

Using the Execution Plan/Explain
Plan to Enhance Custom Field Per-
formance in IFS10 at Teknos Group

OY

Renz Razon

2021 Laurea

Laurea University of Applied Sciences

Using the Execution Plan/Explain Plan to
Enhance Custom Field Performance in IFS10
at Teknos Group OY

 Renz Razon
 Degree Program in Business

Information technology
 Bachelor’s Thesis
 November, 2021

Laurea University of Applied Sciences
Business Information Technology

Abstract

Renz Razon

Using the Execution Plan/Explain Plan to Enhance Custom Field Performance in IFS10 at
Teknos Group OY
Year 2021 Pages 40

It is vital for the performance of an ERP system to have optimally performing SQL queries.
Teknos Group Oy is in the process of upgrading the company's IFS ERP solution during which
Custom Fields in the form of SQL queries are implemented to extend the base functionality of
the ERP system to meet user and customer needs. The purpose of this thesis project was to
enhance the performance of SQL Custom Fields using the execution plan. The objective was
to create an SQL test case to demonstrate the use of an execution plan in identifying subopti-
mal procedures.

The tools and methodology used for this research revolved around the need for improving the
performance of an SQL query. They consisted of an execution plan, PL/SQL Developer Tool,
and analysis. The execution plan, which is the blueprint of an SQL's operation, is presented to
gain a base understanding of how the operation is created and the decision-making process
behind its creation. The PL/SQL Developer Tool was used to acquire the execution plan and
navigate through its procedures step-by-step. Root Cause Analysis was the methodology used
to identify performance issues in the execution plan procedures and to use the results to im-
prove and refactor the SQL code.

The results show that the execution plan is a useful tool in identifying underlying SQL perfor-
mance issues and areas of improvement. Operations such as Full Table Scans, Cartesian Joins,
High cost due to a select all statement, and Index Range Scans were all identified. These re-
sults were taken into consideration during the SQL code refactoring process, resulting in an
overall better execution plan with lower cost and efficient index access methods. Knowing
how to interpret its results and why such operations are chosen by the optimizer is key to
identifying the correct issues.

Keywords: ERP, Custom Fields, SQL, Execution Plan, Optimizer

Table of Contents

1 Introduction .. 5

1.1 Company Background .. 5

1.2 IFS ERP System.. 5

1.3 Project Background .. 7

1.4 Problem Statement .. 7

1.5 Objectives ... 7

1.6 Scope and Limitation .. 7

2 Methodology and Tools ... 8

2.1 Execution Plan/Explain Plan .. 8

2.1.1 Execution Plan .. 8

2.1.2 What is the Optimizer ... 10

2.1.3 Cost Based Optimization (CBO) ... 10

2.1.4 Optimizer Components .. 11

2.2 Root Cause Analysis (RCA) .. 14

2.2.1 Chosen RCA Method .. 15

2.3 PL/SQL Developer Tool .. 16

2.3.1 How to view the Execution Plan .. 16

2.3.2 Viewing the Execution Plan using the Explain Plan Window 17

2.3.3 Viewing the available indexes .. 18

2.3.4 Reading the Execution Plan ... 19

2.3.5 Interpreting the execution plan results ... 20

2.3.6 Execution Plan Table Access Methods/Path 20

2.3.7 Execution Plan Join Methods .. 26

3 Application of RCA in tuning SQL using the Execution Plan 28

3.1 Define the problem or areas of improvement .. 28

3.2 Assemble as much data and inputs as possible .. 28

3.3 Locate the causes .. 30

3.4 Find Corrective and Preventive Solutions... 32

3.5 Create Actionable strategies to implement the solution 32

3.6 Monitor the solution and confirm if it works ... 34

4 Results .. 34

5 Conclusions ... 36

1 Introduction

Enterprise Resource Planning (ERP) systems are integral in streamlining and unifying an organ-

izations data into one central database. These types of systems allow business processes to

fluidly interact and exchange data with one another creating a more agile business that can

adapt better to changes. This becomes increasingly important as a business grows to meet

more demand. Handling redundant and time intensive tasks are automated, reducing the

amount of workload of employees allowing them to focus on other important matters. With

that, the importance of ensuring that the creation of these data do not hamper the workflow

of its users.

Some ERP systems allow businesses to tailor their needs by allowing its base functionality to

be extended through customization features. These types of customizations can be in differ-

ent forms either to improve the user interface and user experience or to create custom data

specific to the company or customer’s needs. This thesis describes the use of the Execution

Plan and in what ways it can be utilized to enhance an SQL Custom Objects performance for

the ERP system of the client company. The Execution Plan is described in detail of its func-

tions and usage using the client company's tool. These tools were then used to troubleshoot

and improve an SQL query's performance.

1.1 Company Background

The client for this thesis project is Teknos Group Oy. Teknos Group Oy is a family-owned

global coatings company founded in 1948 in Tuomarila Espoo, Finland. The company offers a

wide variety of paint and coating solutions from Industrial, professional, and local consumers

(Teknos history, n.d.). With the slogan "Making the world last longer", the company prides it-

self on advance and sustainable paint and coating solutions to protect and prolong all sorts of

products and surfaces from the simplest to the harshest of elements possible. The company

employs over 1700 employees as of 2018 in over 20 countries spanning from North America,

Europe, and Asia. The company produces over 100,000 tons of paint per year and a net sale of

398 million euros as of 2019 (Teknos key figures, n.d.).

1.2 IFS ERP System

An Enterprise Resource Planning (ERP) system is an integration of all business processes into

one software. It is designed to contain the business processes of a company such as Sales,

Supply Chain, Human Resources, Accounting and many more. Each business process has its

own activities that take in some input and produce an output such as reports or useful data

that will be stored in a common database shared to other business processes and even exter-

nal tools. ERP solutions tend to offer a variety of automation features to ensure that the users

 6

can focus on other important tasks. This integration of business processes streamlines the

flow of data from one department to another, ensuring that the business functions smoothly.

Industrial and Financial Systems (IFS) is a developer and provider of ERP solutions. IFS ERP so-

lution specializes in manufacturing and distribution of goods, asset maintenance, and manage

service-focused operations (Get to know IFS, n.d.).

One of the strong features that IFS provides its customers is the ability to add their own cus-

tomizations through Custom Objects. Custom Objects makes it possible to extend the base

functionalities and features using Custom Fields, Context Menu Items, Pages, Tabs, and more

(About Custom Objects, n.d.).

Figure 1: IFS Layered Application Architecture (Layered Application Architecture, n.d.)

Custom Objects are done in the ERP software's Configuration Layer of its 6 Layered Applica-

tion Architecture (LAA). This architectural design tackles the problem of separation of owner-

ship and makes extending features for the customers unintrusive to the base code (Layered

Application Architecture, n.d.).

ERP systems like IFS are complex pieces of software that offer numerous functionalities that

would meet small, medium, to large scale business requirements. It is a centralized system

where many business transactions are processed and stored in a central database for every

business function to interact with, streamlining the work process. Having the ability to cus-

tomize the solution to further fit the business needs is an important feature to ensure that

the business will not always try to fit the software.

 7

1.3 Project Background

In 2018, Teknos Groups ICT Team initiated a project of upgrading the company's IFS ERP solu-

tion from IFS version 7.5 to IFS version 10. This upgrade project was planned to be deployed

to all countries that Teknos is situated on in a series of country roll out projects. With the ar-

rival of IFSv10, comes its features of creating in house solutions to meet company needs using

Custom Objects. Creating custom objects in 7.5 was very limited and new implementations

such as Custom Fields would always go to IFS for development. Having the feature as part of

the IFSv10 allowed Teknos to create Custom Object solutions such as Custom Fields, Menus,

Information Cards, Logical Units, Pages, Enumerations, and Tabs. Custom Objects such as Cus-

tom Fields and Custom Menus are written using PL/SQL or just SQL, while others are user in-

terface based.

1.4 Problem Statement

With the ability to create the solutions in-house, comes the problem of ensuring that the so-

lutions are meeting certain performance standards, more specifically for SQL queries Custom

Fields. Due to the many SQL customizations being implemented, performance issues have

been reported to occur on certain processes in the system. Investigations by the internal and

external development team have concluded that some of these performance related issues

are caused by some SQL custom fields, as well lack of indexes on the tables being used. With

that, the clients want to find out why the SQL customization are causing such issues and how

can the SQL performance be improved.

1.5 Objectives

Key Objectives

 To utilize the Execution Plan to enhance an SQL Customs Fields query's performance.

 To create an SQL test case and identify suboptimal execution plan procedures.

1.6 Scope and Limitation

The scope of this thesis will focus on understanding, interpreting, and improving the esti-

mated execution plan results such as identifying missing indexes, improper join operations,

and expensive operations to tune an SQL query's performance using the PL/SQL Developer

tools Explain Plan feature. The actual runtime performance will not be tested and will just

focus on a before and after result of the Execution Plan after the SQL code has been modi-

fied. Other tuning methods such as Tracing, Server Operating System Tuning will not be tack-

led.

 8

2 Methodology and Tools

This chapter introduces the methods and tools to be used to tune SQL queries. The Execution

Plan, what is the Execution Plan, the optimizer, and its components, how the optimizer

chooses the execution plan and how it decides to create the plan, what are the factors it con-

siders in creating an execution plan. The PL/SQL Developer Tool, how to use the tool to view

the plan and indexes, how to read the Execution Plan, as well as interpreting the plan results.

Lastly, the Root Cause Analysis, the methodology used to investigate and tune the SQL using

the Execution Plan.

2.1 Execution Plan/Explain Plan

Unlike programming software code where a developer has control on what is written and how

code is executed. SQL code, even with its declarative nature, its execution is not always de-

cided by the developer. To understand how a SQL is ran behind the scenes and it process

flow, one must look at the Execution Plan. The Execution Plan is the blueprint on how SQL is

processed step-by-step and is a very useful tool to identify these processes behind the scenes

and trouble shoot the SQL to improve the plan.

2.1.1 Execution Plan

According to the Oracle Tuning Documentation, the execution plan is a sequence of steps that

the database would perform to run a SQL statement in fetching data from the database tables

(Oracle, 2021, p.122). Knowing these steps, we can have a better understanding on how the

SQL is executed and key metrics of the resources it is using during the process. The key met-

rics include the system resources (I/O, CPU, RAM), number of rows an operation is returning

(Cardinality), what type of access method it is using, logical sequence, access filters, and

more. Understanding these metrics are key to the SQL tuning process.

Figure 2: Execution Plan of a SQL query (SELECT * FROM ifsapp.inventory_part)

 9

The image above shows an execution plan for an SQL query SELECT * FROM ifsapp.inven-

tory_part. The query to fetch all data in the inventory part table. Each row on the plan corre-

sponds to an operation that will be executed by the optimizer to get the requested results,

which in the example, fetches all the data in on the inventory part table.

The Execution Plan default columns include the following ID, Operation, Name, Rows, Bytes,

Cost, and Time. The columns can be changed to add more options.

ID –The ID is simply an identification for the operation. It does not correspond to the se-

quence on how the plan is going to be read.

Operation – Is the task that will be executed by the optimizer. This can be a table access or

join operation.

Name – Contains the name of a table, index table, view being accessed during the operation.

Rows – Estimated number of rows returned on the operation or Cardinality.

Bytes – Corresponds to the estimated data of the entire operation and is determined by the

amount of data being fetched in Bytes. This is affected by the number of columns selected

and rows fetched.

Cost – Cost is a value assigned by the Optimizer. This value is determined by the Optimizer

based on several factors such as Cardinality, processing, type of access method and more.

This value is important to the Optimizer to decide what plan would suite best in executing an

SQL query.

Time – Time is the estimated time the operation will run.

What is happening on the execution plan above is that on ID 5, the plan shows the operation

TABLE ACCESS FULL, which simply fetches all data as the query requested with no WHERE

clause, on the table INVENTORY_PART_TAB where the data is stored. ID 3 is more of a permis-

sion check; it shows an INDEX RANGE SCAN on USER_ALLOWED_SITE_PK where it returns the

RowID’s of sites the user is allowed access to and filters out restricted sites. If we look at our

query compared to the table being accessed in ID5, we are fetching from the IFSAPP.INVEN-

TORY_PART, while the execution plan shows INVENTORY_PART_TAB, this is because of IFS’s

design to hide certain implementations of the system. Also, we can see an inside look to the

filter system that IFS has on ID 3.

By looking at the execution plan, we can begin to understand how the SQL statement is pro-

cessed step-by-step behind the scenes and answer questions such as how much resource it

might use, is it returning the correct number of rows, how is it accessing tables (Is the SQL

 10

taking advantage of an Index) and understand how it is logically executed. The results in turn,

can be leveraged for troubleshooting performance issues or actively look for ways to re-write

and improve a queries performance. In the next subchapter we will look at the optimizer and

how it creates an execution plan.

2.1.2 What is the Optimizer

The optimizer is an integrated tool in the database software, and it determines the most opti-

mal method of executing an SQL statement in retrieving and accessing the data being re-

quested (Oracle, 2021, p.55). It is the driving force in creating, choosing, and comparing exe-

cution plans that would be the most appropriate based on the cost of the entire each plan it

creates (Oracle 2021, p.55). The plan determines this cost through, Cost Based Optimization

(CBO). Before Oracle 10g, the optimizer had two ways of creating an execution plan, Rule

Based Optimization (RBO) and Cost Based Optimization (CBO). RBO is a deprecated approach

and from Oracle 10g onwards and for this thesis we will be only focusing on CBO.

Figure 3: Process of creating an execution plan (Oracle, 2021, p.56)

2.1.3 Cost Based Optimization (CBO)

In determining which plan would suite best for the SQL query, the optimizer uses a cost-based

approach when comparing the Execution Plans it created. CBO assigns a cost to each of the

number of factors and assigns an overall cost which is the estimated resources that a query

will use when making the final decision (Oracle 2021, p62-p63). Factors the Oracle optimizer

considers in determining the overall resource cost of an SQL query are as follow:

1. System resources (I/O, CPU, Memory)

2. Number of rows expected to be returned (Cardinality)

 11

3. The size of the data set (Number of rows the SQL is working with)

4. Data distribution

5. Access structures (Indexes)

CBO relies on data statistics to create an optimal execution plan. Ensuring that the factors

are kept up to date is crucial in ensuring that the optimizer can create the lowest cost execu-

tion plan using the most efficient access paths and join methods and that the overall data-

base performance can be kept at an optimally good level. System hardware are powerful

enough to handle the given loads, the database statistics are kept up to date and the opti-

mizer uses the latest stats for the execution plans.

2.1.4 Optimizer Components

The optimizer is divided into three components. The Query Transformer, Estimator, and Plan

Generator. Once a query has been successfully parsed it will then be handed to the optimizer

to create the execution plan. Figure 4 shows the three steps and decision-making process of

the optimizer in creating and comparing execution plans.

Figure 4: Oracle Optimizer Components (Oracle, 2021, p.58)

2.1.4.1 Query Transformer

In this step, the optimizer checks for usable and semantically the same alternatives of the

SQL and decide whether it will yield lower cost. Query transformations look for possibly more

efficient access path (Oracle, 2021, p.58).

 12

Figure 5: Optimizer performing an OR Expansion to a SQL statement (Oracle, 2021, p.59)

The query transformation above shows an OR Expansion, one of the 9 query transformations

methods used by the oracle optimizer. This method is used when the optimizer finds a WHERE

clause containing an OR operator and transforms it into a UNION ALL (Query Transformations,

2013). The transformed query will be processed separately to check whether its cost is lower

compared to the original.

2.1.4.2 Estimator

After the Query Transform process, whether the statement has been transformed. The esti-

mator component will calculate the total cost of the execution plan. The estimator relies on

table statistics for this step and will determine the overall cost using the three measures (Or-

acle, 2021, p.59):

1. Selectivity - Selectivity is calculated as follow (number of rows selected/total rows). It is

the fraction of rows returned from a row set. It is a value between 0 and 1, where 1 repre-

sents low selectivity meaning that 100%(all) of rows are selected from an operation, a value

below 1 is headed towards higher selectivity (Gogia, 2017).

2. Cardinality - Cardinality is the selectivity * total number of rows. It is the total number of

rows returned (Gogia, 2017).

3. Cost - Cost is the overall system resources that a query is predicted to use such as I/O,

CPU, RAM, including the Cardinality estimates, and access structures (Oracle, 2021, p.59-60).

 13

Figure 6: How the estimator calculates the cost of a plan (Oracle, 2021 p.60)

The factors mentioned above play an important role in ensuring that an optimal execution

plan will be created. In particular the cardinality estimates, oracle emphasizes should be as

accurate as possible because of its influence in the overall execution plan. The optimizer re-

lies on accurate and up to date statistics to determine the cost of a join, cost of sorting, and

access method it will use. If the statistics are out of date, the optimizer might decide to use

other access methods and joins that can cause suboptimal performance.

2.1.4.3 Plan Generator

To find the most efficient access methods and join types to be used, the plan generator will

try different access paths, join methods, and join orders for each query block using various

combinations (Oracle, 2021, p.63-65). The method with the lowest cost in this step will be

chosen by the optimizer.

Figure 7: Optimizer Plan generator trying different access paths and returns the lowest cost

(Oracle, 2021, p.64)

 14

2.2 Root Cause Analysis (RCA)

The methodology chosen for the SQL tuning process of this thesis is the Root Cause Analysis

(RCA). The purpose of RCA is to identify the root cause of a problem that can be corrected

and when corrected will be able to prevent the fault from reoccurring in the future. RCA is

not a clearly defined methodology, but rather a process for problem-solving that can be

molded to fit the needs of the users for issues such as investigating an identified incident,

problem, concern, or non-conformity (Root Cause Analysis: Process, Techniques, and Best

Practices, 2021). The point clearly shows due to the varying of steps and processes when

searching RCA methods online. Depending on the requirements and the subject, the steps to

perform RCA will range from a 4 step process up to a 10-step process (See Figure 8). Ulti-

mately though, these models would still overlap ideas and steps in performing RCA such as (1)

Problem identification, (2) Diagnosing the problem, (3) Implementation a solution, and (4)

Maintaining results (Okes, 2009). Having a well-structured meth-od is important to further

maximize the benefits per-forming RCA.

Figure 8: Duke Okes 10 step RCA model - DO IT2 Problem Solving Model (Okes, 2009)

To further understand what RCA is, we need to define what a Root Cause is. In James' and

Lee's paper Root Cause Analysis for Beginners, they defined Root Cause in four different ways

(Rooney and Vanden Heuvel, 2004):

1. Root causes are specific underlying causes.

2. Root causes are those that can reasonably be identified.

3. Root causes are those management has control to fix.

 15

4. Root causes are those for which effective recommendations for preventing recurrences can

be generated.

In other words, the root cause is the specific/origin cause of a problem. This is different from

the general cause such as for example human error, or equipment failure. The actual root

cause should be identifiable, controllable, and can be prevented from reoccurring when a so-

lution has been implemented. The Analysis in RCA is the problem-solving process.

2.2.1 Chosen RCA Method

The chosen RCA method for this research will be a 6-step process introduced by the The Busi-

ness Analyst Job Description website. The rea-son for this is due to the model’s simplicity for

a problem-solving process and sequential approach in tuning SQL using the Execution Plan as

well the similarities that the model has with Oracles SQL tuning Steps.

Oracles SQL Tuning model would include the following in tuning process:

1. Identifying high-load SQL statements

2. Gathering performance-related data

3. Determining the causes of the problem

4. Defining the scope of the problem

Figure 9: The Business Analyst 6 Step RCA model (Root Cause Analysis: Process,

Techniques, and Best Practices, 2021)

 16

5. Implementing corrective actions for Sub optimally performing SQL statements

6. Preventing SQL performance Regression (Oracle, 2021, p29-30).

The two approaches have very common procedures. Compared to the business analysts RCA

model, Oracle's process differs on step 4 which is defining the scope. For this research, the

scope is already defined and is focused mainly on SQL changes that can improve an SQL's per-

formance based on the provided Execution Plan.

2.3 PL/SQL Developer Tool

This sub-chapter introduces the PL/SQL Developer Tool. It is the IDE (Integrated Development

Environment) that the Teknos development team uses to create SQL Custom Objects for the

ERP System. It features an easy and interactive way to view the Execution Plan without hav-

ing to run the EXPLAIN PLAN command.

2.3.1 How to view the Execution Plan

The PL/SQL Developer Tool is an IDE created by Allround Automations, a company whose aim

it to provide feature rich tools for Oracle developers. The IDE features a wide range of tools

for developing, testing, debugging, and optimizing Oracle PL/SQL store program units (pack-

ages, triggers, etc) (About us - Allround Automations, 2021). It is the IDE that the Teknos in-

ternal ERP development team uses for writing SQL code used for the ERP customizations. It

also features an easy way of viewing the execution plan which is most suitable for this thesis.

Allround Automations PL/SQL Developer Tools provides an easy and interactive way of viewing

an execution plan. One can view an execution plan by running PL/SQL code in the Explain

Plan window by going to File tab, select New, and chose the Explain Plan window. This will

open a window where you can enter your PL/SQL or SQL code and hit Execute on the Session

Tab to view the query's execution plan.

 17

Figure 10: Creating an Execution Plan Window in PL/SQL Developer Tool

2.3.2 Viewing the Execution Plan using the Explain Plan Window

For the case of the client, to view the execution plan requires the use of the “ifsapp” user

account connected to an environment. The “ifsapp” user account has the privileges to view

execution plans and access restricted tables. The Teknos development teams account which

has all the high permissions and access is not given access to these features.

Running the SQL in Figure 11 on the Explain Plan Window will result in 4 different views of the

execution plan, Tree, HTML, Text, and XML. The Tree view offers a rich feature of easily add-

ing more variables in the preferences setting as well as the ability to traverse the plan step-

Figure 11: Execution Plan of Running "SELECT * FROM ifsapp.shop_ord WHERE order_no =

'F1001556'"

 18

by-step using the navigation button on the windows header. HTML and TEXT will only display

columns, ID, Operation, Name, Rows, Bytes, Cost, Time and not include the plan navigation

buttons. The XML version can be exported to be used on other programs that can convert the

XML to a plan. The user can also set optimizer goals to be Cost Based (First rows, All Rows) or

Rule Based (Rule), by default this is set to All rows.

2.3.3 Viewing the available indexes

Similar to an Index in a book where you can find sorted keywords together with the pages

they are located on, indexing makes searching information much faster without needing to

flip the pages of the book one by one. Indexes in a table function the same way and makes

retrieving data much faster because the data is sorted and contains the pointer to where the

data is in memory. Without an index, queries must read the entire table to look for infor-

mation (Oracle Indexes and types of indexes in oracle with example - Techgoeasy, 2019).

There are different types of indexes, and this thesis will not be covering Indexes in-depth.

Viewing the index can be done in two ways. First, is from the Tree view of the plan window,

by Right Mouse Button (RMB) the Object Name and Selecting View, would return the table in-

formation such as indexes available to use (See Figure 12). The second way is by typing the

object name on a SQL or Explain Plan window, Highlight the name of the Object, RMB, then

Select View.

Figure 12: Viewing the available indexes of an Object from the Execution Plan

Identifying which indexes are available is important to utilize the fastest way searching

through the tables. Which is important to making sure that SQL runs fast and that the opti-

mizer chooses the best access path on the plan. In figure 12, SHOP_ORD_PK shows that the

index is Type unique, meaning that when we supply all the 3 columns mentioned (ORDER_NO,

RELEASE_NO, SEQUENCE_NO) on the Columns column on the WHERE clause, would results on

 19

querying a unique row. By using the other indexes, would results in an index range scan be-

cause there can be multiple rows returned.

2.3.4 Reading the Execution Plan

Although the PL/SQL Developer Tool can help us traverse the Execution Plan step-by-step. It

is still important to know how to read it without relying on the tool.

The Execution Plan is a tree like structure where the data flows upward from the leaves to

the Root or from Child Node to the Parent Node. This relationship can be seen from the in-

dentation of the Operation Column. The database uses a depth-first search approach where it

starts from the top of the plan (Root: SELECT STATEMENT) and working its way down the tree

until it ends up on a leaf with no branches. The operation for that leaf is then executed, then

it goes back up the tree, performing the operations along the way, then traverses back down

to unvisited leaves. This process is repeated, walking down the tree until all leaves are vis-

ited, walking back up to a different branch until and all steps are read (Saxon, 2020).

Figure 13: Execution Plan for (SELECT * FROM IFSAPP.INVENTORY_PART)

The execution plan data flow is as follow ID 4, 3, 2, 5, 1, 0.

To look for first operation executed, we start from the Root (ID 0), going down its child oper-

ation ID 1. ID 1 has two child operations, ID2 and ID5, as shown in their indentation. From

here, we follow ID 2 until no child nodes are found which in this case ends at ID 4. The flow

then goes up its parent operations, ID 4, 3, 2 and visit the unvisited child operation ID 5, go

back up again because there are no more child operations to ID1, and finally to ID 0. The data

 20

flow sequence goes as follows ID 4 > 3 > 2 > 5 > 1 > 0. Next, we will try to read and interpret

the reads line by line.

Row 4 - Fast Dual and expected number of rows is 1. In this operation, the optimizer executes

a query from the "dual" table which is a special temporary table that only returns 1 value.

Row 3 - Index Range Scan, as mentioned on the access path section, this operation can return

multiple RowIDs that match the predicate expression, in our case the table being accessed is

the USER_ALLOWED_SITE_PK which fetches the user id and the sites it has permission to view.

Row 2 - VIEW operation creates an intermediate result set from the index range scan results

which will be used compared to ID 5’ results.

Row 5 - Table Access Full on INVENTORY_PART_TAB, expected number of rows returned

298,532. We are access all the rows on the INVENTORY_PART_TAB as we did not specify any

WHERE clause in the query.

Row 1 - HASH JOIN RIGHT SEMI - As explained on the execution plan join types, a Hash Join

hashes the smallest table of the two tables on the JOIN operation (In this case the Site results

in VW_SQ1), then the same hashing is applied on the second table (INVENTORY_PART_TAB).

The operation will then compare matching hash results from Table 1 and Table 2 and returns

those results. Although we did not specify a Join operation anywhere, this is IFS's way of

checking whether the user fetching the data has access to the site information on inventory

part.

Row 0 - SELECT STATEMENT, expected Rows 54,631. This row operation is the summary of all

the operations that have occurred below it. The expected number of rows in this case is just

an estimation based on the database statistics. The results might differ for each user due to

permission differences.

2.3.5 Interpreting the execution plan results

For every row on the Execution Plan is an operation. Each operation can be either an Access

method, where a table, view, or join result is being accessed in a certain way, or a Join Oper-

ation, where two results from an operation are joined together. In this sub chapter, we will

be looking into the different operations that can be found in an Execution Plan such as Access

Methods and Join Operations.

2.3.6 Execution Plan Table Access Methods/Path

An Access Path in an Execution plan is a method of which data is retrieved from a row source.

Row sources can be in a form of a Table, View, or a result of a Join Operation combining two

 21

tables into one (Optimizer Access Paths, 2013). Although there are quite many Access Meth-

ods, it can be broken down into two categories, Full Table Scan, and Index Scans.

2.3.6.1 Full Table Scan (FTS)

A full table scan in an execution plan will read all rows from a table and filters the rows that

do not match the selection criteria. This is typically done when the optimizer cannot use

other access paths such an Index, or if the result of doing a full table scan will yield lower

cost (Optimizer Access Paths, 2013). Below is a table of reasons when the optimizer will per-

form a Full Table Scan.

Reason Explanation

No index exists. When an Index does not exist, a Full Table Scan is used.

The query predicate applies a

function to the indexed col-

umn.

Unless the index is also a function-based index, when an in-

dexed column is put into a function, the ability to use the in-

dex can be ignored. Ex. UPPER(column_name) = ‘TEST’

A SELECT COUNT(*)query is is-

sued, and an index exists, but

the indexed column contains

nulls.

The optimizer cannot use the index to count the number of ta-

ble rows because the index cannot contain null entries.

The query predicate does not

use the leading edge of a B-

tree index.

This occurs when for example, an index might exist on employ-

ees table on columns first_name and last_name. When a query

is executed with the predicate is WHERE last_name = ‘RAZON,

the optimizer may not choose an index because column

first_name is not in the predicate. This can however result in

an Index Skip Scan instead if indexes are available on the two

columns.

The query is unselective. An unselective query is one that does not specify enough ac-

cess predicates to the WHERE clause or JOIN operation. This

would make the optimizer think that it requires most of the

blocks in a table to be read leading to a Full Table Scan.

 22

The table statistics are stale. Stale statistics occur when a table that had few rows had

grown significantly. If the statistics are not up to date and is

using old statistic data, the optimizer might think that per-

forming a full table scan is more efficient than an index ac-

cess.

The table is small. The optimizer might decide on a full table scan if the table

contains very few rows below a threshold. Also, if the cost of

performing a full table scan is lower than that of an index ac-

cess, a full table scan will be used due to the Cost Based Opti-

mization.

The table has a high degree of

parallelism.

The optimizer will opt for a Full Table Scan over Indexes when

there is a high degree of parallelism.

The query uses a full table

scan hint.

The use of a hint FULL(table_name) forces the optimizer to

use a full table scan.

Table 1: Optimizers reasons for choosing an FTS (Optimizer Access Paths, 2013)

Full Table Scans are not necessarily a bad thing in an execution plan, as mentioned that if the

table is small enough, the optimizer might opt for an FTS rather than use an Index as it would

result in a lower cost. Knowing and understanding the properties of the table a developer is

working with is important to understand the optimizers decision to use an FTS is justified

from the number of rows.

2.3.6.2 Table Access by Row ID

Considered to be the fastest way of accessing a single row of data, a Table Access by Row ID

is a method of access by which a Row ID is supplied to point to the exact physical address lo-

cation of the row in the database. A Row ID lookup is faster than a Primary Key lookup and is

unique to every row on a table and the entire database (Optimizer Access Paths, 2013).

 23

Figure 14: Row IDs in a table (What is ROWID and ROWNUM in SQL?, 2019)

2.3.6.3 Index Unique Scan

An Index Unique Scan occurs when all the indexed columns of a table are referenced in the

query predicate such as the WHERE clause using an equality operator (Srivastava, n.d.). This

access method scans an indexed table and fetches a single RowID to be used to retrieve the

row data (Optimizer Access Paths, 2013).

Figure 15: Index Unique Scan in an Execution Plan

Image above shows an Index Unique Scan in the query's execution plan (ID4) for fetching the

Shop Order information. The access method was chosen by the optimizer because all the in-

dexed columns for shop_ord_pk was supplied in the WHERE clause of the query using an

equality operator. See image below of the Indexed Columns for SHOP_ORD_PK.

 24

Figure 16: Indexes for the SHOP_ORD_PK Columns ORDER_NO, RELEASE_NO, SEQUENCE_NO

2.3.6.4 Index Range Scan

Compared to an Index Unique Scan, an Index Range Scan can return multiple RowID values

and occurs when in the predicate expression(s) in the WHERE clause has >,<, >=, <= condi-

tions on the indexed columns(WHERE column > 1000) or when not all of the indexed columns

are referenced in the WHERE clause (Srivastava, n.d.).

The image below shows an Index Range Scan in the query's execution plan (ID5) for fetching

the Shop Order information. By not supplying the release no and sequence no, the optimizer

instead chooses an Index Range Scan as there can be multiple orders with varying release and

sequence numbers. This value is shown in the Rows (Cardinality) column as the optimizer esti-

mates the expected rows to be 2.

2.3.6.5 Index Skip Scan

When the first in a multi-column index is not supplied in the WHERE clause of a query, instead

it is supplied its leading index column(s), then the optimizer might opt to use an Index Skip

Scan if the first column contains very few distinct values. By its nature, this type of index

scan is not as efficient compared to other index scans as it requires to traverse the indexes

multiple times (Srivastava, n.d.).

Figure 17: Index Range Scan in an Execution Plan

 25

In the example above, the inventory_part_tab is indexed using the part_no and contract. In

the query, only the contract was given in the WHERE clause, skipping the first index column.

Due to the low distinct rows for the first columm, an Index Skip Scan was chosen by the opti-

mizer.

2.3.6.6 Full Index Scan

In an Index Full Scan, the entire index table is read in its original sort order. This eliminates

the need for a sort operation due to the nature of indexes already being pre-sorted. The opti-

miser chooses this type of access method when: First, any index columns are referenced in

the WHERE clause of an SQL statement. Second, the selected columns in the query are all

part of the index, and that one indexed column is not null. Lastly, when an ORDER BY key-

word is specified to a column in the query that is non-nullable, meaning a column that cannot

be empty such as a Primary Key (Balasubramanian, n.d.).

2.3.6.7 Fast Full Index Scan

A Fast Full Index Scan is a replacement for a Full Table Scan, wherein it reads all the blocks

in an index in an unsorted manner. This is chosen by the optimizer when the indexed columns

selected by the query are all present in the index table itself (Optimizer Access Paths, 2013).

2.3.6.8 Index Join

An Index Join Scan occurs when the optimizer is working with a table that contains multiple

indexes and that the query SELECT have all the columns it needs in those indexes. This way,

the optimizer will find it more efficient to search multiple indexes and Hash Join them to-

gether to get the result set. In this access method, the optimizer will only have to work with

the Index table rather than accessing the table itself (Colgan, 2021).

Figure 18: Index Skip Scan in an Execution Plan

 26

Figure 19: Index Join Scan in an Execution Plan

As mentioned, that an Index Join Scan is a Hash Join of indexes, the image above shows an

Index Join Scan where in 2 columns (order_no, part_no) in the SQL query are indexes on

SHOP_ORD_PK (order_no) and SHOP_ORD_IX1(part_no).

2.3.7 Execution Plan Join Methods

Join Operations in an Execution Plan is a result of two row sources combined based on a simi-

lar column that they both have. The row source can be any combination of table, view, or

other join operations.

2.3.7.1 Nested Loops

A Nested Loop is a type of join method which functions like a nested for loop, as seen in the

image below. Every row in the outer table will be matched against all the rows on the inner

table. This join method is a proper operation when the optimizer is working with a few rows

and an efficient access path such as an index in the inner table, as the inner table will be

Figure 20: SHOP_ORD schema showing the indexes for SHOP_ORD_IX1 and SHOP_ORD_PK

 27

read over and over for each row from the outer loop matching the WHERE clause (Colgan,

2021).

Figure 21: Illustration of a Nested Loop (Colgan, 2021)

2.3.7.2 Hash Join

In working with larger tables, the optimizer might opt to use a Hash Join. A Hash Join works

by building a hash table in memory using the smaller table in the join operation. Once a hash

table has been made using the smaller table, the same hashing function will be applied to the

second table, which the optimizer will then compare the hashed values on both tables to look

for matches (Colgan, 2021).

2.3.7.3 Sort Merge Join

The Sort Merge join is a twostep process of sorting and merging tables. This operation is done

when either or both inputs on the join columns are already sorted, in most cases when the

column(s) are indexes. The first step takes the first-row source then sorts it by the join col-

umn(s), then it does the same on the second table. Next, the matching results are merged in

the original order (Colgan, 2021).

Figure 22: Sort Merge Join Illustration (Colgan, 2021)

 28

3 Application of RCA in tuning SQL using the Execution Plan

This chapter will describe the application of the tools and methods described in chapter 2.0

to tune an SQL query.

3.1 Define the problem or areas of improvement

The first step in RCA is to define the problem or areas needing of improvement. In the con-

text of SQL tuning, is to identify a high-load SQL statement. For the purposes of this thesis, a

suboptimal query will be purposefully created to showcase different issues that can be identi-

fied in an execution plan and demonstrate how the problem can be improved on.

Figure 23: Suboptimal SQL query

To demonstrate a suboptimal performing query, the SQL above will be used as an example.

The query functions by selecting all the rows (SELECT *) on the tables specified on the FROM

clause (ifsapp.shipment_line, ifsapp.shop_ord, ifsapp.inventory_part), and search and filters

data on the WHERE clause. In the WHERE clause, the query has three conditions that should

all be true to return a result. First, the query searches for a matching row on the Shop Ord

table provided the order number (so.order_no = ‘F1000478’). Second, it checks whether the

provided shop order number matches a shipment line on the source_ref1 column

(sl.source_ref = so.order_no). Lastly, it filters the returned results of a shipment line that

contains an inventory part description using the RAL colour standard (UPPER(ip.description)

LIKE ‘%RAL%’), the UPPER function converts the result in ip.description to all upper case char-

acters.

3.2 Assemble as much data and inputs as possible

The second step in RCA is the data gathering phase or gathering SQL performance related

data. For that, the Execution Plan of the SQL in step 1 and the available indexes of the tables

used by the plan will be gathered.

To gather the plan, the query in Step 1 is ran on the Explain Plan window as instructed on the

previous chapter on how to view the execution plan in PL/SQL Developer Tool. Any access

predicate statements on the WHERE clause will be replaced with a bind variable to act as a

temporary place holder. In the case of the query, the so.order_no ='F1000478' will be re-

placed with so.order_no =:order_no. Running the SQL in the Explain Plan window will result

with the plan below.

 29

Figure 24: Suboptimal Execution Plan

Next, is to identify the available indexes for the tables being used. The tables used by the

plan can be seen on the Object name column. Because the query is working with the tables

Shipment Line, Shop Order, and Inventory Part, the attention can be focused on the Object

names that are like the tables in the WHERE clause, namely, ID 8, 9, 11, 12, and 17. Other ta-

bles such as ID 2 and 13 are views and act as a temporary table for data, while ID 3 and 14 are

more filters checks done IFS based on the permission of a user. Hovering the mouse over the

object name and pressing the RMB, then selecting view will show the structure of the table.

For this thesis, the primary focus will only be on the Indexes Tab.

Figure 25: Inventory Part Table Indexes

Figure 27: Shop Order Indexes

Figure 26: Shipment Line Indexes

 30

With the Execution Plan and Indexes gathered, the results can then be used to check for pos-

sible improvements.

3.3 Locate the causes

The third step is locating the cause(s) of the problem. Using the plan and available indexes

gathered on step two, the type of operations performed can be identified on the plan and

compared to the SQL to determine the problem.

Without reading the entire flow of the plan, a few red flags can already be identified on the

plan while comparing its SQL query.

 TABLE ACCESS FULL on ID 17, Inventory Part table. The cardinality estimate is 14,927

rows being returned.

A table access full is not necessarily a bad thing in an Execution Plan if the tables are

small enough then the cost of performing the operation is going to be lower than that

of an index access, but that is not that case for this SQL. The Inventory Part table

contains a large row count as it contains data for the products at Teknos. Also, the

SQL query does not provide any access predicate such as an Inventory Part ID and Site

information, as shown with the available indexes for Inventory Part in step 2. The use

of a double wildcard is also an expensive operation because each row needs to be

checked for any matching patterns with RAL, this solution can also return an incorrect

result as some Teknos product names might use the letters ral. There should be other

available columns that can provide the RAL color code information.

 MERGE JOIN CARTESIAN on ID 5 and 7. ID 7, is an inner cartesian join operation, join-

ing tables SHIPMENT_LINE_TAB and SHOP_ORD_TAB. The result from ID 7’s cartesian

join is then sent to ID 6 to be compared against the USER_ALLOWED_SITE_PK results

to check for site access permissions. ID 5, is an outer cartesian join which then joins

results from the inner cartesian join to the buffer sort result of INVEN-

TORY_PART_TAB. The overall result is a join of 3 tables along with one table that per-

formed a Full Table Scan.

 31

Figure 28: Inner (Green Box) and Outer (Red Box) Cartesian Joins

Cartesian Joins are known to be expensive design operations in a SQL. This occurs

when the SQL did not specify a JOIN operation of tables or insufficient parameters

supplied to the WHERE clause. This results in a large table whose rows are all join to-

gether creating a cartesian product (1). The JOIN operation should be specified on

the FROM clause using columns that match two certain tables namely, the Shipment

Line and Shop Order.

 SELECT * in the SQL. Using the SELECT * selects all columns on the three tables speci-

fied on the FROM clause. A rule of thumb is to only select the amount of columns

needed as it can reduce the amount of cost of the plan as well as possibly improve

the selection process of the table access methods if the optimizer can fetch the rows

in the Index tables itself.

Although not considered as a red flag in the plan. Another possible room for improvement is

the INDEX RANGE SCAN on ID9 and ID12. An Index Range Scan is a good access operation as it

uses the available indexes and can read rows quickly and efficiently, but it is possible to turn

it into an INDEX UNIQUE SCAN to improve the selectivity of the query to only 1 row if there is

an available Unique type of index in the index table.

After analysing the plan and identified possible performance causes, the following goals can

then be set as solutions to the identified problem.

 FULL TABLE SCAN - Eliminate the Full Table Scan and use the available indexes and

find another column for the colour code.

 MERGE JOIN CARTESIAN - Specify a JOIN operation between the Shipment Line and

Shop Order and Inventory Part table to eliminate the Cartesian Product result.

 SELECT * - Select only the needed column(s), instead of a SELECT *.

 32

 INDEX RANGE SCAN - Improve on the Index Range Scan if the tables have unique in-

dexes available.

In the next step, the focus is to apply these changes to the SQL query.

3.4 Find Corrective and Preventive Solutions

Having identified four problems to fix, the fourth step in RCA is to find and implement correc-

tive and preventive solutions to the SQL.

Starting with the first problem of a FULL TABLE SCAN on ID17 on the Inventory Part table. The

goal is to eliminate the Full Table Scan and change the filter description to a more specific

column. Looking into Figure 25 of the Inventory Part indexes, an Index of type Unique is avail-

able on the third row when the PART_NO and CONTRACT is supplied as access predicates. The

Part No and Contract can be supplied in the WHERE clause or via a JOIN operation because

the Shop Order tables contains a column called Part No and Contract. The wildcard operation

to filter for the RAL colour code is to be changed to a custom field column called

CF$_COLOR_CODE on the custom field table of the Inventory Part.

Second problem, MERGE JOIN CARTESIAN on ID 5, and 7. To remove the cartesian operation, a

JOIN must be specified to the three tables along with connecting columns. Shipment Line and

Shop Order both have columns that can be joined. For Shop Order, these are columns OR-

DER_NO, RELEASE_NO and SEQUENCE_NO, joined in the same order to SOURCE_REF1,

SOURCE_REF2, SOURCE_REF3 for Shipment Line. The columns are the same type of data but

use different terminologies in a different context. For the Inventory Part table, Part no and

Contract is also available on Shop Order. The Inventory Part columns PART_NO and CONTRACT

can be joined to Shop Orders PART_NO and CONTRACT column.

Third problem, SELECT *. Properly defining which columns are needed and will be used is

good practice in writing effective SQL. For this problem, only one column will be selected in-

stead of the SELECT *.

Lastly, an Index Range Scan. As mentioned earlier that an index range scan is a good access

method, but it can still be improved on. To solve this issue is to use the available unique in-

dexes for the tables mentioned in Step 2.

Having identified possible solutions to the problem, step 5 applies the changes to the SQL

query and explains why the solutions are implemented.

3.5 Create Actionable strategies to implement the solution

Using all the solutions mentioned in step 4. The SQL query can be re-written as follow:

 33

Figure 29: Rewritten SQL query

Eliminating the Full Table Scan. Using the available unique indexes on Inventory Part, the ta-

ble is now joined to Shop Orders PART_NO and CONTRACT column (INNER JOIN ifsapp.inven-

tory_part_cfv ip ON ip.part_no = so.part_no AND ip.contract = so.contract). Also, the double

wildcard search on the description column has been replaced with a single wildcard search on

CF$_COLOR_CODE, this column contains the proper color code standards data from the

ifsapp.inventory_part_cfv table, which is the inventory part table containing all custom fields

separate from the original table.

Fixing the Cartesian Joins. The three tables all have columns related to each other, therefore

a join of the three is possible in the following order, Shipment Line joins to Shop Order and

Shop Order joins to Inventory Part (ifsapp.shipment_line sl INNER JOIN ifsapp.shop_ord so ON

sl.source_ref1 = so.order_no AND sl.source_ref2 = so.release_no AND sl.source_ref3 = so.se-

quence_no INNER JOIN ifsapp.inventory_part_cfv ip ON ip.part_no = so.part_no AND ip.con-

tract = so.contract).

Select * columns. For this problem, the Shipment Lines shipment_id column is selected. (SE-

LECT sl.shipment_id)

Improving on the Index Range Scan. With the tables all joined together to their corresponding

index columns. The Shop Order Index Range scan on ID 12 should result in an Index Unique

Scan because all index unique columns Order, Release, and Sequence Numbers are joined to

Shipment Line and are supplied in the WHERE clause (WHERE so.order_no =:order_no AND

so.release_no =:release_no AND so.sequence_no =:sequence_no). For the Shipment Line, the

operation will result in an Index Skip Scan or Index Range scan because the conditions for a

Unique index were not supplied and that the columns SHIPMENT_ID and SHIPMENT_LINE_NO

are only available on Shipment lines and cannot be joined to Shop Order.

With the new SQL query using more efficient indexes, joins, and selecting only needed col-

umns. The SQL should return a more efficient Execution Plan utilizing Index Unique Scans,

lower cardinality estimates and overall cost.

 34

3.6 Monitor the solution and confirm if it works

The last step in RCA in SQL tuning is to confirm the solutions effectiveness. For the last step,

the new SQL code is rerun on the Explain Plan window to check and confirm the new Execu-

tion Plan result.

Figure 30: New Execution Plan for the SQL

By implementing the solutions to the query such as utilizing the available index, using join op-

erations, adding more access predicates, using columns that are more suited for the opera-

tion, and selecting only the column needed. The resulting Execution Plan is using more effi-

cient access paths such as INDEX UNIQUE SCANs and INDEX RANGE SCAN while having lower

cost and cardinality estimates. The cartesian joins are gone after using the join operation on

the three tables using their indexes. The Inventory Part table is now being accessed via an IN-

DEX UNIQUE SCAN rather than a FULL TABLE SCAN and that the filter predicate is now using a

more efficient column that only needs one wildcard operation. The Shop Order table im-

proved from an INDEX RANGE SCAN to an INDEX UNIQUE SCAN after joining all three columns

in the SHOP_ORD_PK and providing the data in the WHERE clause. The cost and cardinality es-

timates have lowered because the query is only selecting 1 column and is now more selective

with the added access predicates supported by the INDEX UNIQUE SCAN result.

4 Results

The primary goal of this thesis project was to gain an understanding on how the Execution

Plan can be utilized to identify SQL query issues and enhance a query’s performance using the

Execution Plan results. The Optimizer, the software responsible for creating the execution

plan, its inner workings was elaborate upon to gain an insight of its decision-making process

as well as the factors that affects its decisions. Understanding the optimizer helped gain a

base knowledge for the upcoming step in reading the execution plan and interpreting its re-

sults using the PL/SQL Developer Tool.

 35

To demonstrate the effectiveness of using the Execution Plan to troubleshoot a query, a

suboptimal SQL was purposefully created to show a suboptimal Execution Plan. A 6-step Root

Cause Analysis process was then used for the SQL tuning process.

The thesis project was successful in showcasing how the Execution Plan can be used to trou-

bleshoot a suboptimal SQL query and was able to identify problems on the plan which was

then leveraged to refactor the code to improve the Execution Plan results. The following is-

sues were identified in the plan using the tools and tuning process:

1. Full Table Scans – Initial Execution Plan showed that the Inventory Part table was be-

ing accessed via a Full Table Scan, meaning that all rows were being accessed and

read. The operation on the query was estimated to have costed 5 837 in overall re-

sources and have read 14 927 rows with 7.5 Megabytes worth of data (See ID 17 Figure

24). This was refactored in the SQL code by using the available index on inventory

part via an INNER JOIN operation on shop order. The result being an Index Unique

Scan on inventory part where only row is expected to be read. The operation now es-

timates to cost 2 in overall resources with only 1 row being read with 47 Bytes of data

(See ID 8 Figure 30). Using available indexes in important in an SQL query, it makes

accessing the table much quicker instead of going through all the rows on a table.

This is especially important when working this tables that have a high number of

rows.

2. Cartesian Join Operations – Not specifying a join operation to the tables used resulted

in a cartesian join on Figure 24 ID 5, and ID 7. The overall resource cost for the opera-

tion on the outer join ID5 was 5 849 with a cardinality estimate of 1 576 rows and 2

Megabytes worth of data. This is the result of the inventory part table being accessed

in full as well as insufficient access predicates being provided. By explicitly defining a

join operation on all three tables, the cartesian join was changed to an Index Range

Scan and Index Unique Scan. Resulting in an overall lower cost as 1 row is expected

per to be read at each operation (See Figure 30).

3. SELECT * - Instead of selecting all columns, selecting only what is needed will signifi-

cantly lower the cost of an operation because less data is being read. This result is

noticeable on Figure 24 ID 17, where all rows were read due to the full table scan.

The operation read 7.5 Megabytes worth of data. By being more selective and only se-

lecting what is needed, the overall byte cost was reduced in the final execution plan.

4. Index Range Scan – An Index Range Scan is an efficient access method that can read

multiple rows, but it can still be improved to an Index Unique Scan which reads only 1

unique row. An Index Unique Scan is possible if an Index of type Unique is available

for use in the index table and is supplied in the WHERE clause or a table join. This is

 36

shown on the cardinality estimates on Figure 24 ID 9; cardinality of 4, and ID 12; car-

dinality of 2. Having joined the shop order to shipment line where all unique indexed

columns on shop order where connected, resulted in a plan where the shop order was

being accessed via an Index Unique Scan with only 1 row being read. An Index Unique

Scan was not possible for shipment line as the shop order did not have any all the col-

umns available for an index unique access, resulting still in an Index Range Scan but

with an estimated cardinality of 1, as this operation is a range scan, the cardinality

can still go up depending on the shipment lines.

5 Conclusions

With the use of the execution plan, inefficient access methods and high cost were identified

on the procedures of an SQL query. The plan results were used to successfully refactor the

SQL code to improve the execution plan and performance.

There are numerous ways on how to tune an SQL query’s performance. Future recommenda-

tions include the use of Tracing tools to get a deeper understanding of actual runtime data as

well as to compare the actual execution plan to the estimate execution plan.

The Execution Plan can be used in many more ways than just identifying missing indexes and

incorrect access path and join operations. There are many more columns that can be used to

show different statistics that could benefit the tuning process.

Other coding practices such as using only PL/SQL function API calls compared to SQL code as

well as the impact of switching between PL/SQL functions to SQL code are all areas that re-

quire more research to understand their impact in the actual performance.

This thesis project showed the potential of using the execution plan as well as its importance

in SQL performance tuning. Overall, the execution plan is only a tool to aid the SQL developer

when performance tuning. As I learned throughout this thesis project, the tool will be more

effective as the skills of the developer grow.

 37

References

Electronic sources

Teknos. n.d. Teknos history. Accessed 3 September 2021: https://www.teknos.com/com-

pany/about-us/our-history/

Teknos. n.d. Teknos key figures. Accessed 3 September 2021: https://www.teknos.com/com-

pany/about-us/key-figures/

n.d. Get to know IFS. IFS, p.3. Accessed 5 September 2021:

https://www.ifs.com/sitecore/media-library/assets/2015/09/16/11/53/get-to-know-ifs/

Docs.ifs.com. n.d. About Custom Objects. Accessed 5 September 2021:

https://docs.ifs.com/techdocs/Foundation1/010_overview/220_user_interface/about_cus-

tom_objects/

Docs.ifs.com. n.d. Layered Application Architecture. Accessed 5 September 2021:

https://docs.ifs.com/techdocs/Foundation1/010_overview/100_architecture/010_LAA_over-

view/default.htm

2021. Oracle Database: SQL Tuning Guide. Oracle, pp.29-30, 55-60, 62-63. Accessed 4 Sep-

tember 2021: https://docs.oracle.com/en/database/oracle/oracle-database/21/tgsql/sql-

tuning-guide.pdf

Saxon, C., 2020. How to Read an Execution Plan. [online] Oracle Blogs. Accessed 11 Septem-

ber 2021: https://blogs.oracle.com/oraclemagazine/post/how-to-read-an-execution-plan

Techgoeasy. 2019. Oracle Indexes and types of indexes in oracle with example - Techgoeasy.

Accessed 11 September 2021: https://techgoeasy.com/oracle-indexes/

Docs.oracle.com. 2013. Optimizer Access Paths. Accessed 12 September 2021:

https://docs.oracle.com/database/121/TGSQL/tgsql_optop.htm#TGSQL228

Srivastava, N., n.d. Index Lookup (Unique Scan,Range Scan, Full Scan, Fast Full Scan, Skip

Scan). [online] Oracle Database Internal Mechanism. Accessed 16 October 2021: https://data-

baseinternalmechanism.com/oracle-database-internals/index-lookup-unique-scanrange-scan-

full-scan-fast-full-scan-skip-scan/

 38

Balasubramanian, V., n.d. Fast Index Scan, Index Scan, Partition Range Scan and Full Table

Scan. DOYENSYS. Accessed 16 October 2021: https://doyensys.com/blogs/fast-index-scan-in-

dex-scan-partition-range-scan-and-full-table-scan/

Colgan, M., 2021. Oracle Optimizer Access Methods. Accessed 16 October 2021:

https://www.youtube.com/watch?v=jYIjzmYCc0U

Colgan, M., 2021. Explain the Explain Plan: Join Methods. Sqlmaria.com. Accessed 17 October

2021: https://sqlmaria.com/2021/02/02/explain-the-explain-plan-join-methods/

Thebusinessanalystjobdescription.com. 2021. Root Cause Analysis: Process, Techniques, and

Best Practices | The Business Analyst Job Description. Accessed 26 October 2021: https://the-

businessanalystjobdescription.com/root-cause-analysis-steps-techniques-and-best-practices/

Okes, D 2009, Root Cause Analysis: The Core of Problem Solving and Corrective Action. Ac-

cessed 26 October 2021: ProQuest Ebook Central

Rooney, J. and Vanden Heuvel, L., 2004. Root Cause Analysis for Beginners. QUALITY PRO-

GRESS. Accessed 26 October 2021: https://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.618.8544&rep=rep1&type=pdf

Gogia, B., 2017. Performance Tuning Basics 1: Selectivity and Cardinality. Expert Oracle. Ac-

cessed 26 October 2021: https://expertoracle.com/2017/11/15/db-tuning-basics-1-selectiv-

ity-and-cardinality/

SQL WORLD - Parse, Bind, Optimize, Execute. 2019. What is ROWID and ROWNUM in SQL?. Ac-

cessed 16 November 2021: https://www.complexsql.com/rowid-rownum/

Allround Automations. 2021. About us - Allround Automations. Accessed 23 October 2021:

https://www.allroundautomations.com/about-us/

Docs.oracle.com. 2013. Query Transformations. Accessed 23 October 2021: https://docs.ora-

cle.com/database/121/TGSQL/tgsql_transform.htm#TGSQL206

 39

Figures

Figure 1: IFS Layered Application Architecture (Layered Application Architecture, n.d.) 6

Figure 2: Execution Plan of a SQL query (SELECT * FROM ifsapp.inventory_part) 8

Figure 3: Process of creating an execution plan (Oracle, 2021, p.56) 10

Figure 4: Oracle Optimizer Components (Oracle, 2021, p.58) 11

Figure 5: Optimizer performing an OR Expansion to a SQL statement (Oracle, 2021, p.59) ... 12

Figure 6: How the estimator calculates the cost of a plan (Oracle, 2021 p.60) 13

Figure 7: Optimizer Plan generator trying different access paths and returns the lowest cost
(Oracle, 2021, p.64) .. 13

Figure 8: Duke Okes 10 step RCA model - DO IT2 Problem Solving Model (Okes, 2009) 14

Figure 9: The Business Analyst 6 Step RCA model (Root Cause Analysis: Process, Techniques,
and Best Practices, 2021) ... 15

Figure 10: Creating an Execution Plan Window in PL/SQL Developer Tool 17

Figure 11: Execution Plan of Running "SELECT * FROM ifsapp.shop_ord WHERE order_no =
'F1001556'" ... 17

Figure 12: Viewing the available indexes of an Object from the Execution Plan 18

Figure 13: Execution Plan for (SELECT * FROM IFSAPP.INVENTORY_PART) 19

Figure 14: Row IDs in a table (What is ROWID and ROWNUM in SQL?, 2019) 23

Figure 15: Index Unique Scan in an Execution Plan .. 23

Figure 16: Indexes for the SHOP_ORD_PK Columns ORDER_NO, RELEASE_NO, SEQUENCE_NO 24

Figure 17: Index Range Scan in an Execution Plan ... 24

Figure 18: Index Skip Scan in an Execution Plan ... 25

Figure 19: Index Join Scan in an Execution Plan ... 26

Figure 20: SHOP_ORD schema showing the indexes for SHOP_ORD_IX1 and SHOP_ORD_PK ... 26

Figure 21: Illustration of a Nested Loop (Colgan, 2021)... 27

Figure 22: Sort Merge Join Illustration (Colgan, 2021) .. 27

Figure 23: Suboptimal SQL query ... 28

Figure 24: Suboptimal Execution Plan ... 29

 40

Figure 25: Inventory Part Table Indexes .. 29

Figure 26: Shipment Line Indexes .. 29

Figure 27: Shop Order Indexes .. 29

Figure 28: Inner (Green Box) and Outer (Red Box) Cartesian Joins 31

Figure 29: Rewritten SQL query .. 33

Figure 30: New Execution Plan for the SQL ... 34

Tables

Table 1: Optimizers reasons for choosing an FTS (Optimizer Access Paths, 2013) 22

