E-10
3.67E-10
3

1.49E-13
6.96E-11
1.55E-10
1

1.79E-12
1.55E-10
2.72E-10
2

3.32E-12
7.45E-10
1.96E-09
4

f7 Best
Mean
Std
Rank

2.41E + 00
3.22 E + 00
0.35E + 00
3

2.61E + 00
3.38E + 00
0.34E + 00
4

1.77E + 00
3.21E + 00
0.47E + 00
2

2.24E + 00
3.02 E + 00
0.49E + 00
1

f8 Best
Mean
Std
Rank

−2.35E + 03
−2.63E + 03
2.97E + 02
3

−2.23E + 03
−2.62E + 03
3.16E + 02
2

−2.38E + 03
−2.78E + 03
4.37E + 02
4

−2.10E + 03
−2.58E + 03
3.44E + 02
1

f9 Best
Mean
Std
Rank

2.98E + 00
3.99E + 00
3.74E + 00
1

4.97E + 00
8.11E + 00
4.27E + 00
4

2.98E + 00
5.01E + 00
4.77E + 00
2

2.98E + 00
6.11E + 00
4.57E + 00
3

f10 Best
Mean
Std
Rank

8.43E-07
1.46E + 00
1.00E + 00
1

6.93E-07
1.77E + 00
0.80E + 00
2

2.33E-06
1.97E + 00
0.88E + 00
3

5.67E-06
2.84E + 00
0.97E + 00
4

f11 Best
Mean
Std
Rank

0.02E + 00
0.13E + 00
0.08E + 00
1

0.03E + 00
0.14E + 00
0.08E + 00
2

0.03E + 00
0.17E + 00
0.09E + 00
3

0.06E + 00
0.24E + 00
0.17E + 00
4

f12 Best
Mean
Std
Rank

9.16E-09
0.08E + 00
0.13E + 00
1

2.73E-08
0.12E + 00
0.25E + 00
2

1.14E-08
0.30E + 00
0.43E + 00
3

6.07E-06
0.98E + 00
1.06E + 00
4

f13 Best
Mean
Std
Rank

2.61E-07
0.01E + 00
0.01E + 00
1

2.88E-07
0.01E + 00
0.01E + 00
2

2.73E-09
0.03E + 00
0.06E + 00
3

8.74E-05
0.13E + 00
0.18E + 00
4



toward the final solution, DCSA dynamic parameters 
are independent to each problem and the final solution 
is most of time the best one. Multiple benchmark prob-
lems was used to assess the performance of the pro-
posed algorithm, as well as, some experiments has been 

carried out to extract the best parameter adjustment 
of the new algorithm for each benchmark problem, 
finally, the proposed algorithm has been compared to 
those surfaced in the powerful and recent optimization 
field. Results obtained validate the effectiveness and 

Table 5  Comparison results 
of different time control report 
values

Function Index τ = 0.8 τ = 0.85 τ = 0.9 τ = 0.95

f1 Best
Mean
Std
Rank

2.01E-09
1.25E-08
1.28E-08
4

7.12E-11
5.52E-09
1.14E-08
3

1.42E-11
9.07E-10
1.45E-09
2

9.47E-12
3.46E-10
7.58E-10
1

f2 Best
Mean
Std
Rank

1.16E-04
0.04E + 00
0.09E + 00
3

7.98E-06
0.02E + 00
0.09E + 00
1

1.90E-05
0.03E + 00
0.09E + 00
2

1.98E-05
0.13E + 00
0.35E + 00
4

f3 Best
Mean
Std
Rank

2.57E-05
0.00E + 00
0.00E + 00
4

2.24E-05
0.00E + 00
0.00E + 00
3

3.29E-07
3.30E-04
4.43E-04
1

2.60E-05
3.77E-04
5.99E-04
2

f4 Best
Mean
Std
Rank

1.69E-04
0.00E + 00
0.00E + 00
4

7.84E-05
0.00E + 00
0.00E + 00
3

5.07E-05
4.65E-04
4.44E-04
1

4.91E-05
8.77E-04
0.00E + 00
2

f5 Best
Mean
Std
Rank

0.70E + 00
1.84E + 01
5.31E + 01
3

3.00E + 00
2.40E + 01
5.36E + 01
4

4.90E + 00
1.32E + 01
4.69E + 01
2

1.36E + 00
1.21E + 01
3.19E + 01
1

f6 Best
Mean
Std
Rank

3.10E-10
1.87E-08
2.06E-08
4

8.64E-11
3.32E-09
3.85E-09
3

5.26E-11
1.20E-09
1.93E-09
2

8.44E-12
1.83E-10
2.66E-10
1

f7 Best
Mean
Std
Rank

2.73E + 00
3.42E + 00
0.36E + 00
4

1.85E + 00
3.32E + 00
0.49E + 00
2

2.13E + 00
3.25E + 00
0.42E + 00
1

2.16E + 00
3.34E + 00
0.43E + 00
3

f8 Best
Mean
Std
Rank

−2.35E + 03
−2.71E + 03
3.39E + 02
3

−2.34E + 03
−2.70E + 03
2.95E + 02
2

−2.45E + 03
−2.75E + 03
2.75E + 02
4

−2.12E + 03
−2.69E + 03
3.12E + 02
1

f9 Best
Mean
Std
Rank

3.97E + 00
1.03E + 01
4.54E + 00
4

3.97E + 00
1.20E + 00
5.54E + 00
2

3.97E + 00
1.11E + 00
5.00E + 00
1

1.98E + 00
5.94E + 00
3.43E + 00
3

f10 Best
Mean
Std
Rank

1.07E-05
0.93E + 00
0.91E + 00
1

7.36E-06
1.05E + 00
0.98E + 00
2

4.15E-06
1.15E + 00
1.03E + 00
3

2.96E-06
1.22E + 00
0.92E + 00
4

f11 Best
Mean
Std
Rank

0.03E + 00
0.15E + 00
0.06E + 00
4

0.02E + 00
0.11E + 00
0.06E + 00
1

0.03E + 00
0.12E + 00
0.08E + 00
2

0.03E + 00
0.14E + 00
0.06E + 00
3

f12 Best
Mean
Std
Rank

2.04E-07
0.13E + 00
0.18E + 00
1

4.35E-08
0.18E + 00
0.32E + 00
2

1.00E-07
0.25E + 00
0.48E + 00
4

1.13E-07
0.21E + 00
0.49E + 00
3

f13 Best
Mean
Std
Rank

2.79E-06
0.01E + 00
0.01E + 00
3

1.16E-06
0.02E + 00
0.03E + 00
4

2.72E-08
0.01E + 00
0.01E + 00
1

1.32E-07
0.01E + 00
0.01E + 00
2



Table 6  Comparison results 
between DCSA and some state 
of the art algorithms

Function Index DCSA GA PSO BOA SSA

f1 Best
Mean
Std
Rank

4.51E-13
1.37E-11
1.83E-09
1

1.78E-09
5.05E-08
2.51E-08
3

1.74E-04
0.09E + 00
0.13E + 00
5

3.23E-04
3.56E-04
1.91E-05
4

2.48E-10
7.20E-10
1.88E-10
2

f2 Best
Mean
Std
Rank

1.47E-05
0.10E-02
0.04E + 00
1

1.11E-03
0.55E + 00
0.69E + 00
4

0.02E + 00
1.34E + 00
3.23E + 00
5

0.00E + 00
0.00E + 00
1.95E-04
3

1.11E-04
0.00E + 00
0.09E + 00
2

f3 Best
Mean
Std
Rank

4.95E-07
5.50E-04
9.46E-04
1

6.57E-06
7.35E-03
0.00E + 00
4

0.00E + 00
3.19E + 00
4.43E + 00
5

2.94E-04
3.42E-03
1.96E-05
3

2.94E-06
8.42E-04
1.96E-04
2

f4 Best
Mean
Std
Rank

3.09E-05
7.70E-04
0.00E + 00
1

0.50E + 00
1.28E + 00
0.43E + 00
5

0.09E + 00
0.74E + 00
0.57E + 00
4

0.00E + 00
0.00E + 00
1.77E-04
3

4.05E-05
6.80E-02
0.00E + 00
2

f5 Best
Mean
Std
Rank

0.69E + 00
1.26E + 01
2.26E + 00
2

2.69E + 00
1.48E + 01
7.01E + 00
3

0.48E + 00
1.44E + 02
3.26E + 02
5

8.89E + 00
8.94E + 00
0.02E + 00
1

2.92E + 00
1.18E + 02
3.04E + 02
4

f6 Best
Mean
Std
Rank

6.08E-12
8.34E-10
9.15E-10
1

6.59E-10
5.59E-08
3.06E-08
2

3.03E-04
0.09E + 00
0.11E + 00
4

0.50E + 00
1.22E + 00
0.33E + 00
5

4.02E-10
6.35E-07
1.61E-07
3

f7 Best
Mean
Std
Rank

2.32E + 00
3.35E + 00
0.49E + 00
3

2.36E + 00
3.51E + 00
0.48E + 00
5

2.39E + 00
3.38E + 00
0.41E + 00
4

1.09E + 00
1.57E + 00
0.20E + 00
1

1.54E + 00
2.15E + 00
0.30E + 00
2

f8 Best
Mean
Std
Rank

−2.31E + 03
−2.73E + 03
3.25E + 02
1

−2.88E + 03
−3.25E + 03
3.21E + 02
3

−2.76E + 03
−3.22E + 03
3.00E + 02
2

−1.82E + 03
−1.26E + 03
2.93E + 02
4

−2.47E + 03
−2.84E + 03
3.35E + 02
2

f9 Best
Mean
Std
Rank

0.97E + 00
1.05E + 00
3.14E + 00
2

1.22E-06
5.69E + 00
4.65E + 00
3

2.01E + 00
1.46E + 01
1.05E + 01
4

3.85E-02
4.14E-02
1.56E-03
1

5.96E + 00
2.34E + 01
8.40E + 00
5

f10 Best
Mean
Std
Rank

2.83E-06
1.11E + 00
0.93E + 00
1

3.64E-05
4.11E + 00
0.96E + 00
5

0.00E + 00
2.64E + 00
3.78E + 00
2

0.00E + 00
2.90E + 00
1.41E-04
3

8.46E-06
3.36E + 00
7.23E + 00
4

f11 Best
Mean
Std
Rank

7.76E-06
0.00E + 00
0.01E + 00
1

0.04E + 00
0.13E + 00
0.08E + 00
3

0.04E + 00
0.23E + 00
0.12E + 00
4

8.46E-04
0.13E + 00
0.15E + 00
2

0.07E + 00
0.24E + 00
0.11E + 00
5

f12 Best
Mean
Std
Rank

4.10E-08
0.00E + 00
0.19E + 00
1

5.53E-09
0.08E + 00
0.20E + 00
2

3.85E-05
0.19E + 00
0.26E + 00
4

0.13E + 00
0.53E + 00
0.31E + 00
5

6.27E-07
0.15E + 00
0.14E + 00
3

f13 Best
Mean
Std
Rank

2.72E-11
0.01E + 00
0.02E + 00
1

6.94E-09
0.44E + 00
0.14E + 00
2

9.50E-04
0.47E + 00
0.07E + 00
3

0.40E + 00
0.88E + 00
0.20E + 00
5

3.45E-09
0.75E + 00
0.00E + 00
4



Fig. 7  Comparative conver-
gence rates profiles

superiority of the new algorithm that it can overtake 
the original algorithm weaknesses, promising its appli-
cation to the practical and engineering problems for 

further research in which it can challenge high dimen-
sion and additional constraint problems that can effects 
its performance.
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