
0 / 55

Tan Xinyu

2.4GHz SENSOR NETWORK:
CHIPCON CC2510

SELF-ORGANIZED NETWORK
APPLICATION DEVELOPMENT

Technology and Communication

2009

1 / 55

ACKNOWLEDGMENT

The begin with, I have to appreciate my parents. They bring me to this world,

taught me the knowledge to be a people, afford me study abroad. I really want to

say, all my undertakings from before to the future are all yours. I will be prided

you.

Then I have to appreciate my supervisors Mr. Gao Chao and Mr. Jukka Matila. I

am so luck to meet these amazing teachers to give me a firm hand of technology.

In this project Mr. Gao Chao gave me the topic and concept and Mr. Jukka Matila

support me to make it run.

And I also want to say thank you to all of my friends, I am so glad to live with

you guys from these years

.

Wednesday March 25 2009, VAASA FINLAND

TAN XINYU

2 / 55

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Programme of Telecommunication Engineering

ABSTRACT
Author Tan Xinyu
Title 2.4GHz sensor network: CHIPCON CC2006 self-organized

network application development
Year 2006-2009
Language English
Pages 54
Name of Supervisor Jukka Matila
The abstract is written here using single spacing. The abstract should briefly state
This project is mainly to solve a real problem, which is big area temperature
measurement. Short range telecom technology is used to build a self-organized
sensor network to support system connections. Chipcon CC2510 RF solution as
the main components is used to assemble the devices.

The essence of the project is protocol stack design and implementation. A
Self-Adapted Network protocol stack (SAN) for sensor network is built in the
system. This protocol stack offers following features:
Self-organization
Self-configuration and Self-reconfiguration
Self-healing
Self-optimization

In the case that the self-organized sensor network protocol is still on the research
step around the world, no standardized network topology or protocol is released.
This project is a good shot in sensor network area.

Keywords Network, 2.4GHz, Chipcon, Self-organized

3 / 55

ABBREVIATIONS

ACK Acknowledgement
AP Access Point
API Application Program Interface
CCA Clear Channel Assessment
CRC Cyclic redundancy check
DK Development Kit
ED End Device
EM Evaluation Module
IDE Integral Development Environment
ISR Interrupt Service Routine
LED Light Emitted Diode
LQI Link Quality Inductor
LSB Least Significant Bit
MAC Medium Access Control
MCU Micro Controller
MSB Most Significant Bit
PCB Printed Circuit Board
RSSI Received Signal Strength Inductor
SAN Self-adapted Network
SMPL Sample Modular Protocol Library
SoC Software on Chip
SPI Serial Port Interface
TI Texas Instrument

4 / 55

CONTENT

1 Introduction 5
2 The problem in the forest temperature measurement 6
3 System Overview 8

3.1 Self-organized sensor network 8
3.2 Short range telecommunication system 9
3.3 2.4GHz wireless telecommunication 10
3.4 CC2510 10
3.5 IAR Embedded Workbench® for 8051 17
3.6 SimpliciTI 18

4 Solution – A Self-organized network protocol based on broadcasting 19
4.1 Access Point 19
4.2 End Device 19
4.3 Protocol description 20

5 Implementation 26
5.1 Hardware 26
5.2 Application programming 30

6 System Test 45
7 Future works 51

7.1 Bidirectional task 51
7.2 A reset bug 51
7.3 A multi-link bug 52
7.4 Frequency agility 52

8 The conclusion 53
9 Literature 54

5 / 55

1. INTRODUCTION

Nowadays, under the great success of Zigbee, Wi-Fi, Bluetooth, the short range

wireless telecommunication in embedded system and network became more and more

popular on electrical technology and embedded technology.

The famous electronic chip manufacturer Texas Instrument (TI) released a high

performance 2.4GHz short range RF transceiver – CC2510/CC2511, can be used to

development many powerful wireless applications.

This project is built for a real sensor network application which can be used for

sensing tasks such as farm temperature measurement and forest fire monitoring which

covers wide area and many sensor notes should be used. And we also expect longer

sensor survives and the notes should be self-organized.

To build a self-organized network, I am using CC2510 to assemble sensor note. In the

network, there are two different types of devices: access point and end device. The all

the data should be collected by access point from end device. Because of the limited

range of access point, the automatic routing algorithm is needed. In this case, every

end device can be a router to forward data to the access point.

To implement these devices, three different tasks should be fulfilled:

1. Hardware task: A PCB board to drive RF module and its peripherals.

2. Telecommunication task: A wireless protocol stack for the entire network is

indispensable.

3. Embedded system programming task: An embedded software driver

At the end of this project, I successfully built a sensor network contains one access

point and seven different end devices which has self-organization, self-adoption

features.

6 / 55

2. A PROBLEM IN FOREST TEMPERATURE MEASUREMENT

Think about it, if the scientists want to monitor temperature distribution in a big forest

area, what do they need?

First, they need a kind of device can carry sensors and also has wireless data

transceiver and power supplier with it. So they can receive data in one machine only.

Second, they probably need tens of thousands of this kind of devices to cover this

forest. Then they also want this kind of devices can work as long as passable. The

most important thing is the devices can not be expensive, because they are all one

time use device.

The device should contain following features.

� Low power consumption

� Wireless transceiver included

� Self-Routing protocol

� Cheap

Because of the first feature, low power consumption, the power of RF signal cannot

be strong, which means the short rang wireless network is the only choice. So the

devices have to forward the data of device behind it to the terminal device. Because

of the huge number of devices, it is impassable to configure every device into the

network, so the devices should organize themselves into the network. During the

work period some of devices might power empty easily then others but the system

has to heal itself to maintain the data from the devices still worked can be routed to

the terminal machine.

So, my goal is to make a application device can assemble such kind of network and

also has the features above.

7 / 55

4

Figure 1 Forest temperature sensor network

(http://www.dei.unipd.it/~schenato/)

8 / 55

3. SYSTEM OVERVIEW

3.1 Self-organized network

Self-organized network originally is specialized ad hoc network, but some

network like p2p show their self-organized character more and more obviously.

The concept of self-organized network became wider and wider, not only includes

wireless network, but also means p2p network and IP network (IP dynamic

routing).

The essential characters of Self-organized network

a) Non-centralization and the equivalence among the notes. Self-organized

network is an equivalence network and all the notes in the network are in the same

level of hierarchy. It is infrastructureless, all the notes act as terminals and routers,

if any note needs to communicate to the note out of its range, and it needs

multi-hop distribution from other notes.

b) Self-Discovering, Self-Configuring, Self-Organizing and Self-Healing. The

notes in the network can adapt the dynamics of the network, quickly find the other

notes and discover the functionality of other notes. The notes correspond their

behavior by distributed algorithm, no manually or pre-configure network device is

needed. The Self-organized network can be setup quickly in any moment at any

place. Because of the distribution of self-organized network, the redundancy of

the notes and no single fault spot, any malfunction of note cannot break the

network, which means the self-organized network has strong invulnerability and

robustness.

9 / 55

3.2 Short range telecommunication system

Along with the development of digital telecommunication and computing

technology, some requisites of short range telecommunication are put on the table.

Compare with long range telecommunication, the short rang telecommunication

has following difference:

a) The TX/RX power is between 1µW to 100µW;

b) The telecommunication range is between cm to hundreds of meters;

c) Mainly be used inside doors;

d) Using Omni directional antenna or PCB antenna;

e) Free charge of signal frequency;

f) High frequency operation;

g) Battery power supply wireless transceiver;

Figure 2 Short range telecommunication system

The transmitter (TX) sends data by wireless; Receiver receives data after process,

it will get correct information with correct CRC (Figure 2).

The typical application of short range telecommunication system:

� Radio frequency identifier (RFID) works at 100kHz ~ 2.4GHz

� Wireless local area network (WLAN) works at 900MHz or 2.4GHz

10 / 55

� Wireless bar code reader works at 2.4GHz

� Wireless mouse and keyboard works at 27MHz, 433MHz, 2.4GHz

� Wireless security system works at 300 ~ 500MHz, 800MHz, 900MHz,

2.4GHz

3.3 2.4GHz wireless telecommunication

The unlicensed bandwidth 2.4GHz~2.5GHz used by short range telecom has

become very popular in Personal Area Network (PAN) technology. The three

remarkable applications worked on 2.4GHz bandwidth are ZigBee (IEEE

802.15.4), WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1).

3.4 CC2510

CC2510, a low-cost wireless SoC (System on Chip), is designed for low power

consumption wireless application.

CC2510 includes an enhanced 8051 MCU and a wireless transceiver CC2500

with excellent performance. The wireless mainly works on ISM and SRD

frequency bandwidth of 2.4GHz, so the frequency of system can be set in

2400~2483.5MHz.

3.4.1 Architecture

A block diagram of CC2510 is shown in Figure 3. The modules can be divided

into one out of three categories: CPU related modules, radio-related modules, and

modules related to power, test, and clock distribution. In the following subsections,

a short description of each module that appears in Figure 3.

11 / 55

Figure 3: Architecture of CC2510 (Ref. 4)

12 / 55

3.4.2 The pin-out overview

The CC2510 pin-out shows in Figure 4 and Figure 5. There are 21 general IO pins

in the CC2510 and low level active manually reset support.

Figure 4: CC2510 Pinout top view (Ref. 4)

13 / 55

Figure 5: CC2510 Pinout (Ref. 4)

14 / 55

3.4.3 General Characters

Figure 6: General Characters (Ref. 4)

3.4.4 Key Features (Ref. 4)

� High performance enhanced 8051 MCU core

� 2.4GHz high-performance RF transceiver CC2500

� High-sensitivity and powerful anti-jamming

� In sleep mode, current is low to 0.5uA, external interrupt or RTC can wake up

the system; in standby mode, current is only 0.3uA, external interrupt can

wake up the system.

� High to 500kBand programmable band rate

� Hardware support CSMA/CA

� Working voltage is 2.0V~3.6V

� Digital RSSI/LQI and DMA support

� Battery monitoring and on chip temperature sensor\

� 8~14 bit ADC

� Less facility circuit requirement

15 / 55

3.4.5 CC2510DK (REF. 4)

A CC2510 development kit has a main board (Smart RF 04 EB) and several

CC2510EMs.

Evaluation Board is the platform for Evaluation Module (EM) with MMI (Man to

Machine Interface), including LCD, LEDs, potential meters and buttons. USB

interface and RS232 interface are also attached. (Figure 7)

Figure 7: Smart RF 04 EB (Ref. 4)

The SmartRF04DK Development Kit offers quick testing of the RF interface

and peripherals with its on-board functions and applications.

� Evaluate the SmartRF®04 products. A RF range testing program has been

16 / 55

pre-installed into the kit.

� SmartRF® Studio is a platform can be used to perform RF measurements. The

radio function registers can be easily configured for sensitivity measurement,

power consumption so on.

� The SmartRF04KD can be used for prototype development. USB interface can

be used as emulator interface for CC2510. All the IO ports of CC2510 are can be

easily accessed by the connectors on the edge of the board for the external

applications.

CC2510 Evaluation Module is a plug-in module for Smart04DK with CC2510

and necessary peripheral circuit.

Figure 8: CC2510EM (Ref. 4)

17 / 55

3.5 IAR Embedded Workbench® for 8051 (www.iar.com)

IAR Embedded Workbench is a set of highly sophisticated and easy-to-use

development tools for embedded applications. It integrates the IAR C/C++

Compiler�, assembler, linker, librarian, text editor, project manager, and C-SPY®

Debugger in an integrated development environment (IDE). With its built-in

chip-specific code optimizer, IAR Embedded Workbench generates very efficient

and reliable FLASH/ PROMable code for the 8051 microcontroller. In addition to

this solid technology, IAR Systems also provides professional worldwide

technical support.

Figure 9: IAR 8051 WORKBENCH

18 / 55

3.6 SimpliciTI (Ref. 5)

SimpliciTI is a connection-based peer-to-peer protocol. It supports 2 basic

topologies: strictly peer-to-peer and a star topology in which the star hub is a peer

to every other device. The Access Point is used primarily for network

management duties. It supports such features and functions as store-and-forward

support for sleeping End Devices, management of network devices in terms of

membership permissions, linking permissions, security keys, etc. The Access

Point can also support End Device functionality, i.e., it can itself instantiate

sensors or actuators in the network. In the star topology the Access Point acts as

the hub of the network. The protocol is implemented by a few API functions.

These APIs support peer to peer communication on customer application. The

APIs can also organized flexible cluster tree topology with access point and

extenders.

19 / 55

4. SOLUSION – A SELF-ORGANIZED NETWORK PROTOCOL

BASED ON BROARDCASTING

The solution of this project is an extended protocol of SampliciTI. Because

SampliciTI support two types of topology only: strict peer to peer topology, and

star topology. Both of them are not self-organized. But it still offers some good

APIs and that is the reason I use this component.

This solution is specialized on a certain issue – forest temperature measurement

sensor network. Two kinds of devices are needed – Access Point (AP) and End

Device (ED).

4.1 Access Point: is a data collector. Only one AP can be used in a network. It is

the center of entire network, all the EDs will try to link to AP and transmit their

data to it.

4.2 End Device: is a device carried a temperature sensor and a RF transceiver. All

the EDs have the same level in the network hierarchy. They will try to link to AP

and transmit their data to it.

20 / 55

4.3 Protocol description

The entire system has hierarchy which depends on the distance from the EDs to

AP. The EDs on level 1 means the direct connection to AP. The EDs on level N (2,

3, 4…) means there are N – 1 hops between ED and AP.

Figure 10: Network overview

4.3.1 AP -- ED

Once the AP setup, will broadcast SAN_AP_BROADCAST every six seconds

approximately. Once an unlinked ED hears SAN_AP_BROADCAST, it will wait

a random time to hear if any other EDs send SAN_ED_BROADCAST_ACK to

AP. If a SAN_ED_BROADCAST_ACK is heard the ED will skip and wait for

next SAN_AP_BROADCAST message, otherwise it will broadcast

SAN_ED_BROADCAST_ACK message then try to link to AP. Meanwhile, when

AP receives SAN_ED_BROADCAST_ACK, it will listening to the link so the ED

21 / 55

who sent SAN_ED_BROADCAST_ACK can be linked by the AP. (Figure 11)

Figure 11: Direct link between AP and ED

4.3.2 ED -- ED

If once an ED has linked to the AP or another ED, it will broadcast

SAN_ED_BROADCAST message with the format (Figure 12)

Figure 12: Format of SAN_ED_BROADCAST packet

It carries the ED’s level (hops to the AP) and its ID. Once a unlinked ED or an ED

with the level bigger than level from the SAN_ED_BROADCAST it heard plus

one, it will wait a random time to listen if an SAN_ED_ED_BROADCAST_ACK

22 / 55

is sent, otherwise it will broadcast SAN_ED_ED_BROADCAST_ACK packet

(Figure 13)

Figure 13: Format of SAN_ED_ED_BROADCAST_ACK

The packet carries the device ID it want to link. Then the ED with the same ID as

Target ID received the packet will listen to the link. Then the ED want to be linked

will try to link to the network, in this case this ED can join to the network

successfully. Furthermore, each ED knows its next hop to AP and it will send its

data message directly to the next hop. Each ED also forwards the data packet it

received to its next hop. After all, the entire packet from the EDs can be collected

by AP. (Figure 14)

Figure 14: Link to the ED cannot hear AP

23 / 55

4.3.3 Self-Healing

Once an ED is connected to the network, it will be trying to listen to the broadcast

message from its next hop. If one ED missed three broadcast of its next hop

device, which means his next hop device do not work anymore or it was moved to

anther place. Then this ED will try to hear anther device broadcast and link it.

The following picture will show the concept of the Self-Healing.

At the beginning, All the EDs in the network were all connected to the AP. T he

ED A and B were connected to AP directly. C and D connected to the ED A, and

then A will get the responsibility to forward the message from C and D to the AP.

(Figure 15)

Figure 15: Network was setup successfully

24 / 55

Then ED A is lost its power. At the moment, because of no ACK on directly

sending message, the ED C and D have on idea what is happened to the ED A, so

they keep sending their message to A. From now, C and D cannot hear the

broadcast from A anymore, after awhile, they will notice that the ED A was lost.

Then they will be trying to find a new route to the AP. (Figure 16)

Figure 16: End device A is broken down

25 / 55

The ED D heard the broadcast from the ED B and setup a connection. Meanwhile,

the ED C was still out of the network. Once B was connection, it broadcasted the

message and C heard it, so C was connected to the system again.

Figure 17: New route is found

26 / 55

5. IMPLEMENTATION

By implementing the system, two main tasks shall be achieved:

� Hardware task: I am going to make a PCB board can support CC2510EM

mount, battery socket and some indispensable circuit.

� Software task: write an embedded software to implement my protocol stack

and some other peripheral functions to drive the device.

5.1 Hardware

There are two types of devices in the project (Access point and End device). I

used one of Smart RF 04 BOARD with a CC2510EM as an Access point, only

because it has ready made UART – RS232 periphery circuit. In this case, I can

transmit the data collected by AP to PC directly through SPI. (Figure 18)

Figure 18: System overview

27 / 55

In the End device base board, there are following components:

� CC2510EM

� 2ROW, 20WAY HEADER * 2

� GREEN LED

� YELLOW LED

� RED LED

� LM3717L positive adjustable voltage regulator

� Button

� Battery socket

� Power socket * 2

� 4 bit digital switch

Figure 19 shows the hardware structure.

Figure 19: Hardware Structure

28 / 55

3.3V power supply:

LM 317L 0.1A positive adjustable voltage regulator is used.

The LM317L provides an internal reference voltage of 1.25V between the output
and adjustments terminals. This is used to set a constant current flow across an
external resistor divider (see fig. 4), giving an output voltage VO of:

VO = VREF (1 + R2/R1) + IADJ R2

Figure 20: POWER SUPPLY

When R1 is 560 ohm and R2 is 820 ohm, the Vo will be approximately 3.1V. IN

case CC2510 can work with Vcc from 2.8V to 3.3V, this power supply will fulfill

the system.

29 / 55

Here is the view of ED base board. (Figure 21 and Figure 22)

Figure 21: ED base board top view

Figure 22: ED base board bottom view

30 / 55

5.2 Application software

The CC2510 includes an 8-bit CPU core which is an enhanced version of the

industry standard 8051 core. The enhanced 8051 core used the standard 8051

instruction set. Instructions execute faster than the standard 8051 due to one clock

per instruction cycle is used as opposed o 12 clocks per instruction cycle in the

standard 8051 and wasted bus states are eliminated.

There are six groups of source and header files inside the program:

� Components: the code packet of SimpliciTI

� Configurations: the special configuration file of SimpliciTI

� HAL: The Hardware analog function management code.

� HAL_BUI: the APIs used for Smart RF 04 BOARD peripheries

� SAN: Self-organized network management code.

� Others: such as UART management code and main code.

5.2.1 SimpliciTI API (Ref. 5)

SimpliciTI software conceptually supports 3 layers as shown in Figure 23. The

Application Layer is the only portion that the customer needs to develop. The

communication support is provided by a simple set of API symbols used to

initialize and configure the network, and read and write messages over air.

Figure 23: SimpliciTI Architecture

31 / 55

5.2.1.1 Common data types

The following are defined:

typedef signed char int8_t;

typedef signed short int16_t;

typedef signed long int32_t;

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned long uint32_t;

typedef unsigned char linkID_t;

typedef enum smplStatus smplStatus_t;

5.2.1.2 APIs

BSP_Init()

Discretion Not strictly part of the SimpliciTI API this call initializes the

specific target hardware. It should be invoked before the

SMPL_Init() call.

Prototype Void BSP_Init(void)

Parameters None

Return None

SMPL_Init()

Discretion This function initializes the radio and the SimpliciTI protocol

stack. It must be called once when the software system is

started and before any other function in the SimpliciTI API is

called.

Prototype smplStatus_t SMPL__Init(uint8_t (*)(linkID_t))

Parameters The argument is a pointer to a function and causes the

supplied function to be registered as the callback function for

the device. Since the initialization is called only once the

32 / 55

callback serves all logical End Devices on the platform.

The function prototype is:

uint8_t sCallBack(linkID_t)

The function is invoked in the frame-receive ISR thread so it

runs in the interrupt context.

It is valid for this parameter to be null if no callback is

supplied.

Return SMPL_SUCCESS Initialization successful.

SMPL_NO_JOIN No Join reply. Access Point possibly not

yet up. Not an error if no Access Point in topology

SMPL_NO_CHANNEL Only if Frequency Agility enabled.

Channel scan failed. Access Point possibly not yet up.

SMPL_Link()

Discretion This call sends a broadcast link frame and waits for a reply.

Upon receiving a reply a connection is established between

the two peers and a Link ID is assigned to be used by the

application as a handle to the connection.

This call will wait for a reply but will return if it does not

receive one within a timeout period so it is not a strictly

blocking call. The amount of time it waits is scaled based on

frame length and data rate and is automatically determined

during initialization.

This call can be invoked multiple times to establish multiple

logical connections. The peers may be on the same or

different devices than previous connections.

Prototype smplStatus_t SMPL_Link(linkID_t *lid)

Parameters The parameter is a pointer to a Link ID. If the call succeeds

33 / 55

the value pointed to will be valid. It is then to be used in

subsequent APIs to refer to the specific peer.

Return SMPL_SUCCESS Link successful.

SMPL_NO_LINK No Link reply received during wait

window.

SMPL_NOMEM No room to allocate local Rx port, no more

room in Connection Table, or no

room in output frame queue.

SMPL_TX_CCA_FAIL Could not send Link frame.

SMPL_LinkListen()

Discretion This call will listen for a broadcast Link frame. Upon

receiving one it will send a reply directly to the sender.

This call is a modified blocking call. It will block “for a

while” as described by the following constant set in the

nwk_api.c source file:

CONSTANT DESCRIPTION

LINKLISTEN_MILLISECONDS_2_WAIT

Number of milliseconds this thread should block to listen for

a Link frame. The default is 5000 (5 seconds)

The application can implement a recovery strategy if the

listen times out. This includes establishing another listen

window. Note that there is a race condition in that if the listen

call is invoked upon a timeout it is possible that a link frame

arrives during the short time the listener is not listening.

Prototype smplStatus_t SMPL_LinkListen(linkID_T *lid)

Parameters The parameter is a pointer to a Link ID. If the call succeeds

34 / 55

the value pointed to will be valid. It is then to be used in

subsequent APIs to refer to the specific peer.

Return SMPL_SUCCESS Link successful.

SMPL_TIMEOUT No link frame received during listen

interval. Link ID not valid.

SMPL_Send()

Discretion This function sends application data to a peer. The network

code takes care of properly conditioning the radio for the

transaction. Upon completion of this call the radio will be in

the same state it was before the call was made. The

application is under no obligation to condition the radio.

By default the transmit attempt always enforces CCA.

Prototype void SMPL_Send(linkID_t lid, uint8_t *msg, uint8_t

len)PARAMETER DESCRIPTION

Parameters lid Link ID of peer to which to send the message.

msg Pointer to message buffer.

len Length of message. This can be 0. It is legal to send a

frame with no application payload.

The ‘lid’ parameter must be one established previously by a

successful Link transaction. The exception is the

Unconnected User Datagram Link ID. This Link ID is

always valid. Since this Link ID is not connection-based a

message using this Link ID is effectively a datagram sent to

all applications.

Return SMPL_SUCCESS Transmission successful.

SMPL_BAD_PARAM No valid Connection Table entry for

Link ID; data in Connection Table entry bad; no message or

35 / 55

message too long.

SMPL_NOMEM No room in output frame queue.

SMPL_TX_CCA_FAIL CCA failure. Message not sent.

SMPL_Receive()

Discretion This function checks the input frame queue for any frames

received from a specific peer.

Unless the device is a polling device this call does not

activate the radio or change the radio’s state to receive. It

only checks to see if a frame has already been received on the

specified connection.

If the device is a polling device as specified in the device

configuration file

the network layer will take care of the radio state to enable

the device to send the polling request and receive the reply.

In this case conditioning the radio is not the responsibility of

the application.

If more than one frame is available for the specified peer they

are returned in first-in-first-out order. Thus it takes multiple

calls to retrieve multiple frames.

Prototype smplStatus_t SMPL_Receive(linkID_t lid, uint8_t *msg,

uint8_t *len)

Parameters lid Check for messages from the peer specified by this Link

ID.

msg Pointer to message buffer to populate with received

message.

len Pointer to location in which to save length of received

message.

36 / 55

The ‘lid’ parameter must be one established previously by a

successful Link transaction. The exception is the

Unconnected User Datagram Link ID. This Link ID is always

valid. The application must ensure that the message buffer is

large enough to receive the message. To avoid a buffer

overrun the best strategy is to supply a buffer that is as large

as the maximum application payload specified in the network

configuration file

(MAX_APP_PAYLOAD) used during the project build.

Return SMPL_SUCCESS Frame for the Link ID found. Contents

of ’msg‘ and ’len ‘ are valid.

SMPL_BAD_PARAM No valid Connection Table entry for

Link ID; data in Connection Table entry

bad.

SMPL_NO_FRAME No frame available.

SMPL_NO_PAYLOAD Frame received with no payload.

Not necessarily an error and could be deduced

by application because the returned length will be 0.

SMPL_TIMEOUT Polling Device: No reply from Access

Point.

SMPL_NO_AP_ADDRESS Polling Device: Access Point

address not known.

SMPL_TX_CCA_FAIL Polling Device: Could not send data

request to Access Point

SMPL_NOMEM Polling Device: No memory in output

frame queue

SMPL_NO_CHANNEL Polling Device: Frequency Agility

enabled and could not find channel.

37 / 55

5.2.2 Access point software

An Access point has the tasks of data collection and connection to PC by UART.

In another word, an AP will catch the data from the wireless network and forward

it to PC by wired network.

5.2.2.1 Protocol stack program

There are three essential functions support AP SAN protocol

(SAN_AP_broadcast.c).

SAN_AP_broadcast

Discretion SAN_AP_broadcast should be executed frequently to make

sure all the events generated by the interrupt can be processed

on time.

Prototype bool SAN_AP_broadcast(void)METER DESCRIPTION

Parameters

Return True Event processed successfully

False No event.

rxCB

Discretion The rxCB will be executed by the RX ISR. Once the AP

receives information from wireless then rxCB will be

executed.

This function is mainly used to de-frame and response.

Prototype Uint8_t rxCB(uint8_t port)ETER DESCRIPTION

Parameters Port the linked of captured frame.

Return 1

38 / 55

t1_int

Discretion The ISR of timer1, an interrupt is generated every six

seconds approximately.

Prototype void t1_int(void) DESCRIPTION

Parameters

Return

Figure 24: protocol stack flow chart

39 / 55

5.2.2.2 Periphery program
The only periphery need to program is UART0 protocol (9600, 8-N-1)

Uart0Update
Discretion Should be executed frequently, check if the message

receiving semaphore (SAN_AP_receive_sem) is set. Then

format the information of the message and send it through

uart0.

Prototype Void uart0Update(void)ER DESCRIPTION

Parameters

Return

5.2.3 End device software

In the End device software, there is a protocol stack program for the ED and a

temperature measurement program by using ADC.

5.2.3.1 Protocol stack program
There are three essential functions support ED SAN protocol and two API

functions. (SAN_ED_broadcast.c)

SAN_ED_broadcast
Discretion SAN_AP_broadcast should be executed frequently to make

sure all the events generated by the interrupt can be processed

on time.

Prototype bool SAN_AP_broadcast(void)METER DESCRIPTION

Parameters

Return True Event processed successfully

False No event.

40 / 55

rxCB

Discretion The rxCB will be executed by the RX ISR. Once the AP

receives information from wireless then rxCB will be

executed.

This function is mainly used to de-frame and response.

Prototype Uint8_t rxCB(uint8_t port)ETER DESCRIPTION

Parameters Port the linked of captured frame.

Return 1

t1_int

Discretion The ISR of timer1, an interrupt is generated every six

seconds approximately.

Prototype void t1_int(void) DESCRIPTION

Parameters

Return

SAN_ED_send

Discretion An API function to send data to the AP.

Prototype bool SAN_ED_send(uint8_t *msg)ESCRIPTION

Parameters msg the allocation of data buffer

Return True send success

False send fails

SAN_ED_set_addr

Discretion An API to set device address by using 4-bit digital swtich

Prototype void SAN_ED_set_addr(void)DESCRIPTION

Parameters

Return

41 / 55

Figure 25�
��

�ED protocol stack flowchart 1

42 / 55

Figure 26: ED protocol stack flowchart 2

43 / 55

5.2.3.2 Periphery program

There is an on-chip analog temperature sensor in CC2510. According to the

datasheet (Figure 27), the temperature will be (temperature = Output Voltage /

2.4mV + 20).

Figure 27: On-chip temperature sensor datasheet

An ADC channel is used to input the signal of temperature sensor. The ADC uses

1.25V reference voltage, 10-bit accuracy setting and single sample mode. Then,

Input Voltage goes (Input Voltage = 1.25V / 1024 * ADC Value). Because the

Input Voltage of ADC is actually the Output Voltage of temperature sensor, the

temperature can be calculated by the formula (temperature = ADC Value * 1.22 /

243 + 20). In the case of the temperature sensor is a non-linear analog device, a

calibration gene is necessary. According to the experiment result, the calibration

gene can be positive one. So, realistic temperature approximately equals to

measurement temperature plus one. (Real temperature = ADC Value * 1.22 / 243

+ 20 + 1)

In the program, the ISR timer 2 is used to set temperature measurement

semaphore. About every seven seconds a temperature will be measured and send

to the AP.

44 / 55

During the temperature transmitting, another thing can be mentioned. I used float

type for the temperature value, but when you send it through wireless, uint8_t

(unsigned char) must be used. In this case, a union is a good choice. It is known

that a float type in 8-bit compute system is occupied four bytes. So the union can

be organized like:

union temp_t

{

float tempADC;

uint8_t tempBYTE[4];

} temp;

By using above union, it is easy to access the temp allocated memory by different

types.

45 / 55

6 System Test

The nominal range of a CC2510 with an Omni-direction antenna is approximately

20m, so it is hard to test the entire network realistically. By test purpose I made a

network debug function in the EDs. Because the ED address is defined by a 4-bit

digit switch, I made such a rule if the MSB of address is digital ‘1’ then I assumed

this ED is out side range of the AP. In another word, when the ED address is

greater then ‘0x8’ it is at least level 2 ED in the network.

6.1 Lab Test

During the test, I set for EDs: 1, 6, C, E. C and E will ignore the

SAN_AP_BORADCAST message from the AP, so they simulate the EDs out of

the AP range.

A hyper terminal will monitor the message that AP forwarded.

Firstly, the HyperTerminal is set by 9600, 8-N-1 and connected to the AP, and all

the EDs are power off.

Then I power on C and E. Because of the Address rule, C and E cannot connect to

the AP directly. So we got nothing so far. (Figure 28) Then ED 1 is powered on.

After ten seconds all these three EDs message are captured. (Figure 29) It means,

C and E are connected to the AP by the routing of ED 1. Then ED 6 is powered on.

(Figure 30) So far, all the EDs are working well, the network is setup. Now, I

powered of ED 1 manually. For a while, no messages from C and E are received.

After about ten seconds C and E back to the network automatically. (Figure 31)

In this test, a one-hop network simulation has been proved only. Because the

whole system is based on one protocol stack so one-hop network can reflect how

the multi-hop network behaves.

46 / 55

Figure 28: Test 1 (when system is initializing, “ServerReadly…” is shown.)

Figure 29: Test 2 (ED 1 is directly connected to AP. ED C and ED E is one-hop
connected to AP with the route of ED 1. From the screen shot, all the nodes are

well communicating with AP. The System works fine.)

Figure 30: Test 3 (Now the last node, ED 6 is joined in the group. So far, all the
nodes are connected to the AP (ED 1 and ED 6 is directly connect to AP; ED C

and ED E is one-hop routed by ED 1 to connect to AP.)

47 / 55

Figure 31: Test 4 (Then we shut down ED 1 which is routing ED C and ED E. In
this case, ED C and ED E are lost. After awhile, with the self-healing, ED C and

ED E are self-reconfigured into system again.)

6.2 Practical Test

Another test goes that, there will be am Access Point and two different End

Devices. The first ED with ID 1 is allocated 15 meters away from AP, the other

ED with ID 2 will move from AP to the ED 1 and continue move until no data can

be captured from ED 2.

At the beginning two EDs are all connected to the AP (Figure 32)

Figure 32: Test 5 (System is initialized and ED 1 and ED 2 are directly connected

to AP (no hop), because they are all in the range of AP.)

48 / 55

Once we move ED 2 over 20 meters from the AP, the ED 2 is lost (Figure 33)

Figure 33: Test 6 (Once ED 2 goes out of the range of AP (about 20 meters), is

lost.)

Figure 34: Test 7 (When ED 2 was out range of AP, it cannot establish a directly

connection with AP, then it would lost from the system.Because of the

self-reconfiguration of the protocol, ED 2 was successfully to found a route from

ED 1 to do one-hop connection with AP.)

49 / 55

So stop for awhile about 5 seconds, ED2 is back to the system (Figure 34)

Then ED 2 continue move, about 35 meters from AP and 20 meters from ED1, it

is lost again. (Figure 35)

Figure 35: Test 8 (ED 2 is keep move against AP and ED 1, it was lost once more

because of the distance between ED 1 and ED 2 is out of bound.)

Figure 36: Test 9 (Once ED 2 goes back in to the range of ED 1, it joins into the
system automatically.)

50 / 55

Then we move ED 2 back to AP, at 17meters from ED1, ED 2 is found. (Figure 36)

After that, ED 2 is moved back to AP and it is still there. (Figure 36)

So far as I test, I can still the system works nice.

51 / 55

7. FUTURE WORKS

So far, on this project, the basic feature of a self-organized network is done. But

there are some known bugs and disadvantages left as future tasks.

7.1 Bidirectional task

A fatal disadvantages of SAN protocol is none bidirectional communication

support. When the protocol is on the paper, based on the specialization of the

problem mentioned at the beginning (forest temperature measurement), no talk

from the AP to the EDs needed. Additionally, think about realistic situation, in a

forest temperature measurement sensor network there are thousands of EDs. If we

just list a route table in the protocol stack, it will take so much memory of RAM.

But it is good to have bidirectional communication feature in a network. So, in the

future, it is a good task to find appropriate algorithms to list such a routing table

of EDs.

7.2 A reset bug

An already known bug is when a device (AP or ED) is reset, and then the other

EDs routed by this device (AP or ED) are lost. That because an ED grantee itself

still in the network is to listen the SAN_ED_BROADCAST (or

SAN_AP_BROADCAST) of its next-hop. Once an ED is reset, the link between

it and the ED behind it is down, but it still keep broadcast itself, so the ED behind

still think they are in the network, so it will not recover the link. In this case, it is

lost.

A sample solution of this bug is to add a serial number in the frame of device

broadcast and after every broadcast it increases. Then the ED behind it checks the

number every time. So if this ED reset, the serial number is not correct, so the ED

behind it will notice and recover the link.

52 / 55

7.3 A multi link bug

The second already known bug is once two EDs try to link a same device (AP or

ED) simultaneously, the network will become unpredictable and unstable.

Although, there is a random delay and listening to other broadcast ACK before

link to an ED or an AP protocol is implemented. Like Figure 37, B and C want to

link A, but B and C cannot hear each other, which means B or C cannot receive

the broadcast ACK from C or B. So, they may link to A at the same time to

generate unpredictable bug.

A sample solution of this issue is once A received the ACK from B or C, before

listen to the link broadcasts one more message with a special device ID of B or C.

In this cast both of B and C can hear it can check the device ID of the message to

link to A.

Figure 37: Multi-link bug

7.4 Frequency Agility

Because the system is used of 2.4GHz with the max output power 1dbm, it is

easily jammed by other network which works in the same bandwidth like Wi-Fi

and Bluetooth. So a feature of frequency agility is necessary. The future version of

SAN network will have frequency agility feature.

53 / 55

8. THE CONCLUSION

As a solution of forest temperature measurement, this system fulfilled such

features:

� Self-organized network

� Low power consumption (if LED is not used, the working current is less then

1mA.)

� Non-expansive (single CC2510 cost 5 Euros; one ED device, if evaluation

module is not used, will less than 10 Euros.)

As protocol research, this protocol stack can be used for the big range sensor

network. And this protocol is actually a device base protocol, because it uses the

hardware feature of the device (timer). So far, it is impossible to transplant it to

other devices (except CC2511, CC1110, and CC1111because they are all use the

same kind of MCU) without any changes.

Anyway, the Self-organized network is still on the develop step, it is not

standardized so far. So my project is just an attempt in this area.

54 / 55

9. LITERATURE
1 Texas Instrument, CC1110DKCC2510DK -- Development Kit User

Manual (Rev. A, 2007).

2 Texas Instrument, CC2510-CC2511DK Quick Start, Reversion 2.1,

14/9/2007.

3 Texas Instrument, cc2511DK_datasheet, 2007.

4 Texas Instrument, CC2510Fx/CC2511Fx, 2007.

5 Texas Instrument, SimpliciTI API, 2008.

6 Texas Instrument, SimpliciTI Developers Notes, 2008.

