

Kim Nguyen

BUILDING A TOURISM APPLICATION WITH REACT AND NODE.JS

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

October 2021

ABSTRACT

Centria University

of Applied Sciences

Date

October 2021

Author

Kim Nguyen

Degree programme

Bachelor of Engineering, Information Technology

Name of thesis

BUILDING A TOURISM WEBSITE WITH REACT AND NODE.JS

Centria supervisor

Kauko Kolehmainen

Pages

60

The primary purpose of this thesis was to study and experiment on a method of building a single-page

application website with the help of React, Node.js, Express.js, and MongoDB. The thesis consists of

four major contents. The first content went through the tools and requirements to work with React and

Node.js in a local machine. The second content presented the React library through generic experiments

on the React fundamental building blocks, and the integrated Babel compiler. During the second con-

tent, the thesis explained the syntax structure, behaviors, anatomy, and core mechanism of React library,

which made it a popular JavaScript library for front-end development. The third content was the study

of the back-end RESTful APIs with Node.js, Express.js. The third content thoroughly described JavaS-

cript's implementation in back-end development with the examples of building a complete RESTful

API with Node.js and Express.js according to the MVC design pattern. The fourth content was about

the process of step-by-step from planning and sketching to creating and testing a dynamic website. The

thesis also stated the importance of authentication and security of web development through the imple-

mentation of hashing algorithms and access tokens.

The result of the thesis work was a tourism website, which was a final product of the study and experi-

ence of MERN stack web development. The result showed specifically the efficiency, reliability, secu-

rity, and reusability of the core features and principles of the previously mentioned technologies. The

structure and functionality of the website were explained and demonstrated in detail.

Key words

React, ReactJS, HTML, CSS, JavaScript, Virtual DOM, Components, JSX, Node.js, Express.js,

REST, RESTful, MongoDB, NoSQL

CONCEPT DEFINITIONS

List of Abbreviations

SGA Single-page Application

ODM Object Data Model

MERN MongoDB, Express.js, React, and Node.js

I/O Input/Output

RAM Radom Access Memory

XHP PHP extension

NPM Node Package Manager

API Application Programming Interface

MVC Model-View-Controller

UCC User-created content

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

CSS Cascading Style Sheet

DOM Document Object Model

CDN Content Delivery Network

CORS Cross-origin Resource Sharing

JSX JavaScript XML

XML Extensible Markup Language

UI-UX User Interface and User Experience

URL Uniform Resource Locator

URI Uniform Resource Identifier

JWT JSON Web Tokens

ABSTRACT

CONCEPT DEFINITIONS

CONTENTS

1 INTRODUCTION .. 1

2 REQUIREMENTS AND TOOLS FOR DEVELOPMENT .. 2

2.1 The introduction to Node.js runtime .. 2
2.2 The Node Package Manager ... 3
2.3 The project manifest .. 3

3 REACT LIBRARY .. 5
3.1 The history of React library .. 5

3.2 React library's anatomy .. 6
3.3 Fetching React library from React CDN ... 7

3.4 Create a raw React Application .. 7
3.4.1 Optimizing performance with React Virtual DOM ... 10
3.4.2 Creating a React Component ... 12
3.4.3 Accessing data with React Props ... 14

3.4.4 Manipulating website behaviors with React State ... 14
3.4.5 Adding stying with React ... 16

3.5 The introduction to JSX .. 17
3.5.1 The Babel transpiler ... 18
3.5.2 Compiling JSX with Babel ... 21

3.6 Component Lifecycle ... 24

4 NODE.JS AND EXPRESSJS .. 27
4.1 Introduction to API and RESTful API .. 27

4.2 Node.js in the server-side ... 28
4.2.1 Starting a Node.js server from scratch ... 28
4.2.2 URIs structure and routing .. 29

4.2.3 Data transmission with streams and buffer ... 32
4.2.4 Node.js and asynchronous programming ... 34

4.3 ExpressJS, a node.js framework ... 36
4.3.1 Starting a Node.js server with ExpressJS ... 37
4.3.2 Routing in ExpressJS.. 37

4.3.3 The MVC Pattern ... 39

5 FINAL PROJECT ... 41
5.1 The basic ideas and plans .. 42

5.2 Sketching the UI ... 43
5.3 The front-end with React library.. 43

5.3.1 The Home page .. 44
5.3.2 The Authentication page .. 46

5.4 The back-end with ExpressJS and Mongoose ... 48

5.4.1 Planning and building a REST API with ExpressJS ... 49
5.4.2 Establishing connection with MongoDB Atlas and Mongoose 51
5.4.3 Adding password hashing function and web token ... 53

5.5 Adding Google Map API and Google Geocoding API .. 55

5.6 Testing the API with Postman .. 56

5.7 Final Result ... 58

6 CONCLUSION .. 60

REFERENCES

FIGURES

FIGURE 1. A version of Node.js on a local machine ... 3

FIGURE 2. A package.json file inside a Node.js project ... 4

FIGURE 3. The CDN links of React and ReactDOM (Facebook 2021). ... 7

FIGURE 4. An example raw React Application ... 8

FIGURE 5. The example raw React Application runs on a browser .. 9

FIGURE 6. The HTML DOM Tree of Objects (W3Schools 2021). .. 10

FIGURE 7. Five areas of the pixel pipeline (Lewis 2020). .. 10

FIGURE 8. The z-index concept (Soueidan 2015). .. 11

FIGURE 9. The calculations in the Virtual DOM reduce rendering (Eisenman 2021). 12

FIGURE 10. An example Bookmark class Component ... 13

FIGURE 11. Using state to changes the title of a component .. 15

FIGURE 12. Before and after the buttons change the title properties .. 16

FIGURE 13. Adding CSS styling in the definition of the Bookmark component 17

FIGURE 14. A JSX element ... 18

FIGURE 15. An example ES 6 arrow function inside a Node project ... 19

FIGURE 16. An example new file is created by Babel .. 19

FIGURE 17. The env preset is defined and configured in a .babelrc file ... 20

FIGURE 18. The result after transforming the arrow function... 20

FIGURE 19. An example button with props written in JSX .. 21

FIGURE 20. A result after Babel compiling a JSX code .. 22

FIGURE 21. An example HTML page contains a mainContainer ... 22

FIGURE 22. An example JSX Bookmark class component ... 23

FIGURE 23. The result after transforming the JSX component ... 24

FIGURE 24. The lifecycle event of a React component (Zammetti, 2020). .. 25

FIGURE 25. Creating a Node.js server... 28

FIGURE 26. The response from the Node.js server in port 3000 ... 29

FIGURE 27. The syntax of a URI or HTTP URL (IBM 2020). ... 30

FIGURE 28. An example of hierarchical association between path segments (Allamaraju 2010). 30

FIGURE 29. Routing with url properties in Node.js .. 31

FIGURE 30. The browser redirects after the POST request is successfully sent 31

FIGURE 31. Manipulating data stream with Buffer class .. 32

FIGURE 32. The console logs the hexadecimal chunks in buffer .. 33

FIGURE 33. The text is converted from the data chunks in buffer .. 33

FIGURE 34. An example setTimeout() function .. 34

FIGURE 35. An example of a promise in JavaScript ... 35

FIGURE 36. An example of an async function in JavaScript .. 36

FIGURE 37. Starting a Node.js server with ExpressJS .. 37

FIGURE 38. Basic routing with ExpressJS .. 38

FIGURE 39. Import a URL encoder with express after version 4.16.0 .. 38

FIGURE 40. ExpressJS parses the request body's data .. 39

FIGURE 41. A graphic example of the MVC pattern (Bakshi 2019)... 40

FIGURE 42. The JavaScript frameworks' popularity on Stack Overflow Trends (Robinson 2017). 41

FIGURE 43. The dependencies chart of the website .. 42

FIGURE 44. The wireframe design of the project .. 43

FIGURE 45. The pages and routes setup of the application ... 44

FIGURE 46. Home page without a back-end connection on browser .. 45

FIGURE 47. The Users component of the application ... 46

FIGURE 48. The login form inputs are invalid .. 47

FIGURE 49. A part of the validator hook ... 47

FIGURE 50. The function handles sending login and signup requests to the server 48

FIGURE 51. The API's file structure according to the MVC pattern ... 50

FIGURE 52. The user-route.js and places-routes files ... 51

FIGURE 53. A MongoDB collection is stored in two different shards (MongoDB 2021). 52

FIGURE 54. Establishing a database connection with Mongoose ... 52

FIGURE 55. The database schemas .. 53

FIGURE 56. Hashing and salting user passwords with bcrypt ... 54

FIGURE 57. Creating an access token with JWT ... 54

FIGURE 58. Adding and rendering Google Map in React ... 55

FIGURE 59. Implementing Google Geocoding API with ExpressJS .. 56

FIGURE 60. Sending a POST request to signup an account .. 57

FIGURE 61. A user account is stored in MongoDB Atlas Database ... 58

FIGURE 62. The home page and newsfeed .. 59

FIGURE 63. The form and the map .. 59

TABLES

TABLE 1. The URL paths of the Travelogue project... 43

TABLE 2. The endpoints of the API .. 49

1

1 INTRODUCTION

The digital age has significantly broadened the availability to access documents and information since

the rapid growth of internet connectivity and the invention of worldwide webs. Over the years, internet

bandwidth and connectivity improvements have uncountably increased the amount of data stored and

processed by worldwide webs. The rapid improvement of hardware technologies made mobile devices,

computers, and laptops more affordable and accessible every year. Since data, information, and connec-

tivity are daily increasing, websites are always challenged with enhancing performance, security, main-

tainability, and scalability. Thus, many technologies, tools, new web application architectures have been

created to support these purposes specifically. The single-page application or SPA was born as the so-

lution for large-scale with complex and heavy database type of websites. SPA is an emerging concept

of web application architecture, which has been widely adopted after the successes of various giant

companies, such as Facebook, Netflix, and Google.

The tools combination of MongoDB or Mongoose, Express.js with Node.js, and React, are commonly

known as the MERN stack web development. They are widely used to develop single-page web appli-

cations. (Carnes 2021.) React library has built-in features for front-end development, which reduce the

complexity of pure JavaScript syntax and enhance user interface development, giving websites a more

modernistic style and user experience. In addition, React also gives developers numerous choices of

utilizing third-party frameworks, for instance, Gatsby and Next.js, to boost up the developing process.

Express.js is a widely-used Node.js framework, giving the Node.js project a lean and more maintainable

structure but still keeps the logic behind the scene safe and guaranteed. Mongoose is an Object Data

Modeling framework, which is built to work inside Node.js with various core features that are

implemented to manipulate MongoDB, a non-relational database within a Node.js project. Even though

there are other alternative options, this thesis chose the MERN stack as a development tool since its

growing popularity and support from the community. The primary purpose of this thesis was to study,

experiment, and build a project with the MERN stack. The project was a user-created content or UCC

website that allows users to create accounts, store, view their images, and interact with the contents of

other users on the website.

2

2 REQUIREMENTS AND TOOLS FOR DEVELOPMENT

Programming has brought many concepts based on real-life to make them easy to comprehend. The most

popular concept is the environment concept—every application lives inside an environment built by

many tools and technologies. Developing a single-page application also requires a development envi-

ronment to maintain the application's life cycle. The first step of developing a website is to create a

development environment, and with a MERN stack project, Node.js is a fundamental tool to support this

purpose. (Zammetti 2020, 8 -9.)

2.1 The introduction to Node.js runtime

Since JavaScript is a web-based programming language, it was initially designed to only run on a web

browser. However, when websites became a crucial part of the internet, the popularity of JavaScript

started increasing. Many tools, frameworks, and environments that were built to interpret and execute

JavaScript codes were born. The increasing number of web-based technologies have greatly expanded

the territory of JavaScript to other platforms and actively changed its initial purpose. This was when

Node.js comes to play an important role. Ryan Dahl created Node.js at Joyent in 2009 as an alternative

solution for Master Control Program API, a scripting tool to manipulate website interaction (Preul 2017).

Two of the essential dependencies of built-in Node.js are the V8 engine and the libuv library. The V8

engine, written in C++, is a core JavaScript engine implemented in Google Chrome or any other Chro-

mium web browsers to parse and execute JavaScript programs. The libuv library is the vital part that

makes the famous asynchronous behavior of Node.js or non-blocking I/O operations (Salim 2020). To

install Node.js runtime, developers need to access https://nodejs.org/, and there are always two options

for downloading Node.js to a local machine, the recommended version and the latest version. After

choosing the suitable version, developers can click on the download button that displays the version to

download a Node.js installer, wait until the download finishes and activate the installer file. The Setup

Wizard then walks developers through the setting, step by step. Figure 1 demonstrates a local machine

successfully installed Node.js, developers can check the version by typing node -v or node --version on

the command prompt. With Node.js installed inside, any local machine now can be a JavaScript devel-

opment environment, or in other words, they are capable of executing JavaScript programs.

(Yushkevych 2021.)

https://nodejs.org/

3

FIGURE 1. A version of Node.js on a local machine

2.2 The Node Package Manager

Node Package Manager or NPM is a free-to-use application that installs alongside Node.js, even though

it was developed separately and may have a different update schedule. The general idea of NPM was a

central package registry containing reusable and downloadable JavaScript modules or node packages.

Each package has specific functionalities, for instance, authentication or authorization, that can be

implemented to any Node.js project (Zammetti 2020, 8 -11.). NPM operates with two main parts, a

command-line interface or CLI tool for publishing and downloading node packages and an online central

repository or registry. The central repository is available for visiting at https://www.npmjs.com/. The

NPM command-line tool supports various basic features that manipulate any node package inside a Ja-

vaScript project. For example, the command npm install allows the Node.js program to download a node

package or npm init to create a package.json file in a Node.js project. (MDN 2021.)

2.3 The project manifest

Most of the NPM/Node projects contain a package.json file in the root directory as the project manifest

file. The package.json file provides metadata information of the project to NPM that it needs to perform

certain tasks, such as downloading available modules from its central package repository, which are

required inside the project. It also contains the name, version, description, author, and information of

integrated tools inside the project. (Zammetti 2020, 12 -13.)

https://www.npmjs.com/

4

FIGURE 2. A package.json file inside a Node.js project

Figure 2 illustrates the dependencies and devDependencies parts inside a package.json file. The term

dependency in any JavaScript project usually means a third-party software that solves a single problem.

These third-party software pieces are preferred as node modules or node packages when NPM stores

them on its central repository. Whenever NPM installs a module or package, it declares the module's

name in the dependencies part of the package.json file. Inside every Node.js project contains a

node_modules folder, the largest folder in the project. All the declared modules in the package.json file

live in this folder, and it is detachable to reduce the project's capacity, which is essential for storing and

transporting files. Later, these modules are able to reattach to the project with the npm install command

by NPM. NPM looks into the package.json file and downloads all the declared modules from the central

package repository. (Zammetti 2020, 13 -14.)

5

3 REACT LIBRARY

Over a decade, many vibrant JavaScript frameworks/libraries/toolkits have been made for building web-

based client applications, and there were a few popular options that had reached the top, and React was

one of them. The following sections explain the popularity, structures, and core features of React, which

made it a dominant front-end library for Single-page Applications. (Zammetti 2020, 44 -45.)

3.1 The history of React library

Back in 2010, when Facebook was still using PHP, a popular general-purpose scripting language, as

their primary tool, it later brought them into many issues with code maintenance. Consequently, these

issues began to affect their development velocity and delivered quality significantly. Due to this prob-

lem, the engineers introduced XHP into their PHP stack to improve the situation, improve syntax, and

make PHP code more readable. The initial concept of XHP was to provide the notion of composite

components, which allows developers to break down an interface into mostly independent but easily

integrated units of functionality. Then, in 2011, FaxJS was created by Jordan Walke from a part of XHP

as a prototype, which contains several critical characteristics of React, including updating views with

states and interface components. (Zammetti 2020, 44 -46.)

In 2012, Facebook again ran into more security problems with their advertisements management on the

site. Since other servers usually serve the advertisements, Facebook does not control what they are,

which creates a security loophole for the anonymous to break into their website. XHP was expected to

be the primary tool to solve this problem. However, XHP principally focuses on minimizing Cross

SiteScripting or XSS attacks, which inject malicious browser-side scripts into benign and trusted web-

sites since some browsers at that time could not detect whether the scripts are trustworthy or not. The

malicious script can access any cookies, session tokens to gain access into end-user accounts of any

website or any sensitive information retained by the browser or even rewrite the content of the HTML

page. But XHP still has a critical disadvantage, a dynamic web application requires clients to send many

roundtrips to the server, and XHP does not help reduce them. The engineers at Facebook began to search

for the solution, and FaxJs answered, which later would become React library. (Dawson 2014.)

In May of 2013, Pete Hunt and Jordan Walke published React as an open-source project, but the library

did not impact the market until 2014 when several factors favored React. For instance, Google released

React Developer Tools as an extension of Chrome Developer Tools, giving developers a robust set of

6

equipment to develop and debug React applications. Many integrated development environments or IDE

began to introduce native support for React. The peak started in 2015 when Flipboard, Netflix, and

Airbnb all began using React to help their workload of the client-side. Since 2017, React has grown

increasingly and has become the most popular library for building client-side applications. (Zammetti

2020, 44 -46.)

3.2 React library's anatomy

As mentioned above, after version 0.14, React library has been separated into two packages, React and

ReactDOM, because they support different purposes and have other mechanisms. Since version 0.14,

Facebook has developed more packages explicitly for React libraries to expand their functionalities and

create more convenient tools for React developers. There is a folder named packages, which lies inside

of React library and can be found in React's Github repository. The folder stores all features of the

library, from testing tools, debug tools, and core features to manipulate the user interface. However, they

all still have to work around two and core packages: React and ReactDOM. React is responsible for

creating views, and ReactDOM is used for optimizing the render of the UI in the browser under the

hood. The list of dependencies of React library is available in the package.json file on their Github

repository, which shows the technologies being used to create its behaviors and features. The list con-

tains several key names start with @babel. They are plugins from Babel, a JavaScript compiler. These

plugins are built specifically for React library, which plays a vital role in translating the syntax of React

library so any browser can function correctly. This thesis also covers the information of Babel in section

3.5 JSX introduction. (Bank & Porcello 2017, 84 -87.)

7

3.3 Fetching React library from React CDN

To see through the mechanism of React and ReactDOM, the React library also provides their scripts

from Facebook CDN or Content Delivery Network or sometimes is also preferred as Content Distribu-

tion Network. A CDN is a group of servers allocate around the globe and store duplicate data to facilitate

the distribution of information generated by Web publishers quickly and efficiently. (Taylor & Francis

2010, 32 -33.)

FIGURE 3. The CDN links of React and ReactDOM (Facebook 2021).

Figure 3 shows the crossorigin attributes, which are recommended to set up with the CDN Links of React

because of security purposes. Cross-Origin Resource Sharing or CORS is an HTTP-header base mech-

anism used to inform that the HTTP/HTTPS request comes from the same domain, scheme, or port of

the current requested server. For instance, the front-end code from https://domain-a.com demands access

to a resource of https://domain-b.com/data.json. For security purposes, the browser restricts this request

because they are technically from two different domains. The request has to follow the CORS policy to

access this resource, which means the script must inform the server that it is a cross-origin request by

adding the crossorigin attribute. (Kosaka 2018.)

3.4 Create a raw React Application

A raw React application can be built without installing any module or JavaScript runtime. All it needs

is a text editor and a browser. For example, Figure 4 is a React application with raw React code injected

directly into HTML code. In this example, the React and ReactDOM package were distributed from the

Facebook CDN, and when this application started, it downloaded the react.development.js and react-

dom.development.js code (Zammetti 2020, 48 -50.). Here in Figure 5 is the result when the pure React

code ran on a browser.

https://domain-a.com/
https://domain-b.com/data.json

8

FIGURE 4. An example raw React Application

The mechanism behind the scene of the example React application can be explained concisely. Every

HTML and JavaScript code is executed from top to bottom. In Figure 4, the browser firstly scanned the

code from line 1 to line 7, and it received a command to download the raw React code from the CDN.

From line 8 to line 36, it received a declaration of a function named start(). The function used other

methods from the React and ReactDOM packages that were downloaded previously to create elements

and rendered them inside an element with the id of mainContainer. The React keyword was treated as a

class inside the example project, and this React class provided various methods to manage the logic of

the DOM API. The term DOM API refers to a collection of objects that JavaScript can apply to interact

with the browser. Some examples of manipulating DOM API are the document.createElement() and

9

document.appendChild() methods, which are often found in many pure JavaScript static websites. None-

theless, among all the methods provided by React, the React.createElement() method is an essential topic

that needs to be focused on since it relates to creating the most basic fundamental factor of React library.

(Champion 1997.)

FIGURE 5. The example raw React Application runs on a browser

The createElement() method accepts three arguments, and the first argument is the type of element. This

type technically means any HTML tag of choice, which is written in string type, for example, 'div' or

'span'. The second argument is props, which means the properties of a DOM element, or in other words,

it also the attributes of an HTML tag. The props argument's default input is defined as an object contain-

ing all the predeclared attributes of an HTML tag. However, some of the HTML attributes are not re-

quired to be predefined and can be expressed by an empty object or null. For instance, on line 17 of

Figure 4, there was an object containing a href attribute with a link https://reactjs.org/. The last argument

is the children's argument, which is used to store the child text or nest many React elements into each

other to create a more complicated element or a tree of elements, also called a DOM tree. The React.cre-

ateElement() method constructs a new React element, which is the most crucial and smallest building

block of the visual interface of a React application. However, the DOM tree was only constructed when

the browser scanned to line 38 when it received an onload event and starts executing the start() function.

After finishing constructing the DOM tree from many nested React elements in Figure 4, the render

method in the ReactDOM package did its job, rendering the DOM tree to a visible website in Figure 5.

(Chavan 2021.)

https://reactjs.org/

10

3.4.1 Optimizing performance with React Virtual DOM

The question came where React library separates ReactDOM into a different package when seemingly

the only job of ReactDOM was to render a React element into a real DOM on a website. However,

rendering a DOM element correctly without heavily affecting a website's performance was incredibly

demanding. To solve this problem, React library introduced their Virtual DOM, which lives inside the

ReactDOM package. The DOM tree technically represents the UI of a particular website. Whenever a

change appears on the website, the DOM tree updates itself according to the change. The difficulty of

updating the DOM tree comes when many changes occur, which significantly slows down a website.

(Facebook 2021.)

FIGURE 6. The HTML DOM Tree of Objects (W3Schools 2021).

The DOM tree displays in Figure 6 as a tree of data structure, making it easy to detect the changes inside

the DOM tree by searching for each level of the tree. Nonetheless, the difficulty appears clearly when

any change happens with any element on the upper levels of the DOM tree, which is nested by many

complex children and descendent elements. Then the DOM tree has to update the entire complex struc-

ture of that branch to reflex the changes. (Ravichandran 2018.)

FIGURE 7. Five areas of the pixel pipeline (Lewis 2020).

Nowadays, every web browser applies the pixel pipeline to render a website, which usually is divided

into five major areas. The first area in Figure 7 happens when a JavaScript code triggers a visual change,

11

and the browser detects and changes the DOM tree. The next area is style calculations, which find CSS

style rules for each element based on the CSS selectors. When all the CSS rules of every element are

found, they are applied to create the final rule. After every element has its final CSS rule, the layout area

kicks in, where the browser calculates the volume and position of each element on the screen. Since the

style of the descendent elements can affect the style of ancestor elements, the process sometimes needs

to repeat to recalculate from the upper levels where these affected ancestor elements live. (Lewis 2020.)

FIGURE 8. The z-index concept (Soueidan 2015).

The next area is the paint area, where the pixels start filling and drawing out text, colors, images, borders,

and shadows, every visible part of the elements. Some elements sometimes stack on each other, creating

many layers, as in Figure 8. Because of these layers, the final area of rendering a website is compositing.

In this area, the browser keeps the layer stack order because a single mistake can result in one element

being displayed on top of another. The pixel pipeline mechanism will slow down a website's perfor-

mance if it has too many complex UI elements. A minor change triggers the update of an entire branch

of the DOM tree, which forces the browser to handle more evaluating, detecting, calculating, painting,

and compositing. In other words, the more extensive scale the website is, the more expensive resource

every update consumes. Thus, React library presents an alternative update strategy to solve the problem,

which is the virtual DOM. (Lewis 2020.).

12

FIGURE 9. The calculations in the Virtual DOM reduce rendering (Eisenman 2021).

Virtual DOM is the virtual representation of the actual DOM tree. The difference between the docu-

ment.createElement() and React.createElement() is that the document.createElement() method creates

an element directly in the actual DOM, and the React.createElement(), on the other hand, creates an

element in its own virtual DOM tree. The same mechanism is applied to update or delete any React

element, which only changes the virtual DOM tree. After all the changes, ReactDOM has a special fea-

ture called diffing, where it compares the differences between the virtual DOM tree and the actual DOM

tree, then it calculates the most efficient strategy to make these changes to the real DOM tree. Hence,

ReactDOM reduces a remarkable cost for every update to the actual DOM tree. (Ravichandran 2018.).

3.4.2 Creating a React Component

Strong reusability is one of React library's primary concepts. To achieve reusability, React delivers a

feature called component. A component is also a fundamental building block of React library, containing

one or many React elements. In many websites, some segments have some identical functionalities, for

instance, logos and icons. They may require different sizes or displays different shapes, but their core

functionality is displaying a symbol. Based on these characteristics, they are categorized as the same

type of component. So whenever a website needs an icon or a logo, they can reuse a component that

displays a symbol and customize them slightly to fit the purposes. (Sathananthan 2021.)

13

FIGURE 10. An example Bookmark class Component

Figure 10 presents a class named Bookmark, which is one common way to create a React component;

this type of component is called the class component. Every class component is created by the inher-

itance of the Component class inside React library. On line 12, the class Bookmark inherited all the

properties and methods from the React.Component class by using the keyword extends in JavaScript. In

2019, React released version 16.8.0, which introduced a new way to create a React component called

the functional components or React Hooks. Functional components are more straightforward to catch up

with than class components since they do not follow the rules of Object-oriented Programming. Alt-

hough they are created in different ways, they serve the same purpose. A class component or a functional

component only needs to create once and use everywhere. (Surasani 2019.)

14

3.4.3 Accessing data with React Props

React components need data, and the props object is responsible for passing data into components. Inside

the Bookmark class component or functional component, there is a props member that stands for prop-

erties. As mentioned before, every component contains many React elements; each element has its at-

tributes, for instance, the href attribute for the <a> tag link. Every attribute receives data the same way

a variable receives a value; for example, the href attribute accepts a URL as a value so the <a> tag can

display and redirect a webpage to the given URL. The React.Component class from React provides an

object named props, allows external data to be passed into a component as properties of the object. On

lines 30 and 35 of Figure 10, when a new Bookmark component was created, new values of href attrib-

utes were passed into the component through the props.href, which was a property of the props object.

Furthermore, data is commonly passed from a parent or the topmost component to children components,

and the props object does not limit to delivering a specific type of data. Since React components are

customizable, properties of the props object can also be user-defined attributes to serve different com-

ponents' purposes. For example, the props.title, and props.description were user-defined attributes,

which received user-defined data in Figure 10. Moreover, the props object plays a crucial role in creating

React components' reusability since it can store and pass data from one component to another. The

mechanism of the props object can be seen more clearly in functional components, where a props object

is passed to a component in the same way as an argument is given to a function. In addition, there are

two more important notes whenever the props object is used. Firstly, the props object is only passed into

a component when the component is created. Secondly, the properties of the props object are immutable

and read-only; the rendering mechanism of ReactDOM can explain this. Any time a change occurs inside

a component, the virtual DOM starts detecting and diffing the change from the virtual DOM tree. Then

the virtual DOM technically destroys the old component and replaces it with a new one from scratch,

and a new props object is passed again into the component, giving a different result. For this reason, the

props objects cannot be changed once they are passed to the children components, so React introduces

state as a better way to update data inside a component. (Zammetti 2020.)

3.4.4 Manipulating website behaviors with React State

The previous section explained how props object works in a component as well as the effectiveness

when it is mutated. To give a more effective way to handle mutable data, React library provides state as

a solution. Every component has one or many default states. Any change that happens to these states

15

does not trigger ReactDOM to destroy the entire component and create a new one. Instead, it only in-

forms ReactDOM changes a portion from the component that needs to change and updates that piece to

the virtual DOM to minimize the real DOM change. In Figure 11, the Bookmark class had a constructor

which printed a dialog when a Bookmark component was created. Inside the render method, a button

changed the title property of the props when a click event occurred. The plan was to inspect whether the

change triggered the ReactDOM to destroy the old component and recreate a new one. (Zammetti 2020,

57 -59.)

FIGURE 11. Using state to changes the title of a component

Figure 12 demonstrates when the first time the application was executed, two Bookmark components

were created. Hence, the console printed out the dialog "Bookmark component created" twice. Also in

Figure 12, when the buttons were clicked and changed the title of two Bookmark components, the con-

sole did not print out any new dialog, proving that the constructor method did not create any new Book-

mark component. The result of the setState() method on line 27 in Figure 11 informed React that the

components needed to be adjusted partly instead of being recreated entirely. The setState() receives two

16

arguments, an updater and a callback function. An updater can be either a function or an object. How-

ever, if the updater is a function, it needs two arguments to work properly. The updater function returns

a new state for the component. (Zammetti 2020, 57 -59.)

FIGURE 12. Before and after the buttons change the title properties

One important note is React does not recommend making direct changes by assigning new values to the

this.state property, which is the default state of any component. To update a new state of a component,

React always requires using the setState() method. The setState() method is asynchronous and does not

immediately work when it is evoked. The setState() method has a procedure for updating new states

since a component can have many states, and many components may need to update their data. React

combines many update requests from the setState() methods into one batch and schedules them. The

update is performed only when the scheduled time comes. Any direct change inside a component before

the scheduled time is overwritten when React performs the updates in one batch. (Zammetti 2020.)

3.4.5 Adding stying with React

Behind the scenes of React library, everything is built inside the application by HTML, CSS, and JavaS-

cript. The components are rendered based on the combination of those. However, React library supports

styling the UI with CSS in three traditional ways. The first method is using the <style> tag to inject

styling into the application. It is the same way as adding internal CSS styling to an HTML page. The

second method is creating an external .css file for styling and importing it to the application. This method

17

is the best practice since it separates styling away from other files and reduces later maintenance com-

plexity. The third method of adding styling is inline style, which adds CSS styling directly to an element

using style prop. Figure 13 shows a CSS styling was added into a <h2> tag as an inline CSS by using

the style prop. The value of the style prop must be an object, which contains valid CSS properties and

values, for example, color and font-size properties. Usually, CSS styling is added directly to the defini-

tion of any React component to achieve the encapsulation of Object-oriented Programming. (Zammetti

2020, 60 -62.)

FIGURE 13. Adding CSS styling in the definition of the Bookmark component

3.5 The introduction to JSX

The previous sections provided roughly the core ideas, basic structures of React library using the raw

syntax, which is cumbersome as using DOM API. In section 3.2, a mentioned technology called Babel

played a crucial role in simplifying the syntax of React and improving the developing process. Using

Babel, React gives developers another option to work with a special syntax called JSX, a syntax exten-

sion to JavaScript. Figure 14 shows JSX is a mixture of HTML and JavaScript, which gives a more

straightforward and declarative structure to any React project. (Facebook 2021.)

18

FIGURE 14. A JSX element

3.5.1 The Babel transpiler

Before version 0.14, React used an in-house tool called JSXTransformer to translate their JSX syntax

into a pure JavaScript syntax so that the web browsers can understand and run the code (O'Shannessy

2015). Since 2015, after version 0.14, React library has gone through a major change when developers

split it into two separate packages, React package and React DOM package. This separation serves the

clearness and essence of React, which does not have any functionality related to the browser or the

DOM. Another major update from React library was the compiler optimization when React library

started to take advantage of the JavaScrip syntactic sugar, the ECMAScript 6 from Babel. (Alpert 2015.)

Babel is technically a transpiler, which means it transforms and compiles code at the same time. Babel

compiles JSX and transforms the new ECMAScript 6 syntax into the syntax that allows every browser

to work without throwing errors. There are two ways to work individually with Babel. Babel compiler

is available online at https://babeljs.io/, where it allows developers to write JSX or TypeScript and see

the compiled results. The other way is to install Babel to a local machine by using NPM or any other

package manager tools. The first step of installing Babel is initializing a Node project by the command

npm init. After creating a node project, Babel can be installed by npm through the command line. As

mentioned above, Babel is capable of transforming the new syntax of JavaScript to the version that every

browser supports. The arrow function in JavaScrip is an example. The arrow function works in the latest

versions of Chrome, Firefox, and Opera but does not work in Internet Explorer 11. So to make sure every

new JavaScript-based project does not break in Internet Explorer 11, Babel changes them into the older

syntax. Figure 15 shows a node project contains an index.js file, and inside the index.js file uses an arrow

function. (Zammetti 2020, 68 -70.)

https://babeljs.io/

19

FIGURE 15. An example ES 6 arrow function inside a Node project

Babel has several plugins, and each serves different purposes. In this case, to transform the arrow func-

tion, Babel has a specific plugin to perform this feature. This plugin can be downloaded by npm through

the command line. After the plugin is downloaded, it still needs to be defined to work correctly inside a

Node project. Every plugin is defined inside a .babelrc file. When the .babelrc file defines the plugin,

Babel could transform the code inside the project according to the plugin's feature by issuing the npx

babel command. The transformation of the code in Figure 16 was made by Babel. The arrow function

was converted into a standard JavaScript function, and the code now works in even Internet Explorer 11

or the latest versions of Chrome, Firefox. In addition, Babel also supports outputting the result into a

new file instead of displaying it on the console. The command "npm babel index.js –out-file index-

complied.js" was used to create a new file, which contained all the code that Bable transformed. Figure

16 also shows the result after the command was issued, the index-compiled.js file was created inside the

project where all the transformed code was stored. (Zammetti 2020, 70 -71.)

FIGURE 16. An example new file is created by Babel

However, it is inconvenient to download a plugin and configure it to perform a single JavaScript feature.

Babel provides the presets, where it logically groups many plugins and allows developers to enable all

in one batch. There are many presets, but the two most popular presets are env and react, which were

developed specifically for React library. Babel presets also need to be downloaded and defined to work

inside the .babelrc file. After downloading the preset, it needs to be configured to work as the developers

20

desire in the .babelrc file. Figure 17 shows the env preset in a .babelrc file, and this preset informed

Babel to tweak the transformation of the code to be compatible with the versions defined inside the file.

(Zammetti 2020, 70 -71.)

FIGURE 17. The env preset is defined and configured in a .babelrc file

As in Figure 17, Babel had to transform the code to be compatible with the last three versions of all

browsers and version 6 or above for Safari. When the configuration is finished, Babel could transform

the code by issuing the npx babel command, and the result is different depending on how the preset is

configured. Figure 18 illustrates when the command "npx babel index.js" was issued, the env preset was

used to transform the ES arrow function. The only difference from the result in Figure 16 was the "use

strict"; mode added on top. Since the env preset was built on many plugins, Babel can use this preset to

perform many JavaScript conversions without importing numerous plugins for every compilation in one

project. (Zammetti 2020, 70 -71.)

FIGURE 18. The result after transforming the arrow function

21

3.5.2 Compiling JSX with Babel

The way Babel compiles JSX syntax to standard JavaScript syntax is the same as it transforms ES6

syntax to standard JavaScript. Babel has a specific preset built only for compiling JSX; it is the react

preset. And to work with this preset, it also needs to be downloaded inside a Node project using a down-

load command from either NPM or any other node package manager tools. The next step was defining

and configuring the preset inside the .babelrc file, the same as the env preset. The react preset compiles

exclusively the JSX syntax code. Hence, the Node project needs to contain JSX based-code to test the

react preset. In Figure 19, an index.jsx file was created, which is a button with a color property in it.

(Zammetti 2020, 71 -72.)

FIGURE 19. An example button with props written in JSX

The npx babel command was issued to instruct Babel to compile the JSX code through the react preset.

After the npx babel command was executed, Figure 20 demonstrates Babel's standard JavaScript code

compiled from the JSX button element in Figure 19. The syntax in figure 20 is also identical to the syntax

that was used to create the Bookmark class components in previous sections. In section 3.4, the Book-

mark components were created by using the raw React syntax, and it was recreated in this section. How-

ever, the component in this section was recreated in the JSX syntax to see how convenient JSX syntax

is, and the project used the CDN from Facebook instead of downloading and importing React library to

the local files. (Zammetti 2020, 71 -72.)

22

FIGURE 20. A result after Babel compiling a JSX code

Figure 21 shows an HTML page where a <div> tag with an id of mainContainer lived. The term container

is also referred to a <div> tag where all the components are rendered. In other words, this mainContainer

<div> tag contains all the components of the project. In Line 8, a script tag was used to import an index.js

file, although at the moment the index.js file is not created yet. The plan was to use Babel to compile all

the JSX code inside the index.jsx into the standard JavaScript code and store them in an index.js file.

The process was similar to the above examples. However, this example introduced some new ways to

use the props object to store and pass data to components. (Zammetti 2020, 72 -73.)

FIGURE 21. An example HTML page contains a mainContainer

Figure 22 shows a new Bookmark class component, which was defined inside the index.jsx file. Later,

React DOM rendered the Bookmark component with the ReactDOM.render() method. Thanks to JSX

syntax, the Bookmark components inside the ReactDOM.render() method were now more readable. All

the previous Bookmarks components inside the render() method were wrapped inside the React.cre-

ateElement(), which was more complicated when the project expanded to a larger scale and contained

23

hundreds of components; it can cause significant difficulty for maintenance. In figure 22, the JSX syntax

helped omit all the React.createElement() methods and replaced them with a friendly syntax, which was

identical to a mixture of HTML tags and JavaScript objects. (Zammetti 2020, 73 -74.)

FIGURE 22. An example JSX Bookmark class component

The JSX syntax also helped the chaining of components become straightforward since every component

had a structure of an HTML tag with props as element attributes. During the experiment of this thesis,

the class was a new feature of JavaScript that was not supported in the react preset, Babel was required

to download another plugin to compile this class feature into a compatible code for the react preset. After

installing, the plugin needed to be defined inside the .babelrc file before using it. The next step was to

compile the index.jsx file, store the compiled code to an index.js file, import the code from the index.js

to the index.html, and test the result in a browser. Once the command "npm babel index.jsx –out-file

index.js" was executed, Babel started compiling the JSX inside the index.jsx file and creating an index.js

file to store the result in it. After the JSX was compiled, it was imported into the index.html file by the

<script> on line 8 in Figure 21. And Figure 23 shows the result of the JSX code after finishing compiled

by Babel. The index.js file was created by Babel, containing all the code that was compiled from JSX.

24

The compiled code was partly identical to the raw React code in the previous example, and both function

in the same way, giving the same result. (Zammetti 2020, 75 -76.)

FIGURE 23. The result after transforming the JSX component

3.6 Component Lifecycle

There are two ways to create a React component, and both were introduced in section 3.4. Before version

16.8, React was still heavily dependent on class components and Object-oriented Programming. With

class components, React gives developers the possibility to create the application with the Object-ori-

ented style, which stimulates their components abstractly close to the real-life objects. And it also gives

developers more methods to control each component, known as the component lifecycle. However, it

brings more complexity to the project when too many projects and relationships exist between them.

25

When React version 16.8 was released, the functional component became popular. The functional com-

ponents are sometimes known as hooks. They are written in functional programming style and are easier

to handle because of their friendlier syntax than the class components. Despite the difference in syntax

between hooks and class components, when Babel compiles them into the standard code, they are all

proved to have the same functionality (Facebook 2021).

FIGURE 24. The lifecycle event of a React component (Zammetti, 2020).

The lifecycle event exists in both functional components and class components. However, it has many

specific methods that can only be used in class components. Figure 24 is the lifecycle event model of a

React component when it is created, updated, and destroyed. When a component is mounting or being

created, the constructor is the first method evoked. It is similar to any other Object-oriented Program-

ming language when creating a new object. The getDerivedStateFromProps() is the next method evoked

after the constructor, which returns an object to update the state or null if nothing needs to update. The

getDerivedStateFromProps() method depends on two arguments: the new props and state that need to

be updated. The getDerivedStateFromProps() method is evoked during three specific processes. It is

evoked when a component is being constructed (mounting), added to the virtual DOM (mounted), or

being updated (updating); however, it has rare use-cases. The alternative of this method in a functional

component is the useState() hook, which also returns a new object containing information to update the

state or null if there is no update. After the component is added to the virtual DOM, React immediately

calls the componentDidMount() method. Any process related to using network requests or initializing

26

the DOM, for example, loading images, videos, and maps, can be called inside this method. (Facebook

2021.)

When a component is updating, the sequence of methods is different. The getDerivedStateFromProps()

method is evoked first when a component is updating. Based on the result of the shouldComponen-

tUpdate() method, React then executes the render() method during the updating process. React evokes

the shouldComponentUpdate() method automatically before rerendering a new component. The should-

ComponentUpdate() method can also be used to manually exit the lifecycle and prevent the waste of

resources on unnecessary rerendering. After the render() method is evoked during the updating process,

the getSnapshotBeforeUpdate() method is called. This method captures information before the compo-

nent commits the changes to the real DOM. The information is the states of components before they are

updated. However, React does not recommend interfering with the structure of this method since it can

cause errors when it commits the changes to the real DOM tree. Finally, the componentDidUpdate()

method is evoked, which is also suitable for handling tasks related to network requests. The alternative

way to replace the componentDidMount() and componentDidUpdate() methods is to use the useEffect()

hook. The useEffect() hook can be used to work with network requests or any side effects in functional

components. The last process of a lifecycle event is when a component is being destroyed. When the

component is being destroyed, the componentWillMount() method is evoked. The component techni-

cally performs the cleanup tasks to prevent the memory leak, for instance, deleting a component from

the DOM, canceling network requests that have been created by the componentDidMount(), or compo-

nentDidUpdate() methods. For functional components, the useEffect() hook also returns a function that

helps handle the cleanup tasks similarly with the componentWillMount() method in class components.

(Zammetti 2020, 84 -85.)

27

4 NODE.JS AND EXPRESSJS

Nowadays, there are numerous options of tools, platforms, and frameworks for back-end development,

such as the famous PHP, Django, ASP.net. And when JavaScript became widely used, developers started

to expand its territory. As the result, Node.js was born to give developers an option to use JavaScript

over the fence. With Node.js, JavaScript is not limited to the client-side like it used to be. In the previous

chapter 2, Node.js is presented as a downloadable runtime, allowing JavaScript to run on any local ma-

chine. Furthermore, Node.js is also capable of turning any machine into a server to host a website

(Bojinov 2018, 27 -29). This chapter introduces the back-end development with Node.js and Express.js,

a framework that is built specifically for Node.js development. (Ijas 2020.)

4.1 Introduction to API and RESTful API

The API term is popular in Software Engineering, Web Development, or any Information Technology

field. API stands for Application Program Interface, which is a communication method between appli-

cations. API started to emerge as the beginning of internet commercialization. Three web APIs that

marked their successes and changed web development are Salesforce, eBay, and Amazon. Salesforce

published their API on 7th February 2000, at the IDG Demo conference. Salesforce introduced the API

and defined it as a product of the Internet as a Service. Follow Salesforce was eBay when they launched

their API on 20th November 2000. The API of eBay was created to help sellers manage their eBay model

businesses at scale. And on 16th July 2002, Amazon published Amazon Web Services, which later be-

came a giant in the web development field. (Lane 2019.)

There are many standards to build an API, and REST is one of the most famous architectural styles.

REST stands for Representational State Transfer, which consists of a set of principles as a guideline.

The first rule is the uniform interface, which requires communication between the front-end and back-

end through relative Uniform Resource Identifiers (URIs). Communication can be one of four tasks:

retrieving a resource, creating a resource, updating a resource, or removing a resource. The second rule

of REST API is the separation between client and server to improve the portability of the front-end and

scalability for the back-end of a website. The third rule is statelessness; every request that comes to the

server must provide enough information since there is no session establishment between the front-end

and back-end. The fourth rule is cacheable, which allows a response to be cacheable by the client-side.

The sixth rule is the layered system, which allows developers to deploy their API on one server, but the

28

API can work with multiple servers. For instance, a REST API is deployed on server A, manipulates

data in server B, and authenticates requests in server C. (Bojinov 2018, 12 -13.)

4.2 Node.js in the server-side

Every REST API lives in the server machine, so the first step in building a REST API is to build a server

machine. By using Node.js, it allows a machine to performs and executes the server-side task. As men-

tioned above, Node.js is capable of turning a local machine into a server machine for the development

process. (Bojinov 2018, 27 -29.)

4.2.1 Starting a Node.js server from scratch

 Figure 25 is a testing file named app.js, which was created to check whether the local machine could

perform as a developing server or not. In the first line, there is a constant named http, which requires

something else, also called http. The http constant in Figure 25 is a built-in module, which is available

from Node.js. This module is designed to support the basic features of the HTTP protocol. And the

createServer() method is a part of the http module, which does exactly like the name, establishing a

Node.js server. Node.js runtime consists of many modules; each has a set of features and is always

available for direct integration in a Node.js project with the import keyword. For example, the http mod-

ule is one of many core modules of Node.js. In Figure 25, the createServer() method received a function

as an argument; this function is called the request listener function. The request listener receives two

arguments, res and req, which stand for request and response. Request and response are two objects,

which present for the HTTP request and response. (OpenJS 2021.)

FIGURE 25. Creating a Node.js server

An HTTP request consists of an HTTP method, the URL of the resource, the HTTP protocol version,

optionally a header, or a body. On the other hand, the HTTP response consists of the HTTP protocol, a

status code, a status message, HTTP headers, and optionally a body for the requested resource. The

29

HTTP methods are usually presented as verbs, such as GET for a get request and POST for a post request.

The headers of a request and response provide additional information to the browser and the server. The

additional information can be the requested or responded resource's data, the request to access cross-

origin sites. In Figure 25, the header was added in the response object to inform the client that the re-

sponded data is HTML/text type. The application could be executed by announcing Node.js runtime

with the command "node app.js" in the command line. (MDN 2021.)

Figure 26 illustrates the result after the command was executed, the server was live in port 3000 of the

localhost. The default HTTP method of a URI is the GET method, which means anytime a URI is run

by the browser, the browser sends the request to access the resource by the URI as default. The ultimate

goal of a REST API is to manipulate the resources. The resources might have different data types, such

as JPEG images, videos, text documents, or binary data. And these resources should be accessible with

REST API via URIs, and the URIs should be identified uniquely. Node.js allows developers to create

unique identifiers by routing. (Bojinov 2018, 51 -53.)

FIGURE 26. The response from the Node.js server in port 3000

4.2.2 URIs structure and routing

The forward slash character is conventionally used to convey the hierarchy of the resources. Sometimes,

the resources can be stacked and stored in multiple levels of structure. The forward slashes are often

used in a URI to simulate the structure levels, storing location, or to access a specific level to get a piece

of data (Allamaraju 2010, 76 -77.) Some segments of a URI can be random strings, but in most cases, a

URI is designed to show the purpose or to illustrate the context behind it. Figure 27 demonstrates the

convention of a standard URI. The purpose of human-readable URIs is to simplify structure and logic to

developers and keep logical errors to a minimum. (Bojinov 2018, 8 -9.)

30

FIGURE 27. The syntax of a URI or HTTP URL (IBM 2020).

Routing in Node.js technically is designing the path segments for accessing resources. For instance, in

Figure 28, the segments behind http://www.example.org are called paths. A URI also consists of another

part called a query string. A query string is a regular string of name and value pairs, and an ampersand

separates each pair. For example, term=bluebird&source=browser-search (IBM 2020.) In Node.js, every

request and response has a url property, allowing developers to navigate the request and response. By

using the URL properties, any URI can be designed to fit the logic of the API. (Bojinov 2018, 8 -9.)

FIGURE 28. An example of hierarchical association between path segments (Allamaraju 2010).

In Figure 29, the if statements in lines 6 and 12 used the url property of the response to set up the paths

to access resources; when the path parameter of the URI matched these paths, the URI accessed the code

inside the if blocks. The first path in line 6 was the '/', which was the default route. In the default route,

the browser sent a GET request to it. The response from the default route was a form with a button

named Send. When the button was clicked, the browser sent a POST request to the '/message' route,

which activated the code in line 12. When the POST request was sent, the writeFileSync() method from

the fs module created a message.txt file and stores the DUMMY text. When the file was successfully

created, the response's status code was set as 302, and the page was redirected to the '/' route. (OpenJS

2011.)

http://www.example.org/

31

FIGURE 29. Routing with url properties in Node.js

The information of the request was checked inside the Network tab of the browser's developer tools. The

developer tools display the name, sizes, time, and waterfall charts of the requests and responses. When

the browser redirected, a message.txt was created and was viewed inside a text editor. In summary,

Figure 30 shows a result of the client-server interaction, where a client sent signals to the server to tell

the server to generate data. (Allamaraju 2010.)

FIGURE 30. The browser redirects after the POST request is successfully sent

32

4.2.3 Data transmission with streams and buffer

The majority of HTTP methods use their bodies as a place for data transmission. On any website, the

data is not delivered or received in its original form, but it is converted into sequences of primitive data

for efficient transmission. For example, Figure 31 shows the write method of the HTTP response object,

which works with data by sending a data chunk of the response body. Noticeably, the write method was

called multiple times to provide successive parts of the response body. Node.js automatically converted

data into chunks of hexadecimal values. A hexadecimal number is able to represent a larger value than

a binary number in a short form, which allows these chunks to hold more data but remain low-cost in

transportation (OpenJS 2021.)

FIGURE 31. Manipulating data stream with Buffer class

Streams are a special interface that Node.js uses for data transmission. A stream is a sequence of data

broken down from a large piece of data into small chunks. These chunks of data are transmitted to an-

other place one by one, and it becomes a stream. For example, a client downloads a paragraph; instead

of sending the whole paragraph at once, the server splits the paragraph into small chunks and sends them

one by one. And Node.js added another feature for developers to interact with the data chunks, called

the buffer. Buffer is a class added in Node.js API to manipulate or interact with data streams. (OpenJS

33

2011.) Buffer in the computer is a small physical location in the RAM, where data is temporally stored

and wait for processing during streaming. In some programs, because some processes consume data

faster than it arrives, some data chunks that arrive early need to wait until a certain amount of data arrives

fully before the computer sends them all out for processing. In other words, a buffer is a place that stored

the data chunks that arrive early before processing. (Mba 2017.)

FIGURE 32. The console logs the hexadecimal chunks in buffer

On line 15 of Figure 31, an on() method listened to certain events. The data event fired when a new

chunk of data was ready to be processed. These chunks of data were stored in an array named body,

concatenated together by the buffer class, and converted into a string on line 20. In Figure 32, the data

chunks in the buffer were displayed by the hexadecimal numeral system. Each hexadecimal number was

a chunk of data, and this is how a stream is split and transferred. Figure 33 shows the result of the data

chunks that were converted back to the human-readable text and stored in a message.txt file, it was also

the form input in the '/' route and it was not the predefined DUMMY text as the previous example.

(OpenJS 2021.)

FIGURE 33. The text is converted from the data chunks in buffer

34

4.2.4 Node.js and asynchronous programming

Since every code inside a Node.js project works in a single thread, some code might block the other code

and break the program's execution flow. However, thanks to the asynchrony of Node.js, it keeps the flow

run smoothly just inside one single thread. An asynchronous program contains code that runs straight

along, and everything inside the program runs one at a time. If a function relies on the result of another

function, it has to wait until the other function is executed and returns the result to keep on doing its

work. JavaScript has the callback function as an approach to asynchronous programming. A callback

function is a function that is called after an action finishes with a result. (MDN 2021.)

FIGURE 34. An example setTimeout() function

The setTimeout() function in Figure 34 had an anonymous function inside it. The anonymous function

gave a "Hello" alert and only executes after the setTimeout() function finished counting down its timer.

This anonymous function is also called a callback function because of this asynchronous behavior. Asyn-

chronous programming is a very important programming concept since data transmission cannot be fin-

ished at once. There is a standard class called Promise to handle the data fetching or any other tasks

related to asynchrony in JavaScript. The most common usage of the Promise class is in fetching data

from an API, connecting to a database, or manipulating a database. Promises are a better way to enhance

the asynchrony in JavaScript. In the past, when JavaScript relied heavily on callback functions for asyn-

chronous tasks, the nesting of callback functions is the way to arrange and schedule the actions. When

the action is too complicated, the callback nest also becomes longer and forms the triangle of callback

hell. Promises solve the nesting of callback functions by using the chaining method. Promises can be

chained until they are resolved, which is a more efficient way for developing and maintenance. (Liew

2019.)

35

FIGURE 35. An example of a promise in JavaScript

A promise is an object that is created by the Promise class in JavaScript. A promise may be fulfilled at

some point, but it also may fail as a promise in real life. In line 11, when a promise object was first

created, the promise was pending or had not delivered a result during this period. Inside the Promise

class, there are two methods, resolve and reject. When a promise is fulfilled, the resolve method is exe-

cuted with the given value. In Figure 35, the promise was completed because the variable x had the value

of 0. And then, the myResolve() method was executed with the "OK" string as an argument in line 22.

In contrast, when the promise fails, the reject method is executed with a given reason. For example,

when the value of the x variable was not 0, the myReject() method was executed with the "Error" string

as a given reason in line 23. With the new ES6 version of JavaScript, Promises were replaced with async

functions, which are shorter and have a straightforward syntax to the asynchronous programming. How-

ever, they both share the same mechanism under the hood. An async function and the Promise class both

create a new promise when they are executed. (MDN 2021.)

36

FIGURE 36. An example of an async function in JavaScript

4.3 ExpressJS, a node.js framework

The back-end of a website is the place that contains, executes, and servers complicated logic. The more

complicated logic, the more work has to be done. For instance, in the previous section, when a text was

transferred from a client-side to a back-end, it had to be converted into small chunks, delivered one by

one, and converted back to regular text. These data converting steps are sometimes too cumbersome and

might make the business logic challenging to build. Although Node.js has many modules for various

purposes, it still requires many processes to focus on a particular field. ExpressJS was created to solve

the problem when Node.js comes to business websites. There are other frameworks of Node.js built for

many usages; for example, Adonis.js, Koa, Sails.js. However, they all serve the same purpose of reduc-

ing the heavy works and letting the developers focus on building the core logic of any application.

(TutorialsTeacher 2020.)

37

4.3.1 Starting a Node.js server with ExpressJS

ExpressJS can be installed by using NPM or other package manager tools. After ExpressJS's download

is finished, it can be imported inside a Node.js project in the same way the other node modules are

imported. ExpressJS allows developers to perform tasks directly to the HTTP requests and responses by

using middlewares. The HTTP request and response have a lifecycle, where it is finished by sending a

response to a client using the end() method. During the request-response cycle, the HTTP request or

response can be accessed by using middleware functions. These middlewares work as validators or au-

thenticators to authorize and validate resources access or sharing. In Figure 37, the content inside the

app.use() function is a middleware. An HTTP request or response can travel from one to another mid-

dleware by using the next() function to keep the request-response cycle alive. The cycle ended in figure

37 when the response sends a <h1> tag to the client. (StrongLoop & IBM 2017.)

FIGURE 37. Starting a Node.js server with ExpressJS

4.3.2 Routing in ExpressJS

Routing in ExpressJS can be performed by using middleware functions. Instead of using the url property

of each HTTP request and response, the app.use() middleware receives a path at the first argument and

multiple callback functions to perform the logic with the request-response cycle. In Figure 38, there are

three paths: '/' path, '/add-product', and '/product' path. In the '/', any incoming request was allowed to

travel to the next middleware; however, the cycle ended in the '/add-product' path because of the

res.send() function. In the '/add-product' was a form with the input type text and a button. When the form

38

was submitted, it sent a POST request that consists of the input data of the form to the '/product' middle-

ware. The '/product' middleware printed the request's body, which contained the data from the form to

the console, and redirected the page back to the '/' middleware. (StrongLoop & IBM 2017.)

FIGURE 38. Basic routing with ExpressJS

In Figure 38, when the request reached the '/product' middleware, it printed out the undefined in the

console instead of printing out the text from the input form. When an HTTP request transfers data, it

converts data to different types, which are more convenient and resourceful than using the raw text. It

needs a body parser for the request body to convert the data back to an interactable type. Before version

4.16.0, whenever a request body required a body-parser, it had to download it from NPM and import it

to the file. Sometimes, the installation was cumbersome, so express added a body-parser as a part of

their URL encoder for an HTTP request or response in the express package. Figure 39 shows that within

one line of code, the body-parser was ready to use in a Node.js file. (StrongLoop & IBM 2019.)

FIGURE 39. Import a URL encoder with express after version 4.16.0

After the body-parser is installed and imported, every data in the HTTP request body of the Node.js

program can be converted back to an interactable data type. For example, a text was inputted from the

39

form in the '/add-product' middleware, and then the request contained the input traveled to the '/product'

middleware. In the '/product' middleware, the input was converted to a JavaScript, logged object out in

the console as in Figure 40. (StrongLoop & IBM 2017.)

FIGURE 40. ExpressJS parses the request body's data

4.3.3 The MVC Pattern

When a project grows to a larger scale, the logic inside it becomes more complicated. So at the beginning

of any project, the project has to be planned to follow a significant design pattern. The design pattern is

a way of organizing the files and modules of a project into a logical system. The design pattern benefits

developers by reducing time searching for a file, a module, or a function inside a big project. The design

pattern also helps developers create a maintainable system that can be convenient for anyone who has

experienced it and later maintains the project. One of the most popular design patterns for back-end

systems is the MVC design pattern. (Bakshi 2019.)

40

FIGURE 41. A graphic example of the MVC pattern (Bakshi 2019).

The MVC stands for Model, View, and Controller. The idea of the MVC design pattern is to separate a

web server into three segments. The Controller segment is the place that stores all the business logic,

interacts with user requests, and manipulates the data by using the Model segment. The Model segment

is the database interface, this segment contains all the interactions between the back-end and the database

API, for example, the format of each object in the database schemas or the relationships in the database.

In other words, the Model segment works with the Controller to provide or manipulate the data that is

requested from the user. The View segment is where all the information is compiled, rendered, and sent

back to users as a complete website. (Bakshi 2019.)

41

5 FINAL PROJECT

During the academic period at Centria University of Applied Sciences, the author has been studying and

working on many projects which use web-techs as building tools. Moreover, the research of the demand

on job markets and the statistic of the stack overflow website has shown the remarkable rise of React

over a few years, which could lead to many opportunities for web developers that have experience with

React library. The Node.js framework is also the standard tool that the author has used in developing a

webserver because it allows using JavaScript on both sides of a website and reduces a developer's learn-

ing time. Since Node.js became popular nowadays, many tools and frameworks have been built specif-

ically for Node.js developers. In this final project, the ExpressJS plays an essential role in API design

and database procession. A website cannot live without a database, and there are many options for a

database. But they usually are defined by two types, relational databases and non-relational databases.

The non-relational database has been introduced recently and has shown its benefit in many social media

websites by managing their immersive users' data, for instance, Facebook, Amazon, and Twitter. (Forbes

2014.)

FIGURE 42. The JavaScript frameworks' popularity on Stack Overflow Trends (Robinson 2017).

42

5.1 The basic ideas and plans

The final project was a single-page application called Travelogue, a social media website that allows

users to create an account, share places, images, and locations. The React library combined with the

Google Map API for the front-end is suitable for this project. The ExpressJS was the chosen framework

to design API for the back-end of this project. And for the database, the project used the MongoDB atlas

to store users' information and locations. The main purpose of this final project was to experiment with

the new MERN method of building an application. And the Travelogue website was the final result of

this experiment. According to the plan, the Travelogue website had authentication to allow users to

create an account. The website also had a feature that allowed users to create a new post, edit their posts,

and visit other posts of other users. (Iriarte 2018, 72 -73.)

FIGURE 43. The dependencies chart of the website

Table 1 shows all the paths that lead to different pages of the website. Each page had many React com-

ponents that were combined and loaded together depends on which path was chosen. The structure of

the website can be seen in the dependencies chart above. The chart shows the hierarchy of every page

of the Travelogue and its functionalities. (Wysocki 2021.)

Home Page

All Users

Visit posts

Authenticate

Login

Log out My post

Open map

Edit

Delete

Sign up

43

TABLE 1. The URL paths of the Travelogue project

5.2 Sketching the UI

Figure 44 demonstrates the sketching phase was done by using the wireframe method of the draw.io

website. The purpose of the sketching design was to clarify the project by going through all the interac-

tions and layouts. The wireframe pointed out the primary focus of the project. The wireframe design

delivered a clear picture of the elements and the content hierarchy in the sketching phase. When a team

handles the project, the wireframe benefits more since it is simple, focuses on the main ideas, and helps

the communication to express the ideas becomes more straightforward. (The Seque Creative 2016.)

FIGURE 44. The wireframe design of the project

5.3 The front-end with React library

Because the application allowed users to create their accounts, some pages had login restrictions. Table

1 in the planning section provided a basics picture of the restrictions. Some routes could be displayed

either with or without the authentication of the user. Figure 45 shows that the default route was the '/',

which displays all users in the system. The ':userId/places' route displayed all posts of a chosen user.

The '/auth' route was the place that users could create a new account or log in to their accounts, and these

44

routes could be displayed without a login token. However, the '/places/new' and '/places/:placeId' routes

were expected to receive a user access token to access since they had the feature that manipulates the

users' data. In the '/places/new' route, there was a form that allows a user to create a new post. The

'/places/:placeId' was the route that allows a user to edit or delete a post. (Auth0 2021.)

FIGURE 45. The pages and routes setup of the application

5.3.1 The Home page

The home page's first task was to fetch all users' data from a back-end. When the data was fetched

successfully, the home page rendered these users' data into a list of users. However, Figure 46 shows

when the data fetching process was failed, an error modal was played to deliver a message. During this

45

section, because the connection between the front-end and back-end was not been established, the home

page showed an error message to inform the failure in fetching users' data. (Rogozhny 2020.)

FIGURE 46. Home page without a back-end connection on browser

Figure 47 shows the Users component, which was a customized functional component. The Users com-

ponent used the useState() hook, which is a default hook given by React library. However, the use-

HTTPclient() was a custom hook, which was defined to fit the purposes of this application. The use-

HttpClient() hook had three main functions. The first function was the isLoading, which checked

whether data was being loading or not. The second function was the error, which threw a message when

there was an error occurred. The third function was the sendRequest, which sent an HTTP request to a

server. And the last function was the clearError, which cleared the error message. (Facebook 2021.)

46

FIGURE 47. The Users component of the application

5.3.2 The Authentication page

The authentication had two different input forms. Figure 48 illustrates the login form, which was always

first on the authentication page, and the second form was the signup form. The form glowed red at the

input and displayed a message to remind users when a form input was missing or had invalid data. The

login button was also disabled until the form was filled in correctly. This feature was also included in

the signup form. The main idea of this feature was to restrict users from entering invalid data into the

form. However, the data validation on the client-side only is not secure enough since this feature can be

broken through easily by disabling JavaScript from the browser. (Truth 2011.)

47

FIGURE 48. The login form inputs are invalid

Figure 49 shows the data validator custom hook, which was used to validate form inputs. The form

validator had many options, which were pre-calculated from the possibility of the users' input and situ-

ations. For example, the validate function received two arguments, the value and validators. The valida-

tors argument was expected as an array, which consisted of the types of the form inputs. The login form

had two inputs, the email type and password type. The email type was checked by the last if condition,

and the validator returned true when the if condition was satisfied. The password input could be checked

by combining the type of input and the length of the input, which was provided by the value argument.

(MDN 2021.)

FIGURE 49. A part of the validator hook

48

When all the login or signup form inputs were correct, the data were sent to the back-end to authorize

the access. The client expected to receive the user's ID and an access token. And the token was used as

proof of authorized access. The token was also used to maintain the login state, which allowed a user to

access their account without performing the login process again when they closed the page. However,

the token had a limited lifetime because of security reasons. (Auth0 2021.)

FIGURE 50. The function handles sending login and signup requests to the server

5.4 The back-end with ExpressJS and Mongoose

The application needed a server to authorize access and process data from the database. The server han-

dled the logic of checking the login and signup requests, for example, the login and signup input data.

The server is the safest place to perform any authenticating or authorizing process since it is close and

difficult to break in. (Boston University 2020.)

49

5.4.1 Planning and building a REST API with ExpressJS

Every API has endpoints, which help to depict the exact location of the resource to access. An API

endpoint is an entry in a communication between two or more applications. An API endpoint can be

operated through HTTP requests and responses. As in the design in Table 2, this API had two main

routes and seven endpoints. Some endpoints needed to meet certain conditions in order to respond. These

conditions were set up for security reasons since keeping the database safe from unauthorized access is

important. (Allamaraju 2010, 78 -79.)

TABLE 2. The endpoints of the API

In section 4.3.3, the MVC pattern was mentioned as a logical method to organize files and modules of a

project based on three main segments: model, view, and controller. Figure 51 shows the MVC design

pattern implemented in building this API. The two main routes can be seen in the routes folder, where

they were exported to be used in the app.js file. The app.js played the role of the root file, which was

always compiled first whenever the server was started. The endpoints can be found in each route file in

the routes folder. (RapidAPI 2021.)

50

FIGURE 51. The API's file structure according to the MVC pattern

In Figure 51, the logic of each endpoint was separated and stored in the controllers folder. The places-

controllers.js held all the endpoints' logic of the places-routes.js file. And the same for the users-control-

lers.js file, where all the endpoints' logic of the users-routes.js file was held. Figure 52 shows all the

logic of the endpoints was imported by the "require " keyword. Besides the endpoints' logic, other mod-

ules that handle different tasks were also imported. For instance, line 5 of the places-routes.js file was

the middleware that handled the file uploading task, and also line 6 was the middleware that handled

validating the access token from the front-end. (Kalubowila 2020.)

51

FIGURE 52. The user-route.js and places-routes files

5.4.2 Establishing connection with MongoDB Atlas and Mongoose

MongoDB is a non-relational database or NoSQL. In SQL, the data is stored as records in tables. How-

ever, data is store as documents in collections. The first step of establishing the connection with Mon-

goDB Atlas was to access their webpage at https://www.mongodb.com/. After signing in to MongoDB

Atlas, the next step was to create a cluster. A cluster is a place that stores the databases. A MongoDB

cluster can be preferred as a NoSQL Database-as-a-Service, which is offered in the public cloud. Clusters

are basically a group of MongoDB servers that store documents of databases. MongoDB has a method

for stabilizing its scalability, which is MongoDB sharding. MongoDB stores databases in many distrib-

uted shards to create horizontal scalability. (MongoDB 2021.)

https://www.mongodb.com/

52

FIGURE 53. A MongoDB collection is stored in two different shards (MongoDB 2021).

Because the databases are stored in documents and do not have any strong relationship, they can be cut

into different pieces and stored in different servers. This sharding method helps the server reduce the

significant amount of work that needs to perform. For example, Figure 53 shows a part of the Collection

1 was kept in server A, and another part was kept in server B to optimize the server's capacity. In this

section, Mongoose was used as the main tool to establish a connection and manipulate the database from

the MongoDB Atlas server. Mongoose is an Object Data Modeling library, which was built specifically

for MongoDB and Node.js. Mongoose can be installed by NPM and import directly to any Node.js

project as a Node module. (MongoDB 2021.)

FIGURE 54. Establishing a database connection with Mongoose

The connection started on line 53 of figure 54; the connection required an URL string that describes the

connecting person, the password, the cluster's name, and the collection's name. The URL string can be

found after creating the cluster in the MongoDB Atlas server through their website. Mongoose allows

developers to define the document properties by the built-in Schema class. According to the MVC pat-

tern, this modeling task with the Schema class is classified to the Model segment. Figure 51 shows a

models folder contained place.js and user.js files, which were two schemas of the places and users.

53

Figure 55 illustrates the users and places schemas, which defined how the object data structure was

stored in the database and object data properties were required to exist. (Mongoose 2021.)

FIGURE 55. The database schemas

5.4.3 Adding password hashing function and web token

Security is an essential factor of every server, which can cause severe issues if external threats breach it.

This application stored user information in the database and the most critical data were the user pass-

words which should never be stored as plain text. Some systems implement data encryption to prevent

data stolen by hackers. The encryption algorithm is often used to protect passwords, but this mechanism

is not fully secured since data can be decrypted with the decryption key. Hashing is a better method for

data protection since the hashing algorithm does not have a decryption key to decrypt data. A hashed

password is undecryptable data or might take a significantly long period and a powerful machine to

encrypt. The hashing algorithm also has a feature that appends a set of characters to the hashed data,

whose purpose is to make it nearly impossible to encrypt. Figure 56 demonstrates the bcrypt in this

application, an available Node.js package that consists of a hashing algorithm and or that function to

customize the algorithm. (Malviya 2015.)

54

FIGURE 56. Hashing and salting user passwords with bcrypt

This application required users to log in to their accounts to use the basic features, and the login status

could be destroyed whenever the tab or the browser was closed. However, the login status could be

maintained by creating an access token in the server and sending it to the client every time a user logs

into the system successfully. In the client, the token was stored inside either the local storage or cookie

storage of the browser so that when the browser accessed the website, it could use the token as proof of

authorized access. Node.js has a package named jwt or JSON Web Tokens, which allows developers to

create an access token to maintain the login status of a website. However, this method can be risky if the

token is stolen since it can be used to log in to an account without the need for authorization. The token

also has a feature to set its lifetime to reduce the risk of unauthorized access. This might not prevent the

hacker from accessing the user accounts through the stolen token, but it might help mitigate further

damage since the token is valid for a limited period. (Auth0 2021.)

FIGURE 57. Creating an access token with JWT

55

5.5 Adding Google Map API and Google Geocoding API

The Google Map is a well-known tool that has been using on many devices. Since the Google Map

becomes useful and popular, Google creates an API that allows other developers to integrate their Google

Map into their websites or application. The Google Map API can be found on their website at https://de-

velopers.google.com/maps, where Google provides other APIs related to their Google Map. As the plan

of this application, the Google Map was rendered by the front-end with React library. However, to dis-

play the location on the Map, the Google Map API requires the coordinate, which combines the longitude

and the latitude. (Google Maps Platform 2021.)

FIGURE 58. Adding and rendering Google Map in React

 Google provides another API, allowing developers to retrieve a specific location's longitude and latitude

through the location's name, the Google Geocoding API. In this application, the Google Geocoding API

was implemented in the back-end since users sent the location names through a form in the front-end.

The Google Geocoding API delivered the coordinates according to the location's name and sent the

coordinates back to the front-end to create a marker on the Google Map. (Google Maps Platform 2021.)

https://developers.google.com/maps
https://developers.google.com/maps

56

FIGURE 59. Implementing Google Geocoding API with ExpressJS

5.6 Testing the API with Postman

There are various API testing tools, such as SoapUI, Apigee, API Fortress, and Postman. They all have

the same mechanism, providing developers with a testing environment for the API developing process.

Postman is simple to use and provides all the necessary features to keep track of the API without inter-

fering with the front-end code. Figure 60 shows the result after an account was created successfully with

Postman, the application automatically logged the user into the system and responded to the client-side

with an access token, user ID, and an e-mail address to maintain the login status for the next access. The

API also responded with an access token, user ID, and an e-mail address for a successful login. (Postman

2021.)

57

FIGURE 60. Sending a POST request to signup an account

Figure 61 shows the password in the database was now a hashed string, which was nearly undecryptable.

When a user logged in with their password, it was hashed to a string, and one password created one and

only one specific hashed string, which could be used to validate the account password. Since these

hashed passwords are unable to decrypt, or it might take a very long time to decrypt, they are safe even

if these hashed passwords are stolen. (SpyCloud 2019.)

58

FIGURE 61. A user account is stored in MongoDB Atlas Database

5.7 Final Result

After the testing phase, when the API gave the correct result, it was ready to be implemented to fetch

and send data from the front-end. In the front-end, the API was already integrated with the Fetch API.

The back-end and front-end can be activated by the command "npm start", and the project was live on

port 3000 of localhost. The Authenticate button on the navigation bar switched the front-end to the login

form of the '/auth' route, which was set up at the beginning of the project. Figure 62 shows when a user

successfully logged in to an account, the news feed showed the data of the places that the user added to

the account by clicking the My Places button. The application also allowed users to delete or edit the

content of any post just by clicking on the edit and delete button. However, since these features can

manipulate the database, they required authorized access to proceed. These buttons appeared when users

logged in to their account and users can only edit or delete their posts from their accounts. (Facebook

2021.)

59

FIGURE 62. The home page and newsfeed

Figure 63 shows a form and a map where a user can add a new post to their account or view a specific

location of a place on the map. By clicking the Add A Place button on the navigation bar, the application

switched the page to the '/places/new' route. The '/places/new' route had a form where a user needs to

fill in a title, a description, an address, and an image for their post. Every post on the website was inte-

grated with Google Map API and Google Geocoding, so their locations can be seen on the map by

clicking on the View On Map button below every post. (Google Maps Platform 2021.) Users can log out

to their account by click on the Logout button on the top left corner of the website. When the account

was logged out, the website did not allow users to edit or delete their posts, but they could still visit other

posts of other users and view the location of these places.

FIGURE 63. The form and the map

60

6 CONCLUSION

Throughout the thesis, the primary goal was to study from general surface to deeper levels of core ar-

chitectures of the React library, Node.js, and MongoDB. The study was conducted through basic exper-

iments and various documents of publishers. The final product of the thesis was a media website, which

was designed and developed as a single-page application by combining the mentioned technologies.

Overall, the React library proved its advantages from the powerful syntax, high maintainability, and

optimization of the virtual DOM. The Node.js and ExpressJS framework proved to be convenient tools

by allowing developers to use JavaScript everywhere to create a fully working website with all necessary

features provided as importable modules and packages. Mongoose and MongoDB helped manage the

database efficiently with high scalability, a suitable choice for storing blogs or any media website data.

The website had a standard security system to protect sensitive users' data from external threats using

the bcrypt hashing algorithm and a customized authentication back-end. The website also implemented

tokens and cookies from JWT as a popular web technology. The website also introduced the popular

Google API, with two main examples of Google Map API and Google Geocoding API.

The website was created during the Covid-19 pandemic when many countries performed lockdown plans

to prevent the outbreak of the virus. The event damaged the tourism and travel services deeply, and for

this reason, the author wanted to create a website as an accessible platform where it could help various

businesses, who depend on tourists to recover. The website had a core feature where a user can create

an interactable post. The post can be a business promotion or an artistic picture of a location where

people can find it on the map. The website is incomplete and needs further improvement with extra

features as for many other social media websites nowadays, such as running videos, creating comments,

sending private messages. However, the website had demonstrated as an informative example of full-

stack web development with MERN stack. The experiment of the mentioned technologies and the de-

velopment and testing processes of the final project was thoroughly documented in this thesis to explain

the benefits and core features of the website clearly.

61

REFERENCES

Bank & Porcello, 2017. Learning React - Functional Web Development With React And Redux. First

edition. Sebastopol, CA: O'Reilly Media.

Allamaraju, S., 2010. RESTful Web Service Cookbook. 1st edition. Sebastopol, CA: O'Reilly.

Alpert, S., 2015. React v0.14.

Available at: https://reactjs.org/blog/2015/10/07/react-v0.14.html.

Accessed 1st July 2021.

Auth0, 2021. Auth0 Official Documents.

Available at: https://auth0.com/docs/security/tokens/access-tokens.

Accessed 27th September 2021.

Babel, 2021. Babel Official Documents.

Available at: https://babeljs.io/docs/en/.

Accessed 19th July 2021.

Bakshi, A., 2019. How To Setup MVC Design Pattern In Express.

Available at: https://www.c-sharpcorner.com/blogs/how-to-setup-mvc-design-pattern-in-express.

Accessed 3rd August 2021.

Bojinov, V., 2018. RESTful Web API Design with Node.js 10. 3rd edition. Birmingham, UK: Packt.

Boston University, 2020. Understanding Authentication, Authorization, and Encryption.

Available at: https://www.bu.edu/tech/about/security-resources/bestpractice/auth/.

Accessed 27th September 2021.

Carnes, B., 2021. Create a MERN Stack App With A Serverless Backend.

Available at: https://www.freecodecamp.org/news/create-a-mern-stack-app-with-a-serverless-

backend/. Accessed 26th June 2021.

Champion, M., 1997. Document Object Model (Core) Level 1.

Available at: https://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html.

Accessed 23rd July 2021.

Chavan, Y., 2021. JSX In React Introduction.

Available at: https://www.freecodecamp.org/news/jsx-in-react-introduction/.

Accessed 12th July 2021.

Creative, T. S., 2016. The Importance Of Wireframing For A Responsive Website.

Available at: https://www.seguetech.com/the-importance-of-wireframing-for-a-responsive-website/.

Accessed 23rd August 2021.

62

Dawson, C., 2014. JavaScript History And How It Led To Reactjs.

Available at: https://thenewstack.io/javascripts-history-and-how-it-led-to-reactjs/.

Accessed 1st July 2021.

Eisenman, B., 2021. Chapter 2. Working With React Native.

Available at: https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html.

Accessed 13th July 2021.

Facebook, 2021. React Official Documents.

Available at: https://reactjs.org/docs/.

Accessed 16th July 2021.

Forbes, 2014. NoSQL Databases: Oracle's Big Opportunity.

Available at: https://www.forbes.com/sites/greatspeculations/2014/04/04/nosql-databases-oracles-big-

opportunity/?sh=2857cb456aa6.

Accessed 27th September 2021.

Google Maps Platform, 2021. Google Maps Platform Official Documents.

Available at: https://developers.google.com/maps/documentation.

Accessed 27th September 2021.

IBM, 2020. The Component of A URL.

Available at: https://www.ibm.com/docs/en/cics-ts/5.2?topic=concepts-components-url.

Accessed 24th July 2021.

Ijas, M., 2020. Host websites using Node.js.

Available at: https://medium.com/@mohammedijas/host-websites-using-node-js-5b3a0832c94c.

Accessed 27th September 2021.

Iriarte, K. E. W., 2018. MERN Quick Start Guilde. First edition. Birmingham, UK: Packt Publishing

Ltd.

Kalubowila, D., 2020. JWT Bearer Token Authentication for ExpressJS via Middlewares and Request-

Response pipeline.

Available at: https://medium.com/ms-club-of-sliit/jwt-bearer-token-authentication-for-express-js-

5e95bf4dead0.

Accessed 27th September 2021.

Kosaka, M., 2018. Cross-Origin Resource Sharing (CORS).

Available at: https://web.dev/cross-origin-resource-sharing/.

Accessed 5th July 2020.

Lane, K., 2019. Intro to APIs: History of APIs.

Available at: https://blog.postman.com/intro-to-apis-history-of-apis/.

Accessed 22nd July 2021.

63

Lewis, P., 2020. Rendering Performance.

Available at: https://developers.google.com/web/fundamentals/performance/rendering.

Accessed 12th July 2021.

Liew, Z., 2019. How To Deal with Nested Callbacks and Avoid "Callback Hell".

Available at: https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-

callback-hell-1bc8dc4a2012/.

Accessed 27th September 2021.

Malviya, G., 2015. Password Security.

Available at: https://www.loginradius.com/blog/async/password-secure/.

Accessed 20th August 2021.

Mba, J., 2017. Do You Want a Better Understanding of Buffer in Node.js? Check This Out.

Available at: https://www.freecodecamp.org/news/do-you-want-a-better-understanding-of-buffer-in-

node-js-check-this-out-2e29de2968e8/.

Accessed 26th July 2021.

MDN, 2021. MDN Web Docs.

Available at: https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/development_environment.

Accessed 29th June 2021.

MongoDB, 2021. MongoDB Official Documents.

Available at: https://docs.mongodb.com/.

Accessed 11th August 2021.

Mongoose, 2021. Mongoose Official Documents.

Available at: https://mongoosejs.com/docs/guide.html.

Accessed 27th September 2021.

OpenJS, 2011. How to Use Buffer in Node.js.

Available at: https://nodejs.org/en/knowledge/advanced/buffers/how-to-use-buffers/.

Accessed 26th July 2021.

OpenJS, 2021. Node.js v15.14.0 documentation.

Available at: https://nodejs.org/docs/latest-v15.x/api/

Accessed 22nd July 2021.

O'Shannessy, P., 2015. Deprecating JSTransform and react-tools.

Available at: https://reactjs.org/blog/2015/06/12/deprecating-jstransform-and-react-tools.html.

Accessed 1st July 2021.

Postman, 2021. Postman, product tools.

Available at: https://www.postman.com/product/tools/.

Accessed 27th September 2021.

64

Preul, W. L., 2017. Node.js at Joyent.

Available at: https://www.joyent.com/blog/nodejs-at-joyent.

Accessed 26th July 2021.

RapidAPI, 2021. Endpoint - What is an API Endpoint?.

Available at: https://rapidapi.com/blog/api-glossary/endpoint/.

Accessed 17th August 2021.

Ravichandran, A., 2018. React Virtual DOM Explained in Simple English.

Available at: https://programmingwithmosh.com/react/react-virtual-dom-explained/.

Accessed 27th September 2021.

Robinson, D., 2017. Introducing Stack Overflow Trends.

Available at: https://stackoverflow.blog/2017/05/09/introducing-stack-overflow-

trends/?_ga=2.43445346.611692959.1628357118-168000583.1620139087.

Accessed 7th August 2021.

Rogozhny, D., 2020. How to Display Modal Dialog in React with react-modal.

Available at: https://www.newline.co/@dmitryrogozhny/how-to-display-modal-dialog-in-react-with-

react-modal--dbf46cda.

Accessed 28th September 2021.

Salim, A. R., 2020. Node.js Dependencies.

Available at: https://nodejs.org/en/docs/meta/topics/dependencies/.

Accessed 28th June 2021.

Sathananthan, S., 2021. How To Reuse React Components.

Available at: https://medium.com/codezillas/how-to-reuse-react-components-851ffcc68a9c.

Accessed 27th September 2021.

Soueidan, S., 2015. Understanding Stack Contexts.

Available at: https://tympanus.net/codrops/css_reference/z-index/.

Accessed 27th September 2021.

SpyCloud, 2019. How long would it take to crack your password?.

Available at: https://spycloud.com/how-long-would-it-take-to-crack-your-password/.

Accessed 27th September 2021.

StrongLoop & IBM, 2019. Express Release Change Log.

Available at: https://expressjs.com/en/changelog/4x.html.

Accessed 27th September 2021.

StrongLoop, IBM, 2017. Express Routing.

Available at: https://expressjs.com/en/guide/routing.html

Accessed 22nd July 2021.

65

Surasani, L., 2019. Let's get hooked: a quick introduction to React Hooks.

Available at: https://www.freecodecamp.org/news/lets-get-hooked-a-quick-introduction-to-react-

hooks-9e8bc3fbaeac/.

Accessed 14th July 2021.

Taylor & Francis Group, 2010. A Practical Guild to Content Delivery Networks. Second edition. Boca

Raton, FL: CRC Press.

Truth, S., 2011. Do Not Rely on Client-Side Validation.

Available at: https://blog.securityinnovation.com/blog/2011/07/do-not-rely-on-client-side-

validation.html.

Accessed 27th September 2021.

TutorialsTeacher, 2020. Advantages of Express.js.

Available at: https://www.tutorialsteacher.com/nodejs/expressjs

Accessed 27th September 2021.

W3Schools, 2021. JavaSript HTML DOM.

Available at: https://www.w3schools.com/js/js_htmldom.asp

Accessed 12th July 2021.

Wysocki, R. K., 2021. Effectiveness Software Project Management.

Available at: https://www.oreilly.com/library/view/effective-software-

project/9780764596360/9780764596360_ch05lev1sec2.html.

Accessed 27th September 2021.

Yushkevych, A., 2021. How to check node.js version?.

Available at: https://monovm.com/blog/how-to-check-nodejs-version/.

Accessed 27 September 2021.

Zammetti, F., 2020. Modern Full-Stack Development. First edition. Pottstown PA: Apress.

