

Arthur Maya

STEGANOLOGY AND INFORMATION HIDING

Stegop2py: embedding data in TCP and IP headers

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Bachelor of Engineering, Information Technology

August 2021

ABSTRACT

Centria University

of Applied Sciences

Date

August 2021

Author

Arthur Maya

Degree programme

Bachelor of Engineering, Information Technology

Name of thesis

STEGANOLOGY AND INFORMATION HIDING. Stegop2py: embedding data in TCP and IP

headers

Centria supervisor

Aliasghar Khavasi

Pages

52 + 2

In the time when the explosion of electronic and digital technologies happened, communication

technologies concurrently suffered the same growth. Nowadays, for two parties to communicate, it is

as easy as dialling a number, or opening an application on a mobile phone provided it is connected to

the internet. The benefits provided by such technologies are immense, but in the same manner, so are

the privacy concerns.

Advances in cryptography have allowed engineers to develop a vast number of algorithms and tools

that can be used to secure communication channels, and even though their security relies upon the fact

that a lot of computational power is required for guessing and testing of keys for decryption, they still

do not provide total-privacy or secrecy, like the fact that an encrypted message is being sent is still

present. Until recent years, steganography has not received the same attention as cryptography, due to

the apparent differences in practicality, but that is steadily changing. This research thesis develops on

the topic of steganography as a means for secret communication and lays out some examples of the

historical use of steganographic techniques in rudimentary media, as well as the use of more modern

techniques adapted to more modern technologies.

Even though the topic’s domain of application is extremely wide, the primary aim of this work is to

express the fundamental knowledge on steganographic techniques and their applications in physical

and digital media. A current information-theoretic steganographic communication model is also

presented, along with a way to test the performance of a passive opponent in such a system using

hypothesis-testing.

As a secondary aim, a proof-of-concept, stegop2py, for using the fields in the TCP/IP headers as a

means of secret communication is presented to give the reader more context for the application of these

techniques for understanding the wide applicability of these ideas.

Key words

Steganography, Steganalysis, Information Theory, Covert Channels, TCP/IP

ABSTRACT

CONTENTS

1 INTRODUCTION .. 1

2 STEGANOLOGY .. 3

2.1 Steganography .. 5

2.1.1 Physical .. 5

2.1.2 Digital ... 8

2.2 Steganalysis ... 13

2.2.1 Distortion ... 14

2.2.2 Detection .. 16

3 STEGOSYSTEMS AND THE SUBLIMINAL CHANNEL .. 18

4 INFORMATION HIDING IN THE NETWORK AND TRANSPORT LAYERS OF THE OSI-

TCP/IP MODEL ... 30

5 STEGOP2PY .. 39

5.1 Architecture .. 39

5.2 Stegosystem ... 40

5.3 Classes ... 41

5.4 Prerequisites ... 42

5.5 Usage.. 43

5.6 Packet analysis .. 45

6 CONCLUSION AND FURTHER DEVELOPMENT .. 49

REFERENCES .. 52

APPENDICES

FIGURES

FIGURE 1. Cover-image of a water tower (left), a stego-image with an embedded message (centre), the

normalized difference between both images (right) ... 10

FIGURE 2. A cover-audio spectrogram (top), a stego-audio with embedded message spectrogram

(middle), a spectrogram showing the differences (bottom) .. 11

FIGURE 3. Spectrogram of audio with coordinates embedded in visual form 12

FIGURE 4. Difference between a stego-audio in uncompressed WAVE format (top), and compressed

MP3 format (bottom) .. 15

FIGURE 5. A simple stego-system model (adapted from Cox et al. 2007, 427) 19

FIGURE 6. Cachin's model on a secret-key stegosystem where Alice is active (adapted from Cachin

2004) ... 23

FIGURE 7. The relationship between mutual information and marginal, conditional and mutual

entropies (adapted from MacKay 2003) ... 25

FIGURE 8. The OSI model layers as per ITU-T Recommendation X.200 (ITU-T 1994). 30

FIGURE 9. IP and TCP header formats as per RFC 791 (Postel, RFC 791 1981) and RFC 793 (Postel,

RFC 793 1981) .. 34

FIGURE 10. Depiction of the data embedded in the chain of randomness .. 39

PICTURES

PICTURE 1. The first of eight tables in book III of Steganographia (Trithemius 1499). 6

PICTURE 2. First page depicting the “Ave Maria” cypher in Polygraphiae (Trithemius 1518). 7

PICTURE 3. Visualization of the synchronization (SYN) and finalization (FIN) of a TCP conversation

 ... 37

PICTURE 4. Stegop2py instance listening for incoming connections ... 43

PICTURE 5. Stegop2py instance receiving a connection request and connecting to the host 44

PICTURE 6. A Stegop2py instance having a conversation with the connected host 44

PICTURE 7. Wireshark packet capture showing initial attempt to connect ... 45

PICTURE 8. Wireshark packet capture showing 3-way-handshake. Note the sequence (Seq) and

acknowledgement (Ack) numbers, as well as source and destination IP addresses 46

PICTURE 9. Wireshark packet capture showing two hosts communicating with Stegop2py; the IP

Identification field for one message is highlighted. .. 47

PICTURE 10. Wireshark packet capture showing two hosts communicating with Stegop2py; the payload

for one message is highlighted. ... 48

TABLES

TABLE 1. Information hiding system categories (adapted from Cox, et al. 2007 p.5) 4

TABLE 2. Steganographic attack types (Johnson et al. 2001.) .. 16

TABLE 3. Types of opponents in the Prisoner’s Problem (Cox, et al. 2007) .. 19

TABLE 4. Description of the layers of the OSI model (Tanenbaum & Wetherall 2010) 32

TABLE 5. Stegop2py classes and their description .. 41

1

1 INTRODUCTION

Suppose two friends are communicating some information to each other someplace private. While they

speak, an outsider around the corner is eavesdropping on their conversation. This eavesdropping may

pose no importance to Alice and Bob or be of great importance if they would not want any outsiders

knowing and understanding the contents of their messages. The conversation in this imaginary situation

does not necessarily have to be through speech since communication and eavesdropping can take place

through many different channels.

The methods and tools that can be used to communicate thoughts, knowledge, and anything for that

matter, have been evolving ever since humans started communicating. Technology has opened the doors

to increasingly more channels for the transmission of information. Examples of this can be found

throughout history: the invention of cuneiform writing initially allowed people to keep track of livestock

and other items, and later developed to be used to express richer ideas, like ancient Egyptians’

hieroglyphs; later in history, the invention of paper and printing offered the possibility to store

knowledge for long periods in the form of books; the discovery of electromagnetic waves gave scientists

and engineers the fundamentals for building devices, like radio transmitters that allowed people to

communicate through large distances.

There is no doubt that information is one of the most important things in the modern world and it is

obvious that these advancements open more channels for humans to express themselves, but this also

creates more ways for eavesdropping. Taking the previous examples of communication media: if a clay

tablet or book is stolen, the thief can simply read the contents; or if one were to stand within range of a

radio transmission with a receiver tuned to the same frequency as the transmitter, it is possible to

intercept the transmission.

Ever since there has been the need to hide information from outsiders, regardless of the channel, different

techniques have been developed to achieve this. In the same fashion, information hiding has come a long

way along with the advancements of technology. Depending on the methods and on the resulting

transmissible object, these techniques are widely divided into 2 categories: cryptography and

steganography. This academic work focuses on the latter.

2

The primary aim of this work is to lay out the fundamental knowledge on steganography and to explore

its domain and various techniques that are used in the digital era. Complimenting this, the secondary

goal is to present a theoretical framework in an example application of steganographic techniques in a

digital computer network.

Chapter two elaborates on the history of steganology. A few examples are given on how steganographic

techniques have advanced along with technology, and a few applications of these techniques with

physical and digital media are shown. In the same manner, the concept of steganalysis is explained

shortly. The two different types of steganalysis, distortion and detection, are shortly explained to better

understand the applications and the wide domain of application.

When two parties communicate secretly by using steganographic techniques, regardless of the media

used, it is possible to describe the security of the communication system, a stegosystem, by using

information theory. In chapter three a deeper, more technical dive into what constitutes a stegosystem is

portrayed along with an information-theoretical model of a stegosystem proposed by Christian Cachin

(2004). The different types of opponents of such a system are also explained and, in addition, the

performance measurement with hypothesis-testing is explained.

Due to the broad use of internet services, the possible applications of steganographic techniques are

described in chapter four. For this, the fundamentals of the OSI model are presented, as well as the idea

behind the TCP/IP protocol stack. More specifically, the possibilities of embedding information in the

headers present in the TCP and IP protocols. Afterwards, the proposal of a proof of concept, stegop2py,

which uses these concepts to create a stegosystem that can allow two users to communicate over a

subliminal channel is presented.

Finally, conclusions on steganography as a means of secrecy in different domains as well as conclusions

on the proof that information hiding is possible within the headers of the TCP and IP protocols are drawn

in chapter five. Likewise, possibilities for future research parting from this work are given as well as

ideas for the development of tools and countermeasures to steganographic methods.

3

2 STEGANOLOGY

In older times, when the digital era was not even imaginable, apart from speech, information was

transmitted via analogue media, i.e., wax tablets, scriptures and writings, art, and other objects. To hide

information, the techniques that were used involved the modification of these mediums. Some of the

first documentations describing the use of these techniques to hide information are two ancient Greek

tales from Herodotus’s “Histories” traced back to 440BC (Petitcolas, Anderson & Kuhn 1999).

The first story relates about Histiaeus, the Greek ruler of Miletus. Histiaeus wanted to send a message

to his vassal Aristagoras. To hide his message, he proceeded to shave the hair off the head of his best,

most trusted servant. Once shaved, he “marked” the message on his scalp. Once his hair had regrown,

Histiaeus sent him on to Aristagoras instructing him, once he gets to Miletus, to shave his head and show

Aristagoras. (Petitcolas, Anderson & Kuhn 1999.)

The second story relates about the time when king Xerxes of Persia wanted to invade Greece, Demaratus

sent a warning message to notify Sparta of the incoming attack. To avoid the message being captured

during the journey, he scraped the wax off a wax tablet used for writing, wrote his message on the tablet

and then covered it with wax again. This way, the wax tablet would pass inspection by guards that would

cross paths during the journey. (Petitcolas, Anderson & Kuhn 1999.)

In circa 1499 Johannes Trithemius, abbot of The Order of St. Benedict, coined the term steganography

in his piece “Steganographia” and defined it as: “the sure art of disclosing the intention of one’s mind to

those who are absent through secret writing” (Trithemius 1499). The book relates about magical spells

and spirits summoning out of thin air within its pages, while the “real” message is embedded within

puzzles in the book using steganographic and cryptographic methods. The concept of steganography

was not known at the time, so it was considered an act of magic and heresy, so it was later added to the

Index of Prohibited Books in 1609 (Carbonero y Sol 1880, 309).

For the purposes of this work, the term “steganology” refers to the conjunction of steganography and

steganalysis, similar to how “cryptology” refers to cryptography and cryptanalysis (Cox, Miller, Bloom,

Fridrich & Kalker, 2007). In a way, it is safe to consider steganography similar to cryptography; both

try to add the element of confidentiality or secrecy to a means of communication; basically, to protect

4

messages from being picked up and understood by outsiders. The methods used, and products that are

obtained from them differ, nevertheless.

Cryptography’s main aims are to achieve confidentiality using encryption, that is, prevent an

eavesdropper from understanding a message being transmitted between two entities, often called

plaintext, using an encryption function, which’s product is called a cyphertext (Ferguson, Schneier &

Kohno 2010, 23-24). Steganography, on the other hand, has the objective to hide or conceal the presence

of a message in an innocent, legitimate communication medium, generally called cover-object

(appropriately changing the name to cover-text, cover-image, cover-audio, according to the medium),

by adding the hidden message to the cover-object using different methods and techniques, thus resulting

in a stego-object (Petitcolas et al. 1999, 1063).

Watermarking – a similar idea, is defined as the practice of imperceptibly altering a medium to implant

some information about the said medium. In contrast, but similarly, steganography is defined as the

practice of undetectably altering a medium to implant a secret message unrelated to the cover-object.

(Cox et al. 2007, 2). This concept is out of the context of this academic work but is very useful to contrast

the meaning of steganography and to emphasize its aim for secrecy.

TABLE 1. Information hiding system categories (adapted from Cox, et al. 2007 p.5)

 Cover-object has

importance

Cover-object has

no importance

Message presence

not known
Covert watermarking

Covert steganographic

communication

Message presence

known
Overt watermarking

Overt embedded

communication

TABLE 1 shows a clear separation of information hiding systems into 4 categories according to the

context. The categories are divided by the importance or dependence and value of the cover-object, that

is, if the message contains information about the cover-object, and by the knowledge of the existence of

a hidden message. Covert watermarking refers to when the cover-object carries some value to the actors

of the system and the presence of a message about the cover-object is not known, overt watermarking

when the cover-object carries some value to the actors of the system and the presence of a message about

the cover-object is known, covert steganographic communication when the message is unrelated to the

cover-object and is not known to be hidden within it, and overt embedded communication when the

message is unrelated to the cover-object and is known to be embedded in it. (Cox et al. 2007.)

5

It is usual for the addition of a watermark to any medium to be known, thus discouraging forgery or

illicit copying of said medium. This knowledge of the presence of a watermark is allowed because it is

the cover-object that carries the primary value, the reason for which it is required for the watermark to

be imperceptible. Steganography requires undetectability because it is the embedded message that

carries all the value. (Cox et al. 2007, 425-426)

2.1 Steganography

The term steganography is derived from the New Latin word “steganographia”, which combines

“stegein”, Greek for “to cover”, and “graphia”, Latin for “writing”, and as described by Cristian Cachin

(2004), “steganography is the art and science of communicating in such a way that the presence of a

message cannot be detected”. In other words, it is the transmission of hidden data through a carrier that

appears to be nothing else than what it is to an outsider. The main goal is to conceal the existence of the

data in its entirety (Johnson, Duric & Jajodia 2001, 1). The concept does not have a definite domain of

application, since anything that can carry a message can become a stego-object. In the next subchapters,

a few examples of the use of steganography are explained, divided by the type of cover-objects.

2.1.1 Physical

In books I and II of Steganographia, Johannes Trithemius writes about spirits, their names, the astrology

related to them in the form of short, poetic, and sometimes nonsensical stego-texts. The plaintext, found

within the mass of the contents, can be obtained by taking a sequence of letters from the text depending

on the system used, for example, every other letter of every other word. In the works, these systems are

literally represented as the summoning of the spirits. In book III, he depicts various tables, like in

PICTURE 1, with apparent astronomical information, which then would need to be converted to numbers

which in turn would represent letters. This system would be used to retrieve the contents of the book.

(Reeds 1998.)

6

PICTURE 1. The first of eight tables in book III of Steganographia (Trithemius 1499).

Steganographia was not the only work published on the matter. In 1518 another work he named

Polygraphiae, published posthumously, became the first known printed work about cryptology (Kahn

1968, 133). In this work, Trithemius developed a cypher called “Ave Maria”. The cypher spanned most

of the book and consisted of two columns per page. Each column would have the Latin alphabet, and

each letter – a representative word next to it as seen below (PICTURE 2). The way these tables were

used to encipher a plaintext was by talking the words associated with the conforming letters from

consecutive tables. These words make sense when put together.

7

PICTURE 2. First page depicting the “Ave Maria” cypher in Polygraphiae (Trithemius 1518).

Textual steganographic techniques can be regarded as the simplest form of steganography, although the

techniques applied may also involve a hint of cryptography, like in the previous examples.

Steganographic techniques in this domain, therefore, imply hiding plaintexts through cyphering in a

visually and intelligibly innocent cover-text. Cyphering can be done in any way imaginable, and in fact,

this proves that the less known the method is, the harder and less likely it is to discover.

In contrast to the mystical-at-the-time works by Trithemius, an interesting account of the application of

steganography with a very well-known cypher is that of Jeremiah Danton during the Vietnam War.

Jeremiah, Commander of the United States Navy was taken as prisoner-of-war in North Vietnam after

his aeroplane was shot down in the South China Sea. During a televised propaganda interview he was

forced to participate in, he was asked about his position on the actions of the United States government,

and while speaking onto the camera, he used Morse code to spell “torture” with his eyes by blinking.

This one word confirmed the intelligence reports that the prisoners of war were being tortured, despite

denial. (Bredhoff 2006.)

With these examples, it is easy to illustrate the importance of steganography in comparison to

cryptography. In the case of the works by Trithemius, the cyphers he used were completely unknown;

the real message was hidden in his books employing puzzles he created himself. If the readers of the

book would know that there was a hidden message in the books by these means, the readers would still

8

not have known the messages, since the puzzles would still have to be solved, the puzzles served as a

second protection layer, per se. If the knowledge of the presence of a hidden message would have been

known in the televised interview with Jeremiah Danton, then further actions would have been probably

taken for the worse, for example, not releasing the recording, or re-recording the interview, or something

much worse since Morse code is a widely used international standard language. This proves that

steganography hides the plaintext in the stego-object imperceptibly.

Emphasizing the fact that anything can be used as a cover-object for the transmission of hidden

information, during the harsh times of World War II, a technique was employed by spies to send

messages through mail across countries. During these times it was especially difficult to get messages

across the borders of the countries that were directly involved because it was widely known that spies

were used by many countries; incoming and outgoing mail was inspected to prevent them from

communicating back to their headquarters. The technique in question is the use of Microdots to hide

paragraph-sized texts in a tiny space. The way Microdots were created was by taking a picture of some

text using a film camera, reducing its size to the size of a film frame, roughly the size of a post stamp.

To reduce its size further another picture was taken, but by using a reverse microscope, the paragraph’s

size was reduced to that of a dot of about one millimetre in size. This dot was cut out of the film and

then put on a period or similar symbol, or the postage stamp in the cover-text in the correspondence.

(Kipper 2003.)

With these examples, it becomes evident that steganographic techniques, from the simplest to the most

complex, can take any form and are only limited by technology and one’s imagination. With the creation

of computers and the arrival of the digital era, the world of steganography suffered the same expansion.

All the information in a digital device, from text to images and audio, is encoded with bits of 0’s and 1’s

– a language that computers can interpret. The way these bits are organized to encapsulate the

information constitute the different protocols, filetypes, and such that a computer uses to store and

process information and communicate, either within the components of itself or with other devices when

connected over a network.

2.1.2 Digital

The inception of rich computer media consumption, as well as the internet, gave way to a plethora of

new media that people use to communicate daily, and with them, a whole new dimension of methods

9

and applications for steganographic applications. In the same way that textual steganographic techniques

involves the modification, reordering or replacing of character in the text, the same can be done with

digital media and the underlying bits of data they constitute. The way computers interpret and store

different media gives way to vast possibilities of information hiding within them. (Johnson et al. 2001.)

Images and video are perhaps the most popular domain of all that encompasses the topic. Hiding

information within images implies the manipulation of the bit-representation used to interpret the

intensity of each pixel. Typically, pixels are represented as blocks of 8 or 24 bits encompassing the

“amount” of colour for each channel: red, green, and blue. (Johnson et al. 2001.) Taking into account

that digital imaging, and the displaying of such images, takes place with the additive colour model.

Ignoring other colour bit-depths, in a 24-bit image the representation of each channel lies in the value of

1 byte, hence the value can range from 0 to 255, 0 being 0% intensity, and 255, being 100% intensity.

In this way, white is represented with all 3 bits set to value 255 as RGB(255,255,255), and black with

the 3 bits set to value 0 as RGB(0,0,0). The binary representations, are (11111111,11111111,11111111)

and (00000000,00000000,00000000) respectively. The total number of colour combinations possible

therefore is 224 = 16777216. (Johnson et al. 2001.)

Supposing one has a 24-bit image with a high resolution of 1920x1080 pixels, the total amount of pixels

in the image results to 2073600 pixels, and if each pixel is represented by 24-bits, the reproduced file

size will amount to 49766400 bits, or slightly less than 6 Megabytes. This size may seem viable, but for

purposes of reducing the total data during the transmission of such data, and possibly to lower storage

space when a large number of images must be stored, many lossless and lossy compression algorithms

have been created to achieve this (Johnson et al. 2001).

There are many ways information can be hidden in a digital image. A popular method for hiding

information within images is by manipulating the noise, that is, adding information that would rather be

imperceptible to the eyes. Taking the above information into consideration, the way this can be achieved

is by encoding information into the Lowest Significant Bits (LSBs) of the pixels in each image. (Johnson

et al. 2001.)

If we have a 24-bit image, since each pixel has 1 byte per channel, it is possible to store 3 bits of

information per pixel. In a 1920x1080 pixel image then, about 6220800 bits or about 760 kilobytes of

10

information can be encoded in such an image. The resulting stego-image is changed so slightly, that it

is virtually imperceptible to the naked eye (Johnson et al. 2001).

FIGURE 1. Cover-image of a water tower (left), a stego-image with an embedded message (centre), the

normalized difference between both images (right)

FIGURE 1 shows an example of the use of LSB manipulation as a steganographic technique. In the

cover-image on the left, a 2488x2488 JPEG image was embedded the full text of Shakespeare’s Othello

tragedy play in text format through graph-theoretic LSB exchange. In essence, the algorithm exchanges

the LSB of one pixel with the LSB of another one that would result in the embedding of the message.

The centre image is the resulting 2488x2488 stego-image. The right image is the resulting difference

between the original cover-image and the stego-image. The difference image was normalized to

highlight the difference further, since the initial resulting difference was too small to visualize, yielding

a nearly black image.

Many more techniques for hiding information within images exist. Not all techniques involve adding

noise to an image, but also by manipulating the compression algorithms, or the format of the image (Cox

et al. 2007.)

Similarly, for audio steganography, techniques can exploit the sensitivity of the human auditory system

by adding signal noise at levels of audio that are imperceptible (for example, LSB manipulation),

manipulation of compression algorithms, or modification of audio file formats. (Johnson et al. 2001).

11

FIGURE 2. A cover-audio spectrogram (top), a stego-audio with embedded message spectrogram

(middle), a spectrogram showing the differences (bottom)

FIGURE 2 shows an example of the use of LSB manipulation as a technique used against an audio file.

The cover-object, a 47-second-long WAVE audio file of a symphony tuning instruments before a

concert, was embedded with the same text of Shakespeare’s Othello tragedy play via LSB manipulation.

It becomes hard to judge the differences by looking at the respective spectrogram, but it is urged to note

the range of the decibels relative to full scale (dBFS) in the spectrogram of the calculated differences

and compare it to those of the cover- and stego-audios. The resulting audio file of the differences is silent

to human ears.

12

FIGURE 3. Spectrogram of audio with coordinates embedded in visual form

Another form of steganography is the embedding of messages in the form of a visual representation in

a spectrogram. This is achieved by creating an audio file that plays the specific frequencies needed to

create such a spectrogram. FIGURE 3 shows the same orchestra tuning audio spectrogram as in

FIGURE 2 mixed with the audio file created with the message. This technique is employed sometimes

by music artists, to watermark their music tracks.

Other methods for embedding messages into audio are possible: adding echoes and delays, masking low

and subtle sounds with higher and more dominant sounds, and other methods which are not mentioned

to keep brevity. (Johnson et al. 2001.)

If a cover-object has a specific form, order, or arrangement, it is possible to embed messages by altering

them in a specific way. Hardware and Software are prime examples of this. The way hardware is

organized in a circuit board, for example can be done in such a way that it functions as a watermark,

thus identifying it. If this is done correctly, then modifying the layout of the board can be difficult to do

without rendering it non-functional. Software code can be organized in the same way. (Johnson et al.

2001.)

Expanding on this idea, it is possible to send messages with hardware by removing or adding specific

electronic components in a way that can be interpreted as a message by a receiver. Although the

usefulness of such a method is questionable, it could be practical in very specific scenarios. Other very

similar methods can be employed with software; the order in which functions are called, or the hierarchy

13

of polymorphic classes can be arranged in such a way that a message can be extracted by a receiver,

given the same algorithm.

Due to the way operating systems allocate files, oftentimes not all the storage space is used. This space,

called slack space, varies depending on the formatting of the disk drive where the file is stored, and it

can be used to store information. Hidden partitions in a disk can also be used to store information; in

fact, some operating systems use a specific form of this idea for securing data. (Johnson et al. 2001.)

Given the need for transferring data and media, files are digitally represented in specific formats that

allow them to be read, processed, and serialized by electronic devices; this allows virtually anything in

the digital world to become a carrier of a secret message if applied an information hiding technique; the

technologies involved are the only limitation.

2.2 Steganalysis

If the goal for steganography is the transmission of messages in a secret way, through innocent media,

then if the presence of the message becomes known in any way, it is safe to say, that the method or

technique employed has failed. In the same way that cryptanalysis aims to decipher encrypted

information as well as break the cryptographic codes and algorithms used to do this, steganalysis aims

to discover the presence of embedded information in a carrier or to process the transferred media in a

specific way (according to known methods and techniques) to remove or invalidate the embedded

information. (Johnson et al. 2001.)

When embedding a message to some cover-object, be it physical or digital, it always involves some form

of manipulation which in turn degrades the cover-object a certain amount (Johnson et al. 2001).

Depending on the cover-object and methods used for embedding, this degradation can either be easily

detected or if the embedding method is very robust, the information can be so integrally embedded into

the cover-object that detection is very hard.

There are two categories for steganalysis attacks that can be done to objects that are suspected to be

carrying hidden information, and they are divided according to the end goal of the attack (Johnson et al.

2001).

14

2.2.1 Distortion

The steganalysis techniques that involve distortion refer to the manipulation of the stego-object in such

a way to remove the presence of a message in the carrier, thus avoiding the transmission of said message

in the covert channel. If it is suspected that a message is invisibly embedded in a carrier, it is possible to

make invisible alterations to it to achieve this. Depending on the steganographic technique that was

employed to embed data in an object, the distortion of such an object can be easy or require various

iterations of alteration to effectively remove the presence of a message. (Johnson et al. 2001.)

The ability to remove an embedded message from a cover-object depends greatly on the robustness of

the technique that was employed to hide it. In some cases, the embedding function can be effective to

the extent that the message becomes an integral part of the stego-object. In such cases, distorting the

stego-object to remove the presence of a message may not be possible without destroying the stego-

object itself. (Johnson et al. 2001.)

Depending on the cover-object used, it may be easy and cheap to distort a stego-object to attempt to

remove an embedded message. From the previous chapter, if an analyst were to try and distort

Trithemius’ works to remove the messages from them, it would be very hard or costly. The books are

written with ink on paper, therefore the only solutions would be to remove the specific markers that were

employed to hide the information in the book, like symbols, tables, and other tools that need to be used

by the reader to discover the message. This could be achieved by rewriting the book in its entirety and

omitting these markers, but even then, the hidden messages would not be removed completely due to a

few of these messages being hidden within the text itself. Due to this, the methods used by Trithemius

can be considered robust.

When digital media is used as a carrier for hidden information, distortion can also be employed according

to the kind and format of the media. In the example with the JPEG files, the data was hidden by LSB

manipulation. Due to the way lossless and lossy formats work, it is possible to convert the file to different

formats and back. Doing this will change the way the image data is compressed, therefore completely

overwriting the embedded information. (Johnson et al. 2001.)

Taking the example of the microdots added to letters from the previous chapters, applying steganalysis

one could use some scraping tools to remove any microdots pasted onto the paper. Rewriting the letter

15

when it is in transit is another rather invasive possibility. Similarly, the audio files that were used in the

previous examples of audio steganography were saved in lossless WAVE format. By converting this

audio to a lossy format, like MP3, the data hidden in the LSBs would be erased.

In general, distortion attacks on digital media mostly involve the modification of the underlying bits of

information that make up the data; but not exclusively, given that steganographic methods may also

modify the data itself as well as the structures they conform to. For example, in the case of the message

embedded visually in the spectrogram of the audio file, converting and recompressing the file will not

help to remove the image, unless the compression algorithm removes so much information that the audio

becomes noise. The point of compression algorithms is to reduce the file size of the media while

hindering the quality as little as possible; since the message is represented by audio (and not the bits of

data), the message is imperceptibly degraded.

FIGURE 4. Difference between a stego-audio in uncompressed WAVE format (top), and compressed

MP3 format (bottom)

FIGURE 4 shows an example of distortion of an audio file. The top shows the difference between a

cover- and stego-objects. The resulting WAVE file was compressed to an MP3 file with a 16Kbps bitrate

and downsampled to 6Khz. The result is the removal of a great part of the embedded data, which renders

the contained text unrecoverable.

16

2.2.2 Detection

Detecting a message in a stego-object involves applying some method to extract the message from a

suspected carrier. When attempting to use detection steganalysis methods, it is also possible to use

cryptanalysis methods where the message could be enciphered, as this is usual practice in some domains

of steganographic applications. In the same way as distortion techniques, results may vary depending on

the robustness of the embedding algorithms, and the steganography objects that are available to the

attacker at the time. (Johnson et al. 2001.)

When attempting to attack a stego-object, it is possible that the attacker might not have any information

on what the original cover-object is, the algorithms that were used, whether cryptography was used in

conjunction, and even if the message itself is known. Likewise, it is possible to have knowledge of all

or any combination of these. TABLE 2 describes the different types of attacks divided according to these

conditions.

TABLE 2. Steganographic attack types (Johnson et al. 2001.)

Type of attack Description

Stego-only attack
This is a blind attack since only the stego-object is available to the

attacker.

Known cover attack
Along with the stego-object, the original cover-object that was used is

also known to the attacker.

Known message attack

The message is known to the attacker. In these cases, it is possible to use

steganalysis to the stego-object, given the message is known, to find

patterns and signs of steganographic use that can aid future attacks, for

example, with early recognition of the presence of a message, since the

knowledge of a message does not equate to knowledge of the methods,

and if the methods are very robust, it still may be very hard to detect in

the future.

Chosen stego attack The steganographic algorithm that was used is known to the attacker.

Chosen message attack

In this kind of attack, different steganographic methods along with a

chosen message are applied to detect patterns that may point to the use of

a specific steganographic method.

17

Known stego attack The steganographic method is known, as well as the original cover-object.

There are many methods, techniques and tools for detection steganalysis. Generally, for physical objects,

it is enough to do some sort of physical inspection. Microdots, for example, can be viewed under a

microscope to reveal the information contained within (Kipper 2003). To decode the contents of the

books written by Trithemius, one must read and study the book to find the patterns and hidden markers

to further discover the hidden messages (Kahn 1968, 133).

Detection steganalysis against digital media refers to the analysis of the small distortions that are caused

by the methods used to hide information (Johnson et al. 2001). This can be considered as a whole

different field of study and is out of the scope of this paper due to a large number of media and formats

available.

In the case of FIGURE 1 in the previous chapter, where information was hidden through LSB

manipulation, a Known Stego attack was employed to view the difference between the cover- and stego-

images, thus revealing the noise caused by the embedding method. For the audio example in FIGURE 2

and FIGURE 3, two methods were used for embedding a message. With the first method, which involved

LSB manipulation of the WAVE file, the cover- and stego-audios were compared, and the differences

were isolated; the resulting audio had imperceptible artefacts. The second method involved embedding

a message visually in the spectrogram of the audio, which was discovered by creating the spectrogram

of said audio.

There are a variety of tools freely available for detecting embedded messages in different file formats.

One of the most notorious ones, which can be employed in these cases of audio and image

steganography, is Binwalk. The original purpose of the tool was to analyse firmware images and attempt

to recover files and executables that could be embedded. Nevertheless, it can be used with almost any

binary file (ReFirm Labs 2015).

18

3 STEGOSYSTEMS AND THE SUBLIMINAL CHANNEL

When steganography is used as a means of concealing information, the interaction of the parties, the

medium used, the channel, and everything else involved in the process can be described as a system,

similar to how a communication system is described. One of the best descriptions of a communication

system where secrecy is needed is the famous Prisoner’s Problem, written by Gustavus Simmons (1984).

This work is one of the first to describe a system where steganography can be used to communicate.

The problem consists of an imaginary situation where two characters, Alice and Bob, are about to be

locked in separate prison cells for a crime they committed. A third character, Eve, is a warden in such a

prison. The prisoners will not be able to communicate in person once in the cells. instead, Eve will allow

both to communicate by sending messages that are delivered to the other via the warden’s trusted guards

because her aim is to trick them into receiving forged messages making them believe it is a legitimate

one sent by the other. Eve allows this only if every message is open for her to read because she is certain

the prisoners will try to coordinate a plan to break out of the prison. Alice and Bob want to escape, so

they accept the warden’s terms. (Simmons 1984.) In this story, the prisoners must find a way to

communicate with each other to plan and coordinate their breakout, while accepting the risk of

deception. In this situation,

Simmons (1984) argues that the prisoners will only communicate with the other if the warden allows

them to authenticate the messages to avoid deception. This story is an analogy to the problem

stegosystems are good at solving. Alice and Bob, also called the transmitter and receiver, need to

establish a secret communication channel over an existing channel that is being monitored. If Eve, the

opponent, finds any signs of the prisoners devising a plan to escape, she will send them both to maximum

security prisons where it is impossible to escape; for them to succeed it is critical for them to be able to

communicate and plan their escape without Eve ever knowing about their intentions.

19

FIGURE 5. A simple stego-system model (adapted from Cox et al. 2007, 427)

FIGURE 5 shows a very simple model of the communication system established by the prisoners. The

middle line represents the communication channel that is monitored by the warden. Simmons names this

channel “the subliminal channel” because the message they intend to transmit is somehow hidden in the

cover-object.

The actions of the warden define the channel’s properties. As a matter of fact, in this situation Eve can

take 3 stances for acting upon the events in the channel: passive, active, and malicious (Cox, et al. 2007).

TABLE 3 describes the different types of stances Eve can take as a warden.

TABLE 3. Types of opponents in the Prisoner’s Problem (Cox, et al. 2007)

Type of warden Description

Passive Alice sends a message to Bob. The message first

goes through Eve for inspection. If Eve does not

find anything suspicious, Eve can forward the

message to Bob. Alternatively, if Eve realises that

the prisoners are attempting to communicate

secretly, she can stop the communication

completely, without modifying the message.

Detection steganalysis is mostly employed by this

kind of warden.

Active In this stance, every time either of the two sends

a message to the other, Eve applies steganalysis

techniques to attempt to remove the presence of a

message in its entirety. The methods applicable

Embedding

function

Extraction

function

Message Message

Key Key

Cover-

object Monitored

channel

20

by an active opponent are primarily done to

degrade the message slightly to attempt to remove

steganographic messages, without making the

message unintelligible. Distortion steganalysis is

mostly employed by this kind of warden

Malicious A warden is called malicious when the actions

taken have the main goal to discover secret

communications between the transmitters. Both

detection and distortion steganalysis is employed

by this kind of warden.

In the Prisoners’ problem, Alice and Bob had to communicate in the presence of a malicious opponent

with the chance of deception, giving the need for (explicit) authentication without secrecy. Simmons

(1984) describes the creation of a subliminal channel within the techniques used for authentication.

These scenarios are out of scope. This academic paper focuses primarily on stegosystems where the

users are faced with passive opponents since most practical stegosystems for covert communication face

this kind of opponent.

The embedding functions can fundamentally be of 3 types, depending on the cover-object and its

modification, or lack thereof. Steganography by cover-object lookup happens when the cover-objects

exist in a finite set, that is, they pre-exist and the embedding function aims to select specific cover-

objects that when applied some function, for example, a hashing function, the result is the intended

message – in the end, it is only the cover-object that gets transmitted since both sides use the same

functions. Steganography with cover synthesis happens when the cover-objects do not exist: the

steganographic algorithm aims to synthesize the stego-object given certain parameters, for example, in

the previous examples of Johannes Trithemius’s “Polygraphiae”, where the stego-object is formed by

concatenating the words that are represented by the letters of a message. Steganography by cover-object

modification is by far the most popular and complex type of steganographic function – it is used when

the cover-object exists in a finite set, and the aim is to embed the message in the cover-object by

modifying it. (Cox et al. 2007)

To make the system more secure, a key can be added to the mix. This key is a redundant piece of

information agreed upon beforehand or constantly changed according to a protocol. This key can be used

21

in various ways, for example as a seed for randomness, or the offset location for the embedding of the

message in a stream of bits. (Cox et al. 2007.)

𝑬: 𝑪 × 𝑴 → 𝑺;

𝑫: 𝑺 → 𝑴

In this way, the set of resulting stego-objects are expressed in the following expression:

𝑺 = {(𝒄𝟏, 𝒎𝟏), (𝒄𝟐, 𝒎𝟐), … , (𝒄𝒏, 𝒎𝒏)} = {𝒔𝟏, 𝒔𝟐, … , 𝒔𝒏}

The embedding and extracting process can be expressed as functions of 𝑬 and 𝑫 respectively:

𝑬(𝒄, 𝒎) = 𝒔; 𝑫(𝒔) = 𝒎;

∴ 𝑫(𝑬(𝒄, 𝒎)) = 𝒎

This must follow a rule that for every different cover-object combined with a different message, there

should not be any intersections (Konakhovich & Puzyrenko 2006):

if 𝒎𝒂 ≠ 𝒎𝒃, where 𝒎𝒂, 𝒎𝒃 ∈ 𝑴 and likewise (𝒄𝒂, 𝒎𝒂), (𝒄𝒃, 𝒎𝒃) ∈ 𝑺,

then 𝑬(𝒄𝒂, 𝒎𝒂) ∩ 𝑬(𝒄𝒃, 𝒎𝒃) = ∅.

Also, if a function that compares similarity is expressed as 𝐬𝐢𝐦(𝑪) → (−∞, 1] such that for any 𝒄𝒂, 𝒄𝒃 ∈

𝑪 it is true that 𝒄𝒂 = 𝒄𝒃 ∴ 𝐬𝐢𝐦(𝒄𝒂, 𝒄𝒃) = 1, and 𝒄𝒂 ≠ 𝒄𝒃 ∴ 𝐬𝐢𝐦(𝒄𝒂, 𝒄𝒃) < 1, then a stegosystem can be

considered trustworthy when (Konakhovich & Puzyrenko 2006):

𝐬𝐢𝐦(𝒄, 𝑬(𝒄, 𝒎)) ≈ 1 for each 𝒄 ∈ 𝑪 and 𝒎 ∈ 𝑴

Given this, a stegosystem can be expressed as the sum of all its constituents (Konakhovich & Puzyrenko

2006):

∑(𝑬, 𝑫, 𝑪, 𝑴, 𝑺)

By adding a key (𝒌 ∈ 𝑲) to the mix it is simply implied that (Konakhovich & Puzyrenko 2006):

22

𝑬: 𝑪 × 𝑴 × 𝑲 → 𝑺𝑲;

𝑫: 𝑺𝑲 × 𝑲 → 𝑴

Alternatively:

𝑬(𝒄, 𝒎, 𝒌) = 𝒔𝒌; 𝑫(𝒔𝒌, 𝒌) = 𝒎;

∴ 𝑫(𝑬(𝒄, 𝒎, 𝒌), 𝒌) = 𝒎

Resulting in a secret-key stegosystem:

∑(𝑬, 𝑫, 𝑪, 𝑴, 𝑲, 𝑺𝑲)

The secret-key stegosystem relies on a shared secret key between Alice and Bob. In reality, this stego-

key exchange is a security risk if it must be done via a transmission protocol. Eve can get this key and

use it to her advantage by deciphering the message and reading the contents, thus realizing the prisoner’s

escape plans, or using it for forging a message pretending to be either one of the prisoners tricking them

into planning a fake escape plan. (Konakhovich & Puzyrenko 2006.)

Thanks to the invention of public-key cryptography, it is possible to avoid this by implementing private-

public key pairs, instead of a single, secret key (Ferguson et al. 2010). This implies that Alice and Bob

each have their public/private key pairs. To encode a message Alice uses Bob’s public key, to decode

the message, Bob uses his private key, and vice versa. This proves to be secure because the public key

is only used for encoding a message, decoding must be done with the private keys, which are not shared

over the channel. (Konakhovich & Puzyrenko 2006.)

The use of public-key (𝒌𝒐) and private-key (𝒌𝒄) key pairs in steganographic transformation functions

would result in the following (Konakhovich & Puzyrenko 2006):

𝑬(𝒄, 𝒎, 𝒌𝒐) = 𝒔𝒌; 𝑫(𝒔𝒌, 𝒌𝒄) = 𝒎;

∴ 𝑫(𝑬(𝒄, 𝒎, 𝒌𝒐), 𝒌𝒄) = 𝒎

The resulting stegosystem:

23

∑(𝑬, 𝑫, 𝑪, 𝑴, 𝑲 = (𝒌𝒐, 𝒌𝒄), 𝑺𝑲)

The security of a stegosystem does not only rely on the embedding and extraction functions and the

stego-key used; it is also based on the choice of cover-objects as well as the set of possible messages.

Cristian Cachin (2004) defines the security of a stego-system by modelling a secret-key stegosystem

using information theory and the theory of hypothesis testing. He describes a stegosystem (FIGURE 6)

where the opponent is passive and assumes a secret-key is used for security and Alice can be in one of

two states: active – when she is sending messages secretly, and inactive – when she is sending messages

without steganographic messages. (Cachin 2004.)

FIGURE 6. Cachin's model on a secret-key stegosystem where Alice is active (adapted from Cachin

2004)

When Alice is inactive the message sent to Bob, the cover-object containing no hidden information is

taken (or generated) from a probability distribution of all cover-objects 𝑷𝑪. Eve knows this distribution

because that is the only way she will allow them to communicate. When Alice is active, she is sending

a stego-object 𝑺, which is created by embedding a message 𝒎 with function 𝑬 by also inputting a stego-

key 𝒌 and some randomness 𝑹 only known to Alice. Cachin assumes the messages are a random variable,

from the system’s point of view, taken from a set 𝐌. Given the probability distribution of cover-objects

the resulting stego-objects, computed from cover-objects in 𝑷𝑪, is therefore expressed also as a

probabilistic distribution 𝑷𝑺. When the message is sent to Bob through the public channel, Eve and Bob

24

both read 𝑺. Bob deciphers the message with the extraction function 𝑫 and key 𝒌, resulting in the

message 𝒎̂ which is supposed to give Bob some information about 𝒎. (Cachin 2004.)

Cachin (2004) models this stegosystem utilizing the entropy of probability distributions, and the amount

of mutual information between 𝒎 ∈ 𝑴 and 𝒎̂ ∈ 𝑴̂.

The entropy 𝐻 of a probability distribution 𝑷𝑿 on the values that a random variable 𝑋 can take from an

alphabet 𝝌, is expressed as:

𝐻(𝑋) = − ∑ 𝑃𝑋(𝑥) log 𝑃𝑋(𝑥)

𝑥∈𝜒

With this, it is possible to express the entropy of a message 𝒎 over the probability distribution of

messages 𝑷𝑴, or in other words, the expectancy or surprisal of a message 𝒎 when choosing from a

distribution 𝑷𝑴 as:

𝐻(𝑀) = − ∑ 𝑃𝑀(𝑚) log 𝑃𝑀(𝑚)

𝑚∈𝑀

The conditional entropy of a variable 𝑋 given a variable 𝑌 is expressed as (Cachin 2004):

𝐻(𝑋|𝑌) = ∑ 𝑃𝑌(𝑦)𝐻(𝑋|𝑌 = 𝑦)

𝑦∈𝑌

where 𝐻(𝑋|𝑌 = 𝑦) is the expectancy or surprise of 𝑋 given the condition that 𝑌 = 𝑦, namely the entropy

of the conditional probabilistic distribution 𝑃𝑋|𝑌=𝑦 (Cachin 2004). With this, it is possible to describe

the mutual information between variables 𝑋 and 𝑌 as (Cachin 2004):

𝐼(𝑋: 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

25

FIGURE 7. The relationship between mutual information and marginal, conditional and mutual

entropies (adapted from MacKay 2003)

FIGURE 7 makes it is easier to see the relationship between the entropies of two random variables, and

how the mutual information is the reduction of entropy that 𝑌 provides about 𝑋. With these notions,

Cachin (2004) defines a stegosystem (FIGURE 6) as a pair of algorithms 𝑬 and 𝑫 if there are random

variables 𝑲 and 𝑹 such that for all of 𝒎 ∈ 𝑴 where 𝑯(𝒎) > 0, namely when drawing a message 𝒎

from 𝑴 the value is not always expectable, it is true that 𝑰(𝒎̂: 𝒎) > 0, or in other words, that the

resulting message after extraction has some information, or resembles, the original message before being

embedded. The latter expression implies that the stegosystem is useful to Alice and Bob since the

message contents can be interpreted on the other side.

From Eve’s side, she does not know whether Alice is active or not, therefore whenever there is a message

being transmitted, she uses hypothesis testing to find out whether the transmission contains a hidden

message or not. Eve evaluates the message and must agree on one of two hypotheses. The first one

dictates that the transmission 𝒔 does not contain a hidden message; the second one – that 𝒔 does contain

a hidden message. If after testing, Eve finds out that the message does not contain a hidden message,

then 𝒔 is taken from the distribution 𝑷𝑪; conversely, if she finds out a message indeed is hidden, then 𝒔

is taken from the distribution 𝑷𝑺. (Cachin 2004.)

Given these distributions, it is possible to mathematically model the security of a stegosystem by means

of the relative entropy between these distributions, also called the discrimination between distributions

𝑷𝑪 and 𝑷𝑺 (Cachin 2004):

With the definition of relative entropy between two probabilistic distributions of random variables:

26

𝐷(𝑃𝑄0
∥ 𝑃𝑄1

) = ∑ 𝑃𝑄0
(𝑞) log

𝑃𝑄0
(𝑞)

𝑃𝑄1
(𝑞)

q∈Q

Cachin (2004) argues that the secret-key stegosystem (FIGURE 6) is considered perfectly secure if

𝐷(𝑃C ∥ 𝑃S) = ∑ 𝑃C(𝑐) log
𝑃C(𝑐)

𝑃S(𝑐)
c∈C

= 0

This simply means that a stegosystem is perfectly secure against a passive opponent monitoring all traffic

if it is not possible to distinguish between any possible cover-objects and any possible stego-objects.

Moreover, Cachin (2004) describes a stegosystem that is 𝜖-secure when:

𝐷(𝑃C ∥ 𝑃S) ≤ 𝜖

As mentioned earlier, it is Eve’s task to figure out whether there is a message or not in the transmission

from Alice to Bob. This is modelled with hypothesis testing. Supposing Eve makes an observation 𝑄 via

her detector out of all possible observations 𝒬, the first hypothesis 𝐻0 states that the transmission does

not contain a hidden message, and the second hypothesis 𝐻1 states that the transmission does contain a

hidden message. Given this, it is possible to define the possible outcomes for both non-stego-object

observations and stego-object observations as part of probabilistic distributions. If after making the

observation 𝑄 hypothesis 𝐻0 is true, then 𝑄 is taken from 𝑷𝑪; likewise, if 𝐻1 is true, then 𝑄 is taken

from 𝑷𝑺. (Cachin 2004.)

With this, it is possible to measure Eve’s detector’s performance on the deduction of either hypothesis

– a decision rule where one of the two hypotheses is assigned to each observation 𝑞 ∈ 𝒬. The detector’s

results upon a measurement are represented as a bit of information (hence the logarithms in this chapter

are implied to be base 2): 0 (false) if it is found that a message is a cover-object, or 1 (true) if it is found

that a message is a stego-object. Supposing both scenarios, when Alice sends a cover-object 𝒄 without a

hidden message and when Alice sends a stego-object 𝒔, two types of errors are possible: a type I error –

a false positive, occurs when Eve asserts that the transmission contains a hidden message when it does

not in reality (asserting 𝐻1 when 𝐻0 is true), and a type II error – a false negative, which occurs when

Eve asserts that the transmission does not have an embedded message when it does in reality (asserting

𝐻0 when 𝐻1 is true). (Cachin 2004.)

27

The probability for Eve’s deduction being a type I error is denoted as 𝛼. Likewise, the probability of a

deduction being a type II error is denoted as 𝛽. Given that each result of Eve’s detector’s observations

is binary, in the scenario where Alice only sends cover-objects the probability of the detector’s result

being 1 is 𝛼, and the probability for a 0 is 1 − 𝛼. Likewise, in the scenario where Alice only sends stego-

objects the probability of the detector’s result being a 1 is 1 − 𝛽, and the probability for a 0 is 𝛽. (Cachin

2004.)

The distributions of the results conform to a pair of Bernoulli distributions in the form of (𝑝, 1 − 𝑝). The

relative entropy of these distributions, namely the binary relative entropy, is derived from the relative

entropy equation as:

𝐷(𝑃 ∥ 𝑄) = 𝑝1 log
𝑝1

𝑞1
+ (1 − 𝑝1) log

1 − 𝑝1

1 − 𝑞1

If the probability distribution of the detector’s results given only cover-objects are sent is 𝑃 = (𝛼, 1 − 𝛼)

and the probability distribution of the detector’s results given only stego-objects are sent is 𝑄 =

(1 − 𝛽, 𝛽), then the binary relative entropy for the detector’s results is denoted as:

𝑑(𝛼, 𝛽) = 𝛼 log
𝛼

1 − 𝛽
+ (1 − 𝛼) log

1 − 𝛼

𝛽

Using the knowledge of the property of hypothesis testing that the entropy does not increase with the

deterministic processing of data, Cachin (2004) asserts that the probabilities 𝛼 and 𝛽 of the detector’s

errors satisfies: 𝑑(𝛼, 𝛽) ≤ 𝐷(𝑷𝐂 ∥ 𝑷𝐒).

With this inequality, it is possible to explain what it means for a stegosystem to be 𝜖-secure. With the

previous definition of 𝐷(𝑷𝐂 ∥ 𝑷𝐒) ≤ 𝜖, it is implied that:

𝑑(𝛼, 𝛽) ≤ 𝐷(𝑷𝐂 ∥ 𝑷𝐒) ≤ 𝜖

Cachin (2004) assumes a stegosystem where Eve’s detector cannot make false-positive mistakes, rather,

only false negatives (the goal for Alice and Bob). This implies that the probability of a type I error is 0.

28

By plugging this value into the binary relative entropy equation along with the other side of the

inequality:

𝛼 = 0

∴ log
1

𝛽
≤ 𝐷(𝑷𝐂 ∥ 𝑷𝐒) ≤ 𝜖

In this way, it is possible to calculate the lower bound on the probability of a type II error, that is, false

negatives for an 𝜖-secure stegosystem, by solving for β:

log
1

𝛽
≤ 𝜖

1

β
≤ 2𝜖

β ≥
1

2𝜖 or β ≥ 2−𝜖

also applicable to the relative entropy: β ≥
1

2𝐷(𝑷𝐂∥𝑷𝐒)
 or β ≥ 2−𝐷(𝑷𝐂∥𝑷𝐒)

This gives insight into what it means to have an 𝜖-secure stegosystem. In essence, it can be interpreted

such as to say that the smaller the value of 𝜖 is, and therefore the more similar the distributions 𝑷𝐂 and

𝑷𝐒 are, the more probability there is that Eve, a passive opponent, commits a type II error, in other words,

the more likely it is that Eve commits a false-negative error. For example, if the distributions 𝑷𝐂 and 𝑷𝐒

were identical, then their relative entropy 𝐷(𝑷𝐂 ∥ 𝑷𝐒) = 0. (Cachin 2004.)

Using this value in the previous inequality would yield 1, meaning that Eve will always commit errors

of type II when a stego-object is sent:

β ≥ 2−0

β ≥ 1

∴ β = 1

This information-theoretic model proposed by Cachin is impractical in scenarios like the one in the Alice

and Bob analogy, nevertheless. In reality, Eve would not let the prisoners transmit random strings of

29

bits. (Cachin 2004.) Regardless, this model is very useful in describing the security of a stegosystem,

and ultimately, all steganographic schemes try to comply with this model (Cox et al. 2007).

30

4 INFORMATION HIDING IN THE NETWORK AND TRANSPORT LAYERS OF THE

OSI-TCP/IP MODEL

When a user consumes any kind of service on the internet, it may seem like a simple process. Say,

accessing a forum to post a picture about a vacation trip is as easy as entering the URL in your browser’s

address bar, provided the device is already connected to the internet and uploading the picture that was

transferred from the device that took the picture to the computer. As mentioned in the first chapters,

technology provides the ability to communicate in ways that would not be possible otherwise. To make

the users’ lives even easier, these processes are covered with many layers that abstract the inner workings

of the systems in use to only concentrate on the stuff that matters.

With the expanding world of electronic equipment, the International Organization for Standardization

realized the need for a standard for systems that communicate information between each other, since

manufacturers would design systems that used different protocols and conventions for their systems; a

subcommittee for this issue was created under the name Open Systems Interconnection. The Reference

Model of Open Systems Interconnection (OSI model hereon) was designed based on layered

architecture, as this was quickly identified to be a viable solution for interconnectivity and compatibility

across systems with the ability to grow and expand to adapt to further needs. (Zimmermann 1980.)

FIGURE 8. The OSI model layers as per ITU-T Recommendation X.200 (ITU-T 1994).

The main principle of the OSI Model is layering and encapsulation. In essence, the model is comprised

of various stacked layers (FIGURE 8); each layer encapsulates the layers below and provides an

31

abstraction for the layer above independently providing a set of services; this allows for the functionality

of one layer to be modified, while still providing the same service without breaking the connection to

the layer above which depends on it. This abstraction allows dividing the problem of interconnectivity

into smaller pieces.

Each layer in the model solves a small piece of the problem, namely, it contains a set of services that

follow standard protocols for interacting with the same layer in another interconnected system that

follows the same model (Zimmermann 1980).

This modus operandi can be compared to that of a mail and parcel delivery service. Considering that

each country has its mail and correspondence system due to different street naming systems, sorting

procedures, and other contributing factors, it would be a hassle to understand every one of these details

just to send a letter. For this reason, layers of abstraction were created, making correspondence a lot

easier. If someone wants to send a letter to their family member across the world, first they write the

letter on a piece of paper, then they wrap the letter in an envelope. This envelope later is marked with a

destination address and dropped off at a postal box, or the local postal office. Once the postal service

processes the letter, it is scheduled for transport. In practice, the destination country is extracted from

the address, and transported via air, ground, or across oceans if necessary. Once the letter reaches the

destination country and is collected and processed by the destination’s international postal arrival

terminal, the destination city is extracted from the address, and later directed there via whatever service

applies. Once in the destination city, the city’s postal sorting facility directs the letter to the destination

street, building number, and other identifiers, until collected by the recipient.

With this scenario, it is possible to see the abstraction. For example, if the recipient has a mailbox outside

of their home, the letter is sent for delivery via the courier that travels the route where the recipient is

located and when the courier reaches the address, the letter is dropped in the recipient’s mailbox. If, on

the other hand, the recipient lives in a city where correspondence must be picked up at the local post

office with an official ID, then the letter is dropped off at the post office and a notification is sent to the

recipient. This procedure of delivery is abstracted from the layers above. The service that transfers the

letter from the international terminal to the destination city’s postal sorting facility does not care how

the letter will be delivered to the recipient. In the same manner, the service that transfers the letter

between countries does not care how the letter will be transferred to the destination city. However, the

layers below do provide a “service” for the layer above. For instance, the destination country has ports

where the international correspondence is received and passed on to inter-city delivery service, and

32

likewise, each city’s local distribution centre has reception locations where all the correspondence is

collected for further processing.

The OSI model aims to create a similar structure. Each layer contains various similar protocols that

provide the functionality to the layer’s above, independently from the layers below, thus organizing the

functions of the network in a logical structure. TABLE 4 describes the layers in more detail.

TABLE 4. Description of the layers of the OSI model (Tanenbaum & Wetherall 2010)

Layer Description

1. Physical layer The lowest layer represents the interaction between two nodes and the

physical requirements and properties of data transfer. Connections in this

layer imply physical connections between the entities, i.e., wired electrical,

wireless, fibre-optical, and other types of connections for raw bit transfer.

2. Data Link layer This layer is responsible for the data transfer and error correction between

individual connected nodes on the network.

3. Network layer The responsibilities found on this layer are the routing and forwarding of the

data across the nodes of a network, regardless of the network scope.

4. Transport layer Independent from the management of network connections, this layer

manages and coordinates the actual sending of data across systems on the

network. This layer is responsible for carrying the transfer of data and defines

the connection parameters required like the source and destination addresses

and ports, the data block size, transfer speed, and other parameters, as well as

error correction in case of failures, and other functions.

5. Session layer This layer can be thought of as the endpoint to the network. This layer

provides initiation, negotiation, management and termination of connections

with other systems.

6. Presentation layer Independent from the data display to the user, this layer provides a

“translation” service through mappings for applications that do not

necessarily support the same data semantics and syntax as the data sent down

the stack.

7. Application layer This layer is the closest to the user. This layer takes input from the user for

transmission through the rest of the model and displays incoming data to the

user in an understandable format. Although the name might suggest

33

otherwise, applications running on an end system are not part of the scope of

the OSI model. This layer makes it easier for the end-user applications to

establish connections with other user applications and services that provide

functionality on the connecting end. This does not necessarily mean across

the whole OSI model stack as different applications running on the same

device can communicate across this layer. In general, it provides an interface

for the end-user to the lower layers of the model.

This model describes a more general organization of a system for interconnection of open systems, but

another model exists, the TCP/IP or IP model, which is more widely referred to in the internet

community due to it being allegedly simpler, more accurate for modelling the Internet, and likely also

due to the fact it was created before. This model precedes the OSI model, its main goals were to be able

to connect multiple networks seamlessly and be impervious to the sudden loss of hardware between the

source and destination machines in the network. (Tanenbaum & Wetherall 2010.)

Both models have received a fair amount of critique due to differing ideas and points of view and

backgrounds, although both have much in common and neither is perfect. The OSI model clearly

distinguishes the three main concepts – services, interfaces and protocols, in the general idea; services

are performed at each layer for the layer above, interfaces inform the layer above how to access these

services, and protocols are used by each layer at its scope. The TCP/IP model originally did not clearly

distinguish these ideas. Also, the OSI model was designed before the underlying peer protocols were

created, while the TCP/IP model was designed according to protocols that already existed, therefore the

TCP/IP model fits the protocols perfectly, while the OSI model is more general, hence the criticism.

(Tanenbaum & Wetherall 2010.)

Though the discussion on the differences of these models and a deeper dive into the protocols is out of

the scope of this paper, a combination of both models is taken into account, as discussed by Tanenbaum

and Wetherall (2010). This hybrid model uses five of the OSI model’s layers, excluding the presentation

and session layers, for presenting network topology and TCP/IP’s protocol suite due to the wide

community acceptance and historical use (Tanenbaum & Wetherall 2010).

There are more internet-connected devices now than ever before. For making sure all these devices are

supported by the service and product providers on the internet, protocols are put in place which ensures

that providers and consumers speak the same language. Mostly, the protocols in the TCP/IP suite are

34

responsible for enabling and making sure of the correct transmission of data across networks. The main

two protocols in the stack are TCP and IP, hence the name. The TCP (Transmission Control Protocol)

is found in the transport layer, and it is responsible for reliably delivering streams of bytes to devices

that are connected over an IP network in an ordered way while preventing and correcting errors that arise

along the way. The IP (Internet Protocol) complements the TCP and is the main protocol in the suite; it

allows for blocks of data to be forwarded between network boundaries along the path from the source to

the destination. (Tanenbaum & Wetherall 2010.)

In essence, the way these protocols achieve their goals of correct data transmission across networks and

geographical distances is by means of fragmentation (splitting streams of data into blocks) and

encapsulation (wrapping these blocks with a header and defining the size of the block). When a host

application wants to transmit a stream of data to an application on another host, the data is prepended

with a TCP Header (layer 4) which contains the source and destination ports of the communicating

machines and other information used by the TCP resulting in a TCP Segment (Postel, RFC 793 1981).

When the segment is ready for transmission across the network, the IP may divide (fragment) the

segment into blocks if it is larger than the Maximum Transmission Unit (MTU) size, and prepends an

IP Header (layer 3) that contains the source and destination addresses, along with information needed to

reconstruct the TCP segment if fragmented, and other information specific to the IP, resulting in a packet

(Postel, RFC 791 1981). The headers for IP and TCP are described in detail in RFC 791 and RFC 793

of the IETF, respectively.

FIGURE 9. IP and TCP header formats as per RFC 791 (Postel, RFC 791 1981) and RFC 793 (Postel,

RFC 793 1981)

35

Without loss of generality, the TCP and IP protocols are selected for study due to their widespread use

in most internet services. FIGURE 9 depicts the structure of the IP and TCP headers that are prepended

to the respective Protocol Data Units (PDU, i.e. segment or packet) during data transmission. Murdoch

and Lewis (2005) elaborate on the application of steganography to fields in TCP/IP headers and identify

those that could be employed for embedding messages considering a passive opponent. The authors

point out that the header fields that can be used for embedding information are those that can take an

arbitrary value without compromising the validity of the header, in other words, those fields that if

modified the warden would not be able to detect the modification. In the IP header, the fields that are

usable for steganographic purposes are Type of Service, Identification, Flags, Fragment Offset, and

Options (Murdoch & Lewis 2005), and those in the TCP header are Sequence Number and the

Timestamp option in the Options.

The IP Type of Service header field is 8 bits long and is used to indicate the abstract parameters of the

quality of service desired along the path of the packet such as delays, reliability and throughput (Postel,

RFC 791 1981). The issue with using this field for embedding messages is that the opponent can easily

detect if this is being used, since it is set to zeroes by default in most systems, and are rarely used

(Murdoch & Lewis 2005).

The IP Identification field contains a value set by the sender that identifies the packet a fragment belongs

to, aiding in the reconstruction of the packet at the receiving end, in other words, when a packet is

fragmented, this field is used to identify the fragments that form one packet from the fragments of

another (Postel, RFC 791 1981). Given that the only constraint in this field is that the value must be

unique in a certain timespan to avoid the fragments of one packet being reassembled onto another one,

there currently are implementations that embed random data into this field although in some cases their

use can be detected since that the data in this field is not random, and may follow some detectable

patterns (Murdoch & Lewis 2005).

Referring to IP packet fragmentation, in the header, there exists a 3-bit field for Flags that are used as

control parameters. The leftmost bit is reserved, therefore always zero. The middle bit (DF, for Don’t

Fragment) is used to indicate if a packet may fragment (if set to 0) or if it should be discarded if it is too

large (if set to 1), and the rightmost bit (MF, for More Fragments) is used, if the packet is fragmented,

to indicate wether the packet is the last one in the sequence (if set to 0, also used to indicate if the packet

has not been fragmented), or if there are more packets to be transferred in the sequence (if set to 1)

36

(Postel, RFC 791 1981). This field is not very useful for steganographic applications because the

opponent can predict the correct values for these bits given the context of the communication (Murdoch

& Lewis 2005).

Also, referring to IP packet fragmentation, the Fragment Offset field is used to indicate the correct offset

in octets location where the packet belongs, aiding the receiving host with the reconstruction of the

sequence (Postel, RFC 791 1981). It is possible to embed information in this field by controlling the

sizes of fragmented packets, therefore, controlling the value in this field, but it is easily detectable since

packet fragmentation is unusual in systems where Path MTU Discovery (PMTUD) is used (Murdoch &

Lewis 2005).

The IP Options is an optional field in the IP Header that allows for extra control functions, in the likes

of timestamps, security and special routing options that may be useful, and sometimes necessary in some

scenarios (Postel, RFC 791 1981). In normal scenarios, though, this field is not needed so it is extremely

rarely used, and thanks to this it is not very useful for steganographic purposes as it results to be very

easily detected, even though some implementations exist that exploit the timestamp option in this field

(Murdoch & Lewis 2005).

To achieve reliability of data delivery, TCP has two 32-bit (4 octets) fields in its header, the Sequence

Number field and Acknowledgement field, which are used by the hosts on a network to correctly verify

that all sequences of data have been received since every octet of data is “assigned” a sequence number.

When a connection (two communicating sockets) is created, the first host (hereon host A) sends an SYN

segment, where the TCP header has the SYN (for synchronize) flag set to 1 and the Sequence Number

field set to a generated initial sequence number (ISN hereon). When the second host (hereon host B)

receives this sequence, its task is to reply with a confirmation of the initiation of the connection and to

synchronize with host A its ISN. To achieve this, host B replies with an ACK segment, where the ACK

(for acknowledge) is set to 1 and the Acknowledgment Number field is set with host A’s next sequence

number (host A’s Sequence Number field + 1); this is done in conjunction with setting the SYN flag to

1 and host B’s generated initial sequence number to the Sequence Number field. When host A receives

host B’s segment, host A replies with an ACK segment by setting the ACK flag to 1, and host B’s next

segment number (host B’s Sequence Number field + 1) to the Acknowledgement number. (Postel, RFC

793 1981). When finalizing a connection, a similar procedure is executed, only instead of the SYN flag,

the FIN (for finalize) is set to 1. (Postel, RFC 793 1981)

37

PICTURE 3. Visualization of the synchronization (SYN) and finalization (FIN) of a TCP conversation

In general, when transmitting a stream of data, each TCP sequence assigns the first octet’s sequence

number to the Sequence Number field in the header; when a host replies, it sets the next expected

sequence number to the Acknowledgement Number field in its response. PICTURE 3 shows an example

of the initiation and finalization of a TCP conversation between a local machine (IP address

192.168.0.113 on port 12055) and the servers for NASA (nasa.gov, IP address 52.0.14.110 on port 80).

APPENDIX 1 shows the breakdown of the IP Packet and TCP segment for the first incoming frame (the

second entry in PICTURE 3).

When a TCP conversation is started, the ISN must be generated with much care, to avoid overlapping

sequence numbers with multiple instances of connections in the system and minimize security risks of

attacks to the TCP stack; the implementation varies between operating systems as there is no

recommended implementation (Postel, RFC 793 1981). Rather, given the security constraints, the RFC

6528 proposes an ISN generation algorithm that takes into account a counter (𝑀) that is incremented

every 4 microseconds and a pseudo-random function (F()) that takes the source and destination

addresses and ports, and a secret key for the generation of an ISN that is difficult to guess for a host that

is not part of the conversation (Gont & Bellovin 2012):

ISN = M + F(𝑙𝑜𝑐𝑎𝑙𝑖𝑝, 𝑙𝑜𝑐𝑎𝑙𝑝𝑜𝑟𝑡, 𝑟𝑒𝑚𝑜𝑡𝑒𝑖𝑝, 𝑟𝑒𝑚𝑜𝑡𝑒𝑝𝑜𝑟𝑡, 𝑠𝑒𝑐𝑟𝑒𝑡𝑘𝑒𝑦)

A few implementations that exploit the ISN number have been developed, but given that the ISN

generation function implementations for different operating systems are known, and the ISNs themselves

are not random as they follow certain structures, they are detectable (Murdoch & Lewis 2005). The

characteristics of the resulting ISN number vary for each system and are constantly updated.

Within the Options field in the TCP header, Timestamps can be added by the host systems for measuring

the total time it takes for a round-trip between hosts for aid when channel bandwidth is low or delays

are high. This field can be used to implement a covert channel by modifying the LSB of the 32-bit

timestamps. This is detectable, though, by studying the randomness (or entropy) of the LSBs, or by

38

calculating the ratio of the number of different timestamp values observed in the TCP segments where

the transmission rate is higher than the timestamp update rate. (Murdoch & Lewis 2005.)

Considering the statements in the previous chapter, in a stegosystem where messages are embedded in

the headers of the underlying network protocols of the network environment, a passive opponent would

know the generating functions for the ISN and IP ID fields that each host is using. Even though the ISN

and IP ID numbers should not be deducible from the context, they do follow specific characteristics.

Given this, an implementation that simply encodes the information directly into the fields has the

weakness that the patterns are not followed. This allows the warden to easily detect that the fields contain

anomalies. (Murdoch & Lewis 2005.)

39

5 STEGOP2PY

A proof of the concept of networking steganography, Stegop2py, is proposed1. By exploiting the IP

Identification and the TCP Sequence number fields, it is possible to create a subliminal channel that can

be used to transmit data secretly, from one host machine to another across networks. It is a peer-to-peer

chat program, that utilizes the concepts in the previous chapters to secure messages being sent by

embedding them in chains of random bits at random offsets.

The initial idea behind the program was to embed messages solely into the TCP Sequence number field.

The first issue with this method is that the only time when a message will be embedded is on the very

first packet sent to the other host (during 3-way-handshake), given that the sequence number grows

according to the number of bytes that were sent with a packet – an implementation like this would require

the initiation of various TCP connections for every message. The second issue is that the message could

be a maximum of 32 bits long, which is very short for any realistic data transfer. These issues made this

method unviable to send messages in real-time while making the TCP communication seem legitimate.

This was averted by not using the TCP Sequence Number field as the message carrier. Instead, the

encrypted message is embedded into a stream of random data (FIGURE 10).

FIGURE 10. Depiction of the data embedded in the chain of randomness

5.1 Architecture

To be able to use the TCP and IP headers as cover-texts for the stegosystem, the program should be able

to send out forged packets including the TCP and IP headers, as well as receive them also including the

TCP and IP headers. When programming sockets in Linux, one must choose the base protocol on which

1 The source code for stegop2py can be found at: https://github.com/kn1dar1an/stegop2py

40

it will run – if opening a Stream Socket (TCP protocol), the kernel will handle the TCP functionality for

you. Using these sockets, however, does not allow you to send forged sockets, therefore are not viable

for this program. By using raw sockets in Linux it is possible to take control of layers 3 and 4 and use

them to send and receive forget packets. Referring to the abstraction layers of the OSI Model discussed

in the previous chapter, the Network and Transport layers are abstracted from the programs running in

the layers above when using normal sockets, therefore, when using raw sockets, these abstraction layers

disappear along with the services that ran in them, eliminating socket functions like accept() or connect().

Thanks to this, IP and TCP functionalities must be handled manually.

Stegop2py uses raw sockets to receive incoming forged packets, but since raw sockets are connectionless

and are not bound to a port, the data must be filtered out from all incoming data at layer 3 (IP). The

filtering is basic and is done by comparing the destination IP address, and destination port of the packets

to the IP given by the user and predefined port number; this should be enough for these purposes.

Handling of the packets, like parsing and forging them, is done with the help of Scapy, a packet

manipulation library for Python. Scapy helps to parse incoming data into scapy.Packet objects which

contain the IP and TCP headers and their fields’ values, and to forge and send them at the TCP/IP layer

3.

For handling incoming data at the same time as waiting for the user to input a message and sending it,

threads were used. One thread is spawned for listening for incoming messages and decoding them once

the connection is “established”, and another thread for a window manager which handles the user’s input

and the displaying of the messages in the terminal through the NCurses console management wrapper

for Python.

5.2 Stegosystem

For steganographic purposes, the messages are embedded into chunks of random bits at a constant, per-

connection offset. This is done to mimic the transfer of encrypted data, which looks like random data,

such as with TLS. Even though this will not make the sent packets look like TLS encrypted data when

analysed, the idea is to prove the point, because implementing TLS would require writing a TLS

implementation from scratch, which is out of the scope of this work.

41

For extracting the data, the receiving side must know the offset that was used to embed the message and

the length of the message. These are considered as the stego-keys for the system. The length key is

transferred to the user by embedding it into the lowest significant byte of the IP Identification field,

allowing for values from 0 to 255. In the case of the per-connection offset, it is randomly generated at

the start of each session, and embedded into the Initial Sequence Number when handling the 3-Way-

Handshake. The forged headers are then appended to the message data.

Before embedding, though, the message is first encrypted with a password (which is assumed to be a

pre-shared password between the users of the system) via AES. Once encrypted, the salt that was used

for encryption is appended to the message for later decryption. The IV (Initialization Vector) and key

for the AES algorithms are derived from the password and a randomly generated salt every time a new

message is encrypted. For decrypting, the same salt and password are used to derive the same IV and

key. The salt is randomly generated every time a message is sent, therefore it can be public. If the

password is different to the one that was used for encryption, the decrypted data will be corrupt.

5.3 Classes

The present classes in the Stegop2py application are described in detail in TABLE 5. A detailed class

diagram with the class methods and attributes and the relationship between them can be found in

APPENDIX 2.

TABLE 5. Stegop2py classes and their description

Class (Filename) Description

Client

(Client.py)

This class creates and contains the instances for the socket connection and

the window manager. It is also responsible for managing the shutdown of

the threads in question. Lastly, this class contains the callbacks for queuing

a message when the user inputs one, and for printing system messages when

something goes wrong. The callables are passed to the WindowManager and

the Connection classes respectively as constructor parameters.

Connection

(Connection.py)

This class is responsible for everything related to the connection to the other

host. At start-up, the client tries to connect to the host address given by the

user as a command-line argument. If the connection is unsuccessful, then

42

the connection simply listens for incoming connections at the address

provided by the user as a command-line argument. The 3-way-handshake is

also managed by this class, both for initiating them and handling incoming

attempts.

Stegocoder

(Stegocoder.py)

As the name suggests, this class manages the embedding of messages into

randomness. This includes the generation of the local Initial Sequence

Number containing the offset that will be used for embedding, storing of the

offset that was used by the other host for extraction, and encrypting and

decrypting of the messages. The encrypting of messages is done before

embedding with a password. A salt is used in conjunction with the password

to generate the necessary Initialization Vector (also called nonce) and key

for the AES-256 block cypher; this is achieved by using the PBKDF2 key

derivation algorithm. The AES cypher is instantiated every time a new

message is sent, to avoid using the same salts and keys. These algorithms

are implemented by using the PyCryptodome library.

WindowManager

(WindowManager.py)

This class is responsible for showing the formatted messages in the terminal.

It also runs on a separate thread since it runs in a loop, which constantly

checks for new incoming messages from the queue and outgoing messages

input by the user. For Python, there is a built-in module, Curses, which

wraps the original ncurses C library for terminal manipulation.

5.4 Prerequisites

Stegop2py was built using Python 3.9.5 on Arch Linux with kernel version 5.10. Logically, the Scapy2

and PyCryptodome3 must be installed via pip.

There is an issue when receiving TCP segments with raw sockets. When packets arrive at a port that

does not have an active stream socket at that port, the kernel responds to all requests by sending TCP

2 Documentation for the Scapy library can be found at: https://scapy.readthedocs.io/en/latest/
3 Documentation for the PyCryptodome library can be found at: https://www.pycryptodome.org/en/latest/

43

RST segments. To go around this issue easily, it is possible to add a firewall rule entry to drop the

outgoing TCP RST segments by using iptables4.

5.5 Usage

The program can be run on most modern terminal emulators on a Linux distribution. The program can

be started by launching the stegop2py.py Python script. The script requires 2 positional arguments, the

first is the local IP address where the program will be serving (listening), the second is the other host’s

IP address to try to connect to. Given that raw sockets can only be created and used by superuser in most

Linux distributions, the Python interpreter must run as root, for example by using sudo:

python ./stegop2py.py 102.142.34.94 92.43.184.24

PICTURE 4. Stegop2py instance listening for incoming connections

When running the script, the program will prompt the user for a password. This password will be used

for encrypting and decrypting the messages in the session. It is assumed that both hosts enter the same

password, to allow the messages to be decrypted correctly. As seen in PICTURE 4 after the password

prompt, the program attempts to connect to the host indicated by the script’s second positional argument

on port 12321 by initiating a 3-way-handshake, expecting the target host to reply to the requests, as per

the TCP standard. This will be attempted 5 times with a timeout of 2 seconds per request in the case

when no response is received.

4 Example iptables command: iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP

44

If the target host is offline, the program will listen to all traffic, waiting for a connection request with

port 12321 as the destination port. Once a connection request (TCP SYN packet) is received, the program

will handle the request by responding to the 3-way-handshake initiation. Once the connection is

established, the program will ask to press enter to begin sending messages as seen in PICTURE 5

PICTURE 5. Stegop2py instance receiving a connection request and connecting to the host

As soon as the user presses the enter key, messages can be sent and received. As pictured in PICTURE

6, the messages are displayed on the terminal window in chronological order, and a message input line

is also present. As the user types the message, it will be echoed in the terminal as expected. When sent

and received messages are displayed on the screen, the source of the message is prepended to each line.

If the message was sent by the user the word “You” will be prepended, if the message was received the

word “Friend” will be prepended, if the message is an internal, system message the word “System” will

be prepended.

PICTURE 6. A Stegop2py instance having a conversation with the connected host

45

5.6 Packet analysis

When analyzing the network traffic generated by Stegop2py with virtually any packet capture software,

it is possible to visualize the 3-way-handshake in action, as well as the messages being transmitted from

host to host.

When initially attempting to connect to a host, Stegop2py attempts to connect 5 times, with a 2-second

delay each time. As seen in PICTURE 6, Wireshark shows the last 4 attempts as TCP retransmissions,

since the destination host did not reply. When connecting, the data offset number is transmitted to the

destination host via the randomly generated initial sequence number (ISN), embedded in the least

significant byte, as highlighted in the bottom panel in PICTURE 7 (100100012 = 14210, i.e., 142 bits

from the beginning of the payload. When a connection is unsuccessful, Stegop2py stops attempting, and

starts listening for connections.

PICTURE 7. Wireshark packet capture showing initial attempt to connect

When listening for connections, Stegop2py filters out incoming SYN packets from the rest of the traffic.

As soon as a host attempts to connect, the 3-way-handshake is handled. PICTURE 8 shows the packet

capture of a successful 3-way-handshake. The connecting host initiates the handshake by sending an

SYN packet with the SYN flag set and providing their ISN; the other host replies with an

acknowledgement also initiating the connection on their side by setting the SYN flag and providing their

ISN. Finally, the first host replies with an acknowledgement of its own. At this point, it is safe to say

46

that both hosts are connected. Once stgeop2py is connected, having “negotiated” keys with the other

host, it can start sending embedded encrypted messages.

PICTURE 8. Wireshark packet capture showing 3-way-handshake. Note the sequence (Seq) and

acknowledgement (Ack) numbers, as well as source and destination IP addresses

The messages that the user inputs in the console window will be encrypted with the provided password.

The ciphertext will then be embedded into an arbitrary number of bytes between 2 to 3 times the size of

the input message, plus the session’s previously generated data offset, to randomize the total payload

length but ensure that the message can be embedded. In this phase, Stegop2py acknowledges every

incoming packet as per TCP protocol. PICTURE 8 shows the packet capture of the session mentioned

in the previous subheading.

47

PICTURE 9. Wireshark packet capture showing two hosts communicating with Stegop2py; the IP

Identification field for one message is highlighted.

When inspecting a packet captured from the conversation, it is possible to analyze the value of the IP

identification field. For the other host to be able to extract the message from the payload, apart from the

data offset, the message length must also be known. Stegop2py embeds this information in the lowest

significant byte of the IP identification field. PICTURE 9 shows that the message length is 1000002 =

3210. PICTURE 10 shows that the payload size is 57 bytes; the 32-byte message is embedded in the 57-

byte payload at a defined offset from the beginning. In the bottom panel in PICTURE 10 the highlighted

data corresponds to the payload; it is possible to see that the ASCII conversion to the right does not

convert to legitimate text, i.e., the encryption allows the message to blend in seamlessly.

48

PICTURE 10. Wireshark packet capture showing two hosts communicating with Stegop2py; the payload

for one message is highlighted.

49

6 CONCLUSION AND FURTHER DEVELOPMENT

Thanks to the advancements of communication technology and the nature of communication, it is

possible to establish communication channels with virtually anything, and due to this, anybody can

eavesdrop on these channels given the field and tools to do so. Privacy is something that everyone should

strive for, be it from merchants that track your data, or from anyone for that matter. Cryptography

provides a way to make the contents of a message unintelligible, while steganography completely hides

the presence of a message within another, innocent one. Steganographic techniques have been around

for centuries; in the second chapter, a few examples of physical and digital applications of information

hiding are presented. With these examples, it is understood that anything can be a covert carrier. A vast

amount of research effort has been put into cryptography, and steganographic techniques may indeed

seem impractical in comparison, but research in steganography for security may follow the same path as

cryptography; there already is lots of interest in information hiding as an as art.

As a primary goal, this thesis aims to provide the fundamental knowledge needed to understand

steganography as an art and to present an information-theoretic model for stegosystems with current

research that helps to measure the usefulness of stegosystems to its users, as well as the performance on

detection of a passive opponent in such a system. This is done in the hopes that the reader understands

the wide reach and domain that steganographic techniques can be applied to, and possible attacks and

countermeasures to prevent the creation of subliminal channels. As a secondary goal, stegop2py is

presented as a proof-of-concept, showcasing the possibilities of embedding messages in TCP/IP packets

and creating stegosystems in network environments.

The vast number of applications and uses of interconnected computer systems gives way to a vast

number of protocols that are employed; these protocols can be manipulated in different ways to achieve

covert communication. The TCP/IP protocol stack is a very interesting field for studying possible

steganographic techniques that can be applied, as they are the most widely used.

Stegop2py allows two users to communicate over networks by exploiting the headers that are appended

to data before sending. The encrypted messages are embedded into randomness to mimic encrypted data,

similarly to that of communication over TLS. For embedding and extracting messages, the stegosystem

requires a set of stego-keys: the offset where the data being sent starts (within the randomness), and the

length of the actual message. Both keys are transferred to the other party, via steganography. The static

50

per-session offset is embedded into the lowest significant byte of the initial TCP sequence number field

(ISN), and the length is likewise embedded into the lowest significant byte of the IP Identification field.

With the packet capture of the session shown in the previous chapter, it is possible to see the initial 3-

way TCP handshake with the first three packets, where the two clients negotiate their ISNs with their

randomly chosen offset value where the plaintext (from the steganographic point of view) is embedded.

Once the 3-way handshake is complete, the two clients are “connected” and are ready to send and receive

messages. It is also possible to see the packets where the messages are sent and, following the TCP

protocol, their corresponding acknowledgements. It is worth noting that the length of the packets varies

according to the length of the messages; this proved to be the reason for which the TCP sequence number

field was employed to embed the offset rather than the message length: the TCP sequence number can

only be manipulated once, with the ISN, given that the sequence number grows according to the message

length. This is visible when observing the (relative) sequence numbers.

This paper provides a proof-of-concept for creating subliminal channels, as depicted by Simmons

(1984), in a slim area of network environments. The underlying protocols that help internet-connected

devices around the world to communicate in the same “language” are a viable field for embedding

messages. The constant development of these protocols indeed helps to avoid their exploitation, but new

methods can still be developed; it can be safely said that to avoid covert communication channels to be

built upon these protocols in their entirety, the ability to connect to the internet must be taken away.

Murdoch and Lewis (2005), provide great research on different applications that have been developed

that exploit the fields in IP and TCP headers. The authors also develop an implementation of ISN

generation for using them as steganographic carriers that is resistant to detection, based on the actual

implementations present in the OpenBSD and Linux operating systems. The versions that were

employed, though, are not current anymore, therefore some research can be put into the review of those

methods against the current ISN generation implementations.

In the future, it would be interesting to further research into other important protocols present in the

TCP/IP stack, like the Internet Control Message Protocol (ICMP). Likewise, research must be put into

techniques for embedding messages (and their feasibility) into protocols that are higher in the OSI model,

like HTTP, Web-Sockets, SSH, and others, as well as protocols lower in the OSI model, like Ethernet

and IEEE 802.11 (Wi-Fi), and other less popular ones.

51

Moving away from communication networks, it would also be interesting to investigate the possibilities

of embedding messages into protocols that employ blockchain technology, like Bitcoin and Ethereum,

to study the use of such stegosystems given their rise in popularity in recent years.

With this knowledge, different stegosystems can be built to further prove these concepts with a tangible

and testable product in the future. In the same manner, attacks can be developed to prevent these

subliminal channels where it is deemed necessary. In the same manner, countermeasures to these attacks

can also be studied to understand the weaknesses in different systems. In addition to all this, the ethics

of creating and using stegosystems can be assessed in-depth, as the concept of steganography and its

applications can be topics of great controversy.

Regarding the proof-of-concept, stegop2py, it is imperative to improve the program to make the forged

packages truly indistinguishable from legitimate ones, for any real-world usage. This implies enhancing

the method of the ISN generation, adding more TCP protocol functionalities such as finalizing

connections gracefully (via FIN segments), adding a TLS protocol implementation to better mimic

encrypted data transfer, improving error handling, and finding more possibilities for embedding

plaintexts and sending (or deriving) any required stego-keys. Finally, a study on the efficiency and

security of such a stegosystem to measure the general usability would be of benefit.

52

REFERENCES

Bredhoff, Stacey, ed. 2006. Eyewitness: American Originals from the National Archives. London,

England: Philip Wilson.

Cachin, Christian. 2004. “An information-theoretic model for steganography.” Information and

Computation 192 (1): 41-56. doi:10.1016/j.ic.2004.02.003.

Carbonero y Sol, León. 1880. Indice de libros prohibidos mandado a publicar por su santidad el papa

Pio IX [Index of forbidden books ordered to be published by His Holiness Pope Pius IX]. Madrid:

Impr. de D.A. Perez Dubrull. https://archive.org/details/indicedelibrosp00solgoog.

Cox, Ingemar J., Matthew L. Miller, Jeffrey A. Bloom, Jessica Fridrich, and Ton Kalker. 2007. Digital

Watermarking and Steganography. Burlington, Massachusetts: Elsevier Science & Technology.

https://ebookcentral.proquest.com.

Ferguson, Niels, Bruce Schneier, and Tadayoshi Kohno. 2010. Cryptography Engineering: Design

Principles and Practical Applications. Indianapolis, Indiana: Wiley Publishing, Inc.

Gont, F., and S. Bellovin. 2012. “Defending against Sequence Number Attacks.” Request for Comments.

RFC Editor, February. doi:10.17487/RFC6528.

ITU-T. 1994. “Recommendation X.200. Information technology - Open Systems Interconnection - Basic

Reference Model: The basic model.” https://www.itu.int/rec/T-REC-X.200-199407-I/en.

Johnson, Neil F., Zoran Duric, and Sushil Jajodia. 2001. INFORMATION HIDING: Steganography and

Watermarking - Attacks and Countermeasures. Norwell, Massachusetts: Kluwer Academic

Publishers.

Kahn, David. 1968. THE CODEBREAKERS: The Story of Secret Writing. New York: The Macmillan

Company. https://archive.org/details/B-001-001-264.

Kipper, Gregory. 2003. Investigator's Guide to Steganography. Philadelphia, PA: Auerbach

Publications.

Konakhovich, G. F., and A. Yu. Puzyrenko. 2006. Kompyuternaya steganografiya. Teoriya y praktika

[Computer steganography: Theory and practice]. Kyiv: MK-Press.

MacKay, David. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge, UK:

Cambridge University Press.

Murdoch, Steven J., and Stephen Lewis. 2005. “Embedding Covert Channels into TCP/IP.” Edited by

Mauro Barni, Jordi Herrera-Joancomartí and Stefan Katzenbeisser. Information Hiding. Berlin,

Heidelberg: Springer Berlin Heidelberg. 247-261. doi:10.1007/11558859_19.

Petitcolas, Fabien A. P., Ross Anderson, and Markus G. Kuhn. 1999. “Information Hiding - A Survey.”

Proceedings of the IEEE 87: 1062-1078. doi:10.1109/5.771065.

Postel, Jon, ed. 1981. “Internet Protocol.” Request for Comments. RFC Editor, September.

doi:10.17487/RFC0791.

Postel, Jon, ed. 1981. “Transmission Control Protocol.” Request for Comments. RFC Editor, September.

doi:10.17487/RFC0793.

Reeds, Jim. 1998. Solved: The Ciphers in Book III of Trithemius's Steganographia. Florham Park, New

Jersey: AT&T Labs - Research.

Simmons, Gustavus J. 1984. “The Prisoners’ Problem and the Subliminal Channel.” In Advances in

Cryptology: Proceedings of Crypto 83, by David Chaum, 51-67. Boston, MA: Springer US.

Tanenbaum, Andrew S., and David J. Wetherall. 2010. Computer networks. 5. Upper Saddle River, NJ:

Pearson.

Trithemius, Johannes. 1499. Steganographia.

53

Zimmermann, Hubert. 1980. “OS1 Reference Model - The IS0 Model of Architecture for Open Systems

Interconnection.” IEEE TRANSACTIONS ON COMMUNICATION COM-28 (4): 425-432.

APPENDIX 1

Wireshark screen capture showing the fields of the IP and TCP headers of a captured packet during a

TCP conversation.

APPENDIX 2

Class diagram representing the classes present in Stegop2py and their relationship. The member

variables and functions and their parameters are shown.

	1 INTRODUCTION
	2 Steganology
	2.1 Steganography
	2.1.1 Physical
	2.1.2 Digital

	2.2 Steganalysis
	2.2.1 Distortion
	2.2.2 Detection

	3 Stegosystems and The Subliminal Channel
	4 Information hiding in the Network and Transport Layers of the OSI-TCP/IP model
	5 Stegop2py
	5.1 Architecture
	5.2 Stegosystem
	5.3 Classes
	5.4 Prerequisites
	5.5 Usage
	5.6 Packet analysis

	6 CONCLUSION and further development
	References

