

THIS IS AN ELECTRONIC REPRINT OF THE ORIGINAL ARTICLE

Please cite the original article:

Necira, A., Naimi, D., Salhi, A., Salhi, S. & Menani, S. 2021. Dynamic crow search algorithm based on adaptive

parameters for large-scale global optimization. Evolutionary Intelligence.

https://doi.org/10.1007/s12065-021-00628-4

Version: Final draft

Copyright: © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of

Springer Nature

https://doi.org/10.1007/s12065-021-00628-4

Dynamic crow search algorithm based on adaptive parameters
for large‑scale global optimization

Abdelouahab Necira1 · Djemai Naimi1 · Ahmed Salhi1 · Souhail Salhi1 · Smail Menani2

Received: 20 August 2020 / Revised: 18 April 2021 / Accepted: 29 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Despite the good performance of Crow Search Algorithm (CSA) in dealing with global optimization problems, unfortunately
it is not the case with respect to the convergence performance. Conventional CSA exploration and exploitation are strongly
dependent on the proper setting of awareness probability (AP) and flight length (FL) parameters. In each optimization prob-
lem, AP and FL parameters are set in an ad hoc manner and their values do not change over the optimization process. To this
date, there is no analytical approach to adjust their best values. This presents a major drawback to apply CSA in complex
practical problems. Hence, the conventional CSA is used only for limited problems due to fact that CSA with fixed AP and
FL is frequently trapped into local optimum. In this present paper, an enhanced version of CSA called dynamic crow search
algorithm (DCSA) is proposed to overcome the drawbacks of the conventional CSA. In the proposed DCSA, two modifica-
tions of the basic algorithm are made. The first modification concerns the continuous adjustment of the CSA parameters
leading to a DCSA, where AP will be adjusting linearly over optimization process and FL will be adjusting according to
the generalized Pareto probability density function. This dynamic adjustment will provide more global search capability as
well as more exploitation of the pre-final solutions. The second modification concerns the improvement of CSA’s swarm
diversity in the search process. This will lead to a high convergence accuracy, and fast convergence rate. The effectiveness
of the proposed algorithm is validated using a set of experimental series using 13 complex benchmark functions. Experi-
mental results highly proved the modified algorithm effectiveness compared to the basic algorithm in terms of convergence
rate, global search capability and final solutions. In addition, a comparison with conventional and recent similar algorithms
revealed that DCSA gives superior results in terms of performance and efficiency.

Keywords Dynamic crow search algorithm · Large scale optimization · Dynamic parameters adjustment · Benchmark
functions

1 Introduction

Optimization problems have been widely existed in sev-
eral engineering applications and science research [1]. The
process of optimization is a selection of an optimal con-
trol vector in the objective function that can produce an
optimal solution [2, 3]. Therefore, this solution will offer
a better optimal physical process, as well as, lower cost,
lower time consumption, and better performance. In the first

time, several methods known as conventional optimization
methods (COMs) have been proposed to solve these prob-
lems. Among these are Newton’s method, gradient descent/
ascend, scale conjugate gradient, and Nelder-Mead [4, 5].
COMs provide excellent performance, less time consuming,
and can be easily implemented. Unfortunately, COMs have
many limitations to cope with realistic and rather compli-
cated empirical optimization problems. These limitations
make COMs inefficient and often can be trapped in to local
optimums, which is the major drawback of methods based
on gradient [6, 7]. Hence, there is a need of developing new
optimization techniques [2, 8]. Furthermore, the advance of
artificial intelligence and computer science had an impact
on stochastic algorithms and made them more reliable to
be applied to complex real-world optimization tasks [3, 9].
These approaches initialize the optimization process with a

 * Abdelouahab Necira
a.necira@univ-biskra.dz

1 LGEB Laboratory, Electrical Engineering Department,
Mohamed Khider University, 07000 Biskra, Algeria

2 Information Technology Department, Vaasa University
of Applied Sciences, Vaasa, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-021-00628-4&domain=pdf

set of random candidate solutions for a given problem and
improve them over a pre–defined number of steps [5], and
do not usually require the gradient information of problems,
and they are not even sensitive for the selection of initial
generation. Recently, more and more biologically-inspired
approaches have been proposed and widely applied to practi-
cal problems [10].

Nature-inspired stochastic optimization (NISO) algo-
rithms (Both as model and as metaphor) gain wide atten-
tion from the research community for decades. These
algorithms either mimic individual or social behavior of a
group of animal or natural phenomena, such as biological
processes (e.g., reproduction, mutation, and interaction), or
take advantages from species which have had adapted their
physical attitude, structure, and learning to fit the environ-
ment over millions of years [3, 5, 11, 12].

The NISO algorithms start the optimization process by
creating a set of random solutions that correspond to the
number of problem variables. The metaheusteric algorithm
is then applied to the initial solutions. Over a few iterations
an improved set of solution is then generated. The fitness
of all individuals (solutions) is evaluated at each itera-
tion through the fitness function. In parallel, the resulting
solutions are compared with those of previous iteration to
select which solutions will be preserved to the next genera-
tion depending on algorithm strategy [10, 12]. For further
information, the search process of meta-heuristic methods
(MHM) is divided into two stages, exploration and exploita-
tion [13, 14]. Firstly, exploration’s aim is to lead individuals
in the nearest region of the global solution, on other side,
exploitation has to confine its search space into that region
called promising area found previously to improve the solu-
tion. However, both of these stages are a trade-off and make
the purpose of the MHM algorithms to balance between
them to avoid getting trapped in local optima [4]. The MHM
techniques have gained wide application in different field
of science and engineering because their concept is simple,
easy to implement, they proved to have quick convergence,
great computational efficiency and are able to solve compli-
cated global optimization problems.

Meta-heuristic algorithms are divided into three cat-
egories[15]. The first category is known as evolutionary
algorithms. This category includes genetic algorithm (GA)
[16],differential evolution (DE) [17], imperialist competitive
algorithm (ICA) [18],cuckoo optimization algorithm (COA)
[19]. The second category includes non-bio heuristic algo-
rithms, such as: harmony search algorithm (HS) [20], gravi-
tational search algorithm (GSA) [21], ions motion algorithm
(IMO) [22], sine cosine algorithm (SCA) [23], exchange
market algorithm (EMA) [24], teaching-learning-based opti-
mization (TLBO) [25], mine blast algorithm (MBA) [26],
soccer league competition algorithm (SLC) [27], multi-verse
optimizer (MVO) [28].

The third category includes bio-inspired swarm intel-
ligence algorithms such as: particle swarm optimization
(PSO) [29], crow search algorithm (CSA) [30], butterfly
optimization algorithm (BOA)[31], salp swarm algorithm
(SSA)[32], grey wolf optimizer (GWO) [33], whale opti-
mization algorithm (WOA) [34], ant lion optimizer (ALO)
[35], ant colony optimization (ACO) [36], artificial bee
colony (ABC) [37], bat algorithm (BA) [38], dragonfly
algorithm (DA) [39], grasshopper optimization algorithm
(GOA) [40], moth-flame optimization algorithm (MFO)
[41], chicken swarm optimization (CSO) [42].

Askarzadeh has recently proposed a novel meta-heu-
ristic optimizer, called crow search algorithm (CSA) [30].
CSA is a population-based optimization algorithm. CSA
performs based on the idea that crows save their unneeded
food in concealing places and retrieve it when it becomes
in state of shortage. Therefore, crows turn into researcher
in their environment for the best food source hidden by
one of them, CSA algorithm has a simple mechanism con-
trolled only by two parameters, that are: awareness prob-
ability (AP) and flight length (fl), a reason why it is easier
to be implemented and makes it very suitable for solving
complex optimization problems. In addition, CSA is able
to provide optimal or near-optimal solutions for large scale
optimization problems. Attracted by its simplicity and per-
formance, researchers in many fields have applied CSA
for solving complex engineering optimization problems
such as: machine placement strategy in cloud data centers
[43], optimal resonance-free third-order high-pass filters
[44], image segmentation process[45], optimal selection
conductor size in radial distribution network [46], optimal
placement of STATCOM [47].

Based on “no free lunch” theorem [48], all optimization
algorithms have shortcoming in solving some problems,
clarifying the point that for a given algorithm, it could be
well appropriate for solving a problem and provides good
solutions and not for another. Therefore, there is no way to
know the fittest algorithm for such problem that could be
able to reach the global optimal solution in a competitive
time. As other population-based optimization algorithms,
CSA suffers of weak performance in some cases such as:
premature convergence due to a weakness in its capacity to
explore which leads to a local optimum and low convergence
rate. On the other hand, conventional CSA exploration and
exploitation are strongly dependent to the proper setting of
AP and fl. parameters. The values of these two parameters
are fixed over the process of optimization, and there is not
an analytical approach to adjust their best values. The miss-
ing approach to adjust the best parameters to each problem
makes CSA search process limited and it could be frequently
trapped into local optimum. The main motivation of this
work is to propose a solution to overcome CSA weaknesses
and combine them with its powerful aspects cited previously

to extract an algorithm capable of solving a wide range of
complex engineering optimization problems.

In this present paper an enhanced version of CSA called
dynamic crow search algorithm (DCSA) is proposed to
overcome the drawbacks of the conventional CSA. In the
proposed DCSA, two modifications of the conventional
algorithm are made. The first modification concerns the
continuous adjustment of the CSA parameters leading to
a DCSA. This will provide more global search capability
as well as more exploitation of the pre-final solutions. The
second modification concerns the improvement of CSA’s
swarm diversity in the search process. This will lead to high
convergence accuracy, and fast convergence rate. The effec-
tiveness of the proposed algorithm is verified through a set
of experimental series using 13 complex benchmark func-
tions. The experimental results compared with those of other
similar algorithms revealed that DCSA can give superior
results in terms of performance and efficiency.

2 Background

2.1 Overview of crow search algorithm

CSA is recent population-based optimization method, devel-
oped in 2016 by ‘Alireza Askarzadeh’, as its name indicates
this algorithm inspiration came from an intelligent behav-
ior of crows. Crows are considered among most intelligent
animals in the world if aren’t the smartest according to [49],
that’s owing to the fact that crow’s brain to its body ration
is almost or bit less than that of humans, and a lot of others
genius behaviors like, they can memorize faces, they are
self-aware in the mirror test, they are so skilled in using tools
depending on situations and conditions, they can solve puz-
zles, they communicate in a sophisticated way and warn each
other in case of danger, and they always score very highly
on intelligence tests.

Additionally, the main inspiration of CSA is a cleverness
behavior that kept the interest of ‘Alireza Askarzadeh’ to
develop this algorithm, in a flock of crows, each crow hide
its extra-food in a safety place depending on its own expe-
rience, and it come back to retrieve it when finding a new
food source becomes a difficult task, and it can remember
the place where the food is hidden after months. Moreover,
having a relief food source don’t prevent crows to search for
another better food sources solicited by their greedy instinct,
hence, crows follow each other in order to steal, when it
comes that a crow visits its hidden place to put or retrieve
food.

Stealing another’s food promotes the experience of
crows and protects them of being future victims, that’s
by taking additional precautions like moving their hid-
den places and predicting pilferer’s behavior. From an

optimization point of view, this behavior simulates an
optimization process, where, crows are researchers, sur-
rounding territory is search space, each position of the
territory presents a possible solution, and quality of food
source presents the objective function, as well as, the best
food source is the global solution of the problem. Finally,
fundamentals of CSA is relaying on those four points.

• Crows live in flock structure.
• Crows keep in mind their hidden places location.
• Crows follow each other to steal food.
• Crows get experience over time, so they protect their

caches from others by probability.

2.1.1 Mathematical modeling of CSA

It is assumed that the flock lives in a d-dimensional envi-
ronment including a number of crows, the number of
crows (population size) is mentioned by N, as well as, d
corresponds to the decision variables of the problem, at
each iteration crows change their positions looking for bet-
ter food source, then, the position of crow i at time k (itera-
tion) in the search space is specified by a vector,
xi,k =

[

x1
i,k
, x2

i,k
,… , xd

i,k

]

 for i = 1,2,….,N and k =
1,2,….,kmax, where, kmax is the maximum number of
iterations. Each crow has a memory in which the position
of its hiding place is memorized. At iteration k, the posi-
tion of the hiding place of crow i is defined by the vector,
mi,k =

[

m1

i,k
,m2

i,k
,… ,md

i,k

]

 , this is the best food position that
crow i has obtained so far.

Assume that at iteration k, a crow j wants to check its
hidden food, according to this visit we assume also that
there is always another crow i following it in order to
approach crow’s j food, in this case, two possibilities may
occur to update crow’s i position.

Case 1 crow j doesn’t note that crow i is following it, there-
fore, crow i can reach the position of crow’s j hidden place.
As a result, the position of crow i is updated asfollow:

Where: ri is a random number with uniform distribution
between 0 and 1, while fl indicates the flight length, pointing
out here that fl has great effect on search procedure, choos-
ing fl lower than 1 lead the search to local solution, where
the next step will be near to the xi,k as shown in Fig. 1a, oth-
erwise, choosing fl greater than 1 lead the search to global
solution because the next step will be far away than xi,k to
promote further exploration of the search space Fig. 1b.

(1)xi,k+1 = xi,k + ri × fl ×
(

mj,k − xi,k
)

Case 2 crow j is aware that crow i is following it, thus, crow
j will dupe crow i and move randomly in the search space in
order to protect its food.

Both cases can be gathered in one formula by intro-
ducing AP (awareness probability) parameter as follows:

Where, rj is a random number with uniform distribu-
tion between 0 and 1, AP parameter control the algorithm
intensification and diversification. Small values of AP
conduct to the local search, while large values of AP con-
duct to global search (randomization).

The crows update their memory as follow:

Where f (.) symbolizes the fitness function value. Fig-
ure 2, illustrates the pseudo code of CSA.

(2)xi,k+1 =

{

xi,k + ri × fl ×
(

mj,k − xi,k
)

rj ≥ AP

a randomposition otherwise

(3)mi,k+1 =

{

xi,k+1iff
(

xi,k+1
)

is better than f
(

mi,k

)

mi,k otherwise

2.2 Related work

Since the proposition of crow search algorithm, many
researchers have applied it in multiple optimization prob-
lems, and to boost its weak side as mentioned in introduc-
tion section some modifications were proposed on litera-
ture to improve the performance of CSA.

• Modified crow search algorithm introduced in [50],
proposes two modifications at the main CSA, first mod-
ification aim is to speed up the algorithm convergence,
for that reason when a crow wants to generate a new
position at given iteration, it must follow one of the (k)
crows having best results where (k) is defined in Eq. 4,
and not choosing randomly between N flock members,
this selection objective is to ovoid bad solutions over
iterations and can really improve the algorithm conver-
gence and time consumption, but it can also affect the
algorithm exploration in high dimension problems.

Fig. 1 fl effect on the position
update.

Second modification is about adjusting the flight length
parameter according to a new concept that is the distance
between the crow i and its target crow j, moreover, second
modification aim is to improve the algorithm exploration by
choosing fl bigger than a threshold if the distance between
the crow i and crow j is small, because in this case crow i
will not improve the solution, consequently, the crow i will
explore another area than the region where they are located,
this modification improve the exploration but it hardly weak
the exploitation, owing to the fact that in the last iterations
the distance between crows get closed, and the algorithm
still setting high values of fl , doing so the algorithm will
not been focused in the promoted region, thus, it will not
provide good solutions.

• Chaotic crow search algorithm introduced in [51], the
main idea of the modification made by authors, is replac-
ing the random variables of the algorithm, precisely in
the formula that generate new positions, by chaotic vari-
ables came from ten different chaotic maps, subsequently,
the algorithm will be formulated as follow.

(4)Kiter = round

(

Kmax −
Kmax − Kmin

itermax
× iter

)

Where: Ci,kandCj,k are the chaotic values resulted from
the chaotic map at k iteration.

This modification improve the convergence rate and the
performance of the algorithm, on the other hand, the algo-
rithm performance is only based on making a lot of tests to
have better results, and setting proper values of chaotic maps
can also affect the algorithm performance.

• Rough crow search algorithm RCSA introduced in [52],
authors in this article took benefits from rough set theory
and integrated it with CSA to deepen the search in the
promising region where the global solution is located.
RCSA execution is done in two steps: firstly, CSA oper-
ates as global optimization solver to approach an approxi-
mate initial solution of a global optimization problem.
Secondly, RSS (rough search scheme) is executed to
ameliorate the solution quality through the roughness of
the obtained optimal solution so far. Doing so, the rough-
ness of the obtained optimal solution can be expressed as
a pair of precise concepts based on the lower and upper
approximations which are used to compose the interval

(5)xi,k+1 =

{

xi,k + Ci,k × fl ×
(

mj,k − xi,k
)

Cj,k ≥ AP

a randomposition otherwise

Fig. 2 Basic CSA pseudo code

of boundary region. Afterward, new solutions are ran-
domly created inside this region to enhance the diversity
of solutions and achieve an effective exploration to avoid
premature convergence of the swarm.

3 Dynamic crow search algorithm

This section is dedicated to the new concept of dynamic
crow search algorithm DCSA, as mentioned previously that
basic CSA suffers of premature convergence due to a weak-
ness in its exploration capacity and low convergence rate,
we could mention at this point over a deep analytic of basic
CSA, that its main weakness performance came from fixed
setting of its essential parameters AP and fl , moreover, fixed
values of AP and fl cannot guarantee good exploration and
exploitation in the same time or they can perform well at
one stage of them and not another. To fix this problem two
contributions are proposed in this article, the first one affects
AP parameter while the second affects fl parameter to make
them dynamic over iterations in favor of enhancing basic
CSA performance, and extract all benefits of the search pro-
cess two stages (exploration and exploitation) to have better
results, detailed processes are as follow:

Firstly, awareness probability will be decreased linearly
from APmax to APmin over iterations as it is shown in Fig. 3.
Subjected to Eq. 6, the reason why this modification is
introduced is that in the search process first stage, it is

greatly recommended setting relatively high values of
APmax to stimulate further randomization in the algorithm
search process making it exploring the global search space
and steer the crows to a near region where the global opti-
mal solution is located. Afterwards, AP will get lower val-
ues until APmin , in this stage, AP low values promote CSA
crows following process Eq. 1, and eliminate almost the
randomization process, doing so, DCSA will be focused on
exploitation phase to extract best results from the region
approached previously, while proper setting of APmax and
APmin has a crucial effect on DCSA performance.

Secondly, based in CSA Eq. 1 it can easily noticed that
fl parameter is multiplied by a random number with uni-
form distribution between 0 and 1, so that fl cannot be
a control parameter of CSA, because it’s hardly affected
by the large random variation that’s multiplied by over
iterations. To make fl a real control parameter of CSA so
that it can improve basic CSA performance the following
modification is proposed where Eq. 2 will be as follow:

Where, flc is the flight length control parameter illus-
trated in Fig. 4, and is defined as:

(6)APiter =
APmin − APmax

Itermax
× iter + APmax

(7)xi,k+1 =

{

xi,k + flc ×
(

mj,k − xi,k
)

rj ≥ AP

a randomposition otherwise

(8)flc =

{

fl ∗

[

F
(

ymax

10

)

−

(

F
(

ymax

10

)

− F
(

ymin
)

)

× rand
]

ifiter ≤ � × itermax(a)

fl ∗
[

F
(

ymax
)

−
(

F
(

ymax
)

− F
(

0.6 × ymax
))

× rand
]

else(b)

Fig. 3 AP variation and effect
on optimization search process

Where,
fl : is the basic flight length.
τ: is time control report, bounded between 0 and 1.
F: is the generalized Pareto probability density func-

tion, while its characteristic parameters K, SIGMA, and
THETA are set 1, 1, and 0, respectively.

y: is a discontinues regular variable between ymin and
ymax , where ymin = 0 and ymax = 10 , this interval is divided
in 1000 uniform variables.

As it is shown in Fig. 4, the search process exploration
phase is taken from the beginning of iterations to � × itermax ,
to provide DCSA sufficient time amount to explore the
overall search space without getting trapped in local opti-
mum, while flc is set randomly from the region mentioned
previously, this is for two reasons, firstly, to not delete the
randomization process from the basic algorithm, secondly,
setting flc with relatively high values from the generalized
Pareto distribution function form can control more the range
variation of it, moreover, based on this variation range, flc
will be most of time between 1 and basic fl so this variation
range promotes more exploration than exploitation as men-
tioned in the background section Fig. 1. As a result, DCSA
centers its search on exploration phase to reach the optimum
global solution region location.

While proper setting of τ is important to guarantee a good
balance between exploration and exploitation depending on the
problem complexity, afterwards, in the last iterations flc gets
always lower values less than 1 from the region where Pareto
distribution form takes almost steady variation from sixth-
tenths ymax to ymax , because in last iterations, almost crows
get gathered in the optimum global solution region so that flc
low values boost more the exploitation on that region between
the crows position that have better solutions, and don’t waste

main exploitation task by going to other regions where they
will not improve the solution, eventually, DCSA offers the best
global optimization solution, over following its own instruc-
tions showcased in DCSA flowchart Fig. 5.

4 Experimental results and discussion

To validate the proposed algorithm performance, DCSA is
applied to thirteen selected classical benchmark functions to cover
almost all perspectives that could face an optimization algorithm,
while a short description of them is given below. Firstly, DCSA
is compared with the basic CSA to prove its efficiency. To boost
more DCSA performance some experiments are carried out to
find the best parameters adjustment of it. Moreover, for the reason
of abundance state of the art algorithms, DCSA is compared with
four algorithms to establish its computational effectiveness over
them, and so GA and PSO are selected as conventional algorithms
and two other recent algorithms SSA and BOA.

4.1 Benchmark functions

Table 1 represents the benchmark functions used in this study
and it also mentions boundaries (B), minimum value (Min),
dimension (D), and type (T) of each function. Functions 1 to 7
are unimodal and they have only one optimum value, they are
usually used to investigate the algorithm exploration capabil-
ity and the solution convergence rate while final solution is
not so important [5, 10, 53]. However, functions 8 to 13 are
multimodal which are characterized by their local optimums
number increasing exceptionally as the solution dimension,
they are usually utilized to inspect the algorithm capability
for escaping local optimums and approaching global solution,

Fig. 4 The flight length control
parameter curve

while last solution is important to make sure that the algo-
rithm did not get trapped in one of them.

4.2 Parameters settings

For all following experiments population size is set to 30,
the maximum number of iteration is set to 1000, and for each

function, algorithms are run 25 times independently. Perfor-
mance metrics are as follow:

• Best value: is the best value that reached by an algorithm
in different runs.

Best = Min1≤i≤Nr
F∗

i
(9)

Fig. 5 Dynamic crow search
algorithm flowchart

Where: Nr is the number of different runs and F∗
i
 is the best

value.

• Average value: is the mean of the best values acquired by
an algorithm of different runs.

• Standard deviation: is calculated to test if an algorithm
can reach the same best value in different runs and test the
repeatability of the results.

For the sake of comparison, algorithms are ranked from
the best to the worst according to the average value, and if
two algorithms get the same average, the best value will be

Mean =
1

Nr

Nr
∑

i=1

F∗

i
(10)

Std =

√

√

√

√
1

Nr − 1

Nr
∑

i=1

(F∗
i
−Mean)2(11)

the second index to rank them. Table 2 represents the most
recommended parameters settings of all algorithms used on
following experiments extracted from their original papers,
except DCSA that will be detailed section by section.

4.3 Effectiveness of DCSA over CSA

To point out the overcoming contribution made by DCSA
above CSA, following experiment runs them independently
over former benchmark functions. DCSA parameters are set
toAPmin = 0.01 , APmax = 0.2 , and τ = 0.9, experiment results
are structured in Table 3, while Fig. 6 illustrates algorithms
convergence rate of some selected functions. Results from
Table 1, and Fig. 6 clearly showcase that DSCA outperforms
basic CSA in all unimodal functions and all multimodal func-
tions except f7 in which DCSA does not make a real improve-
ment, this superiority is for convergence rate, quickness

Table 1 Benchmark functions description

Fun Equation B Min D T

f1 f (x) =
∑n

i=1
x2
i

[−100, 100] 0 10 Unimodal
f2 f (x) =

∑n

i=1
�

�

xi
�

�

+
∏n

i=1
�

�

xi
�

�

[−10, 10] 0 10 Unimodal
f3 f (x) =

∑n

i=1

�

∑i

j−1
xi

�2 [−100, 100] 0 10 Unimodal

f4 f (x) = maxi
{

|

|

xi
|

|

, 1 ≤ i ≤ n
}

[−100, 100] 0 10 Unimodal
f5 f (x) =

∑n−1

i=1

�

100
�

xi+1 − x2
i

�2
+
�

xi − 1
�2
�

[−30, 30] 0 10 Unimodal

f6 f (x) =
∑n

i=1

��

xi + 0.5
��2 [−100, 100] 0 10 Unimodal

f7 f (x) =
∑n

i=1
ix4

i
+ random[0, 1] [-1.28, 1.28] 0 10 Unimodal

f8
f (x) =

∑n

i=1
− xisin

�

�

�

�

xi
�

�

�

[−500, 500] 418.9829×5 10 Multimodal

f9 f (x) =
∑n

i=1

�

x2
i
− 10cos

�

2�xi
�

+ 10
�

[−5.12, 5.12] 0 10 Multimodal
f10

f (x) = −20exp

�

−0.2

�

1

n

∑n

i=1
x2
i

�

− exp
�

1

n

∑n

i=1
cos

�

2�xi
�

�

+ 20 + e
[−32, 32] 0 10 Multimodal

f11 f (x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�

xi
√

i

�

+ 1
[−600, 600] 0 10 Multimodal

f12 f (x) =
�

n

�

10sin
2
�

�y1
�

+
∑n−1

i=1

�

yi − 1
�2�

1 + 10sin
2
�

�yi+1
��

+
�

yn − 1
�2
�

+
∑n

i=1
u
�

xi , 10,100,4
�

u
�

xi, a, k,m
�

=

⎧

⎪

⎨

⎪

⎩

k
�

xi − a
�m

, xi > a

0,−a ≤ xi ≤ a

k
�

−xi − a
�m

, xi < −a

[−50, 50] 0 10 Multimodal

f13 f (x) = 0.1

�

sin2
�

3�x1
�

+
∑n

i=1

�

xi − 1
�2�

1 + sin
2
�

3�xi + 1
��

�

+
�

xn − 1
�2�

1 + sin2
�

2�xn
��

�

+
∑n

i=1
u
�

xi, 5, 100, 4
�

[−50, 50] 0 10 Multimodal

Table 2 Parameter settings of
each algorithm

algorithm CSA GA PSO BOA SSA

parameters AP = 0.1
fl = 1.8

Roulette is used for selection
Crossover fraction = 0.9
Mutation = 0.005

C1 = C2 = 2
Wmax = 0.9

Wmin = 0.4

p = 0.3
a = 0.2
c = 0.02

Without parameters

exploration capability, avoiding local optimums, and final
solutions.

Algorithm Index f8 f9 f10 f11 f12 f13

CSA Best
Mean
Std
Rank

-2.85E + 03
−3.26E + 03
3.01E + 02
2

5.98E + 00
1.31E + 01
3.96E + 00
2

1.66E-04
3.40E + 00
1.01E + 00
2

0.06E + 00
0.28E + 00
0.09E + 00
2

1.34E-06
0.46E + 00
0.95E + 00
2

2.33E-05
0.12E + 00
0.21E + 00
2

DCSA Best
Mean
Std
Rank

−2.31E + 03
−2.73E + 03
3.25E + 02
1

0.97E + 00
1.05E + 00
3.14E + 00
1

2.83E-06
1.11E + 00
0.93E + 00
1

0.04E + 00
0.13E + 00
0.08E + 00
1

4.10E-08
0.03E + 00
0.19E + 00
1

2.72E-08
0.01E + 00
0.02E + 00
1

4.4 Time control report and awareness probability
decreasing influence

Proper setting of DCSA parameters can affect the algorithm
solution process, in addition it is a tricky task to find out the
best parameters adjustment for such a problem that could
be different from a problem to another, this why following
experiments will try to extract best parameters adjustment
for each function problem. First of all, Table 4 illustrates
results of running different (APmax , APmin) couples to each
function, while τ is fixed to 0.95, and APmin is set always to
0.01 to guarantee a best exploitation in all cases, and APmax
is changed to handle the exploration phase. Table 5 illus-
trates results of multiple time control report parameters runs
at each function problem, while APminand APmax are set to
0.01 and 0.2 respectively.

Table 4 results display that various awareness probability
bounds executed at each function provide different results
from a couple to another this for

(

f1f8
)

 , and the best couple of
previous functions is changed along them, moreover, results
gap is important between different couples because some
of them make a real improvement this is for f1, f3, f4andf5 .
On the other hand, (APmax = 0.01 , APmin = 0.2) is the best
couple for last multimodal functions due to high value of
APmax that promote the exploration phase on this compli-
cated functions avoiding local optimums, so this couple is
recommended for high dimensioned optimization problems.

In the other hand, APmin should always be set at lower val-
ues to guarantee best final solutions but avoid values very
close to zero, as well as, APmax should not exceed 0.3 value
to not simulate further randomization into search process
leading to worst exploration phase. Table 5 results make
clear that good setting of τ can supply a real best solutions as
f3, f4, f5andf8 , but it depends to the function problem where
carrying out some trials could be useful to find the best τ
adjustment to such a problem.

4.5 Comparison with state of the art algorithms

The proposed algorithm should be in a high range between
the computational algorithms or this improvement does
not make sense, for this reason DCSA is compared with
four well known alogorithms GA, PSO, BOA and SSA
executed in the same benchmark problems, while DCSA
parameters are the same like in (4.3) section, results are
giving in Table 6 as well as the convergence rate of some
selected functions in Fig. 7. Obtained results illustrate
that DCSA outperforms all other algorithms in almost
all functions problems, except two unimodal functions f5
and f7 , and one multimodal function f9 . Superiority per-
formance is manifested in fast and smooth convergence
rate, quickness exploration capability, avoiding local opti-
mums, and best final solutions drawn from its exploitation
capability.

Table 3 Comparison results between DCSA and CSA

Algorithm Index f1 f2 f3 f4 f5 f6 f7

CSA Best
Mean
Std
Rank

1.03E-09
1.50E-07
1.95E-08
2

2.38E-03
0.41E + 00
0.27E + 00
2

1.06E-03
0.02E + 00
0.01E + 00
2

2.60E-03
0.01E + 00
0.01E + 00
2

3.16E + 00
3.93E + 01
2.18E + 01
2

4.59E-09
2.92E-06
6.62E-08
2

2.52E + 00
3.28E + 00
0.40E + 00
1

DCSA Best
Mean
Std
Rank

4.51E-13
1.37E-11
1.83E-09
1

1.47E-05
0.01E + 00
0.04E + 00
1

4.95E-07
5.50E-04
9.46E-04
1

3.09E-05
7.70E-04
0.00E + 00
1

0.69E + 00
1.26E + 01
2.26E + 00
1

6.08E-12
8.34E-10
9.15E-10
1

2.32E + 00
3.35E + 00
0.49E + 00
2

Fig. 6 Comparative conver-
gence rates profiles

5 Conclusions

In this paper, the original CSA is improved by introduc-
ing two modifications into the main algorithm. Hence,

DCSA gain more advantages like the algorithm search
process becomes dynamic and promising the explora-
tion and exploitation phases independently by mean of
adaptive parameters, DCSA convergence rate is faster

Table 4 Comparison results of
different AP couples

Function Index APmin = 0.01

APmax = 0.2

APmin = 0.01

APmax = 0.15

APmin =0.01
APmax = 0.1

APmin =0.01
APmax = 0.05

f1 Best
Mean
Std
Rank

2.18E-12
2.16E-10
2.95E-10
3

1.53E-12
6.62E-11
9.96E-11
2

2.11E-13
2.10E-11
3.66E-11
1

3.13E-13
2.07E-09
3.88E-09
4

f2 Best
Mean
Std
Rank

3.67E-05
0.01E + 00
0.04E + 00
2

4.73E-06
0.00E + 00
0.00E + 00
1

6.10E-05
0.01E + 00
0.02E + 00
3

7.03E-05
0.17E + 00
0.39E + 00
3

f3 Best
Mean
Std
Rank

1.65E-05
3.47Ee-04
4.25E-04
1

7.50E-07
5.65E-04
9.59E-04
2

6.83E-06
0.00E + 00
0.00E + 00
3

2.82E-04
0.02E + 00
0.05E + 00
4

f4 Best
Mean
Std
Rank

2.49E-05
0.00E + 00
0.00E + 00
2

4.25E-05
8.18E-04
8.78E-04
1

7.47E-05
0.00E + 00
0.00E + 00
3

6.16E-05
0.01E + 00
0.01E + 00
3

f5 Best
Mean
Std
Rank

2.01E + 00
1.04E + 01
1.77E + 01
2

1.79E + 00
2.43E + 01
7.55E + 01
3

1.99E + 00
1.01E + 01
1.75E + 01
1

3.07E + 00
2.60E + 01
8.17E + 01
4

f6 Best
Mean
Std
Rank

3.98E-12
2.93E-10
3.67E-10
3

1.49E-13
6.96E-11
1.55E-10
1

1.79E-12
1.55E-10
2.72E-10
2

3.32E-12
7.45E-10
1.96E-09
4

f7 Best
Mean
Std
Rank

2.41E + 00
3.22 E + 00
0.35E + 00
3

2.61E + 00
3.38E + 00
0.34E + 00
4

1.77E + 00
3.21E + 00
0.47E + 00
2

2.24E + 00
3.02 E + 00
0.49E + 00
1

f8 Best
Mean
Std
Rank

−2.35E + 03
−2.63E + 03
2.97E + 02
3

−2.23E + 03
−2.62E + 03
3.16E + 02
2

−2.38E + 03
−2.78E + 03
4.37E + 02
4

−2.10E + 03
−2.58E + 03
3.44E + 02
1

f9 Best
Mean
Std
Rank

2.98E + 00
3.99E + 00
3.74E + 00
1

4.97E + 00
8.11E + 00
4.27E + 00
4

2.98E + 00
5.01E + 00
4.77E + 00
2

2.98E + 00
6.11E + 00
4.57E + 00
3

f10 Best
Mean
Std
Rank

8.43E-07
1.46E + 00
1.00E + 00
1

6.93E-07
1.77E + 00
0.80E + 00
2

2.33E-06
1.97E + 00
0.88E + 00
3

5.67E-06
2.84E + 00
0.97E + 00
4

f11 Best
Mean
Std
Rank

0.02E + 00
0.13E + 00
0.08E + 00
1

0.03E + 00
0.14E + 00
0.08E + 00
2

0.03E + 00
0.17E + 00
0.09E + 00
3

0.06E + 00
0.24E + 00
0.17E + 00
4

f12 Best
Mean
Std
Rank

9.16E-09
0.08E + 00
0.13E + 00
1

2.73E-08
0.12E + 00
0.25E + 00
2

1.14E-08
0.30E + 00
0.43E + 00
3

6.07E-06
0.98E + 00
1.06E + 00
4

f13 Best
Mean
Std
Rank

2.61E-07
0.01E + 00
0.01E + 00
1

2.88E-07
0.01E + 00
0.01E + 00
2

2.73E-09
0.03E + 00
0.06E + 00
3

8.74E-05
0.13E + 00
0.18E + 00
4

toward the final solution, DCSA dynamic parameters
are independent to each problem and the final solution
is most of time the best one. Multiple benchmark prob-
lems was used to assess the performance of the pro-
posed algorithm, as well as, some experiments has been

carried out to extract the best parameter adjustment
of the new algorithm for each benchmark problem,
finally, the proposed algorithm has been compared to
those surfaced in the powerful and recent optimization
field. Results obtained validate the effectiveness and

Table 5 Comparison results
of different time control report
values

Function Index τ = 0.8 τ = 0.85 τ = 0.9 τ = 0.95

f1 Best
Mean
Std
Rank

2.01E-09
1.25E-08
1.28E-08
4

7.12E-11
5.52E-09
1.14E-08
3

1.42E-11
9.07E-10
1.45E-09
2

9.47E-12
3.46E-10
7.58E-10
1

f2 Best
Mean
Std
Rank

1.16E-04
0.04E + 00
0.09E + 00
3

7.98E-06
0.02E + 00
0.09E + 00
1

1.90E-05
0.03E + 00
0.09E + 00
2

1.98E-05
0.13E + 00
0.35E + 00
4

f3 Best
Mean
Std
Rank

2.57E-05
0.00E + 00
0.00E + 00
4

2.24E-05
0.00E + 00
0.00E + 00
3

3.29E-07
3.30E-04
4.43E-04
1

2.60E-05
3.77E-04
5.99E-04
2

f4 Best
Mean
Std
Rank

1.69E-04
0.00E + 00
0.00E + 00
4

7.84E-05
0.00E + 00
0.00E + 00
3

5.07E-05
4.65E-04
4.44E-04
1

4.91E-05
8.77E-04
0.00E + 00
2

f5 Best
Mean
Std
Rank

0.70E + 00
1.84E + 01
5.31E + 01
3

3.00E + 00
2.40E + 01
5.36E + 01
4

4.90E + 00
1.32E + 01
4.69E + 01
2

1.36E + 00
1.21E + 01
3.19E + 01
1

f6 Best
Mean
Std
Rank

3.10E-10
1.87E-08
2.06E-08
4

8.64E-11
3.32E-09
3.85E-09
3

5.26E-11
1.20E-09
1.93E-09
2

8.44E-12
1.83E-10
2.66E-10
1

f7 Best
Mean
Std
Rank

2.73E + 00
3.42E + 00
0.36E + 00
4

1.85E + 00
3.32E + 00
0.49E + 00
2

2.13E + 00
3.25E + 00
0.42E + 00
1

2.16E + 00
3.34E + 00
0.43E + 00
3

f8 Best
Mean
Std
Rank

−2.35E + 03
−2.71E + 03
3.39E + 02
3

−2.34E + 03
−2.70E + 03
2.95E + 02
2

−2.45E + 03
−2.75E + 03
2.75E + 02
4

−2.12E + 03
−2.69E + 03
3.12E + 02
1

f9 Best
Mean
Std
Rank

3.97E + 00
1.03E + 01
4.54E + 00
4

3.97E + 00
1.20E + 00
5.54E + 00
2

3.97E + 00
1.11E + 00
5.00E + 00
1

1.98E + 00
5.94E + 00
3.43E + 00
3

f10 Best
Mean
Std
Rank

1.07E-05
0.93E + 00
0.91E + 00
1

7.36E-06
1.05E + 00
0.98E + 00
2

4.15E-06
1.15E + 00
1.03E + 00
3

2.96E-06
1.22E + 00
0.92E + 00
4

f11 Best
Mean
Std
Rank

0.03E + 00
0.15E + 00
0.06E + 00
4

0.02E + 00
0.11E + 00
0.06E + 00
1

0.03E + 00
0.12E + 00
0.08E + 00
2

0.03E + 00
0.14E + 00
0.06E + 00
3

f12 Best
Mean
Std
Rank

2.04E-07
0.13E + 00
0.18E + 00
1

4.35E-08
0.18E + 00
0.32E + 00
2

1.00E-07
0.25E + 00
0.48E + 00
4

1.13E-07
0.21E + 00
0.49E + 00
3

f13 Best
Mean
Std
Rank

2.79E-06
0.01E + 00
0.01E + 00
3

1.16E-06
0.02E + 00
0.03E + 00
4

2.72E-08
0.01E + 00
0.01E + 00
1

1.32E-07
0.01E + 00
0.01E + 00
2

Table 6 Comparison results
between DCSA and some state
of the art algorithms

Function Index DCSA GA PSO BOA SSA

f1 Best
Mean
Std
Rank

4.51E-13
1.37E-11
1.83E-09
1

1.78E-09
5.05E-08
2.51E-08
3

1.74E-04
0.09E + 00
0.13E + 00
5

3.23E-04
3.56E-04
1.91E-05
4

2.48E-10
7.20E-10
1.88E-10
2

f2 Best
Mean
Std
Rank

1.47E-05
0.10E-02
0.04E + 00
1

1.11E-03
0.55E + 00
0.69E + 00
4

0.02E + 00
1.34E + 00
3.23E + 00
5

0.00E + 00
0.00E + 00
1.95E-04
3

1.11E-04
0.00E + 00
0.09E + 00
2

f3 Best
Mean
Std
Rank

4.95E-07
5.50E-04
9.46E-04
1

6.57E-06
7.35E-03
0.00E + 00
4

0.00E + 00
3.19E + 00
4.43E + 00
5

2.94E-04
3.42E-03
1.96E-05
3

2.94E-06
8.42E-04
1.96E-04
2

f4 Best
Mean
Std
Rank

3.09E-05
7.70E-04
0.00E + 00
1

0.50E + 00
1.28E + 00
0.43E + 00
5

0.09E + 00
0.74E + 00
0.57E + 00
4

0.00E + 00
0.00E + 00
1.77E-04
3

4.05E-05
6.80E-02
0.00E + 00
2

f5 Best
Mean
Std
Rank

0.69E + 00
1.26E + 01
2.26E + 00
2

2.69E + 00
1.48E + 01
7.01E + 00
3

0.48E + 00
1.44E + 02
3.26E + 02
5

8.89E + 00
8.94E + 00
0.02E + 00
1

2.92E + 00
1.18E + 02
3.04E + 02
4

f6 Best
Mean
Std
Rank

6.08E-12
8.34E-10
9.15E-10
1

6.59E-10
5.59E-08
3.06E-08
2

3.03E-04
0.09E + 00
0.11E + 00
4

0.50E + 00
1.22E + 00
0.33E + 00
5

4.02E-10
6.35E-07
1.61E-07
3

f7 Best
Mean
Std
Rank

2.32E + 00
3.35E + 00
0.49E + 00
3

2.36E + 00
3.51E + 00
0.48E + 00
5

2.39E + 00
3.38E + 00
0.41E + 00
4

1.09E + 00
1.57E + 00
0.20E + 00
1

1.54E + 00
2.15E + 00
0.30E + 00
2

f8 Best
Mean
Std
Rank

−2.31E + 03
−2.73E + 03
3.25E + 02
1

−2.88E + 03
−3.25E + 03
3.21E + 02
3

−2.76E + 03
−3.22E + 03
3.00E + 02
2

−1.82E + 03
−1.26E + 03
2.93E + 02
4

−2.47E + 03
−2.84E + 03
3.35E + 02
2

f9 Best
Mean
Std
Rank

0.97E + 00
1.05E + 00
3.14E + 00
2

1.22E-06
5.69E + 00
4.65E + 00
3

2.01E + 00
1.46E + 01
1.05E + 01
4

3.85E-02
4.14E-02
1.56E-03
1

5.96E + 00
2.34E + 01
8.40E + 00
5

f10 Best
Mean
Std
Rank

2.83E-06
1.11E + 00
0.93E + 00
1

3.64E-05
4.11E + 00
0.96E + 00
5

0.00E + 00
2.64E + 00
3.78E + 00
2

0.00E + 00
2.90E + 00
1.41E-04
3

8.46E-06
3.36E + 00
7.23E + 00
4

f11 Best
Mean
Std
Rank

7.76E-06
0.00E + 00
0.01E + 00
1

0.04E + 00
0.13E + 00
0.08E + 00
3

0.04E + 00
0.23E + 00
0.12E + 00
4

8.46E-04
0.13E + 00
0.15E + 00
2

0.07E + 00
0.24E + 00
0.11E + 00
5

f12 Best
Mean
Std
Rank

4.10E-08
0.00E + 00
0.19E + 00
1

5.53E-09
0.08E + 00
0.20E + 00
2

3.85E-05
0.19E + 00
0.26E + 00
4

0.13E + 00
0.53E + 00
0.31E + 00
5

6.27E-07
0.15E + 00
0.14E + 00
3

f13 Best
Mean
Std
Rank

2.72E-11
0.01E + 00
0.02E + 00
1

6.94E-09
0.44E + 00
0.14E + 00
2

9.50E-04
0.47E + 00
0.07E + 00
3

0.40E + 00
0.88E + 00
0.20E + 00
5

3.45E-09
0.75E + 00
0.00E + 00
4

Fig. 7 Comparative conver-
gence rates profiles

superiority of the new algorithm that it can overtake
the original algorithm weaknesses, promising its appli-
cation to the practical and engineering problems for

further research in which it can challenge high dimen-
sion and additional constraint problems that can effects
its performance.

References

1. Mansour IB, I. Alaya, and M. Tagina, “A gradual weight-based ant
colony approach for solving the multiobjective multidimensional
knapsack problem” Evol Intel, vol. 12, 253–2722019

2. Wang L, J. Pei, Wen Y, J. Pi, Fei M, and Pardalos PM, An
improved adaptive human learning algorithm for engineering
optimization Appl Soft Comput, vol. 71, 894–9042018

3. Chen K, F. Zhou, Wang Y, and Yin L, An ameliorated particle
swarm optimizer for solving numerical optimization problems
Appl Soft Comput, vol. 73, 482–4962018

4. Singh PR, M. A. Elaziz, and S. Xiong, “Modified Spider Monkey
Optimization based on Nelder–Mead method for global optimiza-
tion” Expert Syst Appl, vol. 110, 264–2892018

5. Ewees AA, M. Abd Elaziz, and E. H. Houssein, “Improved grass-
hopper optimization algorithm using opposition-based learning,“
Expert Syst Appl, vol. 112, 156–1722018

6. Mansour IB, Alaya I (2015) Indicator based ant colony optimiza-
tion for multi-objective knapsack problem. Procedia Comput Sci
vol. 60:448–457

7. Mansour IB, M. Basseur, and F. Saubion, “A multi-population
algorithm for multi-objective knapsack problem” Appl Soft Com-
put, vol. 70, 814–8252018

8. Shi H, S. Liu, Wu H, R. Li, Liu S, N. Kwok, and Y. Peng, “Oscil-
latory Particle Swarm Optimizer” Appl Soft Comput, vol. 73,
316–3272018

9. Omran MGH, S. Alsharhan, and M. Clerc, “A modified Intellects-
Masses Optimizer for solving real-world optimization problems”
Swarm Evolutionary Computation, vol. 41, 159–1662018

 10. Sun Y, X. Wang, Chen Y, and Liu Z, “A modified whale optimi-
zation algorithm for large-scale global optimization problems”
Expert Syst Appl, vol. 114, 563–5772018

 11. Shaw B, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-
based gravitational search algorithm for combined economic
and emission dispatch problems of power systems” Int J Elec-
tric Power Energy Syst, vol. 35, 21–332012

 12. Nenavath H, D. R. Kumar Jatoth, and D. S. Das, “A synergy
of the sine-cosine algorithm and particle swarm optimizer for
improved global optimization and object tracking” Swarm Evo-
lut Comput, vol. 43, 1–302018

 13. Mansour IB, I. Alaya, and M. Tagina, “Chebyshev-based iterated
local search for multi-objective optimization,“ in 2017 13th IEEE
International Conference on Intelligent Computer Communication
and Processing (ICCP), 2017, pp. 163–170.

 14. Ben Mansour I, I. Alaya, and M. Tagina, “A min-max Tchebycheff
based local search approach for MOMKP,“ in Proceedings of the
12th International Conference on Software Technologies, ICSOFT,
INSTICC, pp. 140–150.

 15. Torabi S, Safi-Esfahani F (2018) “Improved Raven Roosting Optimi-
zation algorithm (IRRO)”. Swarm Evolut Comput vol. 40:144–154

 16. Holland JH (1992) Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and arti-
ficial intelligence. MIT press

 17. Storn R, Price K (1997) Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. J Global
Optim vol. 11:341–359

 18. Atashpaz-Gargari E, Lucas C, “Imperialist competitive algorithm:
an algorithm for optimization inspired by imperialistic competi-
tion,“ in Evolutionary computation, 2007. CEC 2007. IEEE Con-
gress on, 2007, pp. 4661–4667.

 19. Rajabioun R (2011) “Cuckoo Optimization Algorithm”. Appl Soft
Comput vol. 11:5508–5518

 20. Geem ZW, J. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search,“ simulation, vol. 76,
pp. 60–68, 2001

 21. Rashedi E, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravita-
tional Search Algorithm,“ Information Sciences, vol. 179, pp. 2232–
2248, 2009

 22. Javidy B, A. Hatamlou, and S. Mirjalili, Ions motion algorithm
for solving optimization problems Appl Soft Comput, vol. 32,
72–792015

 23. Mirjalili S (2016) “SCA: A Sine Cosine Algorithm for solving opti-
mization problems”. Knowl-Based Syst vol. 96:120–133

 24. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft
Comput vol. 19:177–187

 25. Rao RV, V. J. Savsani, and D. P. Vakharia, Teaching–learning-based
optimization: A novel method for constrained mechanical design
optimization problems Comput Aided Des, vol. 43, 303–3152011

 26. Sadollah A, A. Bahreininejad, Eskandar H, and Hamdi M, Mine
blast algorithm: A new population based algorithm for solving con-
strained engineering optimization problems Appl Soft Comput, vol.
13, 2592–26122013

 27. Moosavian N, Roodsari BK (2014) Soccer league competition algo-
rithm: A novel meta-heuristic algorithm for optimal design of water
distribution networks. Swarm Evolut Comput vol. 17:14–24

 28. Mirjalili S, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Opti-
mizer: a nature-inspired algorithm for global optimization” Neural
Comput Appl, vol. 27, 495–5132015

 29. Eberhart R, Kennedy J, “A new optimizer using particle swarm the-
ory,“ in Micro Machine and Human Science, 1995. MHS’95., Pro-
ceedings of the Sixth International Symposium on, 1995, pp. 39–43.

 30. Askarzadeh A (2016) “A novel metaheuristic method for solving
constrained engineering optimization problems: Crow search algo-
rithm”. Comput Struct vol. 169:1–12

 31. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel
approach for global optimization. Soft Comput vol. 23:715–734

 32. Mirjalili S, A. H. Gandomi, Mirjalili SZ, S. Saremi, Faris H, and Mir-
jalili SM, “Salp Swarm Algorithm: A bio-inspired optimizer for engi-
neering design problems” Adv Eng Softw, vol. 114, 163–1912017

 33. Mirjalili S, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer”
Adv Eng Softw, vol. 69, 46–612014

 34. Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm.
Adv Eng Softw vol. 95:51–67

 35. Mirjalili S (2015) “The Ant Lion Optimizer”. Adv Eng Softw vol.
83:80–98

 36. Dorigo M, Di Caro G, “Ant colony optimization: a new meta-
heuristic,“ in Proceedings of the (1999) congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1470–1477.

 37. Karaboga D, Basturk B (2007) “A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm”. J Global Optim vol. 39:459–471

 38. Yang X-S (2010) “A new metaheuristic bat-inspired algorithm”. In:
in Nature inspired cooperative strategies for optimization (NICSO
2010). ed: Springer, pp 65–74

 39. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic opti-
mization technique for solving single-objective, discrete, and multi-
objective problems. Neural Comput Appl vol. 27:1053–1073

 40. Saremi S, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation
Algorithm: Theory and application” Adv Eng Softw, vol. 105,
30–472017

 41. Mirjalili S (2015) “Moth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm”. Knowl-Based Syst vol.
89:228–249

 42. Meng X, Y. Liu, Gao X, and Zhang H, “A new bio-inspired algo-
rithm: chicken swarm optimization,“ in International conference in
swarm intelligence, 2014, pp. 86–94.

 43. Satpathy A, S. K. Addya, Turuk AK, B. Majhi, and G. Sahoo, Crow
search based virtual machine placement strategy in cloud data cent-
ers with live migration Comput Electric Engi, vol. 69, 334–3502018

 44. Aleem SHA, A. F. Zobaa, and M. E. Balci, Optimal resonance-free
third-order high-pass filters based on minimization of the total cost

of the filters using Crow Search Algorithm Electr Power Syst Res,
vol. 151, 381–3942017

 45. Oliva D, S. Hinojosa, Cuevas E, G. Pajares, Avalos O, and Gálvez
J, Cross entropy based thresholding for magnetic resonance brain
images using Crow Search Algorithm Expert Syst Appl, vol. 79,
164–1802017

 46. Abdelaziz AY, Fathy A (2017) A novel approach based on crow
search algorithm for optimal selection of conductor size in radial
distribution networks. Eng Sci Technol Int J vol. 20:391–402

 47. Choudhary G, N. Singhal, and K. Sajan, “Optimal placement of STAT-
COM for improving voltage profile and reducing losses using crow
search algorithm,“ in Control, Computing, Communication and Mate-
rials (ICCCCM), 2016 International Conference on, 2016, pp. 1–6.

 48. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE transactions on evolutionary computation vol.
1:67–82

 49. Gupta D, J. J. Rodrigues, Sundaram S, A. Khanna, Korotaev V, and
de Albuquerque VHC, “Usability feature extraction using modified
crow search algorithm: a novel approach” Neural Computi Appl, pp.
1–11, 2018

 50. Mohammadi F, Abdi H (2018) “A modified crow search algorithm
(MCSA) for solving economic load dispatch problem”. Appl Soft
Comput vol. 71:51–65

 51. Sayed GI, A. E. Hassanien, and A. T. Azar, Feature selection via a
novel chaotic crow search algorithm Neural Comput Appl, vol. 31,
171–1882019

 52. Hassanien AE, R. M. Rizk-Allah, and M. Elhoseny, “A hybrid crow
search algorithm based on rough searching scheme for solving engi-
neering optimization problems” J Ambient Intelli Human Comput,
pp. 1–25, 2018

 53. Luo J, Shi B (2019) A hybrid whale optimization algorithm based
on modified differential evolution for global optimization problems.
Appl Intell vol. 49:1982–2000

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization
	Abstract
	1 Introduction
	2 Background
	2.1 Overview of crow search algorithm
	2.1.1 Mathematical modeling of CSA

	2.2 Related work

	3 Dynamic crow search algorithm
	4 Experimental results and discussion
	4.1 Benchmark functions
	4.2 Parameters settings
	4.3 Effectiveness of DCSA over CSA
	4.4 Time control report and awareness probability decreasing influence
	4.5 Comparison with state of the art algorithms

	5 Conclusions
	References

