
Comparing Different CI/CD Pipelines

Degree Programme in Business Information Technology

Hämeenlinna University Center

Autumn, 2021

Joni Virtanen

Tietojenkäsittelyn koulutus Tiivistelmä

Hämeenlinnan korkeakoulukeskus

Tekijä Joni Virtanen Vuosi 2021

Työn nimi CI/CD-Pipelinet vertailussa

Ohjaajat Lasse Seppänen

TIIVISTELMÄ

Opinnäytetyön tavoitteena oli vertailla erilaisia jatkuvaan integraatioon ja jatkuvaan

julkaisemiseen saatavilla olevia järjestelmiä. Työn aikana tarkasteltavia tuotteita olivat

Jenkins, Atlassian Bamboo, Azure Pipelines, Google Cloud Build, AWS CodeBuild ja

CodePipeline, GitLab Actions, GitHub CI/CD ja Bitbucket Pipelines. Opinnäytetyön

toimeksiantajana oli Ambientia Oy.

Opinnäytetyön teoriaosa avaa jatkuvan integraation, jatkuvan julkaisemisen ja

julkaisuputkien käsitteet. Tämän jälkeen teoriaosuudessa käsitellään yleisellä tasolla eri

ratkaisujen tarvittavat komponentit julkaisuputken luomiseksi. Opinnäytetyö on

tutkimuksellinen. Aineistoa kerättiin eri palveluiden omista dokumentaatioista. Käytännön

osuudessa toteutettiin mahdollisimman identtinen julkaisuputki eri palveluihin

teoriaosuudessa kuvattujen tietojen pohjalta.

Tutkimuksessa havaittiin erilaisten palvelujen olevan useimmiten toistensa kaltaisia ja

saavuttavan niiltä odotetun putken tavoitteet. Tutkimustyön ja sen pohjalta toteutettujen

käytännön toteutuksien osalta yksittäisen tuotteen suositteleminen yli muiden on lähes

mahdotonta ja useimmiten tuotteen käyttäjän tehokkuus onkin pitkälti kiinni hänen

kokemuksestaan kyseisen tuotteen kanssa.

Avainsanat Jatkuva integraatio, jatkuva julkaiseminen, julkaisuputki

Sivut 54 sivua ja liitteitä 1 sivua

Degree Programme in Business Information Technology Abstract

Hämeenlinna University Centre

Author Joni Virtanen Year 2021

Subject Comparing different CI/CD Pipelines

Supervisors Lasse Seppänen

ABSTRACT

The purpose of this thesis was to provide a comparison between different available

continuous integration and continuous deployment services. During the process different

products that were examined were Jenkins, Atlassian Bamboo, Azure Pipelines, Google

Cloud Build, AWS CodeBuild and CodePipeline, GitLab Actions, GitHub CI/CD and Bitbucket

Pipelines. The thesis was commissioned by Ambientia Oy.

The theoretical part of this thesis aimed to explain the concepts of continuous integration,

continuous delivery and CI/CD pipelines. Afterwards, in the theory part different services are

addressed on a high level in regards of the needed components in order to create a working

CI/CD pipeline. The thesis is research-based. The material was collected from each services

supplier’s documentation. The practical part of this thesis focused on reproducing a near

identical pipeline for each environment, based on the information described in the

theoretical part of this thesis.

During this study it was observed that implementations between the various services are

most often similar, and they all should be able to accomplish the expectations of the

simplistic pipeline. Based on the research work and the various implementations created, it

is near impossible to consider one product better than the other, and often the efficiency of

the user is more dependant on the familiarity of the product.

Keywords Continuous integration, Continuous delivery, Pipeline

Pages 54 pages and appendices 1 pages

Sanasto

Build Software build, compiled software that is ready for use

Development Lifecycle Process for application development including different lifecycle

phases such as planning, implementing and maintenance

Development Env. Development environment, collection of tools and processes used

 while developing the software

Integration Build Automatically run build on recent modifications to source code

SCM Source Code Management, version control, nowadays most

 often implemented via git. Used to manage source code versions

 and history

Branching Strategy Defined process on how to utilize branches in SCM

Version Control see SCM

Repository Storage location, in this thesis for both source code and for

 integration builds

Atlassian Connect Atlassian provided software technology for extending

functionality of Atlassian software

Open-source Source code that is freely available. Different licenses exist.

MIT license Permissive license allowing commercial usage, distribution,

modification and private use, while requiring preservation of

license and copyright notice. Provides no warranty or liability.

Docker OS-level virtualization technology.

Dockerfile Text document that contains instructions for building a docker

container image.

Docker image A file that contains instructions to run a specific container.

Container Isolated environment containing a software and its dependencies.

JRE Java Runtime Environment, software layer that includes all

resources that a specific Java application requires.

DSL-syntax Domain-specific language, a specific language that applies to a

specific piece of software.

Pipeline as code Pipeline implementation stored in a text file. Allowing for storage

within a repository, providing single source of truth for the

pipeline.

AWS Amazon Web Services, Amazon cloud computing platform

Azure Microsoft cloud computing platform

AWS KMS AWS Key Management Service, AWS managed service for

managing cryptographic keys

AWS EBS AWS Elastic Block Service, high performance block storage

service.

AWS Secrets Manager AWS managed service for managing secrets, providing rotation,

encryption and API for interoperation with other services.

AWS S3 AWS Simple Storage Service, Amazon managed object storage.

IDE Integrated development environment, software for development

and building of applications.

IAM Identity and Access Management, service for controlling users

and groups access to resources.

Agent-software Software making server resources available for CI/CD server.

Remote agent describes a remote server, while local agent

describes the CI/CD server itself.

Rotation policy Policy, to rotate certain objects e.g., AWS secret manager

resources. Rotating an object refers to refreshing the value of a

certain object to provide additional protection against possible

leaks.

Replication policy Policy, to replicate certain objects e.g., AWS secret manager

resources. Replicating the object refers to making the object more

available by replicating it to another location.

Contents

1 Introduction ... 1

2 Continuous Integration and Continuous Delivery ... 3

2.1 Continuous Integration .. 3

2.2 Continuous Delivery ... 4

2.3 CI/CD Pipeline .. 4

3 CI/CD Systems .. 6

3.1 Jenkins .. 6

3.2 Atlassian Bamboo ... 7

3.3 AWS CodeBuild and CodePipeline ... 8

3.4 Azure Pipelines ... 9

3.5 Google Cloud Build ... 11

3.6 Bitbucket Pipelines ... 12

3.7 GitHub Actions ... 14

3.8 GitLab CI/CD ... 17

4 Implementation objective ... 19

5 Implementation ... 21

5.1 Jenkins .. 21

5.1.1 Integration with SCM ... 21

5.1.2 Managing credentials ... 21

5.1.3 Pipeline ... 22

5.1.4 Integrations .. 23

5.1.5 Costs ... 25

5.2 Bamboo .. 25

5.2.1 Integrating with SCM.. 25

5.2.2 Managing credentials ... 26

5.2.3 Pipeline ... 27

5.2.4 Integrations .. 28

5.2.5 Costs ... 30

5.3 AWS CodePipeline and CodeBuild ... 30

5.3.1 Integrating with SCM.. 30

5.3.2 Managing credentials ... 30

5.3.3 Pipeline ... 31

5.3.4 Integrations .. 32

5.3.5 Costs ... 33

5.4 GCP Code Build ... 34

5.4.1 Integrating with SCM.. 34

5.4.2 Managing credentials ... 35

5.4.3 Pipeline ... 35

5.4.4 Integrations .. 36

5.4.5 Costs ... 37

5.5 Azure Pipelines ... 38

5.5.1 Integrating with SCM.. 38

5.5.2 Managing credentials ... 38

5.5.3 Pipeline ... 39

5.5.4 Integrations .. 40

5.5.5 Costs ... 41

5.6 GitHub Actions ... 42

5.6.1 SCM .. 42

5.6.2 Managing credentials ... 42

5.6.3 Pipeline ... 43

5.6.4 Integrations .. 44

5.6.5 Costs ... 44

5.7 GitLab CI/CD ... 45

5.7.1 SCM .. 45

5.7.2 Managing credentials ... 45

5.7.3 Pipeline ... 46

5.7.4 Integrations .. 47

5.7.5 Costs ... 48

5.8 BitBucket Pipelines ... 48

5.8.1 SCM .. 48

5.8.2 Managing credentials ... 48

5.8.3 Pipeline ... 49

5.8.4 Integrations .. 50

5.8.5 Costs ... 51

6 Key findings ... 52

7 Summary .. 55

References .. 56

Figures, codes and tables

Figure 1 Different phases of a pipeline illustrated (Red Hat, n.d.) 5

Figure 2 Atlassian Bamboo build plan overview. (Atlassian, n.d.) 7

Figure 3 Azure Pipeline execution overview (Microsoft, 2021b) 10

Figure 4 Structural overview of Bitbucket Pipelines (Atlassian, n.d.-g) 13

Figure 5 GitHub Actions workflow file structure visualized (GitHub, n.d.-c) 15

Figure 6 GitHub Actions workflow structure (GitHub, n.d.-c) ... 15

Figure 7 GitLab CI/CD pipeline status visualized. (GitLab, n.d.-a) 17

Figure 8 CI/CD Pipeline structure for this thesis’ implementation 19

Figure 9 OAuth credential creation for Jenkins plugin in Jira Cloud 24

Figure 10 Jenkins configuration for Jira integration .. 24

Figure 11 Configuration for Slack notification plugin .. 25

Figure 12 Bamboo tasks declarations .. 28

Figure 13 New Webhook template ... 29

Figure 14 Defining new build notification for the Pipeline ... 29

Figure 15 AWS ChatBot integration in #aws-test channel .. 33

Figure 16 Azure Pipelines Slack Integration installation ... 40

Figure 17 Azure Pipelines notifications about the status changes of the pipeline. 41

Figure 18 Slack message notifiying about the successful subscription to repository. 44

Figure 19 GitLab Integration test post using Incoming Webhook Slack app. 47

Figure 20 Description of Slack notification settings within a repository 51

Code 1 Basic YAML structure of GitLab CI/CD ... 17

Code 2 Definition Jenkins Pipeline, agent and environmental variables 22

Code 3 Definition of the pipelines pre-build stage. .. 23

Code 4 Jenkins Pipeline executing Docker image build and push to DockerHub 23

Code 5 Cloudbuild.yml step to install npm dependencies inside a container 36

Code 6 Reading environment secrets in Google Cloud ... 36

Code 7 npm package.json script to print environment variables to .env file 36

Code 8 Description of a task to install Node.js version 12. ... 39

Code 9 Task to run npm install, npm test using the secret variables 39

Code 10 Task to build and push the container image to Docker Hub container registry39

Code 11 GitHub Actions trigger configuration .. 43

Code 12 Basic structure of GitHub Actions workflow ... 43

Code 13 Configuration to cache node_modules directory between different containers.46

Code 14 Job structure for GitLab CI/CD .. 46

Code 15 YAML structure for Bitbucket Pipelines .. 50

Code 16 Step to build and push docker image to Docker Hub container registry 50

Table 1 Build minute multipliers for different operating systems (GitHub, n.d.-a) 16

Table 2 Jenkins project credentials configurations ... 22

Table 3 Description of variables stored within Bamboo ... 26

Table 4 Description of Credentials storedin Secret Manager ... 35

Table 5 Pipeline cost breakdown in Google Cloud Platform environment 37

Table 6 Description of secrets used in GitHub .. 42

Table 7 Description of variables in GitLab ... 45

Table 8 Description of Variables for Bitbucket Pipelines .. 49

Liitteet

Liite 1 Aineistonhallintasuunnitelma

1

1 Introduction

Nowadays, software projects tend to grow and get more complicated, and the integration

process becomes more error-prone as the time goes on. To combat such a situation, the

feedback loop must be tight. Possible errors should surface as early as possible and be as

easily pinpointable as possible. This leads to the scenario, where we may want to fail fast,

and fail often. If possible, we would like to fail in an environment that is as close of a

replication of the production environment, for the software we are aiming to run, as

possible. This is where Continuous integration and continuous delivery step in. The aim of

these services is to provide an error free, repeatable process automatically, to provide

consistency.

The main point of interest for this thesis is to produce a brief overlook of the currently

available CI/CD products for the authors employer. In this study, we will focus on creating a

simple CI/CD workflow and attempt to reproduce it within each of the major service

providers selected for this thesis; Jenkins, Bamboo, AWS CodePipeline, Azure Pipelines,

Google Cloud Build, GitHub Actions, GitLab CI/CD and Bitbucket Pipelines. These CI/CD

implementations will be implemented in a way that should allow for safe storage of sensitive

credentials or variables, provide notifications on the build statuses to Slack and update

related ticket statuses on Jira Cloud. Costs should be assessed and compared, while trying to

get a sense of the user-friendliness of the services. The thesis is commissioned by Ambientia

Oy, authors current employer.

In the theory chapters of this thesis, we will briefly touch on the subjects of continuous

integration, continuous delivery and take a brief overlook at the service providers

implementations. This is in order to provide a general understanding on the matter we are

about to delve into. By no means is this thesis meant to be considered an absolute

description of the implementation in a particular environment, as there are multitude of

variations that could be utilized in e.g., AWS or GCP to complete the same job.

This thesis is a research-based study on differences of different products. Materials for this

thesis were gathered mostly from the service providers documentation, as there is no better

2

place to learn of the components than from the creator itself. This information was then

built upon the basic principles of the CI/CD workflows to build a minimalistic prototype

process.

The research questions are:

• How do the different products differ from each other?

• How could the Pipelines be used in Ambientia?

• Is there a single product that is clearly superior to the rest?

3

2 Continuous Integration and Continuous Delivery

This chapter discusses the concepts of the Continuous Delivery, Continuous Integration, and

the possible Pipeline implementations on a high level. The aim is to provide an

understanding on the concepts that are frequently used in the later chapters.

Fowler states that one of his first experiences with a large software project that had been in

the development for a couple of years and was in course of integration for several months

now, with no clear completion date known. He then states learning that integration was a

“long and unpredictable process” even though it does not need to be, and that the

integration can be treated as a non-event. (Fowler, n.d.)

2.1 Continuous Integration

Continuous Integration (later CI) is a software development process, that provides agile

development teams with the benefit of making consistent builds and finding possible issues

as early as possible in the development lifecycle. CI achieves this by automating the build

process, thus providing a consistent development lifecycle with minimal user interactions.

(Nikhil, 2017)

Applying effective CI requires team’s commitment, as it is fundamentally just a set of

guidelines that in the end produce a build. To achieve this, teams must work consistently

throughout the development lifecycle of the software, as CI servers usually pull the software

source code from a single repository or a branch within that repository. Pulled revision of

the source code is then build into an integration build. Integration builds should occur

frequently to detect integration errors as early as possible. (Duvall et al., 2007a)

Working CI enables teams to achieve better project visibility and have greater confidence on

their product by providing trends about the current situation of the project based on the

build’s overall quality. This also builds confidence in the software product as the tests are

run on every build automatically, to verify the correct state of the software prior to build

succeeding, thus reducing the overall risks. (Duvall et al., 2007b)

4

2.2 Continuous Delivery

Continuous Delivery (later CD) is a software development process that extends CI by

automatically preparing software for release to production environment. Often CD pipelines

deploy successfully build software to pre-production environments automatically. This

allows development teams to run more versatile tests, compared to unit tests, before

deploying the software to production, with more confidence in the overall performance of

the software systems performance. This procedure allows the development teams to have a

production ready software ready for deployment. Continuous Delivery can be further

extended into Continuous Deployment. Continuous Deployment aims to make sure that the

production environment is always running the latest version of the software, with the latest

features and improvements. (Amazon Web Services, n.d.-g)

2.3 CI/CD Pipeline

Pipeline is an abstraction, or an execution plan, containing the steps required for both CI and

CD processes. Pipelines are used to improve the overall quality of releasing software.

Pipelines most often provide statistics on how the status of the projects builds, thus

providing monitoring and valuable information on the status of the project on integration

and test phases to the development team. (Red Hat, n.d.)

Red Hat describes an example of CI/CD Pipelines as consisting of three different phases,

these are further demonstrated in Figure 1. As described by Red Hat, in an example of the

Pipeline (Figure 1) starting with continuous integration phase, that consists of build, test and

merge steps. After success on these steps, the continuous delivery phase starts. At the end

of CD phase, the product should be at a state where it is deemed stable and should be

deployable to production at any convenient time, or automatically, to achieve continuous

deployment. (Red Hat, n.d.)

5

Figure 1 Different phases of a pipeline illustrated (Red Hat, n.d.)

6

3 CI/CD Systems

GitLab’s 2020 Global DevSecOps Survey implies that finding the right toolset for the teams

working methodology results in more efficiency during projects ongoing development, while

ensuring high quality standards for the work as well as simultaneously reducing the

workload on individual project personnel. (GitLab, n.d.-a)

An article by JFrog also supports the ideology behind finding the right tools, practices and

culture for your team. Article includes a list of worthy CI/CD tools to consider for beginners,

from which GitLab and GitHub Actions are also tested within this thesis’ scope. (JFrog, n.d.)

3.1 Jenkins

Jenkins is an open source-based automation server software, licensed under MIT-license.

Jenkins is available as native system packages, Docker images and runnable as standalone by

using Java Runtime Environment. (Jenkins.io, n.d.-a)

Jenkins Pipeline is a collection of plugins that support the implementation and integration of

CI/CD pipelines into Jenkins. Pipeline allows organizations to define their integration and

delivery pipelines via Pipeline DSL-syntax, by creating a text-file named “Jenkinsfile”

(Jenkins.io, n.d.-b). “Pipeline-as-code” allows processing the pipeline as part of the project,

storing it in version control and reviewing it as any other code. Using Jenkinsfile offers

several benefits including, but not limited, to creating automatic builds for specific actions in

all branches, audit trails for the pipeline and single source of truth for the pipeline that is

stored in SCM along with other project files. Pipelines can be defined in a declarative or

scripted format via Jenkinsfile. (Jenkins.io, n.d.-e)

Jenkins credential management is provided by default via Jenkins’ Credentials Binding

plugin. Credentials stored by Credential Binding plugin can then be accessed from anywhere

within the application (Global credentials) or access to the credentials can be specified per

pipeline item or Jenkins user or group. Credentials stored within Jenkins are stored, in an

encrypted format, on the controller Jenkins instance. Credentials can be accessed by using

7

their variable names, thus minimizing the possibility of accidentally revealing sensitive

secrets to end users. (Jenkins.io, n.d.-f)

Jenkins allows integration with Jira and Slack by plugins. Jira plugin allows for integration

between Jenkins and Jira to allow for build status to be communicated to relevant Jira

issues. Slack Notifications plugin provides the ability to send messages to certain channels or

certain persons about the status of build pipeline. (Jenkins.io, n.d.-c, n.d.-d)

3.2 Atlassian Bamboo

Atlassian’s closed source CI/CD server, offering development teams with reporting tools and

visibility and control over release artifacts and environments on top of the usual CI/CD

options. Bamboo is only available as an on-premises installation. Bamboo schedules and

coordinates the work that is required for the integration builds to complete. Bamboo

supports multiple agents and parallelism between them to provide fast and efficient builds

(Figure 2). Bamboo Data Center license cost is calculated based on the number of remote

agents to be installed (Atlassian, n.d.-b). (Atlassian, n.d.-o, n.d.-n)

Figure 2 Atlassian Bamboo build plan overview. (Atlassian, n.d.-n)

8

Bamboo Specs allows for users to manage their build pipelines by configuration-as-a-code

methodology. Bamboo Specs provides support for YAML-syntax configurations, as well as a

Java-based configuration language. Bamboo Specs in YAML-syntax works by defining the

pipeline in bamboo.yaml file in the <repository-root>/bamboo-specs directory.

(Atlassian, n.d.-e, n.d.-c)

Atlassian Bamboo uses the word ‘plan’ to describe pipelines. Plans define the triggers for the

integration pipeline to start, notifications, variables and the source repository for the

project. Plan can have multiple stages; each stage can have multiple jobs. Jobs then group up

tasks, that should contain a singular command to run on the pipeline. Jobs can be completed

in parallel within a stage. (Atlassian, n.d.-h)

Credentials can be managed by using the plan variables. These variables are only accessible

from within the projects plan and can be overwritten while manually running the build,

should the user wish to do so. Credentials for Bamboo Specs can be provided by using the

Bamboo Specs encryption, this allows for the credentials to be encrypted. For credentials to

be considered as secrets, they will need to include one of the following phrases in the

variable name: "password", "passphrase", "secret", "sshkey". (Atlassian, n.d.-d)

Bamboo can be integrated with Jira by using an application link. This integration allows for

example Bamboo to fetch linked Jira issues from Jira or provide information on build

statuses or deployment information to Jira. Slack Notifications for Bamboo provides an

integration to deliver similar status reports on build status or jobs that are timing out or

hung up to Slack channels. (Atlassian, n.d.-m, n.d.-l)

3.3 AWS CodeBuild and CodePipeline

AWS CodeBuild (later CodeBuild) is AWS managed CI service. CodeBuild scales automatically

based on the need of the project. CodeBuild allows source code to be pulled from AWS

CodeCommit (later CodeCommit), GitHub, Amazon ECR, or Amazon S3. CodeBuild is

designed to run the integration phases steps: compile source, run test and produce

deployable product. After successful build, changes can be deployed using AWS

CodePipeline (later CodePipeline) that integrates multiple managed services for deploying

9

the product such as AWS CodeDeploy, AWS Elastic Beanstalk, Amazon Elastic Container

Service, or AWS Fargate. (Amazon Web Services, n.d.-a)

Pipelines are fully customizable through workflow modelling, a graphical tool that lets you

configure series of stages, each consisting of jobs. CodePipeline allows users to manage their

AWS infrastructure using AWS CloudFormation. This can also be applied to the serverless

environment running in AWS. Users can trigger an AWS Lambda function from CodePipeline

at any point of Pipeline execution, thus allowing for greater variation of different operations

during the pipeline execution. AWS provides open-source agent that allows for user to hook

their own servers to the execution of pipeline. (Amazon Web Services, n.d.-c)

AWS provides wide variety of IAM policies and complete customisability of IAM roles and

policies to provide access control mechanisms for inter service operability, e.g., the

connectivity between CodeBuild and AWS S3 service (Amazon Web Services, n.d.-f). To

manage credentials within the pipeline AWS Systems Manager Parameter Store can be used.

AWS Systems Manager Parameter Store provides secure and scalable way of storing and

accessing secrets within AWS. AWS IAM policies can be used to provide easily auditable and

granularly configurable access control within Parameter Store. (Amazon Web Services, n.d.-

e)

Costs for AWS CodePipeline and CodeBuild have many variables that influence the final

pricing of the pipeline. As for the CodePipeline itself there is a cost for an active pipeline to

be billed monthly. CodeBuild is billed depending on the instance size, operating system type

and build minutes. On top of these, additional charges may be generated for example by the

usage of S3 to store the artifacts of the pipeline, Parameter Store to store the credentials, or

for data transfer out of the Amazon Web Services backbone network. (Amazon Web

Services, n.d.-d, n.d.-b)

3.4 Azure Pipelines

Microsoft managed implementation combining both CI and CD Pipelines into one service.

Azure Pipelines allows source code to be pulled from GitHub, GitHub Enterprise, Bitbucket

Cloud, Subversion, or any other Git repository. It enables the user to run full CI/CD Pipeline

10

through the steps from integration all the way to the continuous deployment phase.

Deployments can be targeted to multiple different target types, including virtual machines,

whether on-premises or in the cloud, containers and PaaS services (Microsoft, n.d.-f).

Microsoft uses an agent software to build and deploy packages according to the pipeline

rules. As the pipeline runs, agent is processing different jobs from the pipeline. Agents can

be either Microsoft-hosted or self-hosted. Microsoft-hosted agents are maintained by

Microsoft, hence eliminating the need for time allocation to maintain the system. Microsoft-

hosted agents can run jobs either directly on the virtual machine or in a container.

Microsoft-hosted agents exist for the duration of a single job, after which a new one is

created. Self-hosted agents give users more control over the environment and can persist

through multiple jobs, possibly speeding up the Pipeline execution. (Microsoft, n.d.-b)

Pipeline execution (Figure 3) starts from a trigger, e.g., push or pull request on certain

branch on repository, or user started pipeline execution. Pipeline stage is then started, and a

job is sent to the agent. The agent runs the steps within the job and reports on the status of

the job. Depending on the job run result and conditionals for the jobs results, the agent will

then start processing a new job or return erroneous report and the pipeline execution is

stopped. (Microsoft, n.d.-e)

Figure 3 Azure Pipeline execution overview (Microsoft, n.d.-e)

Azure Pipelines allows managing of named variables, thus enabling storing sensitive

information within the Pipeline, without the risk of exposing it to users. Variables can also be

encrypted and set as secret. Secret variables need to be explicitly referenced for the pipeline

11

to decrypt the variable. Variable groups can be used to make variables available across

multiple projects. (Microsoft, n.d.-d)

Azure Pipelines offers integrations with both Slack and Jira. Azure Pipelines app for Slack

offers for easy integration to monitor and interact with your pipeline. After the installation

user can interact with the pipeline from Slack client and notifications can be sent to specific

channels or users when the pipeline has an ongoing event (Microsoft, n.d.-c). Azure Pipelines

for Jira offers bidirectional linking for the pipeline and Jira issues; however, it currently lacks

the ability to track build statuses and does not yet support YAML defined

pipelines.(Atlassian, n.d.-a; Bansal, n.d.-a, n.d.-b)

Azure Pipelines pricing depends on the number of required services and user licenses. Open-

source projects can be run on Microsoft-hosted agents for free. The amount of Microsoft-

hosted Azure Pipelines agents and Azure Artifacts will determine the number of individual

services required for the project. On top of this users will need licenses for the project.

(Microsoft, n.d.-a)

3.5 Google Cloud Build

Serverless CI/CD service managed by Google, that executes builds on Google Cloud Platforms

infrastructure. Import source code from external repositories or cloud storage spaces and

execute builds as specified. Cloud Build produces artifacts and stores them as specified.

(Google, n.d.-c)

Builds are specified using Google Build Config. Build configs provide instructions for different

stages and jobs to run. Builds can be used to run normal CI/CD pipeline required tasks, such

as fetch dependencies, produce builds and run unit tests. Build configs are written in YAML

or JSON syntax. Cloud Build also provides the support to build Docker images from Dockerfile

(Google, n.d.-e). Cloud Build pipelines can be run locally, to test run the Build Config written

for the pipeline, using “cloud-build-local” tool. (Google, n.d.-c)

Access control between different components can be adjusted using service accounts and

Google Clouds IAM. This allows granular access control to different resources or services in

12

Google Cloud. IAM permissions are not granted to singular user, group or service account,

instead permissions are added to roles and roles are assigned to users or service accounts.

This allows effective usage of the principle of least privilege. Service accounts can be used to

grant roles to specific services in Google Cloud, thus providing access control within your

Google Cloud project for your computing resources or other services (Google, n.d.-g).

(Google, n.d.-b)

Google Secret Manager allows users to store and access credentials based on IAM

permissions. Secrets managed by Google, and Cloud KMS allows you to manage the

cryptographic encryption keys. Secrets are project global objects containing metadata of the

object and the secret itself. IAM permissions can be used to grant access to secrets to certain

user entities. Secrets have versions, rotation policies and replication policies. (Google, n.d.-f)

CI/CD implementation pricing on Google Cloud depends on at least the number of build

minutes on Google Cloud Build. On top of this costs on stored artifacts and used network

capacity may incur. Secrets Manager also adds to the costs (Google, n.d.-d). (Google, n.d.-a)

3.6 Bitbucket Pipelines

Bitbucket Pipelines is an Atlassian managed, software as a service -model, application that is

integrated in to Bitbucket Cloud instance. Bitbucket Pipelines allows for CI/CD pipeline

functionality, from integration and testing to deployment. Build jobs are run within

containers deployed by Atlassian to the cloud. Bitbucket Pipelines requires the repository to

be stored in Bitbucket Cloud instance. (Atlassian, n.d.-i)

Pipelines are defined using YAML file called “bitbucket-pipelines.yml”. Bitbucket Cloud

provides a UI Wizard that can also be used to create YAML from predefined templates. The

basic structure of pipeline is demonstrated in Figure 4. Pipelines must have at least one (1)

step with one (1) script inside it. Each step is run in a separate Docker container. This allows

for usage of different, more use case specific, containers between each step. Containers are

assigned limited RAM. Caches can be defined to provide inter-container data sharing and

avoiding duplication of steps. (Atlassian, n.d.-g)

13

Figure 4 Structural overview of Bitbucket Pipelines (Atlassian, n.d.-g)

Credentials can be stored within pipelines as variables. Variables within the pipeline can be

managed on multiple levels, workspace, repository, deployment. Each having different

scopes and the order of preference being from the latest to the first. Variables can be set to

secure mode, which provides user with the ability to reference the variable from pipeline but

masks it from the logs. (Atlassian, n.d.-p)

Bitbucket Pipelines and Jira integration makes it possible to automatically communicate the

statuses of builds and deployments to Jira issues, thus increasing the efficiency of the project

team and providing more complete view of the project status (Atlassian, n.d.-c). Bitbucket

Pipelines and Slack integration allows for notifications about the status of the pipeline and

14

the deployments to be communicated to specific channels in Slack and the restart of the

Pipeline in case of a failed build (Atlassian, n.d.-d).

Bitbucket Pipelines requires Bitbucket Cloud subscription. Bitbucket Cloud pricing varies

depending on the number of users and the needed features. Build minutes are bundled

within subscription to a certain cap, after which incur more costs. Runners allow user to run

Pipelines in users own infrastructure, without being charged for the minutes consumed by

the Pipeline (Atlassian, n.d.-c). (Atlassian, n.d.-f)

3.7 GitHub Actions

GitHub Actions is a GitHub hosted software as a service implementation of automating tasks

on your development cycle on certain events and as such it can also be used to implement

CI/CD pipelines. GitHub workflows requires for a repository in GitHub. Workflows consist of

jobs; jobs have steps and steps have actions. Workflows are run on runners (Figure 6).

Runner is an application that is run on servers, whether physical or virtual. Runners can be

hosted and managed by GitHub or on self-hosted machines. (GitHub, n.d.-c)

Workflows are defined using YAML file that is stored in a directory path “.github/workflows”.

Workflow’s structure is roughly demonstrated in (Figure 5). YAML structure is defined to

contain a job that is launched on event, such as a pull request on a certain branch or user

requested launch of workflow. Jobs can include multiple steps that can use a GitHub action.

Actions are predefined functionalities that can be combined to produce a desired workflow.

Users can reuse Actions created by the GitHub community org create their own from

scratch. (GitHub, n.d.-c)

15

Figure 5 GitHub Actions workflow file structure visualized (GitHub, n.d.-c)

Figure 6 GitHub Actions workflow structure (GitHub, n.d.-c)

Credentials can be stored as secrets in organization, repository or repository environment.

Secrets are encrypted in rest and in transit, as they only need to be unencrypted when the

workflow is running. Users access to secrets can be further restricted by using access control

16

methods provided by GitHub. Secrets can then be referenced from the Workflow to allow

access to the stored content with GitHub masking the contents from the logs. (GitHub, n.d.-

b)

GitHub can be integrated into Jira using the Atlassian created GitHub for Jira integration.

GitHub for Jira is currently compatible between GitHub and Jira Cloud instances. GitHub for

Jira allows for the integration to manage the workflow of the project in your stead, including

linking pull requests, commits, branches, builds and deployments. Integration also allows for

the usage of specific comment messages to perform certain tasks on the issues, such as close

the issue or add a comment. (Atlassian, n.d.-j, n.d.-k)

GitHub for Slack provides an integration between GitHub and Slack. GitHub for Slack allows

for the application to provide status updates on multitude of actions happening on your

repository, such as new issues, commits or deployments. (Slack, n.d.)

GitHub actions provides a certain amount of Storage and free minutes that depend on the

level of contract with GitHub. For example, GitHub Free includes only 500 megabytes of

storage and 2 000 minutes of run time for jobs per month. Minutes are also multiplied

depending on the operating system of the runner used, as can be seen from Table 1.

(GitHub, n.d.-a)

Table 1 Build minute multipliers for different operating systems (GitHub, n.d.-a)

Operating system Minute multiplier

Linux 1

macOS 10

Windows 2

17

3.8 GitLab CI/CD

GitLab CI/CD is a functionality within GitLab, to use it user will need to have repository in

GitLab. GitLab can be self-hosted and managed or bought as a subscription-based SaaS-

application. To use GitLab CI/CD runner needs to be available, runners can be hosted by

GitLab or self-hosted. GitLab runner is software that runs on a server and communicates

with GitLab instance, sole purpose of runner is to run jobs in a pipeline (GitLab, n.d.-e).

(GitLab, n.d.-c)

GitLab CI/CD is defined using the YAML format file called “gitlab-ci.yml”. A job within

pipeline is to be defined using a predefined structure, as declared in Code 1. In this example

the name of the job is provided, after which the stage of the job is defined. Script section

defines the commands to be ran on this step. Pipeline can also be visualized (Figure 7) to

allow for more complete understanding of current state (GitLab, n.d.-b). (GitLab, n.d.-e)

Code 1 Basic YAML structure of GitLab CI/CD

test-job1:

 stage: test

 script:

 - echo "This job tests something"

Figure 7 GitLab CI/CD pipeline status visualized. (GitLab, n.d.-b)

Credentials can be stored securely as variables in project settings. Credentials stored in this

way can be masked and protected. Masked variables appear masked in pipelines logs, thus

18

providing additional protection. Protected variables allow for the variable to be used only

from certain branches or tags. Access control roles can be used to allow users to update or

delete variables. (GitLab, n.d.-d)

Jira integration provides functionalities, such as creating link to Jira issue, allowing for

visibility to commits or merge requests and creating comments on Jira issues displaying

commit messages on commits and merge requests. Integration can also move the issue

between transitions on Jira issues to provide better understanding of the current status of

the project. (GitLab, n.d.-g)

Slack provides an application for communicating with GitLab; however, this application only

works with GitLab SaaS implementation (GitLab, n.d.-f). Slack notifications service provides

integration between GitLab and Slack, allowing for communication from GitLab to certain

channels on Slack and controlling the GitLab from Slack by using certain commands.

Integration can send messages on events, including but not limited to, such as merge

request, push, pipeline status change or deployment status change. (GitLab, n.d.-h)

19

4 Implementation objective

Implementations between different pipelines should follow a somewhat similar structure, in

order to provide some level of comparison between the different systems. Figure 8 explains

the different jobs defined in the CI/CD pipeline. Building of the application usually takes

place during the integration part of the pipeline, as the focus of the continuous integration is

to provide fast feedback loop on integration builds. However, in this project Docker is used

to provide containerized images of the software and its dependencies in a pre-packaged

environment. This also seems more suitable fit for the delivery phase of the pipeline as

Docker Hub provides a convenient storage location for the image.

Figure 8 CI/CD Pipeline structure for this thesis’ implementation

The first job of the pipeline is to fetch the source code from the repository to make sure that

the latest changes are included in the source code of the current pipeline run. This job is

should be equivalent to a git clone command issued against the target repository.

20

After the source code has been successfully cloned node.js dependencies will need to be

installed. This can be achieved by running npm install in the projects working directory.

This job will produce node_modules directory in the project root as the end product.

When the node.js dependencies have been successfully installed, our source code should be

runnable. This gives us the ability to run unit tests, to verify that the code is working as

expected. Within this project we can use npm test to run the unit tests.

The delivery phase of the pipeline is simple: the only goal is to build a Docker image based

on the provided Dockerfile and the push it to the container registry, Docker Hub in this case,

to complete the job.

When the pipeline is running it should be able to communicate with Jira and Slack to notify

project teams users on the state changes of the project. Integrations that allow this kind of

functionality with minimal configuration should be higher prioritized than those that require

more work. Considering Atlassian products integrations, this thesis will not take into

consideration the possible integration implementations made possible by Atlassian Connect.

21

5 Implementation

In this chapter and its sub-chapters this thesis will aim to complete the pipeline described in

Chapter 4. This implementation will be done in each of the Cloud Platforms and SaaS

products described in Chapter 3. Each product will be processed as subchapters for this

chapter. The implementations should be as similar as possible to give the possibility to

compare the different products.

5.1 Jenkins

Jenkins was installed on a virtual machine running CentOS 8 operating system. Installation

was done using dnf package manager from Jenkins’ repository. After this a short post-

installation setup wizard was completed using a web browser. During installation process

Jenkins was installed using suggested plugins.

5.1.1 Integration with SCM

Pipeline was created using the Jenkins UI and configured to use GitHub repository for the

source control management. Jenkins was configured to scan a branch ‘jenkins’ from the

repository.

Pipeline was set to use the pipeline script, file with a name ‘Jenkinsfile’, from the pulled

source code. This allows for pipeline-as-code approach, effectively granting visibility for the

whole history of the pipeline.

5.1.2 Managing credentials

Credentials and variables were configured on project level thus providing access to users

that are part of the project. Variables were created as displayed in Table 2. Both kinds of

credentials used within this project are stored as encrypted on Jenkins’ controller instance,

and only unencrypted on use.

22

Table 2 Jenkins project credentials configurations

ID Kind Encrypted

github-personal-
token

Username with
password

YES

docker-hub-creds Username with
password

YES

MONGODB_URI Secret text YES

SECRET Secret text YES

5.1.3 Pipeline

The pipeline is fully configured using the DSL-syntax by providing Jenkinsfile with the

repository. Pipeline starts with the definition of Pipeline, immediately followed by

definitions on which agent to run the pipeline on and environmental variables, as seen in

Code 2. As can be seen the credentials needed for the successful run of the pipeline are also

loaded into environmental variables. These could also be more narrowly scoped by defining

the environment values at specific stages.

Code 2 Definition Jenkins Pipeline, agent and environmental variables

pipeline {

 agent any

 environment {

 TEST_PORT = 3001

 TEST_MONGODB_URI = credentials('MONGODB_URI')

 SECRET = credentials('SECRET')

 }

 …

}

23

Code 3 demonstrates the Pipeline entering the ’pre-build’ stage, in which it utilizes a nodejs

plugin to function with a npm executable installed on the host system. In this stage nodejs

dependencies are installed and the unit tests are run.

Code 3 Definition of the pipelines pre-build stage.

…

stages {

 stage('pre-build') {

 steps {

 nodejs(nodeJSInstallationName: 'Node 12.22.1') {

 sh 'npm install'

 sh 'npm test'

 }

 }

 }

}

…

Next two stages provide the interaction with Docker CLI, as demonstrated in Code 4.

Utilizing the context that Jenkins docker plugin provides, the pipeline first builds an image

and then on the next stage pushes it to the Docker Hub container registry using credentials

defined with id docker-hub-creds.

Code 4 Jenkins Pipeline executing Docker image build and push to DockerHub

stage('build docker image') {

 steps {

 script {

 app = docker.build('vijoni/bloglist-backend-cicd:jenkins')

 }

 }

}

stage('push docker image') {

 steps {

 script {

 docker.withRegistry('https://registry.hub.docker.com',

'docker-hub-creds') {

 app.push('jenkins')

 }

 }

 }

}

5.1.4 Integrations

Jenkins integration to Jira Cloud was started by creating OAuth Credentials for the

integration in the Jira Apps settings page. The necessary information was provided as can be

seen from Figure 9. OAuth credentials were provided access to build and deployment

24

information. Jenkins was then configured to contact the Jira Cloud instance as can be seen

from Figure 10. It was mandatory to enter the address for the Jira Cloud instance and the

ClientID and Secret of the freshly created credentials. Secret was stored within Jenkins

credentials. Connection was tested and the credentials deemed working.

Figure 9 OAuth credential creation for Jenkins plugin in Jira Cloud

Figure 10 Jenkins configuration for Jira integration

Integrating Jenkins Pipeline into the Slack was done using the Slack Notification plugin (ID:

slack, in Jenkins Plugin manager). After the installation the plugin was configured, related

plugin configuration can be found from “Configure System” options, under the headline:

“Slack”. Configuration was done as follows and connection test was run successfully, as can

be seen from Figure 11.

25

Figure 11 Configuration for Slack notification plugin

5.1.5 Costs

Jenkins is open-source software and as such does not carry any license costs with it.

Infrastructural costs do exist and do depend largely on the size of the Jenkins instance and

the amount and size of the projects being built. Due to its open-source nature, there is also

very limited support available, which in turn means that the management of the systems

cost more money.

For this thesis there were no costs associated with running Jenkins as KVM was used to

virtualize the systems running the Jenkin servers.

5.2 Bamboo

Bamboo was installed on a virtual machine running CentOS 8 operating system. PostgreSQL

database server was installed using dnf. Bamboo was downloaded from Atlassian download

portal as tar.gz archive and extracted to proper folder. Bamboo application user was

created and home directory, application installation directory rights were set. After this a

short post-installation setup wizard was completed using a web browser. During installation

process Bamboo was defined to use PostgreSQL database.

5.2.1 Integrating with SCM

Setting up the source repository is easily implemented while configuring the plan (aka.

Pipeline) on “Link repositories” phase. In this thesis’ case the repository host was defined to

26

be GitHub repository. As the project used in this thesis is publicly available, the only

information needed for creation of the plan was a display name and GitHub username. After

this information is provided it is possible to load all available repositories, select the correct

one from drop down list and decide which branch to use for the plan.

5.2.2 Managing credentials

Most of the credentials, and or variables, were stored in plan variables as documented in

Table 3. Initially Docker credentials were tried to store within the plan variables as well, but

this did not work as the Docker that was installed on the virtual machine was not on high

enough version to support such an operation that Bamboo was trying to use. As a result of

this Docker credentials were set up on the host running Bamboo agent. Depending on the

method Docker is configured to use to store credentials, they can either be stored in a json

file using hashes or in the operating systems keychain in encrypted form.

Table 3 Description of variables stored within Bamboo

Variable Encryption Location

TEST_PORT NO Plan variables

MONGODB_SECRET YES Plan variables

SECRET YES Plan Variables

Docker credentials YES* Host system

27

5.2.3 Pipeline

The pipeline, or plan as they are called in Bamboo, was created using the Bamboo Web UI.

New stage, “Integration”, was created and within it a “Integration run” job. This job was

configured to be run on host environment and not in a Docker container.

Bamboo offers a nice and intuitive way of working with the jobs and tasks in the pipeline, as

can be seen from the Figure 12. The first task of the job was to checkout the source code, to

pull the latest changes from the source repository. After this a job was created to install

Nodejs package dependencies, for this a new executable was added with the name of “npm

– agent”, using a node binary installed on host system npm install is run by the pipeline.

The following task runs the unit tests invoking the command npm test, thus making sure the

specific version of the software is going to function properly when built into Docker image.

In this task we include environmental variables on the configuration page, as seen in the

Figure 12. On the next step the Docker image is built, and after this pushed into the Docker

Hub container registry. Docker Hub credentials were provided from the host system by

logging in to the user that runs the agent and entering docker login command. This

provides the needed concept for the user running the bamboo agent to be able to

communicate with Docker Hub using docker command-line interface.

The whole pipeline was built into a singular step for demonstration purposes. This

implementation would fail, should there be more than one agent available to run the jobs,

as jobs are run in parallel. More logical representation of the pipeline would have been to

use a single stage to pull the source code, second one to install the dependencies, third

stage to run the tests and so on.

Bamboo-spec file can be generated from the already existing pipeline.

28

Figure 12 Bamboo tasks declarations

5.2.4 Integrations

Due to utilizing Jira Cloud in this thesis in combination with running a locally virtualized

environment, it was decided not worth the effort to create the necessary infrastructural

changes to get Bamboo Application Linking to work. Marketplace did not provide the

necessary apps to communicate with Jira Cloud instance, for the 8.0.0. version of Bamboo

that was in use during the writing of this thesis.

Slack integrations were also not available for the version of Bamboo that was used, so these

had to be substituted with a simple webhook implementation. Webhooks can be configured

from the administration menu, from “Webhook templates” configuration page.

New template was created with a name of “Slack webhook” and a type of “POST” with

payload and headers as described in Figure 13. The payload consists of just an informative,

proof of concept, type message that could be highly customized if needed. After this the

plans notification settings can be customized to utilize the newly created webhook template

29

to send a message to a specific webhook endpoint for Slack (Figure 14), this will then result

in the incoming webhooks application to deliver the message to the requested channel.

Figure 13 New Webhook template

Figure 14 Defining new build notification for the Pipeline

30

5.2.5 Costs

Costs of running Bamboo are defined by the license costs and the costs of running the

hardware. For this thesis there were no costs associated with running Bamboo, as an

evaluation license was used and KVM was used to virtualize the systems running the

Bamboo servers.

5.3 AWS CodePipeline and CodeBuild

A new organization account was created to AWS Cloud Platform for this thesis. Billing

information was provided to AWS to understand the cost structure of the service. AWS

search functionality provided an easy way to navigate between different services available in

the platform.

5.3.1 Integrating with SCM

Process was straightforward and could be set up while configuring the pipeline on the

second stage of the pipeline creation, “source stage”. GitHub (Version 2) was selected as the

source provider. New connection to GitHub was created by clicking on “Connect to GitHub”

button. On the next dialog, the name for the connection was requested, and upon

submitting the form GitHub redirect hook was used to provide login to GitHub application.

New GitHub app was installed to provide integration between GitHub and AWS CodePipeline

to selected repositories. Applying desired configurations and clicking connect established the

connection through the application integration.

5.3.2 Managing credentials

In this thesis the AWS Parameter Store was used to manage secrets. Secrets were created

for the following variables Docker Hub username and Docker Hub password, URI for the

31

MongoDB to connect to in order to pass the tests and secret variable (a sort of a salt used to

provide individual hashes for the environment).

The process was straightforward and could be completed in AWS Parameter Store Web UI.

Choosing to create parameter and providing required information such as the name of the

variable. Standard tier for the variable as the parameter size was less than 4KB and type of

the parameter as SecureString to provide encryption using KMS keys from specified for the

AWS account. AWS managed KMS keys were used for this thesis’ use case. Finally, the value

of the parameter was set, and the creation process completed.

5.3.3 Pipeline

Pipeline was created from AWS CodePipeline Web UI. On the first page of the pipeline

creation process, basic pipeline related information such as pipeline’s name and service role

were created. This role could then be used to grant this specific Pipeline granular access to

different services provided by AWS. Artifact store was left to default settings, which means

that the Pipeline will store artifacts in S3 Bucket. Encryption keys were left to default,

Amazon managed keypair.

In Source stage source provider was specified to be GitHub, new connection was set up for

GitHub application and access to the repositories was granted for the application, via

GitHub. Repository to be used was specified as “jonivirtanen/bloglist-backend-cicd” and the

branch to be used was selected. Pipeline was set to be triggered on source code change.

Pipeline’s build stage was set to output artifacts in the CodePipeline default format (zip).

Build stage was defined to use AWS CodeBuild as the build provider and region was set to

Stockholm. New project was created using default AWS managed image, with Ubuntu

operating system using the “aws/codebuild/standard:5.0” image and the latest version of it.

Privileged mode was toggled as the build pipeline ultimately builds a Docker image and as

such requires larger privileges. Build was defined to use, the default setting, “buildspec.yml”

file as the source of the build script. CloudWatch logs were not enabled, all though these

might offer a way to provide needed integration towards Jira, using AWS SNS, Lambda

32

functions or AWS ChatBot. After defining build type as a single build, skipping the

deployment stage and reviewing the settings, the Pipeline was created.

Next the build steps of the pipeline were defined in the “buildspec.yml file at the root of the

repository. Understanding the YAML sections was not too complicated, but it did take some

time to find the proper variables to execute the pipeline properly. MongoDB URI and SECRET

environment values were saved in AWS Parameter Store to provide the functionality of only

referencing them in the public repository and mask them in the runtime logs to minimize the

possibility of leaking the secrets. Using AWS Parameter store also grants the possibility of

granular access management through the usage of AWS IAM rules.

5.3.4 Integrations

Integrations between Jira Cloud and AWS should be possible to be created using Atlassian

Connect. However, this does fall out of the scope of this thesis, and as such will not be

described in this thesis.

To integrate CodePipeline with Slack AWS ChatBot (later ChatBot) application was added to

Slack workspace. After this new ChatBot client was setup for Slack in the AWS Console. Slack

redirect will be provided in order for the user to agree on the permissions for the Slack app

on the selected workspace. After this the configuration for AWS ChatBot was set up using

the AWS Console again, providing necessary information such as AWS ChatBot configuration

name and Slack channel type and name.

On the next page AWS IAM permissions are provided. In this thesis we used the default AWS

provided IAM role ‘AWSChatBot-role’ with default settings. After this AWS will take care of

configuring necessary requirements for the role such as SNS topic.

As the final step the AWS ChatBot is invited to join the Slack channel, as can be seen from

the Figure 15. From this point on the ChatBot integration will provide information to the

Slack channel as configured.

33

Figure 15 AWS ChatBot integration in #aws-test channel

5.3.5 Costs

Table 2 describes the accumulation of costs from the pipeline implemented in this chapter

and the amount of resources consumed during the implementation. These numbers are

highly volatile, as they do change based on Amazon region, instance types, number of

requests and amount of resources consumed.

Table 2 Cost breakdown of Pipeline implementation in AWS

Component Units Price / Unit Price Free tier

CodeBuild 32 (minutes) - - 100 minutes

CodePipeline 1 (Pipeline) - - 1

DataTransfer
(Out bytes)

0.000026 (GB) 0 0 -

EBS 9.663 (GB-Mo*) $ 0.1045 $ 1,01 30GB

2m I/Os

34

KMS 113 (Requests) $ 0.00 $ 0.00 20000 API
Requests

AWS Secrets
Manager

0.987 (Secrets)

7 (API Requests)

$ 0

$ 0

$ 0

$ 0

-

-

S3 98 (Requests,
PUT / COPY /
POST / LIST)

221 (Requests,
GET and others)

0.001 (GB-Mo)

$0.005 / 1000
(Requests)

$0.004 / 10000
(Requests)

$0.023 / GB
(First 50TB)

$ 0

$ 0

$ 0

2000 PUT

20 000 GET

5GB

5.4 GCP Code Build

Authors personal Google credentials were used for this thesis. New project was created on

Google Cloud Platform and billing information was provided and attached to the project.

This was done to understand the cost structure of the service. GCP provides a search

functionality to allow an easy way to navigate between different services available in the

platform.

5.4.1 Integrating with SCM

Google Cloud Build was configured via web user interface to connect to GitHub. Process was

started by creating a new trigger and connecting the source repository to it. “Push to a

branch” was chosen as the trigger event to run the pipeline. The pipeline can still be

manually invoked to run at any point in time. For the source a new connection to repository

was created and configured to follow “gcp” branch.

35

As the repository also contains a Dockerfile and GCP provides a “native” functionality to

build container images using Dockerfiles, configuration type was forced to use Cloud Build

file (cloudbuild.yml), located at the root of the repository, as the source for the Pipeline.

5.4.2 Managing credentials

Secrets were managed using Secret Manager service. To access Secret Manager from Cloud

Build, a service account was created and required IAM privileges were granted. Credentials

were created as described in the Table 4:

Table 4 Description of Credentials storedin Secret Manager

Secret name Encryption Replication Rotation

docker-password Google Managed Automatically
replicated

Not scheduled

docker-username Google Managed Automatically
replicated

Not scheduled

Mongodb Google Managed Automatically
replicated

Not scheduled

Secret Google Managed Automatically
replicated

Not scheduled

5.4.3 Pipeline

Google offers no Web based editor to process the cloudbuild.yml file, so it was configured

locally and updated to repository, which triggered a Cloud Build run. YAML syntax is logical,

and all the steps are run within containers. Basic job syntax starts with “name” key and is

36

followed with parameters concerning the job. Code 5 snippet displays the cloudbuild.yml

syntax for installing npm dependencies inside a “node:12” image based container.

Code 5 Cloudbuild.yml step to install npm dependencies inside a container

steps:

- name: node:12

 entrypoint: npm

 args: ["install"]

Because of the way Google Cloud Build functions, the Secret Manager and it’s secrets are

only accessible on the args parameter. For this reason in this thesis’ workflow we need to

import environment variables prior to running npm test. These modifications are declared

in Code 6 and consist of launching a node image based container to read and import the

environment variables. This also required minor modifications to the package.json file of the

source repository, as described in Code 7, as it is necessary to define the script for the

functionality.

Code 6 Reading environment secrets in Google Cloud

- name: node:12

 entrypoint: npm

 args: ["run", "create-env"]

 secretEnv: ["SECRET", "TEST_MONGODB_URI"]

Code 7 npm package.json script to print environment variables to .env file

{

…

"scripts": {

 …

 "create-env": "printenv > .env"

},

…

}

5.4.4 Integrations

Google Cloud Build offers the flexibility of running almost anything through the containers.

However, at the time of the writing, it does not offer any premade integrations. As such, to

37

utilize it to its full extend the team using GCP to run CI/CD Pipelines and wishing to get

notifications delivered to Slack or Jira Cloud, should consider the workload of implementing

the possible solutions.

Slack notifications should be possible to implement using the Slack webhook app. This could

be accomplished by manually creating different steps to create HTTP requests to the specific

Slack endpoint. This should also be implementable using the Google Cloud Pub/Sub with a

specific topic to forward messages to specific service, a container or cloud function, and then

processing them as wished. Jira Cloud integration should be achievable similarly, except that

your communication should be from GCP to a Cloud Connect container that processes the

messages, thus integrating the service into Jira Cloud.

5.4.5 Costs

Google Cloud Build was the cheapest cloud solution for this thesis’ workflow. It is the most

basic option considering the functionalities, but it can be customised to run pretty much

anything within the containers. Table 5 contains a breakdown of the costs of this project.

Table 5 Pipeline cost breakdown in Google Cloud Platform environment

Component Units Price / Unit Price Free tier

Secret Manager
Version replica
storage

3.808 (month) ?? 0.19 € ??

Secret access
operations

13 (count) ?? 0.00 € ??

Cloud Build –
Build time

10.333 (minutes
of build time)

 ?? 0.00€ ??

38

5.5 Azure Pipelines

New Azure DevOps account was created for this thesis. New organization and project were

created on Azure DevOps. Billing information was provided and attached. This was done to

understand the cost structure of the service. Azure DevOps subscription was bought for this

thesis, as it would have required extra work to sign-up for the free benefits of public

projects. Such benefits would have included build time among other things. Azure DevOps

provides a search functionality to allow an easy way to navigate between different services

available in the platform.

5.5.1 Integrating with SCM

Integrating with GitHub was completed as the first step of creating the pipeline. Initial

connection was created using GitHub application connection. Application requires Read level

permissions to access metadata, and read and write permissions to checks, code, commit

statuses, issues and pull requests.

Write level permission to code, commit statuses are used by graphical development

environment provided by Azure Web UI to modify the pipeline. This allows for easier

implementation of different stages of pipeline as Azure provides snippets that can be used

to implement functionalities and integrations to the pipeline.

5.5.2 Managing credentials

Credentials were managed on pipeline level. This was done using the Web editor and

changing pipeline variables. Variables were defined for MONGODB_URI and SECRET

environment variables, as GitHub and Docker Hub login credentials are handled by

application integrations.

Docker Hub credentials were specified on project level settings as a new service connection.

Registry type was set to Docker Hub and basic login information for Docker Hub was

provided.

39

5.5.3 Pipeline

Pipeline was defined to trigger on changes to ‘azure’ branch. Pipeline was run on Microsoft

hosted shared agent based on latest Ubuntu image. Code 8 describes the Pipelines first step,

installing NPM version 12 on the build agent. Next step was to run npm install to provide all

the required Nodejs dependencies and to test that it works as intended, one possible

implementation of this can be seen in the Code 9 snippet. During this phase the variables

earlier stored in Pipeline properties were used.

Code 8 Description of a task to install Node.js version 12.

steps:

- task: NodeTool@0

 inputs:

 versionSpec: '12.x'

 displayName: 'Install Node.js'

Code 9 Task to run npm install, npm test using the secret variables

- script: |

 npm install

 npm test

 displayName: 'npm install and test'

 env:

 TEST_MONGODB_URI: $(MONGODB_URI)

 SECRET: $(SECRET)

After succesfull test run the code was packaged in Docker Image and deployed to Docker

registry. Azure provides a predefined task that can be used to accomplish this, as is

described in the snippet Code 10.

Code 10 Task to build and push the container image to Docker Hub container registry

- task: Docker@2

 inputs:

 containerRegistry: 'Docker Hub'

 repository: 'vijoni/bloglist-backend-cicd'

 command: 'buildAndPush'

 Dockerfile: './Dockerfile'

 tags: 'azure'

40

5.5.4 Integrations

Azure Pipelines for Jira integration was easily configurable and could be started from Jira

Cloud instances Web UI. Application was installed from the Atlassian Marketplace and the

bidirectional communication between Jira and Azure DevOps was configured easily.

However, Azure Pipelines for Jira integration was not too useful for this thesis’ use case, as it

only tracks deployment statuses on Pipelines. In order to achieve this kind of visibility from

Azure Pipelines to Jira Cloud, one would need to configure Atlassian Connect and create

custom logic for the functionality.

Azure Pipelines app for Slack integration can be installed using the Slack. Simply adding a

new application to the workspace, commanding the application via /azpipelines

subscribe <pipeline url> provides an interactive way to configure the application, as

can be seen from Figure 16. Configuration starts by signing into the Azure and providing

necessary information for the service. For this thesis’ workflow we set the integration to

send notifications on different stages of the build, as can be seen from the Figure 17.

Figure 16 Azure Pipelines Slack Integration installation

41

Figure 17 Azure Pipelines notifications about the status changes of the pipeline.

5.5.5 Costs

Azure Pipelines offers a free tier for open-source projects. However, to claim such a benefit

users must apply for it. During the implementation of Azure Pipeline for this thesis, the

appliance process for the free tier was not clearly documented or easily found. As a result, it

seemed like a more reasonable approach to purchase a parallel job subscription for the time

being. And as things usually go, when one is finished with the project it is easily forgotten

about and the subscription is left valid.

Table 5 Pipeline cost breakdown on Azure environment

Component Units Price / Unit Price Free tier

Azure Pipelines
- Microsoft-
hosted CI/CD

0,9677 33.7320 € 32,64 -

42

Concurrent Job

5.6 GitHub Actions

My personal GitHub account, jonivirtanen, was used for this thesis. Free plan was deemed

sufficient for the use case of this project, and as such no billing information was provided.

GitHub did not require extra steps to get started with Actions, except for the process

described in chapter 5.6.1.

5.6.1 SCM

Integrating with GitHub Actions was achieved easily, as the repository is located within the

GitHub. To activate actions “.github/workflows” directory structure was created within a

branch. Inside of the workflows directory “actions.yml” file was created.

File actions.yml was then used to describe the whole workflow. GitHub’s web editor, that

allows for easy usage of community made actions, was utilized during this project.

5.6.2 Managing credentials

Credentials were managed in GitHub by using repository specific variables and environment

specific variables, as defined in the Table 6. This allows for easily understandable access

control for the variables, whilst also making them more secure.

Table 6 Description of secrets used in GitHub

Secret name Secret type

MONGODB_URI Environment Secret

43

SECRET Environment Secret

DOCKER_PASSWORD Repository Secret

DOCKER_USERNAME Repository Secret

5.6.3 Pipeline

Description of the pipeline trigger action can be seen in the snippet Code 11. Pipeline

definition starts with a snippet defining the name of the pipeline, a trigger option (in this

case triggered on push or pull request on branch “actions”. “workflow_dispatch:” attribute

was added to grant end user the ability to run the pipeline manually when needed.

Code 11 GitHub Actions trigger configuration

name: bloglist-backend-CI

on:

 push:

 branches: [actions]

 workflow_dispatch:

Jobs are defined using the formula described in the following snippet, Code 12. Within a

singular job different steps were created to checkout the source code, setup node.js

environment, to run the tests written for the software. Docker Image building and pushing

to Docker Hub was handled in a separate job.

Code 12 Basic structure of GitHub Actions workflow

jobs: #Defines the start of Jobs section

 job1: #Specify an identifier for the job

 environment: #Optional, specify environment variables

 name: bloglist-backend

 runs-on: ubuntu-latest #Specify the environment to run the jobs

 steps:

 - uses: actions/checkout@v2

44

5.6.4 Integrations

GitHub for Jira integration is easily configurable through Atlassian’s Marketplace. Process

started by installing the application to Jira, which will then redirect the user to GitHub to

create an application link between the two applications. During the installation the

necessary information was provided and jonivirtanen/bloglist-backend-cicd repo was

selected to be used with the application. After this step has been completed Jira will start

syncing configured projects with the repo and parsing information from repo.

Github + Slack integration is easily installable via Slack as it is distributed as an app. Github

integration was added via Slacks app directory. After the application was added to

workspace, users can subscribe to repositories using the command /github subscribe

<repository name>. This will then prompt for the necessary configuration in GitHub for the

correct privileges to be granted for the application, after which a message will be sent to

inform about successful subscription to a repository (Figure 18). However, this integration

does not seem to be able to send notifications about the current state of the workflow,

unless it is pending an action from a user.

Figure 18 Slack message notifiying about the successful subscription to repository.

5.6.5 Costs

Costs for this thesis project were non-existent. GitHub bundles GitHub actions minutes by

different subscription plans. Thesis writer is using “Free” subscription in GitHub and thus

granted 2 000 minutes of runtime per month for GitHub actions, this applies only to public

repositories.

45

5.7 GitLab CI/CD

New user account and organization were created for GitLab. Billing information was not

provided to GitLab as this project’s repository, that was cloned from GitHub as described in

chapter 5.7.1., and was eligible to 400 CI/CD minutes on SaaS runners.

5.7.1 SCM

GitHub repository was cloned to GitLab to enable CI/CD functionality in GitLab. This was

easily doable via GitLab web user interface. To start the process of cloning the repository

new project was created by importing from existing source.

As the source repository is publicly available in GitHub the cloning process is simple and

requires one to specify source repository and the name of the new GitLab project. After

submitting the form GitLab takes care of cloning the repository and creating a new remote

repository.

5.7.2 Managing credentials

Credentials were managed by using the projects variables, that can be configured from

projects CI/CD settings. Variables were created as described in Table 7. As the build in this

thesis’ case is run on GitLab shared runners, Docker Hub password is masked and protected.

These credentials are used within the pipeline by stages that run the unit tests and push the

build image to Docker Hub.

Table 7 Description of variables in GitLab

Variable name Protected Masked

DOCKER_PASSWORD YES YES

DOCKER_USER NO NO

46

MONGODB_URI NO NO

SECRET NO NO

5.7.3 Pipeline

Project’s CI/CD workflow was configured to use GitLab shared runners. Due to this reason

the workflow was also run inside containers, as running on a shared virtual machine could

compromise environment variables such as Docker Hub credentials. Setting up the workflow

is as simple as creating a file called “.gitlab-ci.yml” to the projects root directory. This file is

editable through GitLab Web IDE.

As the project is run in multiple jobs and each job runs on different container instance

“node_modules” directory was specified to be cached (Code 13), so the directory would

persist between different jobs at project level, thus eliminating the need to run “npm install”

on every job.

Code 13 Configuration to cache node_modules directory between different containers.

cache:

 paths:

 - node_modules/

GitLab CI/CD uses the following format, as demonstrated in Code 14, to define a job. Job

starts by defining a name for the job (e.g. ”run_tests”), image to be used and stage this job is

to be run on. Additional runtime environment variables can be set providing additional

information as variables. When parameter can be used to define when the job should be

run, in this case when the previous step, installation of dependencies to provide node

modules, was run successfully.

Code 14 Job structure for GitLab CI/CD

run_tests:

 image: node:12.22-buster-slim

 stage: test

 variables:

 TEST_MONGODB_URI: $MONGODB_URI

47

 SECRET: $SECRET

 script:

 - npm test

 when: on_success

5.7.4 Integrations

GitLab for Jira integration is installable through Atlassian Marketplace. After the installation

was done, configuration was done by adding namespace to follow changes on a specific

GitLab repository. Installation process was simpler than expected, as having session open in

GitLab seemed to set all the GitLab side configuration automatically. However, this

integration does not seem to track build status or CI/CD runs.

GitLab Slack application offers ChatOps integration for the GitLab project. It does not offer

the possibility to send notifications on certain events to different channels, but this can be

solved using the Slack notifications integration found in GitLab integrations list.

Configuration of Slack notifications integration starts with selecting the actions that one

wants to be notified about. In this thesis’ use case, pipeline events are chosen and

configured to notify people on #gitlab channel. Configuration also requires the specification

of a webhook URL and a username to post to the channel as. After configuration of these

variables, the test run was successful, as seen on Figure 19.

Figure 19 GitLab Integration test post using Incoming Webhook Slack app.

48

5.7.5 Costs

No costs were accumulated during this thesis. Hence, no bill was sent to the author. The user

account that was used for this thesis has a “Free” plan subscription on GitLab and is eligible

for 400 minutes of CI/CD runner time on shared runners. The limits were never exceeded.

5.8 BitBucket Pipelines

Authors personal Atlassian Cloud account was used to sign up for the free subscription of

Bitbucket Cloud. Subscription is limited to less than 5 users, and less than 50 minutes of

build time. No billing information was provided for this subscription.

5.8.1 SCM

Bitbucket Pipeline requires the importing of the repository from GitHub. This was created to

be simple, and the only mandatory variables were source repository address, project name

for the new project in Bitbucket and remote repository name.

After the import had completed a new “bitbucket-pipelines.yml” -file needed to be created

to the root of the repository.

5.8.2 Managing credentials

Credentials were managed by repository variable settings. As these variables are used within

shared runner instances, sensitive variables were secured. Table 8 describes the credentials

that were created in order for the Pipeline to function as required.

49

Table 8 Description of Variables for Bitbucket Pipelines

Variable name Secured

docker_pass YES

TEST_MONGODB_URI YES

docker_user NO

SECRET YES

5.8.3 Pipeline

Setting up Bitbucket Pipeline started by importing the repository from GitHub. This was fairly

simple, and the only mandatory variables were remote repository URL, project name for the

new project in Bitbucket and repository name. From there, a new “bitbucket-pipelines.yml”

file needed to be created to the root of the repository.

Code 15 describes the basic workflow for creating of a pipeline. Pipeline was defined to use

node:12.22 container image as base image to run pipeline steps. The keyword ”default”

describes that the following steps on this pipeline are to be run on every push event that

happens within the repository. Should there be more than one branch this could be

substituted to use ”branches” section to define that the pipeline should only be run on push

events happening on certain branches. First step is then used to install dependencies and to

create cache using predefined keyword ”node” (translates to node_modules directory inside

the containers working directory).

50

Code 15 YAML structure for Bitbucket Pipelines

image: node:12.22

pipelines:

 default:

 - step:

 name: Build

 caches:

 - node

 script:

 - npm install

After the dependencies have been installed, the tests are run using the cached directory.

When tests succeed a step for Docker image building and pushing is launched. As this build

step is run within a container and we will need support for Docker commands it is

mandatory to define that docker service should be used in this step, as described in snippet

Code 16.

Code 16 Step to build and push docker image to Docker Hub container registry

- step:

 name: Build and Push Docker Image

 caches:

 - node

 script:

 - docker login -u $docker_user -p $docker_pass

 - docker build -t $docker_user/bloglist-backend-cicd:bitbucket .

 - docker push $docker_user/bloglist-backend-cicd:bitbucket

 services:

 - docker

5.8.4 Integrations

Bitbucket Cloud was integrated with Slack by using the Atlassian provided Bitbucket app.

Application can be installed from the Bitbucket UI within the project settings, under the

headline of Slack. After the application was installed, the necessary subscription was added

to channel #bitbucketorg, with notifications configured to respond to build and pipeline

events, as seen in Figure 20.

51

Figure 20 Description of Slack notification settings within a repository

Bitbucket Cloud was integrated with Jira Cloud. This was done through Bitbucket UI, by

selecting the appropriate workspace and navigating to its settings, under the headline of

Atlassian integrations and subitem Jira. As both of the instances are hosted in Atlassian

Cloud, the Jira is automatically detected, and the applications can be connected with a click

of a button. To track build statuses, the branch names must match issue keys.

5.8.5 Costs

No costs were accumulated during this thesis. And as such, no bill was sent to the author.

The user account that was used for this thesis has a “Free” plan subscription on Bitbucket

Cloud and is eligible for 50 minutes of build time. The limit was not exceeded.

52

6 Key findings

The aim of the thesis was to compare the different currently available CI/CD services by

creating a simple CI/CD Pipeline. Pipeline was supposed to keep environment variables,

mainly credentials, secret while running the pipeline. It was deemed essential to provide

some easy method to communicate between the CI/CD service and Jira and Slack. The

process of the thesis begun by exploring the documentations of different CI/CD services and

getting the basic overview of the possible solutions and comparing the products.

Implementation phase was completed before the documentation or the writing of the

theory sections of the thesis, as it seemed hopeless to get a complete picture of the needed

services for the pipeline for every provider. Integration runs were run until they got

successfully completed in each environment, sometimes requiring just a few runs and in

other cases dozens of runs.

All of the services provided a way to read environment variables from either another service

used to manage variables or from project or repository settings, except for the Google Cloud

Platform. GCP required to think outside the box and the only way that was discovered to

read secrets into environment variables was to create another container for the sole cause.

They all offered a way to build the package in to a docker container image and upload it to a

container registry. All of the different pipelines succeeded in this job with minimal

customizations. Every service supports some form of the pipeline as a code definition.

During the process it was discovered that the creation of a CI/CD Pipeline is somewhat

similar, and usually well instructed, in every service from the end user’s perspective. From

time consuming point of view, the workflows are well defined and similar, thus a single

developer working on a specific project should be equally effective if they work within a

single CI/CD service. From the point of perspective of project costs the services seemed to

be similarly priced in the scope of this thesis, except for the Azure Pipelines. Azure Pipelines

subscription that was bought for this thesis did include a Visual Studio license that needs to

be accounted for when comparing products. During the comparison of the costs, it should be

noted that Jenkins and Bamboo also generate costs from the infrastructure and

management of the services. On the other hand, Azure, GCP and AWS can generate

substantial costs from the services, storage and data transfer that are needed for a complete

53

implementation of CI/CD Pipeline. All the PaaS or SaaS services also bill by build time

therefore it is possible to generate additional costs by launching an integration run that gets

stuck in a job or some broken logic within the integration run that keeps transferring or

storing same data over again.

SaaS implementations of CI/CD Pipelines do offer the most straightforward way to get a

working CI/CD pipeline, but they do require that the source code is stored within the service.

This does raise some questions, about the data’s physical location, who can access the data

and the effects of GDPR, that were out of the scope of this thesis but should be accounted

for when planning on implementation of such pipelines.

When comparing the integrations, it should be noted that the Jira instance used in this thesis

was hosted in Atlassian Cloud, and as such server instances may require different

configurations or plugins. It should also be noted that as the Jenkins and Bamboo instances

used in this thesis were run on a virtual machine, hosted on my personal workstation, they

do not resemble the exact production like environment that would otherwise be used. This

mainly plays a part when thinking about integrations that would need to be able to

communicate with for example, the Bamboo instance, as it was not possible due to network

limitations. However, this was carefully considered, and integration plugins were chosen in a

way that would still accomplish the job. Features of the plugins were sometimes really

poorly listed, thus causing extra work in the form of validating if the plugin actually

accomplished the job it was needed for.

Access controls within the services were well defined, documented and easily granularly

configurable. Services provided a way to configure user access for variables, repositories

(when applicable) and the pipelines. All the services provided either a way to configure these

on user, group or role level.

Subjectively, I would say that the easiest service was either GitHub Actions or Bitbucket

Online. As both of the services are SaaS products, there is zero overhead on management

side, and the monthly bill is easily estimated. However, as both of the services are managed

by a third party, there is always a certain amount of uncertainty when considering, for

example the location of the data or service availability. Jenkins and Bamboo on the other

hand provide an on-premise installation, thus enabling users to control their own data and

54

the environment. These products do come with the price tag of the maintenance of the

services and the workforce.

As for the feedback received for the study, Ambientia has been satisfied with the content.

The study has met the expectations that were set at the initial discussions about the thesis’

scope. However, it is obvious that the different products are not easily compared against

each other based on this study alone. It is also relatively hard to come up with a valuable

measurement unit to compare the ease of use of a singular service or system. Even the

pricing is hard to compare as there are multiple different components affecting the pricing

of a service, that may change over the night. Even though the comparison of the costs is

included in this thesis, I would argue that it is rather meaningless.

55

7 Summary

As software development projects become larger and the code base gets harder to grasp,

the importance of a valid continuous integration automation becomes more apparent. This

offers benefits, including tighter feedback loop, enabling developers to fix errors sooner and

thus providing higher trust in the release process.

It became apparent that the research questions defined for the thesis were too broad, which

resulted in far more complex approach to writing the thesis than I was originally estimating.

This also resulted in the thesis’ structure becoming repetitive. However, all things

considered the thesis did, in my personal opinion, succeed in comparing the pipelines and

possibly guiding Ambientia in the future. The pipeline designed for this thesis was

uncomplicated, but it does demonstrate the key aspects of such an implementation.

This thesis taught me a lot about estimating the workload and working through repetitive

tasks, while also giving me the opportunity to venture in to the multiple implementations of

one of the key areas in my current work field. During the writing of this thesis I learned a lot

about the CI/CD Pipelines and the differences between the implementations of different

service providers. The familiarity with continuous integration and continuous delivery as

concepts is now much more well defined, and the understanding of the underlying structure

is more concise for me. Working on this thesis also provided a more concrete understanding

of the cost management in different cloud environments.

56

References

Amazon Web Services. (n.d.-a). AWS CodeBuild features. Retrieved June 1, 2021, from

https://aws.amazon.com/codebuild/features

Amazon Web Services. (n.d.-b). AWS CodeBuild Pricing | Amazon Web Services. Retrieved

August 8, 2021, from https://aws.amazon.com/codebuild/pricing/?nc=sn&loc=3

Amazon Web Services. (n.d.-c). AWS CodePipeline features. Retrieved June 1, 2021, from

https://aws.amazon.com/codepipeline/features/

Amazon Web Services. (n.d.-d). AWS CodePipeline Pricing | Amazon Web Services. Retrieved

August 8, 2021, from https://aws.amazon.com/codepipeline/pricing/

Amazon Web Services. (n.d.-e). AWS Systems Manager Parameter Store. Retrieved June 1,

2021, from https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-

manager-parameter-store.html

Amazon Web Services. (n.d.-f). How AWS CodePipeline works with IAM. Retrieved June 1,

2021, from

https://docs.aws.amazon.com/codepipeline/latest/userguide/security_iam_service-

with-iam.html

Amazon Web Services. (n.d.-g). What is Continuous Delivery? Retrieved June 25, 2021, from

https://aws.amazon.com/devops/continuous-delivery/

Atlassian. (n.d.-a). Atlassian Marketplace - Azure Pipelines for Jira. Retrieved May 29, 2021,

from https://marketplace.atlassian.com/apps/1220515/azure-pipelines-for-

jira?tab=overview&hosting=cloud

Atlassian. (n.d.-b). Bamboo - Pricing | Atlassian. Retrieved August 8, 2021, from

https://www.atlassian.com/software/bamboo/pricing

Atlassian. (n.d.-c). Bamboo Specs | Bamboo Server 8.0 | Atlassian Documentation. Retrieved

August 8, 2021, from https://confluence.atlassian.com/bamboo/bamboo-specs-

894743906.html

Atlassian. (n.d.-d). Bamboo Specs encryption | Bamboo Server 8.0 | Atlassian

Documentation. Retrieved August 8, 2021, from

https://confluence.atlassian.com/bamboo/bamboo-specs-encryption-970268127.html

Atlassian. (n.d.-e). Bamboo Specs Reference. Retrieved August 8, 2021, from

https://docs.atlassian.com/bamboo-specs-docs/8.0.0/specs.html?yaml#version-

information

57

Atlassian. (n.d.-f). Bitbucket - Pricing | Atlassian. Retrieved June 30, 2021, from

https://www.atlassian.com/software/bitbucket/pricing

Atlassian. (n.d.-g). Configure bitbucket-pipelines.yml | Bitbucket Cloud | Atlassian Support.

Retrieved June 30, 2021, from https://support.atlassian.com/bitbucket-

cloud/docs/configure-bitbucket-pipelinesyml/

Atlassian. (n.d.-h). Configuring plans | Bamboo Server 8.0 | Atlassian Documentation.

Retrieved August 8, 2021, from https://confluence.atlassian.com/bamboo/configuring-

plans-289276853.html

Atlassian. (n.d.-i). Get started with Bitbucket Pipelines | Bitbucket Cloud | Atlassian Support.

Retrieved June 29, 2021, from https://support.atlassian.com/bitbucket-cloud/docs/get-

started-with-bitbucket-pipelines/

Atlassian. (n.d.-j). GitHub - atlassian/github-for-jira: Connect your code with your project

management in Jira. Retrieved July 30, 2021, from https://github.com/atlassian/github-

for-jira#using-the-integration

Atlassian. (n.d.-k). GitHub for Jira | Atlassian Marketplace. Retrieved July 30, 2021, from

https://marketplace.atlassian.com/apps/1219592/github-for-

jira?hosting=cloud&tab=overview

Atlassian. (n.d.-l). Integrating Bamboo with JIRA applications | Bamboo Server 8.0 | Atlassian

Documentation. Retrieved August 8, 2021, from

https://confluence.atlassian.com/bamboo/integrating-bamboo-with-jira-applications-

289276945.html

Atlassian. (n.d.-m). Slack Notifications for Bamboo | Atlassian Marketplace. Retrieved August

8, 2021, from https://marketplace.atlassian.com/apps/1213289/slack-notifications-for-

bamboo?tab=overview&hosting=server

Atlassian. (n.d.-n). Understanding the Bamboo CI Server | Bamboo Server 8.0 | Atlassian

Documentation. Retrieved August 8, 2021, from

https://confluence.atlassian.com/bamboo/understanding-the-bamboo-ci-server-

289277285.html

Atlassian. (n.d.-o). Using Bamboo | Bamboo Server 8.0 | Atlassian Documentation. Retrieved

August 8, 2021, from https://confluence.atlassian.com/bamboo/using-bamboo-

289276852.html

58

Atlassian. (n.d.-p). Variables and secrets | Bitbucket Cloud | Atlassian Support. Retrieved

June 30, 2021, from https://support.atlassian.com/bitbucket-cloud/docs/variables-and-

secrets/

Bansal, S. (n.d.-a). Azure Pipelines integration with Jira Software. Retrieved May 30, 2021,

from https://devblogs.microsoft.com/devops/azure-pipelines-integration-with-jira-

software/

Bansal, S. (n.d.-b). Integrate with Jira Issue tracking. Retrieved May 30, 2021, from

https://github.com/microsoft/azure-pipelines-jira/blob/master/tutorial.md#faqs

Duvall, P. M., Matyas, S., & Glover, A. (2007a). Continuous Integration : improving software

quality and reducing risk. Addison-Wesley.

Duvall, P. M., Matyas, S., & Glover, A. (2007b). Continuous Integration : improving software

quality and reducing risk. Addison-Wesley.

Fowler, M. (n.d.). Continuous Integration. Retrieved November 9, 2021, from

https://martinfowler.com/articles/continuousIntegration.html

GitHub. (n.d.-a). About billing for GitHub Actions - GitHub Docs. Retrieved July 30, 2021, from

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-

for-github-actions

GitHub. (n.d.-b). Encrypted secrets - GitHub Docs. Retrieved July 16, 2021, from

https://docs.github.com/en/actions/reference/encrypted-secrets

GitHub. (n.d.-c). Introduction to GitHub Actions - GitHub Docs. Retrieved July 16, 2021, from

https://docs.github.com/en/actions/learn-github-actions/introduction-to-github-

actions

GitLab. (n.d.-a). A surprising benefit of CI/CD: Changing development roles | GitLab.

Retrieved November 16, 2021, from https://about.gitlab.com/blog/2020/07/16/ci-cd-

changing-roles/

GitLab. (n.d.-b). CI/CD pipelines | GitLab. Retrieved August 1, 2021, from

https://docs.gitlab.com/ee/ci/pipelines/

GitLab. (n.d.-c). Get started with GitLab CI/CD | GitLab. Retrieved August 1, 2021, from

https://docs.gitlab.com/ee/ci/quick_start/

GitLab. (n.d.-d). GitLab CI/CD variables | GitLab. Retrieved August 1, 2021, from

https://docs.gitlab.com/ee/ci/variables/

GitLab. (n.d.-e). GitLab Runner | GitLab. Retrieved August 1, 2021, from

https://docs.gitlab.com/runner/

59

GitLab. (n.d.-f). GitLab Slack application | GitLab. Retrieved August 7, 2021, from

https://docs.gitlab.com/ee/user/project/integrations/gitlab_slack_application.html

GitLab. (n.d.-g). Jira integrations | GitLab. Retrieved August 7, 2021, from

https://docs.gitlab.com/ee/integration/jira/

GitLab. (n.d.-h). Slack notifications service | GitLab. Retrieved August 7, 2021, from

https://docs.gitlab.com/ee/user/project/integrations/slack.html

Google. (n.d.-a). Cloud Build pricing | Cloud Build Documentation | Google Cloud.

Retrieved May 29, 2021, from https://cloud.google.com/build/pricing

Google. (n.d.-b). Overview | Cloud IAM Documentation | Google Cloud. Retrieved May 29,

2021, from https://cloud.google.com/iam/docs/overview

Google. (n.d.-c). Overview of Cloud Build | Cloud Build Documentation | Google Cloud.

Retrieved May 29, 2021, from https://cloud.google.com/build/docs/overview

Google. (n.d.-d). Pricing | Secret Manager | Google Cloud. Retrieved May 29, 2021, from

https://cloud.google.com/secret-manager/pricing

Google. (n.d.-e). Quickstart: Build | Cloud Build Documentation | Google Cloud. Retrieved

May 29, 2021, from https://cloud.google.com/build/docs/quickstart-build

Google. (n.d.-f). Secret Manager conceptual overview | Secret Manager Documentation.

Retrieved May 29, 2021, from https://cloud.google.com/secret-

manager/docs/overview

Google. (n.d.-g). Service accounts | Cloud IAM Documentation | Google Cloud. Retrieved

May 29, 2021, from https://cloud.google.com/iam/docs/service-accounts

Jenkins.io. (n.d.-a). Installing Jenkins . Retrieved June 20, 2021, from

https://www.jenkins.io/doc/book/installing/

Jenkins.io. (n.d.-b). Pipeline. Retrieved June 15, 2021, from

https://www.jenkins.io/doc/book/pipeline/

Jenkins.io. (n.d.-c). Jira | Jenkins plugin. Retrieved August 8, 2021, from

https://plugins.jenkins.io/jira/

Jenkins.io. (n.d.-d). Slack Notification | Jenkins plugin. Retrieved August 8, 2021, from

https://plugins.jenkins.io/slack/

Jenkins.io. (n.d.-e). Using a Jenkinsfile. Retrieved June 15, 2021, from

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

Jenkins.io. (n.d.-f). Using credentials. Retrieved June 15, 2021, from

https://www.jenkins.io/doc/book/using/using-credentials/

60

JFrog. (n.d.). Top 5 CI/CD Tools to Look Out for in 2021. Retrieved November 16, 2021, from

https://jfrog.com/knowledge-base/top-5-ci-cd-tools-to-look-out-for-in-2021/

Microsoft. (n.d.-a). Pricing for Azure DevOps. Retrieved May 29, 2021, from

https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/

Microsoft. (n.d.-b). Azure Pipelines agents. Retrieved May 30, 2021, from

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-

devops&tabs=browser

Microsoft. (n.d.-c). Azure Pipelines with Slack. Retrieved May 29, 2021, from

https://docs.microsoft.com/en-

us/azure/devops/pipelines/integrations/slack?view=azure-devops

Microsoft. (n.d.-d). Define variables. Retrieved May 29, 2021, from

https://docs.microsoft.com/en-

us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch

Microsoft. (n.d.-e). Key concepts for new Azure Pipelines users. Retrieved May 30, 2021, from

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/key-pipelines-

concepts?view=azure-devops

Microsoft. (n.d.-f). What is Azure Pipelines? Retrieved May 30, 2021, from

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-

pipelines?view=azure-devops

Nikhil, P. (2017). Learning Continuous Integration with Jenkins (Second Edition). Packt.

Red Hat. (n.d.). What is a CI/CD pipeline? Retrieved June 25, 2021, from

https://www.redhat.com/en/topics/devops/what-cicd-pipeline

Slack. (n.d.). GitHub for Slack | Slack. Retrieved July 30, 2021, from

https://slack.com/intl/en-fi/help/articles/232289568-GitHub-for-Slack

Liite 1 / 1

Liite 1: Aineistonhallintasuunnitelma

Tutkimuksellinen työ:

Työtä varten ei tehdä haastatteluja tai kyselyitä.

Työtä tehdään virtuaalikoneella, minkä tiedostojärjestelmä on varmuuskopioinnin piirissä. Tämän

lisäksi työtä siirrellään työasemien välillä käyttäen Nextcloud palvelua, missä on tiedoston

versiointi päällä.

Käytetyt kuvat on varmistettu käyttöoikeudeltaan hyväksyttäväksi.

Aineistoa ei ole tarpeen säilyttää, kaikki aineisto on julkisesti saatavilla lähdeluettelon mukaisesti.

Liite 2 / 1

