
 1

Ho Nguyen Vo

ONLINE FOOD SHOP FOR IPHONE

Department of Technology and Communication

2012

 2

VAASAN AMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Software Engineering

ABSTRACT

Author Ho Nguyen Vo

Title Online Food Shop for iPhone

Year 2012

Language English

Pages 115

Name of Supervisor Ghodrat Moghadampour

Nowadays, mobile phones have become an essential part of a human life. Mobile

phones make it possible to listen to music, surf on the Internet, and capture a

picture and so on. In recent years Apple’s iPhones have gained a lot of popularity

and lots of applications have been developed for iPhones.

In this work client-server food shopping application was developed. The main

function of the application is to list foods and places in Vaasa area and place order

for the food. On the client side, Online Food Shop for iPhone, which is a native

iOS application, has been developed by Objective-C (a programming language is

used by Apple Inc.). The client application gets the food and place data from the

web service, lists them and sends order data to the web service.

The server side application has been developed with Ruby on Rails programming

language. The web service allows saving, modifying and searching data on the

server, receiving orders from the client and storing client data. The server

application has been deployed to cloud application platform, Heroku

(http://www.heroku.com/), on which it is running too. The application data on the

server side is saved on PostgresSQL database.

Keywords Objective-C, Apple, iOS

 3

ACKNOWLEDGEMENT

My grateful appreciation goes to Professor Ghodrat Moghadampour as my

thesis’s supervisor. He gave me the golden opportunity to do the wonderful

project on the topic Online Food Shop for iPhone, which later has been brought

me many various knowledge on the field.

I also would like to thank my parents and friends who helped me a lot in finishing

this project within the limited time.

I am making this project not only for marks but also increase my knowledge.

 4

CONTENTS

Contents

1.1	 Objectives ... 8	

2	 TECHNOLOGY OVERVIEW ... 9	
2.1	 JavaScript Object Notation (JSON) ... 9	

2.1.1	 Data types, syntax and example .. 9	
2.1.2	 JSON Parser .. 11	

2.2	 Cocoa Frameworks ... 14	

2.2.1	 Features of a Cocoa Application ... 14	
2.3	 iOS Technology Overview ... 15	
2.3.1	 The iOS Architecture .. 16	
2.3.2	 Core OS Layer ... 17	
2.3.3	 Core Services Layer .. 17	
2.3.4	 Media Layer .. 18	
2.3.5	 Cocoa Touch Layer ... 18	
2.3.6	 iOS Developer Tools ... 19	

2.4	 Ruby on Rails ... 19	

2.4.1	 Technical overview ... 19	
2.5	 Heroku .. 20	

3	 ONLINE FOOD SHOP FOR IPHONE .. 21	
3.1	 Functional analysis ... 21	

3.2	 Class Hierachy ... 23	

3.4.1	 Application classes .. 24	
3.4.2	 View controller classes ... 26	
3.4.3	 Table view controller classes .. 28	
3.4.4	 Core data table view controller ... 31	
3.4.5	 UI view classes .. 32	
3.4.6	 Core data classes ... 34	
3.4.7	 Supporting classes ... 36	

3.3	 Detailed Description of Main Operations .. 42	

3.5.1	 badgeValueUpdate function .. 42	

 5

3.5.2	 fetchWebServiceIntoDatabase function .. 43	
3.5.3	 sortPlacesByDistanceFrom function ... 44	
3.5.4	 fetchedData function ... 45	
3.5.5	 addToCart function ... 45	
3.5.6	 emptyCart function .. 46	
3.5.7	 PlaceOrder function .. 47	

3.4	 Component Diagram .. 49	

3.5	 Architectural Diagram .. 50	

4	 DATABASE AND GUI DESIGN .. 52	
4.1	 Design of the database ... 52	

4.1.1	 Food Table .. 52	
4.1.2	 Place Table .. 53	
4.1.3	 Cart Table .. 54	
4.1.4	 Entity Relationship .. 55	

4.2	 Design of different parts of GUI .. 56	

4.2.1	 Food view window .. 57	
4.2.2	 Location view window .. 62	
4.2.3	 Map view window ... 65	
4.2.4	 Cart view window ... 69	
4.2.5	 More view window ... 71	

5	 IMPLEMENTATION ... 76	
5.1	 Get the data from the web service: ... 76	

5.2	 Initialization for the document and location manager: 79	

5.3	 Adding the data from the web service to the core data: 80	

5.4	 Lazy loading the images from the web service: 86	

5.5	 Add a food item to Cart: ... 90	

5.6	 Calculate the distance from the user’s location to places location: 91	

5.7	 Add the annotation pins to the map view: .. 93	

5.8	 Loading the images in the left call out accessory view: 97	

5.9	 Remove the cart item from the cart: ... 99	

5.10	 Empty the cart: ... 100	

 6

5.11	 Send the order: ... 102	

6	 TESTING .. 108	
6.1	 The alert of adding more 5 items ... 109	

6.2	 Testing working of call out accessory .. 110	

6.3	 Calculate the price and badge value update ... 110	

6.4	 The action sheet of empty cart ... 111	

6.5	 The alert of place order .. 111	

7	 CONCLUSION ... 113	
8	 REFERENCES .. 114	

 7

ABBREVIATION

API Application Programming Interface

GPS Global Positioning System

XML Extensible Markup Language

JSON JavaScript Object Notation

Git Distributed Revision Control

SCM Source Code Management

SVN Apache Subversion

GUI Graphical User Interface

UI User Interface

UXD User Experience Design

PC Personal Computer

HTML HyperText Markup Language

URL Uniform Resource Locator

OS Operating System

OS X Mac OS X

iOS Intelligent Operating System

SDK Software Development Kit

IDE Integrated Development Environment

UUID Universally Unique Identifier

 8

1 INTRODUCTION

There has gone the time when mobile phone was only a simple tool for people to

communicate with each other. Only had it call and text message function.

Nowadays, a person can connect with the whole world just with a small device.

Obviously, a modern mobile phone has improved both capacity and functionality.

People not only utilize mobile phone for communicating purpose but also treat

them as multi-functional devices, such as camera, the color screen, multimedia

player, internet connection, etc. In 2007, Apple Inc., a famous computer company,

introduced the most amazing phone in the world: iPhone. Undeniably, iPhone has

changed totally the way the world thought about phone. With a combination a

new technology in hardware and the stability of software, iPhone possesses much

functionality like a small laptop. It is not a weird scene anymore when a person

having an iPhone walking on the city street, enjoying the music, surfing the

Internet, checking an email, playing thousands of mini-games, etc. In fact, iPhone

makes impossible come into possible.

Seeing the advantages and the future of iPhone, the application has been

developed based on iOS platform. The iOS is an operating system running on

iPhone/iPad.

1.1 Objectives

The application is focused on cuisines and restaurants in Vaasa area. Users can

save a lot of time to find ‘what to eat’ as well as ‘where it sells’. An Apple map

included in this application will help people to know the nearest restaurant around

them and the distance from where they are standing to the nearest restaurant. In

addition, the pre-order food function enables users to choose food faster, more

accurately and conveniently.

The reason why iPhone was chosen for the development platform as well as the

goal of this app will be described. Next, the techniques and the programming

languages used for this project will also be introduced.

 9

2 TECHNOLOGY OVERVIEW

Below is a description of the technology programming used in this iPhone

application. There are four primary parts: JSON document, Cocoa framework,

iOS technology overview and Ruby on Rails document. In each part, there will be

a definition, an example, advantages and disadvantages of technology

programming.

2.1 JavaScript Object Notation (JSON)

JSON is the format of the documents used as data communication in this thesis

application. Also, JSON has some advantages over other data communication like

XML, YAML.

JSON is a short form of JavaScript Object Notation, which is a lightweight data-

interchange format. JSON is syntax for storing and exchanging text information,

which is made to be convenient in reading and writing for users. In addition,

JSON also enables computers to prepare and generate information in an easy way.

Even though JSON uses JavaScript syntax for describing data objects, it still does

not depend on language as well as platform. Instead, C-family of languages,

which are familiar to programmers, is utilized quite popularly. Some conventions

can be named are Java, JavaScript, Perl, Python, etc. Thus, JSON is considered as

an ideal data-interchange language. /3/

2.1.1 Data types, syntax and example

JSON’s basic data types are:

 10

Table 1. Basic data types of JSON.

Type Value

Number double precision floating point format

String Unicode (UTF-8)

Boolean false or true

Array an ordered list of values

Object an unordered set of key/value pairs

null empty

The forms of JSON:

An object begins with { (left brace) and ends with } (right brace). Each key is

followed by : (colon) and the key/value pairs are separated by , (comma). (see

Figure 1.).

Figure 1. Structure of JSON object. /1/

An array begins with [(left bracket) and ends with] (right bracket). Values are

separated by , (comma). (see Figure 2.).

Figure 2. JSON array handling. /1/

The following example shows the JSON representation of an object that describes

a food. The object has string field for name, image_url, ingredient, a number field

for price, contains an object representing the place’s attributes that have a string

field for email, address, image_url, opening time, a number field for lat, log, and

phone number.

 11

{
 "food_image_url": "images/food/baileys_blended_creme_caramel_lg(1).png",
 "food_ingredient": "2 large Ice cubes, 50ml of Baileys with a hint of Crème Caramel
per person",
 "food_name": "Baileys Blended with a hint of Crème Caramel",
 "food_price": "4.6",
 "id": 1,
 "place": {
 "id": 1,
 "place_address": "Kauppapuistikko 8, 65100, Vaasa",
 "place_email": "info@olivers-inn.fi",
 "place_image_url": "images/place/OliversInn.jpeg",
 "place_lat": "63.097545",
 "place_log": "21.614159",
 "place_name": "Oliver's Inn",
 "place_opening_time_1": "tue: 18-04",
 "place_opening_time_2": "wen, thu: 18-02",
 "place_opening_time_3": "fri, sat: 18-04",
 "place_opening_time_4": "sun, mon: CLOSED",
 "place_phone_number": "+ 358 631 72970"
 }
}

Figure 3. This is JSON example from the application.

2.1.2 JSON Parser

In this part, the remote data types will be looked more in detail. Besides, since

there are many different data types using common client-server interaction, a

quick at those is required. Next, parsing data is also discussed here. The question

is raised: how fast is it to parse those different data types? This plays a crucial role

in making decision on what kind of data needed to send back and forth.

In a common client-server interaction, there are several different mode data types

you can use. Figure 4 is shown the common data types:

 12

Figure 4. JSON data size remote data types. /5/

Have a look at the JSON. For example, a list of 500 flowers is taken, which takes

388kb to transfer that over the wire using JSON. In comparison with XML, the

same data takes 473kb to transfer over the wire. Hence, a property list is used,

which is a common format on Mac OS X and iOS, in the ASCII property list

format in specific, we got 402kb and lastly, we have got binary property list as an

option available and the same data with binary plist is 405kb. Now, we got the

data on our client. Besides, one of important considerations is how speedy is that

data going to parse. (see Figure 5.).

 13

Figure 5. JSON parsing speed. /5/

From this figure, utilizing the same data again with JSON and an open source

parser, we’re at 416 milliseconds to parse that 500 elements list. With XML and

NSXML parser, a whopping is reached 812 milliseconds. That’s almost twice as

slow as JSON. In property list, ASCII property list is 140 milliseconds, which

takes one third in comparison with the time it takes for JSON. Lastly, the binary

property list shows a quick blazing at 19 milliseconds to parse the same data on

the iOS device. Based on the data above, JSON is obviously the best choice as the

data type for sending back and forth.

JSON has some advantages over than XML:

Ø Small data size

Ø Very speedily parsing

Ø Straightforward to create (iOS 5 native support)

o With Ruby, it is built-in.

o Ruby on Rails is open-source web framework

Ø Undemanding to parse (iOS 5 native support)

 14

2.2 Cocoa Frameworks

In order to develop iOS mobile software that the application can run on iPhone,

iPad and iPod touch, Cocoa was selected as a primary development framework for

this thesis application.

Cocoa is the name of application development environment for Mac OS X and

iOS, the operating system used on iPhone, iPad and iPod touch. It was written in

Objective-C, Cocoa and categorized in software frameworks. The three primary

Cocoa frameworks are Foundation Kit, Application Kit and Core Data.

Foundation Kit (mostly know in short form as Foundation) is functioned as

supplying main classes that are wrapper classes and data structure classes. Prefix

“NS” is required for this framework. Another Cocoa framework is Application

Kit (or just AppKit as short form) whose code enables the creativity and

interaction in programming graphical user interfaces. As well as the previous

framework, prefix “NS” is also required in AppKit. The last one, Core Data, is an

object graph and persistence framework supplied by Apple. Those above listed

Cocoa frameworks are used commonly in providing common building blocks for

all Mac applications. /2/

2.2.1 Features of a Cocoa Application

User interface objects – A wide range of packaged objects are available for your

application’s user interface. Almost all these objects are available as the library in

Interface Builder, a development tool for creating and designing user interfaces;

you simply drag an object from the library and drop it onto the surface of your

interface, configure attributes, and connect it to your code. /4/

This is some sampling of Cocoa user interface objects:

Ø UIView

Ø UILabel

Ø UIImageView

Ø UITextView

Ø UIButton

 15

Ø UISegmentedControl

Ø UIActivityIndicatorView

Ø UIAlertView

Ø UISlider

Ø UIProgressView

Ø UIWebView

Drawing and imaging – Cocoa includes Quartz framework that helps users

create 2D drawing based on the PDF imaging model, procedure curves, lines,

animations, transformations, gradients, etc.

Performance – To increase application’s performance, Cocoa produces some

sample codes for lazy loading, multithreading, concurrency, memory optimizing,

and run-loop manipulation.

Internationalization – Cocoa uses Unicode standard is the default. Moreover, it

has considerable support for internationalizing applications. Some supporting

localized resources such as the text, images and user interfaces.

Networking – Cocoa supports programmatic interface for communicating from

client to server, taking advantage of Bonjour. Some of them are:

NSURLConnection, NSStream, CFStream.

Printing – Cocoa on both platforms supports printing. A person can print images,

Word documents, PDF document, and the content from the Website with just a

little code.

Multimedia – Cocoa support both video and audio player. They can be utilized to

play many kinds of media types. In Mac OS X, Cocoa provides for QuickTime

player.

2.3 iOS Technology Overview

iOS is the operating system developed by Apple Inc. for iPhone, iPad and iPod

touch devices.

 16

Figure 6. iPhone, iPad and iPod touch. /6/

From the knowledge on creation of Mac OS X, Apple built the iOS platform.

Almost the tools and technologies used for development in Mac OS X can be used

in iOS as well. In the face of its similarities to Mac OS X, iOS doesn’t require any

experience developing Mac OS X applications. The iOS Software Development

Kit (SDK) supports everything you need to create iOS applications. /6/

2.3.1 The iOS Architecture

iOS is divided to kind of four layers. The bottom layer is close to the hardware

and the top layer is close to your programing environment for the end-user. Figure

7 is shows layers of iOS architecture.

 17

Figure 7. iOS architecture. /7/

2.3.2 Core OS Layer

The bottom layer of software in iOS is basically a Mac 4.x BSD Unix kernel. It’s

a Mac OS X operating system basically targeted for this device. That will give

users a lot of power that enables full multitask unit kernel at the base. It is quite

remarkable as that kind of operating system is on. In this layer, many things are

included:

Ø OSX Kernel

Ø Mach 3.0

Ø Certificates

Ø Networking

Ø Sockets

Ø Security

Ø File System

Ø Bonjour

Ø Power Management

Ø Keychain Access

Most of these API is C API (not object oriented) because of kernel Unix code

basically.

2.3.3 Core Services Layer

Built on top of those is layer being started more object oriented. It’s providing a

lot of the same services as layer below but with object oriented API. For example,

sockets class is using object-oriented mechanism. This is also where there is a

need for some languages runtime support for things like multithreading which is

going to be done in this class. The reason is that it’s a good interaction build user

interface program need use multithread. Also, there are collection classes

mentioned such as array, dictionary, all that kind of mechanism is included in

 18

those layers. Multi object oriented layer provided basically a functionality

covering Core OS. Core Services layer consists of:

Ø Collections

Ø Core Location

Ø Address Book

Ø Networking

Ø File Access

Ø SQLite

Ø Threading

Ø Preferences

Ø URL Utilities

Ø Net Services

2.3.4 Media Layer

It’s kind of the next layer up away from the hardware. iPhone, iPad and iPod

touch are a fundamentally multimedia devices in which are consisted of audio,

video combination, FaceTime going, iPad library with the music for the class .

Multimedia code runs throughout iOS, it’s merely everywhere on build team.

Almost API seen from the Core Services layer and up is taken into consideration

as designing the minded about multimedia. What kind of media is in need here?

How’s it plugin? It can be a lot of multimedia going on in this class because this

device is fundamentally really good for that. Media layer includes:

Ø Core Audio

Ø OpenAL

Ø Audio Mixing

Ø Audio Recording

Ø Video Playback

Ø JPEG, PNG, TIFF

Ø PDF

Ø Quartz (2D)

Ø Core Animation

Ø OpenGL ES

2.3.5 Cocoa Touch Layer

Cocoa Touch Layer is the top layer in iOS architecture. This layer is where all

button, slider, view, navigation mechanism for navigating user interface, alert,

high level media picking like camera takes the picture, photo library, that’s all

happening on cocoa touch entirely object oriented. This layer enables users to

write a few line of code. Cocoa Touch layer consists of:

Ø Multi-Touch

Ø Core Motion

Ø View Hierarchy

Ø Localization

 19

Ø Controls

Ø Alerts

Ø Web View

Ø Map Kit

Ø Image Picker

Ø Camera

2.3.6 iOS Developer Tools

The primary tool for developing application for iOS platform is Xcode

application. Xcode is an integrated development environment (IDE) that supports

all of the tools you need to create and manage your iOS project and source file,

create and design your user interface, build your code into executable, debug and

run your code either in iOS Simulator or on a real device. Apple definitely taking

approach of one application does it all. /8/

The secondary tool’s Instruments like a plugin let you manage the application do

like memory usage, network activity, disc activity, and graphics performance.

2.4 Ruby on Rails

In order to develop the Web Service in the fastest time, easy programming, Ruby

on Rails is the best choice for that work.

Ruby is a dynamic, reflective, general-purpose object-oriented programming

language that combines syntax inspired by Perl with Smalltalk. Ruby was first

designed and developed in the mid-1990s by Yukihiro “Mazt” Matsumodo in

Japan. /11/

Ruby on Rails is often called as Rails, is an open source full stack web application

framework. It lets you develop robust web applications in a matter of days. Ruby

on Rails is not to be mystified with Ruby, which is a programming language. /9/

2.4.1 Technical overview

Ruby on Rails is based on Model-View-Controller architecture pattern like other

web frameworks.

 20

In a default configuration, in a database a table will be mapped by a model in a

Ruby on Rails framework. Following the rule, the name of a database always is

the plural form when the model’s name is singular form. For example, the model

has named Person, but in the database, the table will have name People. Also, the

model file will place in /app/models with the filename person.rb.

A controller is a list actions method. In fact, it handles external request from web

server to the application, and choose the view file to render. The controller also

gets data from model directly and sends them to the view. Common actions in the

controller are index, new, edit, update, show and destroy.

A view in Rails application has extension file name erb. It will be automatically

converted to html at real time.

2.5 Heroku

Heroku (pronounced her-OH-koo) is a cloud application platform – a new way of

building and deploying web apps. /12/

Heroku provide a platform as a service (PaaS) for building, deploying, and

running cloud apps using Ruby, Node.js, Clojure, Java, Python and Scala. The

architecture of this platform includes tools for deployment and management, a

runtime for scalability, fault tolerance, and an add-ons system for extending the

capabilities of this platform. /13/

Thousands of companies worldwide use Heroku to deploy their applications into

the cloud. From small business to Fortune 500 companies, developers choose

Heroku for its ease of use, reliability and performance. /13/

 21

3 ONLINE FOOD SHOP FOR IPHONE

People who are attracted by food in Vaasa mainly use this Online Food Shop for

iPhone application. They need to have information of foods and places in order to

know where the best food to enjoy. Therefore, the application is made for easily

using the information with less interaction with the phone.

User first browses the list of foods, price of foods, and place of foods. And then

for each food, you can read information about this food like image, ingredients.

Also, you can place an order for it if you want to enjoy it.

In order to know which restaurant is the nearest compared with the position a

person is standing, the list of restaurants can be browsed with the display of name,

and distance from his own iPhone. Furthermore, more details of destination such

as address, phone number, and email are available in this app. User can also

determine the user location and place on the map.

The application definitely requires an Internet connection (Wi-Fi or 3G). It

connects to the web service to get the data, and load the images from the web

service to the application. Also, it uses an Internet connection the display the map

and location of places, image of places. Moreover, it also uses GPS signal to

specify the location of place and user’s location.

3.1 Functional analysis

The primary and the most important feature of the application is display the foods

and places. Also, the application can display the distance of places, location of

places and the user’s location on the map. The application will get the data from

the web service.

In addition, the application provides the order operation. The user can use this

operation to order the food with only one click.

 22

Table 2. Main features and their priorities, where 1 indicates the highest priority.

Task number Name Priority

1 Display food 1

2 Display place 1

3 Show food’s detail 2

4 Show place’s detail 2

5 Show places on map 2

6 Add food to cart 2

7 Send the order request 2

8 Empty cart 3

9 Delete food from cart 3

The user can browse the list of foods and places. After choosing each food and

place, the user can see more detail of it. Also, the user can browse the place on

real map, seeing clearly the user’s position and the location of places. He can also

know the distance between the places and the user’s location. Furthermore, if he

wants to eat or drink something, they can place an order with one click.

 23

Figure 8. Application main operations.

3.2 Class Hierachy

This application contains a lot of classes that related together. It begins from

NSObject (the root class in Objective-C) and every behind classes almost inherit

from this class. View controller in iOS architecture needs a class. So if you have

eight view controllers, you have to create eight classes supporting for them. This

application has eleven view controllers; thus, eleven classes must be created in

order to support for them. In addition, other classes for the service, UI, and Core

Data are also utilized.

 24

3.4.1 Application classes

The structure of application has a lot of different child classes. In fact, thirty-six

classes are created for this application. Eight classes of them are system class and

the rest are custom classes. The structure of class is drawn by this diagram.

 25

Figure 9. Application classes.

 26

3.4.2 View controller classes

The basic view controller is view controller class. In this application, view

controller is the controller (except the word view is like the UI). In this part, the

view controller will be used with the short name is the controller (for easier

understanding). There are five UI view windows and following the iOS 5

architecture (storyboard), each UI view window needs at least one controller.

Thus, it is a must to create five controllers for them.

Figure 10. View controller classes.

 27

As be seen from the diagram, there are:

UIApplication: this is a system class and it’s one class of the UIKit framework. It

inherits from root class NSObject. The UIApplication (or subclass of

UIApplication) is a requirement for every application. When the application

started, the UIApplication main operation is called. This function will create a

singleton UIApplication object, so it is accessible this object by invoking the

sharedApplicatrion class method.

FoodPlaceAppDelegate: this is an applicaton delegate. It is normally used to

perform tasks on application startup and shutdown, handling URL open request

and similar application wide task. This class includes one property:

• Window this class from UIWindow class that manages and specifies

position the windows an application on the screen.

UIViewController: this is a system class, provides the fundamental view-

management model for all iOS apps. It has many properties. The most property

used is title. This property has function in setting the title to the UI view window.

AboutMeViewController: this class inherits from UIViewController class. It’s

responsible for ‘about me’ UI view window.

EmailViewController: this class is a child of UIViewController class. It’s

designed for email UI view window.

IdentificationViewController: this class inherits from UIViewController class. It

gets the identification to display identification UI view window. It has one

property:

• idLabel: The identification of the iPhone.

MapViewController: This class is a child of UIViewcontroller class. It designs the

map and annotations on the map UI view window. It has four properties:

annotations: the annotations of the places.

 28

buttonBarSegmentedControl: The button bar segmented control on UI view

window.

mapView: It inherits from MKMapView, functioned in displaying embedded map

interface in the UI view window.

places: All places loaded from the web service.

WebsiteViewController: this class inherits from UIViewController class. It

initializes the embedded website in website UI view window. It has one property:

• webView: It displays embedded website to UI view window.

UITableViewController: this system class is a child of UIViewController class. It

helps the view display the table view. It has many properties, one of which

frequently used is tableView to initialize the view of table.

3.4.3 Table view controller classes

This class is a system class inherits from UIViewController class. It mainly uses

for managing the table view. Similar to the UIViewcontroller class, this class wii

be called with the short name is controller in this part. In the application, there are

three table views (inherit from UITableViewController class) and three table view

controller classes have to be created to support them.

 29

Figure 11. Table view controller classes.

 30

Following the diagram, they are:

MoreTableViewController: this class inherits from UITableViewController class.

It lists information about this application such as about me, identification, email,

web site.

LocationDetailTableViewController: this class is a child of

UITableViewController class. It lists detail of location like email, opening time,

phone, address, name of location. It has nine properties:

• emailLabel: an email of the place.

• openingTime1Label: an opening time 1 of the place.

• openingTime2Label: an opening time 2 of the place.

• openingTime3Label: an opening time 3 of the place.

• openingTime4Label: an opening time 4 of the place.

• phoneNumberTextView: a phone number of the place.

• place: the information of current place.

• placeAddressLabel: an address of the place.

• placeNameLabel: a name of the place.

FoodDetailTableViewController: this class inherits from UITableViewController

class. It shows the detail of the food. Eight consisted properties are:

• addToCartButton: an add to cart button.

• document: a document of this table view.

• food: the information of current food.

• foodImageView: an image of the food.

• foodIngredientTextView: an ingredient of the food.

• foodNameLabel: a name of the food.

• placeNameLabel: a name of place of the food.

• priceLabel: a price of the food.

 31

3.4.4 Core data table view controller

CoreDataTableViewController is a custom class inherits from

UITableViewController class. It’s nearly the same as UITableViewController

class but it adds some properties to check and debug the table view. It’s a super

class for three behind child classes.

Figure 12. Core data table view controller classes.

Following the diagram, three child classes are seen:

CartTableViewController: this class inherits from CoreDataTableViewController

class. It lists cart item in the cart UI view window. It has five properties:

 32

• cartLabel: a cart information text, it will display when no cart item in cart

view window.

• document: a document of this view.

• emptyCartBarButtonItem: an empty cart bar button item on navigation

bar.

• placeOrderBarButtonItem: a place order bar button item on navigation bar.

• totalOrderLabel: a total order text.

FoodTableViewController: this class is a child of CoreDataTableViewController

class. It lists food item in food UI view window. It has three properties:

• document: a document of this view.

• spinner: a spinner for spinner view.

• imageDownloadsInProgress: the processing images for the food view.

LocationTableViewController: this class inherits from

CoreDataTableViewController class. It lists location item in location UI view

window. It only has one property document.

3.4.5 UI view classes

This class is a child of NSObject class. It’s a basic UIView class in iOS

application. Also, it has a lot of properties and operations. Figure 3.4.5 will show

the diagram:

 33

Figure 13. UI view classes.

In the application, there are three child classes of UIView class.

UITableViewCell: this class inherits from UIView class. It designs a UI cell view

for the table view. I have created two child classes of UITableViewCell class for

designing the cell in the table view.

FoodCell: this class inherits from UITableViewCell class. It helps us create the

custom food table view cell. It has four properties:

 34

• foodImageView: an image view of the food.

• foodNameLabel: a name of the food.

• placeNameLabel: a name of place of the food.

• priceLabel: a price of the food.

CartCell: this class is a child of UITableViewCell class. It uses for designing cart

table view cell. It has three properties:

• foodNameLabel: a name of the food.

• countLabel: a count of the food.

• priceLabel: a price of the food.

SpinnerView: this class is a child of UIView class. It designs spinner for the

spinner view.

UIControl: this is a parent class of UIButton class.

UIButton: it’s a basic UI button class. It’s responsible for UI button on the view.

It has one custom child class is GradientButton class.

GradientButton: this is an extending the UI button class. It helps us create more

beautiful button. It has two properties:

• highlightLayer: it uses for highlight button pressed.

• shineLayer: it uses for normal button but make button looks more shiner.

3.4.6 Core data classes

Core Data is a framework in iOS and Mac architecture. It’s a centralization data

management in iOS and Mac application. In my application, there are three

classes using core data framework. Also, they are child classes of

NSManagedObject class.

 35

Figure 14. Core data classes.

Food: this class is a persistence class of food entity. It has eight properties: name,

price, ingredient, image_url, image, unique, cart, and place.

Place: this class is a persistence class of place entity. It has twelve properties:

name, address, distance, email, image_url, lat, log, opening_time_1,

opening_time_2, opening_time_3, opening_time_4, foods.

Cart: this class is a persistence class of cart entity. It has four properties: count,

created_at, unique, food.

Also, these entity classes are generated by core data framework. There is no point

in modifying anything from them. In Objective-C, a category allows the

 36

application to add methods to an existing class. Hence, three categories support

are created for three entity classes.

Food+Create: this is a category for food entity class. It has one operation:

• foodWithWebService:inManagedObjectContext: this operation copies the

data of food from the web service to core data food.

Place+Create: this is a category for place entity class. It has one operation:

• placeWithWebService:inManagedObjectContext: this operation copies the

data of place from the web service to core data place.

Cart+Food: this is a category for cart entity class. It has two operations:

• cartWithFood:inManagedObjectContext: this operation will add food to

cart. The action only happens in core data cart.

• removeFromCart:inManagedObjectContext: this operation will remove

food from cart. The action only happens in core data cart.

3.4.7 Supporting classes

For the purpose of helping the controller, six supporting classes are created.

3.4.7.1 FoodPlaceFetcher class

The first one mentioned here is FoodPlaceFetcher class stores operations get the

data from the web service.

Figure 15. FoodPlaceFetcher class.

This class has four operations:

• getPlaces: this method will get all data of place from the web service.

 37

• getFoods: this method will get all data of food from the web service.

• urlStringforPlace: this method will get url string (NSString) from

information of place.

• urlForPlace: this method will return to url (NSURL) from url string of

place.

3.4.7.2 LazyImageDownloader class

The second is a LazyImageDownloader class, downloads the images from the web

service and displaying them on the phone. It’s lazy because it doesn’t download

all the images from the web service. But it’s only download necessary image

when the user needs it. It helps to save a lot of the bandwidth.

Figure 16. LazyImageDownloader class.

This class has three properties:

• food: the information of the food.

• indexPathInTableView: the index path in the table view.

• delegate: the delegate of this class.

And twelve operations:

• startDownload: start download the images.

• delegate: getter of delegate.

 38

• downloadError: display the error when it occurs.

• emptyReply: the empty reply will be shown.

• food: getter of food.

• imageWithData: return the image with pre data.

• indexPathInTableView: getter of index path in table view.

• readHttpStatusCodeFromResponse: read the http status code from

response data.

• setDelegate: setter of delegate.

• setFood: setter of food.

• setIndexPathInTableView: setter of index path in table view.

• timeOut: display error time out of network connection.

3.4.7.3 Helpers class

The third is a Helpers class.

Figure 17. Helpers class.

This class has only one operation:

• timeNSDecimalNumber:andNumber: time two number is not the same

type.

3.4.7.4 PlaceAnnotationView class

The forth is a PlaceAnnotationView class, designed for the annotation on the map

interface.

 39

Figure 18. PlaceAnnotationView class.

This class has one property:

• place: is stored the information about restaurants.

And six operations:

• annotationForPlace: specify an annotation for the place.

• coordinate: a coordinate of the place like latitude and longitude.

• place: getter of place.

• setPlace: setter of place.

• subtitle: this is a subtitle for the annotation.

• title: this is a title for the annotation.

3.4.7.5 OrderUploader class

The fifth is a OrderUploader class, designs for the uploading the data to the web

service.

Figure 19. OrderUploader class.

 40

This class has three properties:

• delegate: the delegate of this class.

• orderData: the data to be uploaded.

• url: an url with NSURL type.

And eleven operations:

• delegate: getter of delegate.

• setDelegate: setter of delegate.

• orderData: getter of orderData.

• setOrderData: setter of orderData.

• readHttpStatusCodeFromResponse: read http status code from response

data.

• url: getter of url.

• setUrl: setter of url.

• showAlertDone: show alert when done.

• timeOut: display error time out of network connection.

• uploadError: display error when uploading data occurs an error.

• startUpload: start upload the data.

3.4.7.6 BadgeValue class

The last class is a BadgeValue class is responsible for show or hidden the badge

value on the cart tab bar item.

Figure 20. BadgeValue class.

 41

This class has three properties:

• delegate: the delegate of this class.

• document: the document of this class.

• tabBarController: tab bar controller.

And eight operations:

• checkBadgeValue:: check the count and display the count on tab bar item.

• delegate: getter of delegate.

• setDelegate: setter of delegate.

• document: getter of document.

• setDocument: setter of document.

• tabBarController: getter of tab bar controller.

• setTabBarController: setter of tab bar controller.

• startSetBadgeValue: start to set a badge value.

3.4.7.7 Main operations

The controllers have many primary operations that received the data from the web

service, processing the core data, and user interaction on the screen. Some of them

will be descripted:

• badgeValueUpdate: check and display the badge value on the tab bar cart

item.

• fetchWebServiceIntoDatabase: get data from the web service and add the

data to core data on the phone.

• sharedDocument: initialize the document from the beginning.

• sharedLocationManager: initialize the location manager from the

beginning.

• sortPlacesByDistanceFrom: calculate the distance from user’s location to

location of place.

• fetchedData: fetch data from the web service.

• mapAnnotations: add the annotations to places.

 42

• addToCart: add the food item to cart.

• removeFromCart:atIndexPath: remove the cart item from cart at index

path.

• emptyCart: emty cart.

• sendOrder: send the order to the web service.

• prepareOrder: prepare the order before sending the order.

• startOrderUpload:withData: order upload information with data (data of

the food order).

3.3 Detailed Description of Main Operations

This part will go more detail of main operations.

3.5.1 badgeValueUpdate function

This operation checks the cart item in the cart and display how many the cart

items on the tab bar item. It will help the user know how many cart items in the

cart even the user is not on the cart view window. The sequence diagram is shown

below:

Figure 21. badgeValueUpdate operation.

 43

Explain about some operations in this sequence diagram:

When the user starts the application, the application will use the document

(useDocument operation). After this, it will run the operation badgeValueUpdate.

This operation has some child operations:

• fetchRequestWithEntity: this operation will fetch the cart entity and it will

return how many cart items in cart entity.

• setBadgeValue: from the cart item, this operation will specify the number

cart item on the tab bar item. If no cart item, the number will disappear on

tab bar item.

3.5.2 fetchWebServiceIntoDatabase function

This operation will fetch the data from the web service and copy it to the core data

(the data storage on the phone). The sequence diagram is shown below:

Figure 22. fetchWebServiceIntoDatabase operation.

Explain about some operations in this sequence diagram:

When the user starts the application, the application will use the document

(useDocument operation). And the main operation fetchWebServiceIntoDatabase

will be started.

 44

The operation getFoods in FoodPlaceFetcher class will run to fetch the food data

from the web service.

And the operation foodWithWebService:inManagedObjectContext: will copy the

data (got from the web service) to the core data (the data storage on the phone).

The iOS will use these data to display for the user.

3.5.3 sortPlacesByDistanceFrom function

This operation will calculate the distance between the user’s location and location

of wanted restaurant. The below diagram will explain how it works:

Figure 23. sortPlacesByDistanceFrom operation.

The process is the same as previous processes. It will begin with use document

operation (useDocument) to use document on the application. Next, the operation

fetchedObjects will fetch the place data from the core data (the data storage on the

iOS). Also, the location manager will start by the operation startUpdatingLocation

to get the user’s location. After that, it will use the operation

 45

sortPlacesByDistanceFrom to collect the location of places and calculate the

distance from user’s location to location of restaurants. The operation

distanceFromLocation is used to calculate the distance. Finally, the operation

stopUpdatingLocation utilized to stop updating user’s location for the reason of

saving battery and bandwidth of the Internet.

3.5.4 fetchedData function

This operation is placed in MapViewController class. It will be used for fetching

the data of places from the web service. The sequence diagram is shown below:

Figure 24. fetchedData operation.

The main operation is getPlaces operation in FoodPlaceFetcher class. It will get

the data of places from the web service and copy it to the application (not Core

Data).

3.5.5 addToCart function

This operation will add the food item to the cart. The below diagram will explain

the process:

 46

Figure 25. addToCart operation.

When the user is in the food item view window, the food item view window has a

button add to cart. As he presses the button add to cart, the process add to cart

begins. It will add currently food to the cart. This operation

cartWithFood:inManagedObjectContext will connect to the core data and add the

food item to cart entity. Furthermore, the operation badgeValueUpdate will update

the cart item on tab bar item as adding the food item to cart. The application will

be set default with limitation of five items per food kind. Thus, if the amount of

items is counted larger than five, the alert will show information informing that

there is a cheating on the application.

3.5.6 emptyCart function

This operation do empty the cart, it will remove all cart item in the cart. The

sequence diagram will explain below:

 47

Figure 26. emptyCart operation.

When user presses the empty cart button in the cart view window, the cart view

will be emptied. The operation emptyCart will process some child operations:

• removeFromCart:inManagedObjectContext: this operation is responsible

for removing the cart item from cart. It connects to the core data, finds cart

item and removes it from cart entity.

• badgeValueUpdate: after emptying the cart, the badge value should be

update to 0. This operation will be updated the badge value. And it will be

disappeared the number on the tab bar if nothing’s in cart.

• showCartLabel: when the cart is empty, the cart will have the label inform

the cart is empty.

3.5.7 PlaceOrder function

This is a most important operation in this application. It will get the food data in

the cart and send it to the web service to place the order. The sequence diagram is

explained below:

 48

Figure 27. PlaceOrder operation.

When the user finishes adding wanted food item to the cart, he can place the order

by pressing the place order button on the right bar system of the cart view

window. This button will do the operation PlaceOrder and some child operations

as following:

• showConfirmation: this is an operation showing the alert when the user

press place order button. It confirms whether he really wants or doesn’t

want to place an order. If the choice is NO, there is no order. Otherwise, as

it is YES, that means you want to place an order.

• alertView:clickedButtonAtIndex: this is a class of UIAlertView delegate.

This operation helps user to set YES or NO operation. In this case, I

specify YES to send an order and NO to happen nothing.

 49

• fetchedCarts: this operation will fetch all cart item in the cart entity and

return to a array cart item. It connects the core data and queries the cart

entity to get the cart item.

• prepareOrder: this operation gets the array cart item and enter the data

following the JSON format. Furthermore, it adds some information about

the order like uuid, total price of cart items, aorder date. This operation is

comparatively complicated because it converts all data to JSON format. It

uses a lot of NSDictionary and NSArray to carry out this process.

• startOrderUpload:withData: this operation will upload the data to the web

service with the preparing data and the url of the web service. It uses

NSMutableURLRequest to request the url of the web service and using the

NSURLConnection to send the request to the web service. Besides, this is

AsynchronousRequest, so it does not block the main thread of the iOS.

• showAlertDone: when the sending data to the web service is successfully,

iOS will show the alert inform the success of the order. Otherwise, it will

log the fail sending the data.

3.4 Component Diagram

There are nine groups in this iOS application: UIAlertViewE, NSDateE, JSONE,

Cryptography, Helpers, View Controllers, Web Services, Core Data, and Images.

• Group UIAlertViewE: this is extension of UIAlertView.

• Group NSDateE: this is extension of NSDate.

• Group Cryptography: this is cryptography.

• Group JSONE: this is a JSON converter.

• Group Helpers: this group includes helper classes like

LazyImageDownloader, OrderUploader, GradientButton,…

• Group View Controllers: store controller of this application.

• Group Web Services: responsible for connecting to the web service to get

the data.

• Group Core Data: the data storage on the iOS application.

• Group Images: image for tab bar and about view window.

 50

Figure 28. Component diagram.

3.5 Architectural Diagram

The below diagram will described the architecture of this application.

 51

Figure 29. Architecture diagram.

The picture shows the architecture diagram of this iOS application and web

service. Basically, almost application needs a data and so does this application. I

don’t want to place a data in the application because of a size of application. And

the data in the application can’t be updated in the future. Thus, there is a need for

a web service for storing the data supporting data for iOS application. The iOS

application can connect to the web service to retrieve the data through a cloud

(internet). Nowadays, the Internet becomes more and more popular; hence, the

Internet connection for iOS application isn’t that much expensive. The application

will connect to the web service to get the data and show those data to the user.

The benefit of the web service is making the iOS application lighter weight. The

iOS application doesn’t need to store any data. The data will be gotten from the

web service and it will be updating dynamically. In addition, the web service is

used for receiving the data from the iOS application. The type of data is in texts,

numbers and images. Only the texts and numbers are stored on the iOS

application after being received from the web service. Since product images are

such big data, it is unnecessary to store them on the iOS application. They will

stream directly from the web service to iOS application. In another words, no

image is saved on iOS application. It’s just streamed from web service.

 52

4 DATABASE AND GUI DESIGN

In the following the procedure of designing the database and the graphical user

interface is described in detail.

4.1 Design of the database

The Core Data framework is used in this iOS application in order to save a rarely

data changes in this iOS application.

Core Data is a data management of iOS application. It is similar to a database for

a web application. However, the Core Data is unlike a typical database. Core Data

can be used totally in-memory. Apple designs a Core Data framework used only

for Mac and iOS application.

In Core Data, three entities are applied: Food, Place, and Cart to describe working

of this application.

4.1.1 Food Table

Food table will store the information of food like image, image_url, ingredient,

name, price, and unique.

Figure 30. Food table details description.

The following table shows the structure of the Food table.

 53

Table 3. Food table’s structure.

Field Description Data Type

unique an unique number for the food item integer

price a price of the food decimal

name name of the food item string

ingredient an ingredient of the food item string

image_url an image url of the food item string

image an image of the food item transformable

4.1.2 Place Table

Place table will store the information of place like address, distance, email,

image_url, lat,log, name, opening_time_1, opening_time_2, opening_time_3,

opening_time_4, and phone_number.

Figure 31. Place table details description.

The following table shows the structure of the Place table.

 54

Table 4. Place table’s structure.

Field Description Data Type

address an address of the place string

distance a distance from place’s location

to user location

float

email an email of the place string

image_url an image url of the place string

lat a latitude of the place decimal

log a longitude of the place decimal

name a name of the place string

opening_time_1 an opening time 1 of the place string

opening_time_2 an opening time 2 of the place string

opening_time_3 an opening time 3 of the place string

opening_time_4 an opening time 4 of the place string

phone_number a phone number of the place string

4.1.3 Cart Table

Cart table will store the information of cart like count, created_at, unique.

Figure 32. Cart table details description.

The following table shows the structure of the Cart table.

Table 5. Cart table’s structure.

Field Description Data Type

unique an unique number for the cart item integer

created_at an time created for the cart item date

count an count for the cart item integer

 55

4.1.4 Entity Relationship

This diagram described a relationship between three entities: Place, Food and

Cart.

Figure 33. Entities relationship.

Almost relationship in the core data should be a bi-directional (apple developer

requirement). Xcode IDE will give a warning about this problem if the application

doesn’t meet the apple developer requirement.

As being seen on the diagram, the first relationship from food to place is one to

one and the opposite is one to many. The second relationship from cart to food is

zero to one and the opposite is also zero to one.

The database implementation and design is the most important part in developing

iOS application. Thank to apple that created core data framework.

 56

4.2 Design of different parts of GUI

GUI in this application is focused on Storyboard. Storyboad is a new technology

to design the user interface of iOS application. It’s only available from iOS 5 and

later. Previous iOS 5 can’t use this technology, that’s why this application isn’t

compatible to iOS 4 or iOS 3. Some advantages of using storyboard are:

• It’s a container for all view windows screen (View Controllers, Navigation

Controllers, TabBar Contnrollers).

• It uses the “segue” (the new technology in iOS 5) to manage the

connection and transition between these view windows screen.

• Managing the controller to talk to each other.

• It designs a well flow of iOS application.

The initial view controller is tab bar controller. Tab bar controller is applied for

this iOS application for the purpose of storing five view controllers in it.

Figure 34. Tab bar controller.

 57

Below, more details about the UI view window screens that are created and

designed by Storyboard technology will be described.

4.2.1 Food view window

This is the first view window in the tab bar controller. When the user enters iOS

application, this view window is initialized first. In fact, you can specify any view

window initialized from the tab bar controller.

In this view, the iOS application has two child view windows: view window one

for list of foods, and view window two for details of food. The iOS application

needs to use navigation controller in order to connect two view windows.

Figure 35. Food view window.

The first view window is for a list of foods, designs by table view controller. The

table view controller is a view controller plus a table. So it’s so convenient for list

of foods. The table view controller has many attributes (see pictures below):

 58

Figure 36. Table view attributes.

In the attribute panel of table view, the chosen content is dynamic prototypes.

Custom table view cell is created because the original one doesn’t fit for this iOS

application. The attribute panel of table view cell is listed in this below picture:

 59

Figure 37. Table view cell attributes.

In the attribute panel of table view cell, a style Custom is chosen for custom table

view cell. Also, identifier Food Cell is utilized to identity the unique table view

cell. In a custom table view cell, the UI is designed as being seen in the following

picture:

Figure 38. Custom table view cell.

• UIImage will show the image of food.

• foodNameLabel is a name of food.

• placeNameLabel is a name place of food.

• priceLabel is a price of food.

The final view is:

 60

Figure 39. Food table view.

The second view window is for details of food, designs by table view controller.

The table view controller has many attributes (see pictures below):

Figure 40. Table view attributes.

In the attribute panel of table view, the content is static cells. The custom table

view can be seen as followed:

 61

Figure 41. Detail food table view.

• foodNameLabel is a name of food.

• placeNameLabel is a name of place of food.

• priceLabel is a price of food.

• foodIngredientTextView is a ingredient of food.

• addToCartButton is a Add to Cart button.

The final view is:

 62

Figure 42. Detail food table view.

4.2.2 Location view window

This is the second view window in the tab bar controller. In this view, as the first

view window, the location view will have two child view windows: view window

one for list of places included the distance from the users location to location of

places, and view window two for detail of place. Also, the application needs to

use navigation controller in order to connect two view windows.

Figure 43. Location view window.

 63

The first view window is for a list of places, designs by table view controller. In

this view window, the attribute content of dynamic prototypes is used the same as

the first view window for a list of foods. However, in this view window, there is

no need for creating a custom table view cell because the original one fits the

requirement. The attribute of table view cell is shown in this below picture:

Figure 44. Table view cell attributes.

In the table view cell’s attribute panel, a style Subtitle (original table view cell) is

chosen. Besides, the identifier Place Cell is utilized to identity the unique table

view cell. The UI of original table view cell like this:

Figure 45. Original table view cell.

• Title is a name of place.

• Subtitle is a distance from location of place to the user’s location.

The final view is:

 64

Figure 46. Location table view.

The second view window is for detail of place, designs by table view controller.

The chosen attribute content is static cells the same as previous view window for

a detail of food. The UI view window can be seen as following:

Figure 47. Detail location table view.

• placeNameLabel is a name of place.

 65

• placeAddressLabel is an address of place.

• phoneNumberTextView is a phone number of place.

• emailLabel is a email of place.

• openingTime1Label is an opening time 1 of place.

• openingTime2Label is an opening time 2 of place.

• openingTime3Label is an opening time 3 of place.

• openingTime4Label is an opening time 4 of place.

The final view is:

Figure 48. Detail location table view.

4.2.3 Map view window

This is the third view window in the tab bar controller. This view is different than

two previous view windows. It’s embedded the MKMapView and list of the

location of places on the map. Also, the user’s location is shown on the map.

Thus, he can specify the way from the user’s location to the location of places.

 66

Figure 49. Map view controller.

The upper picture shows the UI of map view controller. This view has three

buttons on the top of the view window. These buttons has a function to switch

view map on the map controller. A view map can be switched to standard (default,

it’s just a map), satellite (the map view is shown like the real) or hybrid (standard

plus satellite). Furthermore, this view has one small button at the bottom left of

the view. It has function to specify the user’s location. When the user press it, it

will use GPS signal to specify his location (location of phone).

Apple dropped the Google map on the iOS 6 and the replacement is Apple’s map.

The Apple’s map has more advantages than the Google map:

• Owned by Apple.

• Siri integration.

• Clearer view from the map

• New 3D map.

 67

Figure 50. Satellite map view.

In the satellite map view, the map will be shown like the real. The user can choose

the Satellite button to enter to this view.

Figure 51. Hybrid map view.

In the hybrid map view, the map not only will be shown like the real but also

added the name of the street. The user can choose the Hybrid button to enter to

this view.

 68

Figure 52. Users location.

When the user chooses the show user’s location button, the blue point will be

shown on the map.

Figure 53. Location of places.

In addition, when user chooses any location of place pin, the call out accessory

view will be shown with the name and the address of that place. The UI of this

view like this:

 69

Figure 54. Call out accessory view.

4.2.4 Cart view window

This is the fourth view window in the tab bar controller. In fact, this view window

uses table view for list of the cart item. In addition, two buttons on the top of the

view window make this view more functionality. In order to add two buttons on

the top of the view window, there are two ways: (1) using a toolbar and the table

view plus table view cell into view controller, (2) using navigation controller. The

second way is taken because it’s easier and more flexible.

Figure 55. Cart view window.

 70

As usually, this table view cell uses attribute content, dynamic prototypes.

Besides, this table view cell is a custom table view cell as the original can’t satisfy

the requirement. The attribute of table view cell are listed in the below picture:

Figure 56. Attribute of table view cell.

In the attribute panel of the table view cell, style Custom is chosen for custom

table view cell. Also, identifier Cart Cell is applied to specify the unique table

view cell. In a custom table view cell, the UI is designed as the below picture:

Figure 57. Custom table view cell.

• foodNameLabel is a name of food.

• countLabel is a count of food.

• priceLabel is a price of food.

Also, the UI two buttons on the top of the cart view window:

Figure 58. Bar button item.

• Empty Cart is an empty the cart button item.

• Place Order is a place order button item.

The final view is:

 71

Figure 59. Cart table view.

Figure 60. Delete button.

4.2.5 More view window

 72

This is a last view window in the tab bar controller. This view window has five

child view windows. The first view window uses a table view controller for list of

name of child view window. The rest of view window is a child of the first view

window. Furthermore, this view window uses navigation controller to connect the

rest of view window to the first view window. All of view windows are shown in

below picture:

Figure 61. More views and child views.

The first view window for a list of name of child view window is a table view

controller. The attribute content of this view window is static cells. The UI of this

view window likes below:

 73

Figure 62. More view.

• About Me is a name of view window about me.

• Email is a name of view window email.

• Website is a name of view window website.

• Identification is a name of view window identification.

The final view is:

 74

Figure 63. About Me view.

Figure 64. Email view.

 75

Figure 65. Website view.

Figure 66. Identification view.

 76

5 IMPLEMENTATION

Every UI view window needs at least one class to support them. The application

has so many view windows that a large amount of classes needs to be created in

order to support them. All of classes are divided into ten groups:

• UIAlertViewE: this group stores category classes of UIAlertView.

• NSDateE: this group stores category classes of NSDate.

• Cryptography: this group stores cryptography classes.

• JSONE: this group stores category classes of NSData and NSDictionary.

• Helpers: this group stores many helper classes.

• View Controllers: this group stores a view controller classes that support

for the view window on storyboard.

• Web Services: this group stores a connection class to the web service.

• Core Data: this group stores core data classes.

• Images: this group stores a lot of images for the UI.

• Supporting Files: this group stores appdelegate classes.

Only important operations and their details are listed above due to huge amount of

classes.

5.1 Get the data from the web service:

There are important operations connecting to the web service and getting the data

from there to the iOS.

Below is a code for getting the data of foods from the web service:

+ (NSArray *)getFoods {

 // init request with url
 NSURLRequest *request = [NSURLRequest
requestWithURL:kFoodPlaceFoodsURL];

 // get data from request
 NSError *error = nil;
 NSURLResponse *response = nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];

 77

 // if error, show alert
 if (error != nil) {
 dispatch_async(dispatch_get_main_queue(), ^{
 [UIAlertView showWithError:error];
 });
 NSLog(@"getFoods' Error: %@", error.localizedDescription);
 return nil;
 }

 // reading http status code
 NSUInteger responseCode = [Helpers
readHttpStatusCodeFromResponse:response];
 NSLog(@"%d", responseCode);

 // return nil if error happen
 if (responseCode != kHTTPRequestOK || responseData.length == 0) {
 NSLog(@"Error!!!");
 return nil;
 }

 // get foods from JSON
 // id foods = responseData.fromJSON;
 NSLog(@"Getting foods...");
 NSLog(@"%d", responseData.length);
 return responseData ? (id)responseData.fromJSON : nil;
}

Snippet 1. Get food data from the web service.

This is a code for get the data places from the web service:

+ (NSArray *)getPlaces {

 // init request with url
 NSURLRequest *request = [NSURLRequest
requestWithURL:kFoodPlacePlacesURL];

 // get data from request
 NSError *error = nil;
 NSURLResponse *response = nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];
 // if error, show alert
 if (error != nil) {
 dispatch_async(dispatch_get_main_queue(), ^{
 [UIAlertView showWithError:error];
 });
 NSLog(@"getPlaces' Error: %@", error.localizedDescription);
 return nil;
 }

 // reading http status code
 NSUInteger responseCode = [Helpers
readHttpStatusCodeFromResponse:response];
 NSLog(@"%d", [Helpers readHttpStatusCodeFromResponse:response]);

 78

 // return nil if error happen
 if (responseCode != kHTTPRequestOK || responseData.length == 0) {
 NSLog(@"Error!!!");
 return nil;
 }

 // get places from JSON
 // id places = responseData.fromJSON;
 NSLog(@"Getting places...");
 NSLog(@"%d", responseData.length);
 return responseData ? (id)responseData.fromJSON : nil;
}

Snippet 2. Get place data from the web service.

Two important operations are totally the same. It uses NSURLRequest to make a

request with URL of the web service. After that, NSURLConnection is used to

send a synchronous request to the web service and receiving the data to the phone.

This operation also checks the error occurs if it happens. Right after receiving the

data from the web service, the last line of operation will convert the received data

to JSON or return to nil if there is an error.

This following code makes a request, sending request to the web service and

return the data to the phone:

// init request with url
 NSURLRequest *request = [NSURLRequest
requestWithURL:kFoodPlacePlacesURL];

 // get data from request
 NSError *error = nil;
 NSURLResponse *response = nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];

Snippet 3. Send the request with URL and receive the data.

The code getting response code from the web service will look like:

// reading http status code
 NSUInteger responseCode = [Helpers
readHttpStatusCodeFromResponse:response];
 NSLog(@"%d", [Helpers readHttpStatusCodeFromResponse:response]);

Snippet 4. Get http status code.

 79

In case there is an error, the code will show the alert as following:

// if error, show alert
 if (error != nil) {
 dispatch_async(dispatch_get_main_queue(), ^{
 [UIAlertView showWithError:error];
 });
 NSLog(@"getPlaces' Error: %@", error.localizedDescription);
 return nil;
 }

Snippet 5. Show the alert.

This is a code showing return data to JSON or nil if error happens:

return responseData ? (id)responseData.fromJSON : nil;

Snippet 6. Return JSON or nil.

It will return to nil if an error happens. Otherwise, it will return to id.

5.2 Initialization for the document and location manager:

There are two important operations to initialize the document and location

manager. Because the application uses the singleton method, two operations are

located in the AppDelegate. When the application needs to initialize for the

document or location manager, it easily calls it from the AppDelegate.

Some important line of codes:

// singleton init document
+ (UIManagedDocument *)sharedDocument {

 static UIManagedDocument *_document = nil;
 static dispatch_once_t pred;
 dispatch_once(&pred, ^{
 NSURL *url = [[[NSFileManager defaultManager]
URLsForDirectory:NSDocumentDirectory
 inDomains:NSUserDomainMask] lastObject];
 url = [url URLByAppendingPathComponent:@"Default Food Place Database"]; //
set the document's name
 _document = [[UIManagedDocument alloc] initWithFileURL:url]; // init document
 });
 return _document;
}

// singleton init location manager
+ (CLLocationManager *)sharedLocationManager {

 static CLLocationManager *_locationManager = nil;
 static dispatch_once_t pred;
 dispatch_once(&pred, ^{

 80

 _locationManager = [[CLLocationManager alloc] init]; // init location manager
 _locationManager.desiredAccuracy = kCLLocationAccuracyBest; // set accuracy
for the GPS
 _locationManager.distanceFilter = 80.0f;
 });
 return _locationManager;
}

Snippet 7. Setup singleton document and location manager.

Location manager is initialized by this code:

_locationManager = [[CLLocationManager alloc] init]; // init location manager

Snippet 8. Initialize location manager.

Location manager has two attributes desired accuracy and distance filter. It is

specified by two lines of code:

_locationManager.desiredAccuracy = kCLLocationAccuracyBest; // set accuracy for
the GPS
_locationManager.distanceFilter = 80.0f;

Snippet 9. Attribute of location manager.

The application uses a lot of document and the location manager. However, the

application can’t initialize many documents and location managers when the iOS

application needed. Thus, the singleton method is the best choice. The singleton

will initialize only one time and the application can use many times after that.

5.3 Adding the data from the web service to the core data:

This is the most important operation in this iOS application. Since the data is

rarely changed, the data from the web service should be copied to the core data in

the iOS application. If the data isn’t in the phone, every time the application starts,

it will connect to the web service and retrieving the data. Obviously, it takes a lot

of time and bandwidth.

This is a code for adding the data from the web service to the core data:

// setup fetched result controller
- (void)setupFetchedResultsController {

 // fetch request with entity
 NSFetchRequest *request = [NSFetchRequest
fetchRequestWithEntityName:@"Food"];

 81

 // [request setFetchBatchSize:5];
 // [request setFetchLimit:7];
 // sort by name or place's name (place.name)
 request.sortDescriptors = @[[NSSortDescriptor
sortDescriptorWithKey:@"place.name"
 ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)]];
 self.fetchedResultsController = [[NSFetchedResultsController alloc]
initWithFetchRequest:request

managedObjectContext:self.document.managedObjectContext
 sectionNameKeyPath:nil
 cacheName:nil];
}

// fetch data from Web Service into Core Data
- (void)fetchWebServiceIntoDatabase:(UIManagedDocument *)document {

 // create queue for Food Fetcher
 dispatch_queue_t fetchQ = dispatch_queue_create("Food Place Fetcher", NULL);
 dispatch_async(fetchQ, ^{
 NSArray *foods = [FoodPlaceFetcher getFoods]; // get foods from Web Service
to NSArray
 [document.managedObjectContext performBlock:^{
 [foods enumerateObjectsUsingBlock:^(NSDictionary *food, NSUInteger idx,
BOOL *stop) {
 [Food foodWithWebService:food
inManagedObjectContext:document.managedObjectContext]; // add foods to Core
Data
 }];
 [document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL]; // save
to document
 }];
 });
 dispatch_release(fetchQ); // release fetchQ
}

// use document
- (void)useDocument {

 // check document exists or not
 if (![[NSFileManager defaultManager] fileExistsAtPath:[self.document.fileURL
path]]) {
 [self.document saveToURL:self.document.fileURL
forSaveOperation:UIDocumentSaveForCreating completionHandler:^(BOOL success)
{
 [self setupFetchedResultsController]; // fetch data
 [self fetchWebServiceIntoDatabase:self.document]; // fetch data to Document
 }];
 // if document state is closed, open and using it
 } else if (self.document.documentState == UIDocumentStateClosed) {
 [self.document openWithCompletionHandler:^(BOOL success) {
 [self setupFetchedResultsController];
 [self badgeValueUpdate]; // set badge value
 }];
 // if document state is normal, use it

 82

 } else if (self.document.documentState == UIDocumentStateNormal) {
 [self setupFetchedResultsController];
 [self badgeValueUpdate]; // set badge value
 }
}

- (void)setDocument:(UIManagedDocument *)document {

 if (_document != document) {
 _document = document;
 [self useDocument]; // use document
 }
}

Snippet 10. Add the data from the web service to the client application.

This is a code for using the document:

// use document
- (void)useDocument {

 // check document exists or not
 if (![[NSFileManager defaultManager] fileExistsAtPath:[self.document.fileURL
path]]) {
 [self.document saveToURL:self.document.fileURL
forSaveOperation:UIDocumentSaveForCreating completionHandler:^(BOOL success)
{
 [self setupFetchedResultsController]; // fetch data
 [self fetchWebServiceIntoDatabase:self.document]; // fetch data to Document
 }];
 // if document state is closed, open and using it
 } else if (self.document.documentState == UIDocumentStateClosed) {
 [self.document openWithCompletionHandler:^(BOOL success) {
 [self setupFetchedResultsController];
 [self badgeValueUpdate]; // set badge value
 }];
 // if document state is normal, use it
 } else if (self.document.documentState == UIDocumentStateNormal) {
 [self setupFetchedResultsController];
 [self badgeValueUpdate]; // set badge value
 }
}

Snippet 11. Using document.

This operation will check the document existing or not. If the document does not

exist, it will create the document. After that, the application starts setup the

fetched result controller and fetch the data from the web service in to the core

data.

 // check document exists or not
 if (![[NSFileManager defaultManager] fileExistsAtPath:[self.document.fileURL
path]]) {

 83

 [self.document saveToURL:self.document.fileURL
forSaveOperation:UIDocumentSaveForCreating completionHandler:^(BOOL success)
{
 [self setupFetchedResultsController]; // fetch data
 [self fetchWebServiceIntoDatabase:self.document]; // fetch data to Document
 }];
 // if document state is closed, open and using it
}

Snippet 12. Check the document exists or not.

Otherwise, if the document exists, the operation will check the document is closed

state or normal state. If it’s closed state, the document will open it and start setup

the fetched result controller.

else if (self.document.documentState == UIDocumentStateClosed) {
 [self.document openWithCompletionHandler:^(BOOL success) {
 [self setupFetchedResultsController];
 [self badgeValueUpdate]; // set badge value
 }];
 // if document state is normal, use it
 }

Snippet 13. Check state of document is closed.

Or if it’s normal state, the document starts to setup the fetched result controller.

else if (self.document.documentState == UIDocumentStateNormal) {
 [self setupFetchedResultsController];
 [self badgeValueUpdate]; // set badge value
}

Snippet 14. Check state of document is normal.

This is a code for setup the fetched result controller:

// setup fetched result controller
- (void)setupFetchedResultsController {

 // fetch request with entity
 NSFetchRequest *request = [NSFetchRequest
fetchRequestWithEntityName:@"Food"];
 // [request setFetchBatchSize:5];
 // [request setFetchLimit:7];
 // sort by name or place's name (place.name)
 request.sortDescriptors = @[[NSSortDescriptor
sortDescriptorWithKey:@"place.name"
 ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)]];
 self.fetchedResultsController = [[NSFetchedResultsController alloc]
initWithFetchRequest:request

 84

managedObjectContext:self.document.managedObjectContext
 sectionNameKeyPath:nil
 cacheName:nil];
}

Snippet 15. Setup fetched result controller.

This code above is setup result fetched controller. It will make a request with the

Food entity with NSFetchRequest.

// fetch request with entity
 NSFetchRequest *request = [NSFetchRequest
fetchRequestWithEntityName:@"Food"];

Snippet 16. Fetch request with entity.

After that it uses NSSortDescriptor to sort the request with a key name of place,

following ascending. Also, it will compare the case insensitive.

// sort by name or place's name (place.name)
 request.sortDescriptors = @[[NSSortDescriptor
sortDescriptorWithKey:@"place.name"
 ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)]];

Snippet 17. Sort name of places.

The last line is allocated the fetched result control with the request and managed

object context.

self.fetchedResultsController = [[NSFetchedResultsController alloc]
initWithFetchRequest:request

managedObjectContext:self.document.managedObjectContext
 sectionNameKeyPath:nil
 cacheName:nil];

Snippet 18. Fetched result controller is allocated.

This is a code for fetching the data from web service into the core data:

// fetch data from Web Service into Core Data
- (void)fetchWebServiceIntoDatabase:(UIManagedDocument *)document {

 // create queue for Food Fetcher
 dispatch_queue_t fetchQ = dispatch_queue_create("Food Place Fetcher", NULL);
 dispatch_async(fetchQ, ^{
 NSArray *foods = [FoodPlaceFetcher getFoods]; // get foods from Web Service
to NSArray
 [document.managedObjectContext performBlock:^{

 85

 [foods enumerateObjectsUsingBlock:^(NSDictionary *food, NSUInteger idx,
BOOL *stop) {
 [Food foodWithWebService:food
inManagedObjectContext:document.managedObjectContext]; // add foods to Core
Data
 }];
 [document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL]; // save
to document
 }];
 });
 dispatch_release(fetchQ); // release fetchQ
}

Snippet 19. Fetch data from the web service to core data.

In this operation, the application used the Grand Central Dispatch (GCD). GCD is

like the multithreading in the iOS application. The GCD will create the name of

dispatch queue, starts by this line:

// create queue for Food Fetcher
dispatch_queue_t fetchQ = dispatch_queue_create("Food Place Fetcher", NULL);

Snippet 20. Create queue Food Place Fetcher.

And it ended with this line (it will release the dispatch queue from the memory):

dispatch_release(fetchQ); // release fetchQ

Snippet 21. Release queue.

The code in the body of the dispatch queue will run on the background, so it does

not lock the main thread (the UI). The code will begin fetch the data from the web

service and return it to the array foods.

NSArray *foods = [FoodPlaceFetcher getFoods]; // get foods from Web Service to
NSArray

Snippet 22. Get array of food.

And the managed object context in the document will perform the block:

[document.managedObjectContext performBlock:^{

)];

Snippet 23. Document performs block.

 86

The reason that the block in this dispatch queue is performed is the code in

dispatched queue can’t use directly the document (it’s not in right thread). Hence,

in order to use the document in this dispatch queue, it is obligatory to perform the

block in dispatch queue.

In this block, the loop is run in the foods array to get the data and add it to the

core data.

[foods enumerateObjectsUsingBlock:^(NSDictionary *food, NSUInteger idx, BOOL
*stop) {
 [Food foodWithWebService:food
inManagedObjectContext:document.managedObjectContext]; // add foods to Core
Data
 }];

Snippet 24. Food is looping to add to core data.

In this iOS application, the enumeratedObjectsUsingBlock is utilized to run the

loops in the foods array. It is a better method than for method, thanks for the

Apple Developer. After receiving the data and adding it to the core data, the

document will be saved in the core data.

[document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL]; // save
to document

Snippet 25. Save the document.

The document will be saved in the document fileURL. It will use saving operation

overwriting.

5.4 Lazy loading the images from the web service:

This is an important operation. It helps the application loading the images with

lazy technology. It is not a good idea to save the images to the core data because

many images will take times for loading. Loading the images from the web

service with lazy technology is the best solution.

// start download image
- (void)startImageDownload:(Food *)food forIndexPath:(NSIndexPath *)indexPath {

 LazyImageDownloader *imageDownloader =
self.imageDownloadsInProgress[indexPath];

 87

 if (nil == imageDownloader){
 imageDownloader = [[LazyImageDownloader alloc] init];
 imageDownloader.food = food;
 imageDownloader.indexPathInTableView = indexPath;
 imageDownloader.delegate = self;
 self.imageDownloadsInProgress[indexPath] = imageDownloader;
 [imageDownloader startDownload];
 }
}

// called by our LazyImageDownloader when an image is ready to be displayed
- (void)imageDidLoad:(NSIndexPath *)indexPath {

 LazyImageDownloader *imageDownloader =
self.imageDownloadsInProgress[indexPath];
 if (nil != imageDownloader)
 {
 FoodCell *cell = (FoodCell *)[self.tableView
cellForRowAtIndexPath:imageDownloader.indexPathInTableView];

 // display the newly loaded image
 cell.foodImageView.image = imageDownloader.food.image;
 }
}

// this method is used in case the user scrolled into a set of cells that dont have their
image yet
- (void)loadImagesForOnScreenRows
{
 NSUInteger count = [[self.fetchedResultsController fetchedObjects] count];
 // NSLog(@"%d", count);
 if (count > 0)
 {
 NSArray *visiblePaths = [self.tableView indexPathsForVisibleRows];
 [visiblePaths enumerateObjectsUsingBlock:^(NSIndexPath *indexPath,
NSUInteger idx, BOOL *stop) {
 Food *food = [self.fetchedResultsController objectAtIndexPath:indexPath];

 if (!food.image) // avoid the image download if the image has already
 {
 [self startImageDownload:food forIndexPath:indexPath];
 }
 }];
 }
}

#pragma mark - UIScrollViewDelegate

// load images for all onscreen rows when scrolling is finished
- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView
willDecelerate:(BOOL)decelerate
{
 if (!decelerate)
 {
 [self loadImagesForOnScreenRows];
 }
}

 88

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView
{
 [self loadImagesForOnScreenRows];
}

Snippet 26. Lazy loading images.

This is a code for loading the images at index path:

// called by our LazyImageDownloader when an image is ready to be displayed
- (void)imageDidLoad:(NSIndexPath *)indexPath {

 LazyImageDownloader *imageDownloader =
self.imageDownloadsInProgress[indexPath];
 if (nil != imageDownloader)
 {
 FoodCell *cell = (FoodCell *)[self.tableView
cellForRowAtIndexPath:imageDownloader.indexPathInTableView];

 // display the newly loaded image
 cell.foodImageView.image = imageDownloader.food.image;
 }
}

Snippet 27. Loading images at index path.

The above code uses lazy image downloader delegate to load the images from the

web service. It uses index path in the table view to specify the properly image for

the table view cell.

 89

This is a code for loading the images on the screen rows:

// this method is used in case the user scrolled into a set of cells that dont have their
image yet
- (void)loadImagesForOnScreenRows
{
 NSUInteger count = [[self.fetchedResultsController fetchedObjects] count];
 // NSLog(@"%d", count);
 if (count > 0)
 {
 NSArray *visiblePaths = [self.tableView indexPathsForVisibleRows];
 [visiblePaths enumerateObjectsUsingBlock:^(NSIndexPath *indexPath,
NSUInteger idx, BOOL *stop) {
 Food *food = [self.fetchedResultsController objectAtIndexPath:indexPath];

 if (!food.image) // avoid the image download if the image has already
 {
 [self startImageDownload:food forIndexPath:indexPath];
 }
 }];
 }
}

Snippet 28. Load images on the screen rows.

This operation will load the images for the visible table view cells. It doesn’t load

the images from the invisible table view cells. In fact, this lazy technology loading

images will help the application run more smoothly as well as save the bandwidth

of the network connection. The lag won’t be happened.

This is a code for scroll view delegate:

// load images for all onscreen rows when scrolling is finished
- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView
willDecelerate:(BOOL)decelerate
{
 if (!decelerate)
 {
 [self loadImagesForOnScreenRows];
 }
}

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView
{
 [self loadImagesForOnScreenRows];
}

Snippet 29. Scroll view delegate.

 90

This code will detect the scroll view on screen. The cell only loads the images

when it doesn’t move. If the cell is moving, the images don’t load. The cell will

be blank until it doesn’t move.

This is a code for starting downloading the images:

// start download image
- (void)startImageDownload:(Food *)food forIndexPath:(NSIndexPath *)indexPath {

 LazyImageDownloader *imageDownloader =
self.imageDownloadsInProgress[indexPath];

 if (nil == imageDownloader){
 imageDownloader = [[LazyImageDownloader alloc] init];
 imageDownloader.food = food;
 imageDownloader.indexPathInTableView = indexPath;
 imageDownloader.delegate = self;
 self.imageDownloadsInProgress[indexPath] = imageDownloader;
 [imageDownloader startDownload];
 }
}

Snippet 30. Start download image.

This code allocated the lazy image downloader delegate. Paste the food object, the

index path object to the delegate and start download the images from delegate.

5.5 Add a food item to Cart:

This operation will add the food item to the cart. The user will browse the food

item in the list of foods. When the user like that food item, they will choose add to

cart button to add the food item to the cart, ready for place an order.

// add food to Cart
- (void)addToCart:(UIManagedDocument *)document {

 // create queue for Add to Cart
 dispatch_queue_t addQ = dispatch_queue_create("Add to Cart", NULL);
 dispatch_async(addQ, ^{
 [document.managedObjectContext performBlock:^{
 [Cart cartWithFood:self.food
inManagedObjectContext:document.managedObjectContext]; // add food to Cart
 [document saveToURL:self.document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL]; // save
to document

 // badge value
 [self badgeValueUpdate];
 }];
 });

 91

 dispatch_release(addQ);
}

Snippet 31. Add food to cart.

This upper code uses another operation cartWithFood to add cart item to the cart

entity with managed object context.

[Cart cartWithFood:self.food
inManagedObjectContext:document.managedObjectContext]; // add food to Cart

Snippet 32. Add food uses managed object context.

After that, the document will be saved previous operation by this code:

[document saveToURL:self.document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL]; // save
to document

Snippet 33. Save the document.

If the document wasn’t saved, the food item doesn’t stay in the cart entity. The

last line is updated the badge value on the tab bar item.

// badge value
[self badgeValueUpdate];

Snippet 34. Badge value updated.

5.6 Calculate the distance from the user’s location to places location:

This operation will calculate the user’s location to location of places. The unit is

kilometer.

// distance from places
- (void)sortPlacesByDistanceFrom:(CLLocation *)location {

 // define placeLocation (block way)
 __block CLLocation *placeLocation;
 // get places to NSMutableArray
 NSArray *places = [self.fetchedResultsController fetchedObjects];
 [places enumerateObjectsUsingBlock:^(Place *place, NSUInteger idx, BOOL *stop)
{
 // init place with latitude and longitude
 placeLocation = [[CLLocation alloc] initWithLatitude:[place.lat doubleValue]
 longitude:[place.log doubleValue]];
 // calculate distance from places
 place.distance = @([placeLocation distanceFromLocation:location] / 1000);
 }];
}

 92

Snippet 35. Calculate the distance from places.

This operation has the parameter is location, based on the location of places. The

coordinate will use the GPS signal to specify the user’s location. This first line of

this operation creates the variable to hold the locations of places.

// define placeLocation (block way)
__block CLLocation *placeLocation;

Snippet 36. Block place location.

It uses the block way. The variable with __block before will enter into the block

container. The places array is a variable to hold all the place objects in place

entity.

 // get places to NSMutableArray
 NSArray *places = [self.fetchedResultsController fetchedObjects];

Snippet 37. Get array of place.

After getting all of the place objects in place entity, the application will run the

loop through place object to get the location of places. The location of the place is

latitude and longitude with type double.

 [places enumerateObjectsUsingBlock:^(Place *place, NSUInteger idx, BOOL *stop)
{
 // init place with latitude and longitude
 placeLocation = [[CLLocation alloc] initWithLatitude:[place.lat doubleValue]
 longitude:[place.log doubleValue]];
 // calculate distance from places
 place.distance = @([placeLocation distanceFromLocation:location] / 1000);
 }];

Snippet 38. Location of place is with latitude and longitude.

Running the loop with the block way is easier than the traditional method. That’s

why the enumerateObjectsUsingBlock is always used for the loops. This

operation will loops the places array and get the location from the latitude and the

longitude.

 // init place with latitude and longitude
 placeLocation = [[CLLocation alloc] initWithLatitude:[place.lat doubleValue]
 longitude:[place.log doubleValue]];

Snippet 39. Initialize location of place.

 93

After that, it will calculate the distance from the user’s location to the location of

places by this operation distanceFromLocation:

 // calculate distance from places
 place.distance = @([placeLocation distanceFromLocation:location] / 1000);

Snippet 40. Calculate the distance places.

The divided 1000 is converted the unit to kilometer.

5.7 Add the annotation pins to the map view:

These operations will help adding the annotation pins to the map view. The map

view will show the location of places like a pin. The user can click on the pin and

the pin will show the information about this pin like a name and an address of

place.

// return NSArray Annotation
- (NSArray *)mapAnnotations {

 NSMutableArray *annotations = [NSMutableArray
arrayWithCapacity:self.places.count];
 [self.places enumerateObjectsUsingBlock:^(NSDictionary *place, NSUInteger idx,
BOOL *stop) {
 [annotations addObject:[PlaceAnnotationView annotationForPlace:place]]; // add
annotation to places
 }];
 return annotations;
}

// view for annotation
- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id<MKAnnotation>)annotation
{
 // check annotation is MKUserLocation class
 if ([annotation isKindOfClass:[MKUserLocation class]]) {
 return nil; // return nil if its
 }

 // check annotation is PlaceAnnotation class
 if ([annotation isKindOfClass:[PlaceAnnotationView class]])
 {
 MKAnnotationView *aView = [mapView
dequeueReusableAnnotationViewWithIdentifier:MY_PIN]; // set name
MKAnnotationView
 if (!aView) {
 aView = [[MKAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:MY_PIN];
 aView.canShowCallout = YES; // set call out
 aView.calloutOffset = CGPointMake(0, 0); // set position call out off set
 aView.image = [UIImage imageNamed:MY_PIN_IMAGE]; // set place's image
for pin

 94

 aView.leftCalloutAccessoryView = [[UIImageView alloc]
initWithFrame:CGRectMake(0, 0, 30, 30)]; // set frame for pin's image
 [aView setSelected:YES]; // set selected
 }

 aView.annotation = annotation;
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:nil];

 return aView;
 }

 return nil;
}

Snippet 41. Add annotation to the map.

This is a code to add an annotation to annotations array:

// return NSArray Annotation
- (NSArray *)mapAnnotations {

 NSMutableArray *annotations = [NSMutableArray
arrayWithCapacity:self.places.count];
 [self.places enumerateObjectsUsingBlock:^(NSDictionary *place, NSUInteger idx,
BOOL *stop) {
 [annotations addObject:[PlaceAnnotationView annotationForPlace:place]]; // add
annotation to places
 }];
 return annotations;
}

Snippet 42. Get array of annotation.

In this operation, the application uses NSMutableArray instead of NSArray

because the application wants an array can modify. The different between

NSMurableArray and NSArray is NSArray is unmodify array but

NSMutableArray is a modify array. The first line is created NSMutableArray

annotations:

 NSMutableArray *annotations = [NSMutableArray
arrayWithCapacity:self.places.count];

Snippet 43. Get mutable array of annotation.

This array with capacity is a capacity of places. After that, we will run the loop to

the places array (not the NSMutableArray places) to get the data from this array.

And I add an annotation to annotations by this code:

[annotations addObject:[PlaceAnnotationView annotationForPlace:place]]; // add
annotation to places

 95

Snippet 44. Add annotation to places.

The application uses another operation annotationForPlace get the information

from places (the name, the latitude and the longitude of place). And it uses the

operation addObject to add the annotation to the annotations array.

This is a code changing the attributes of the annotations:

// view for annotation
- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id<MKAnnotation>)annotation
{
 // check annotation is MKUserLocation class
 if ([annotation isKindOfClass:[MKUserLocation class]]) {
 return nil; // return nil if its
 }

 // check annotation is PlaceAnnotation class
 if ([annotation isKindOfClass:[PlaceAnnotationView class]])
 {
 MKAnnotationView *aView = [mapView
dequeueReusableAnnotationViewWithIdentifier:MY_PIN]; // set name
MKAnnotationView
 if (!aView) {
 aView = [[MKAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:MY_PIN];
 aView.canShowCallout = YES; // set call out
 aView.calloutOffset = CGPointMake(0, 0); // set position call out off set
 aView.image = [UIImage imageNamed:MY_PIN_IMAGE]; // set place's image
for pin
 aView.leftCalloutAccessoryView = [[UIImageView alloc]
initWithFrame:CGRectMake(0, 0, 30, 30)]; // set frame for pin's image
 [aView setSelected:YES]; // set selected
 }

 aView.annotation = annotation;
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:nil];

 return aView;
 }

 return nil;
}

Snippet 45. Attributes of annotation.

This upper code is a part of MKMapViewDelegate. It will get the annotation and

display the annotation on the map view. The application has two kind of location

pin: the user’s location and the location of place. And the application uses this

code checking what kind of location pin:

 96

 // check annotation is MKUserLocation class
 if ([annotation isKindOfClass:[MKUserLocation class]]) {
 return nil; // return nil if its
 }

Snippet 46. Check annotation is user’s location.

This upper code will check the annotation is the user’s location (MKUserLocation

class). If it is, it will return to nil (the default user’s location pin).

 if ([annotation isKindOfClass:[PlaceAnnotationView class]])
 {
 MKAnnotationView *aView = [mapView
dequeueReusableAnnotationViewWithIdentifier:MY_PIN]; // set name
MKAnnotationView
 if (!aView) {
 aView = [[MKAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:MY_PIN];
 aView.canShowCallout = YES; // set call out
 aView.calloutOffset = CGPointMake(0, 0); // set position call out off set
 aView.image = [UIImage imageNamed:MY_PIN_IMAGE]; // set place's image
for pin
 aView.leftCalloutAccessoryView = [[UIImageView alloc]
initWithFrame:CGRectMake(0, 0, 30, 30)]; // set frame for pin's image
 [aView setSelected:YES]; // set selected
 }

 aView.annotation = annotation;
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:nil];

 return aView;
 }

Snippet 47. Check annotation is place annotation view.

This upper code will check the annotation is the location of place

(PlaceAnnotationView class). If it is, it will create aView (MKAnnotationView)

with the identifier MY_PIN:

MKAnnotationView *aView = [mapView
dequeueReusableAnnotationViewWithIdentifier:MY_PIN]; // set name
MKAnnotationView

Snippet 48. Annotation is with identifier.

After that, the aView is allocated by MKAnnotationView with the identifier

MY_PIN. In addition, it specifies some attributes for the annotation pin.

 aView = [[MKAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:MY_PIN];
 aView.canShowCallout = YES; // set call out

 97

 aView.calloutOffset = CGPointMake(0, 0); // set position call out off set
 aView.image = [UIImage imageNamed:MY_PIN_IMAGE]; // set place's image
for pin
 aView.leftCalloutAccessoryView = [[UIImageView alloc]
initWithFrame:CGRectMake(0, 0, 30, 30)]; // set frame for pin's image
 [aView setSelected:YES]; // set selected

Snippet 49. Set attribute of annotation.

Some attributes of the annotation pins like show call out, call out offset, image,

left call out accessory view, selected. The last attribute of the annotation is set the

image to nil. I don’t want to setup any images in this operation now.

 aView.annotation = annotation;
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:nil];

Snippet 50. Add image to annotation.

The last line is return to aView.

return aView;

Snippet 51. Return to annotation.

If the annotation is not kind of PlaceAnnotationView class, it will return to nil.

return nil;

Snippet 52. Return to nil.

5.8 Loading the images in the left call out accessory view:

This operation will load the images from the web service and add them to the left

call out accessory view. When the user chooses on the pin, it will show the call

out and the image from the left call out accessory view.

// image for annotation
- (UIImage *)image:(id)sender imageForAnnotation:(id <MKAnnotation>)annotation {

 PlaceAnnotationView *pav = (PlaceAnnotationView *)annotation;
 // get image's url
 NSURL *url = [FoodPlaceFetcher urlForPlace:pav.place];
 // get data from url
 NSData *data = [NSData dataWithContentsOfURL:url];
 // return image
 return data ? [UIImage imageWithData:data] : nil;
}

// load image when selecting
- (void)mapView:(MKMapView *)mapView

 98

didSelectAnnotationView:(MKAnnotationView *)aView {

 UIImage *image = [self image:self imageForAnnotation:aView.annotation];
 // load annotation's image
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:image];
}

Snippet 53. Load image for annotation.

This is a code for adding the images to the annotation:

// image for annotation
- (UIImage *)image:(id)sender imageForAnnotation:(id <MKAnnotation>)annotation {

 PlaceAnnotationView *pav = (PlaceAnnotationView *)annotation;
 // get image's url
 NSURL *url = [FoodPlaceFetcher urlForPlace:pav.place];
 // get data from url
 NSData *data = [NSData dataWithContentsOfURL:url];
 // return image
 return data ? [UIImage imageWithData:data] : nil;
}

Snippet 54. Get image for annotation.

It will get the URL from the place data.

 // get image's url
 NSURL *url = [FoodPlaceFetcher urlForPlace:pav.place];

Snippet 55. Get URL of image.

The operation dataWithContentsOfURL will get the data of image from the URL.

// get data from url
 NSData *data = [NSData dataWithContentsOfURL:url];

Snippet 56. Get data from URL.

The last line is return to the image with the data or return to nil if error happens.

 // return image
 return data ? [UIImage imageWithData:data] : nil;

Snippet 57. Return image data.

This is a code for load the image when selecting the annotation pin:

// load image when selecting
- (void)mapView:(MKMapView *)mapView
didSelectAnnotationView:(MKAnnotationView *)aView {

 99

 UIImage *image = [self image:self imageForAnnotation:aView.annotation];
 // load annotation's image
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:image];
}

Snippet 58. Load image when select the annotation.

This operation will load the image when the user touches the annotation pin. The

first line uses the previous operation to get the image.

 UIImage *image = [self image:self imageForAnnotation:aView.annotation];

Snippet 59. Load image for annotation.

After that, the last line will setup the image to the call out accessory view.

 // load annotation's image
 [(UIImageView *)aView.leftCalloutAccessoryView setImage:image];

Snippet 60. Setup the image to the call out accessory view.

5.9 Remove the cart item from the cart:

This operation will remove the cart item from the cart. When the user wants to

delete the cart item, they just have touched the cart item and slide to the right. The

delete button will be existed. Pressing the delete button will delete the cart item.

// remove from cart
- (void)removeFromCart:(UIManagedDocument *)document
atIndexPath:(NSIndexPath *)indexPath {

 dispatch_queue_t removeQ = dispatch_queue_create("Remove from Cart", NULL);
 dispatch_async(removeQ, ^{
 Cart *cart = [self.fetchedResultsController objectAtIndexPath:indexPath];
 [document.managedObjectContext performBlock:^{
 [Cart removeFromCart:cart
inManagedObjectContext:document.managedObjectContext];
 [document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL];

 // outlet
 [self showTotalOrderLabelWhenRemove];
 [self showCartLabel];
 [self showPlaceOrderBarButtonItem];
 [self showEmptyCartBarButtonItem];

 // badge value
 [self badgeValueUpdate];
 }];
 });
 dispatch_release(removeQ);
}

 100

Snippet 61. Remove food item from cart.

This upper code will delete the cart item from the cart. The application will get the

cart item in the carts array by this line:

 Cart *cart = [self.fetchedResultsController objectAtIndexPath:indexPath];

Snippet 62. Get cart from core data.

The cart item will use the index path to specify the cart item in the carts array. The

operation removeFromCart will use the managed object context to remove the cart

item.

[Cart removeFromCart:cart
inManagedObjectContext:document.managedObjectContext];

Snippet 63. Remove food item, using managed object context.

After removing the cart item, the application needs to save the document by this

line.

[document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL];

Snippet 64. Save the document.

Five last lines operation is setup the outlet on the view window screen.

 // outlet
 [self showTotalOrderLabelWhenRemove];
 [self showCartLabel];
 [self showPlaceOrderBarButtonItem];
 [self showEmptyCartBarButtonItem];

 // badge value
 [self badgeValueUpdate];

Snippet 65. Check outlet on screen.

5.10 Empty the cart:

This operation will empty the cart. When the user presses this button, the cart will

be emptied.

// empty cart
- (void)emptyCart:(UIManagedDocument *)document {

 dispatch_queue_t emptyQ = dispatch_queue_create("Empty Cart", NULL);

 101

 dispatch_async(emptyQ, ^{
 NSArray *carts = [self fetchedCarts];
 [document.managedObjectContext performBlock:^{
 [carts enumerateObjectsUsingBlock:^(Cart *cart, NSUInteger idx, BOOL
*stop) {
 [Cart removeFromCart:cart
inManagedObjectContext:document.managedObjectContext];
 }];
 [document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL];

 // outlet
 [self showCartLabel];
 [self showPlaceOrderBarButtonItem];
 [self showEmptyCartBarButtonItem];

 // badge value
 [self badgeValueUpdate];
 }];
 });
 dispatch_release(emptyQ);
}

Snippet 66. Empty the cart.

This above code will empty the cart. The application will get all of cart item and

return them to carts array.

 NSArray *carts = [self fetchedCarts];

Snippet 67. Get array of cart.

After that, the application will run loop through the carts array and remove cart

item in the carts array.

 [carts enumerateObjectsUsingBlock:^(Cart *cart, NSUInteger idx, BOOL
*stop) {
 [Cart removeFromCart:cart
inManagedObjectContext:document.managedObjectContext];
 }];

Snippet 68. Loop the cart and remove food item.

After removing the cart item, the document should be saved by this line.

[document saveToURL:document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:NULL];

Four last lines will setup the outlet in the view window.

 // outlet
 [self showCartLabel];

 102

 [self showPlaceOrderBarButtonItem];
 [self showEmptyCartBarButtonItem];

 // badge value
 [self badgeValueUpdate];

Snippet 69. Check outlet on window.

5.11 Send the order:

This is an operation sending the order. In order to send the order to the web

service, the application has to combine three operations: sendOrder,

prepareOrder:, startOrderUpload.

- (void)sendOrder {

 dispatch_queue_t sendQ = dispatch_queue_create("Send Order", NULL);
 dispatch_async(sendQ, ^{
 NSArray *carts = [self fetchedCarts];
 [self performSelectorOnMainThread:@selector(prepareOrder:) withObject:carts
waitUntilDone:YES];
 });
 dispatch_release(sendQ);
}

- (void)prepareOrder:(NSArray *)carts {

 NSString *orderUuid = [MacAddress getMacAddress].toSHA1; // get UUID
 NSString *orderTotal = [NSString stringWithFormat:@"%.2f", [self totalOrder]];
 NSString *orderDate = [[NSDate date] toString];
 NSString *orderDone = FALSE_VALUE; // set order to FALSE

 __block NSMutableArray *orderDetailParents = [NSMutableArray array]; // init
array
 __block NSMutableArray *keyOrderDetailParents = [NSMutableArray array];

 [carts enumerateObjectsUsingBlock:^(Cart *cart, NSUInteger idx, BOOL *stop) {
 NSString *foodName = cart.food.name;
 NSString *foodCount = [cart.count stringValue];
 NSString *foodPrice = [NSString stringWithFormat:@"%0.2f", [Helpers
timeNSDecimalNumber:cart.food.price andNumber:cart.count]];
 NSString *foodPlace = cart.food.place.name;

 // NSArray *foodObjects = @[foodName, foodCount, foodPrice, foodPlace];
 // NSArray *foodKeys = @[FOOD_NAME, FOOD_COUNT, FOOD_PRICE,
FOOD_PLACE];
 // NSDictionary *orderDetailChild = [NSDictionary
dictionaryWithObjects:foodObjects forKeys:foodKeys];
 NSDictionary *orderDetailChild = @{ FOOD_NAME : foodName,
 FOOD_COUNT : foodCount,
 FOOD_PRICE : foodPrice,
 FOOD_PLACE : foodPlace };

 [orderDetailParents addObject:orderDetailChild]; // add order detail child to
orderdetailparents

 103

 [keyOrderDetailParents addObject:[NSString stringWithFormat:@"%d", idx]]; //
add key orderdetailparent
 }];

 // alloc order detail parent
 NSDictionary *orderDetailParent = [NSDictionary
dictionaryWithObjects:orderDetailParents forKeys:keyOrderDetailParents];

 // NSArray *orderObjects = @[orderUuid, orderTotal, orderDate, orderDone,
orderDetailParent];
 // NSArray *orderKeys = @[ORDER_UUID, ORDER_TOTAL, ORDER_DATE,
ORDER_DONE, ORDER_DETAILS_ATTRIBUTES];
 // NSDictionary *orderChild = [NSDictionary dictionaryWithObjects:orderObjects
forKeys:orderKeys];

 NSDictionary *orderChild = @{ ORDER_UUID : orderUuid,
 ORDER_TOTAL : orderTotal,
 ORDER_DATE : orderDate,
 ORDER_DONE : orderDone,
 ORDER_DETAILS_ATTRIBUTES : orderDetailParent };

 NSDictionary *orderParent = @{ ORDER : orderChild };
 // NSDictionary *orderParent = [NSDictionary dictionaryWithObjectsAndKeys:
orderChild, ORDER, nil];

 NSData *orderData = orderParent.toJSON; // convert nsdictionary to nsdata

 [self startOrderUpload:kFoodPlaceOrdersURL withData:orderData];
}

// uploader delegate
- (void)startOrderUpload:(NSURL *)url withData:(NSData *)data {

 if (nil != data) {
 OrderUploader *orderUploader = [[OrderUploader alloc] initWithURL:url
 delegate:self
 orderData:data];
 [orderUploader startUpload];
 }
}

Snippet 70. Send an order to the web service.

This code allows to starting to order upload:

// uploader delegate
- (void)startOrderUpload:(NSURL *)url withData:(NSData *)data {

 if (nil != data) {
 OrderUploader *orderUploader = [[OrderUploader alloc] initWithURL:url
 delegate:self
 orderData:data];
 [orderUploader startUpload];
 }
}

Snippet 71. Start order upload.

 104

This code will use the delegate to start the upload data. It will allocate and

initialize with the URL, the delegate is self and the order data is data.

 OrderUploader *orderUploader = [[OrderUploader alloc] initWithURL:url
 delegate:self
 orderData:data];

Snippet 72. Initialize order upload.

After that, it will use startUpload operation to start uploading the data to the web

service.

 [orderUploader startUpload];

Snippet 73. Order uploader start to upload.

This is a code for preparing an order:

- (void)prepareOrder:(NSArray *)carts {

 NSString *orderUuid = [MacAddress getMacAddress].toSHA1; // get UUID
 NSString *orderTotal = [NSString stringWithFormat:@"%.2f", [self totalOrder]];
 NSString *orderDate = [[NSDate date] toString];
 NSString *orderDone = FALSE_VALUE; // set order to FALSE

 __block NSMutableArray *orderDetailParents = [NSMutableArray array]; // init
array
 __block NSMutableArray *keyOrderDetailParents = [NSMutableArray array];

 [carts enumerateObjectsUsingBlock:^(Cart *cart, NSUInteger idx, BOOL *stop) {
 NSString *foodName = cart.food.name;
 NSString *foodCount = [cart.count stringValue];
 NSString *foodPrice = [NSString stringWithFormat:@"%0.2f", [Helpers
timeNSDecimalNumber:cart.food.price andNumber:cart.count]];
 NSString *foodPlace = cart.food.place.name;

 // NSArray *foodObjects = @[foodName, foodCount, foodPrice, foodPlace];
 // NSArray *foodKeys = @[FOOD_NAME, FOOD_COUNT, FOOD_PRICE,
FOOD_PLACE];
 // NSDictionary *orderDetailChild = [NSDictionary
dictionaryWithObjects:foodObjects forKeys:foodKeys];
 NSDictionary *orderDetailChild = @{ FOOD_NAME : foodName,
 FOOD_COUNT : foodCount,
 FOOD_PRICE : foodPrice,
 FOOD_PLACE : foodPlace };

 [orderDetailParents addObject:orderDetailChild]; // add order detail child to
orderdetailparents
 [keyOrderDetailParents addObject:[NSString stringWithFormat:@"%d", idx]]; //
add key orderdetailparent
 }];

 // alloc order detail parent

 105

 NSDictionary *orderDetailParent = [NSDictionary
dictionaryWithObjects:orderDetailParents forKeys:keyOrderDetailParents];

 // NSArray *orderObjects = @[orderUuid, orderTotal, orderDate, orderDone,
orderDetailParent];
 // NSArray *orderKeys = @[ORDER_UUID, ORDER_TOTAL, ORDER_DATE,
ORDER_DONE, ORDER_DETAILS_ATTRIBUTES];
 // NSDictionary *orderChild = [NSDictionary dictionaryWithObjects:orderObjects
forKeys:orderKeys];

 NSDictionary *orderChild = @{ ORDER_UUID : orderUuid,
 ORDER_TOTAL : orderTotal,
 ORDER_DATE : orderDate,
 ORDER_DONE : orderDone,
 ORDER_DETAILS_ATTRIBUTES : orderDetailParent };

 NSDictionary *orderParent = @{ ORDER : orderChild };
 // NSDictionary *orderParent = [NSDictionary dictionaryWithObjectsAndKeys:
orderChild, ORDER, nil];

 NSData *orderData = orderParent.toJSON; // convert nsdictionary to nsdata

 [self startOrderUpload:kFoodPlaceOrdersURL withData:orderData];
}

Snippet 74. Prepare data for upload.

This code will prepare the information for the order like the name, the total price,

the cart item. After that, this code will collect the information from the phone and

order data such as ordering total price, order date and order done.

 NSString *orderUuid = [MacAddress getMacAddress].toSHA1; // get UUID
 NSString *orderTotal = [NSString stringWithFormat:@"%.2f", [self totalOrder]];
 NSString *orderDate = [[NSDate date] toString];
 NSString *orderDone = FALSE_VALUE; // set order to FALSE

Snippet 75. Get information for order.

Then, the application will create two block array order detail parents and the key

of order detail parents.

 __block NSMutableArray *orderDetailParents = [NSMutableArray array]; // init
array
 __block NSMutableArray *keyOrderDetailParents = [NSMutableArray array];

Snippet 76. Block two array order and key order.

The application will run the loop through the array carts to get the cart item, for

instance, name of food, count of food, price of food, and name of place of food.

 [carts enumerateObjectsUsingBlock:^(Cart *cart, NSUInteger idx, BOOL *stop) {

 106

 NSString *foodName = cart.food.name;
 NSString *foodCount = [cart.count stringValue];
 NSString *foodPrice = [NSString stringWithFormat:@"%0.2f", [Helpers
timeNSDecimalNumber:cart.food.price andNumber:cart.count]];
 NSString *foodPlace = cart.food.place.name;

 // NSArray *foodObjects = @[foodName, foodCount, foodPrice, foodPlace];
 // NSArray *foodKeys = @[FOOD_NAME, FOOD_COUNT, FOOD_PRICE,
FOOD_PLACE];
 // NSDictionary *orderDetailChild = [NSDictionary
dictionaryWithObjects:foodObjects forKeys:foodKeys];
 NSDictionary *orderDetailChild = @{ FOOD_NAME : foodName,
 FOOD_COUNT : foodCount,
 FOOD_PRICE : foodPrice,
 FOOD_PLACE : foodPlace };

 [orderDetailParents addObject:orderDetailChild]; // add order detail child to
orderdetailparents
 [keyOrderDetailParents addObject:[NSString stringWithFormat:@"%d", idx]]; //
add key orderdetailparent
 }];

Snippet 77. Get food item information.

In the loops, the application will add these data to the key FOOD_NAME,

FOOD_COUNT, FOOD_PRICE, FOOD_PLACE to the dictionary order detail

child. Finally, in the loops, the application will add the data item in to the array:

 [orderDetailParents addObject:orderDetailChild]; // add order detail child to
orderdetailparents
 [keyOrderDetailParents addObject:[NSString stringWithFormat:@"%d", idx]]; //
add key orderdetailparent

Snippet 78. Add order detail to order.

This is a code for sending an order:

- (void)sendOrder {

 dispatch_queue_t sendQ = dispatch_queue_create("Send Order", NULL);
 dispatch_async(sendQ, ^{
 NSArray *carts = [self fetchedCarts];
 [self performSelectorOnMainThread:@selector(prepareOrder:) withObject:carts
waitUntilDone:YES];
 });
 dispatch_release(sendQ);
}

Snippet 79. Send order function.

This code is connected with the sending order button. It sends the order to the web

service. It will fetch all the cart items in the cart.

 107

 NSArray *carts = [self fetchedCarts];

Snippet 80. Get array of cart.

And it uses performSelectorOnMainThread operation to connect and perform the

selector prepare order and carts object.

 [self performSelectorOnMainThread:@selector(prepareOrder:) withObject:carts
waitUntilDone:YES];

Snippet 81. Perform prepare an order.

 108

6 TESTING

When testing, the beginning of view window will load the list of foods first. It

will be delayed if your network connection is slow because of a delay loading the

images on the list of foods. In order to solve this problem, there is a need for a

strong network connection like Wireless network connections.

Figure 67. Users interface.

Every implemented operation was tested during coding and after finishing. Any

bug was immediately found and corrected.

• The application is lagged.

• The image is overloaded.

• Show alert when no network connection.

• Show alert when adding more 5 food items.

• Show action sheet when empty the cart.

• Show alert when place an order.

• An error is happened when add food item to the cart (bug in iOS 6 beta 4).

 109

In addition, the application has covered with a lot of the alert and logging. The

GUI has been tested by simple performing operation. Besides, the application has

been tested with the web service and it’s performing well.

Below are the testing results and screenshots of this iOS application.

6.1 The alert of adding more 5 items

When adding the food item to cart, the application is only limited five food items

per kind. So if the user adds more food items, it will show the alert to inform the

user is cheating.

Figure 68. Show the alert.

 110

6.2 Testing working of call out accessory

When the user chooses on the pin, it will show the call out view to inform the

name of place and address of place. Also it will show the small picture of the

place.

Figure 69. Call out view.

6.3 Calculate the price and badge value update

When the user adds the food item to the cart, it will show the food item like this:

Figure 70. Food item in cart view.

 111

In the cart, the food will show the name of food, the count of food, the total price

of each food and the total price for all of the foods. When the food is added in the

cart, the empty cart button and the place order button will be enabled. Also, the

badge value will be displayed.

6.4 The action sheet of empty cart

When the user chooses the empty cart button, the action sheet will show to ask to

confirmation. Do you really want to do it or cancel?

Figure 71. Show the action sheet.

6.5 The alert of place order

When the user chooses the place order button, the alert will show to ask

confirmation. Do you really want to place an order or not.

 112

Figure 72. Show the alert view.

When the user chooses no, the alert will disappear and come back to the cart view.

The action place order doesn’t activate. When the user chooses yes, the place

order will be activated and the alert will show the order is reserved.

Figure 73. Show alert view done.

 113

7 CONCLUSION

This application consists of two parts: client side is an iPhone application, which

can run on iOS 5 or later versions. The server side is a web service. The client

application can receive data from the web service and send data to the web

service.

The client application can get a list of food data, a list of place data, a map of

places and a shopping cart to store food data. It can also calculate price of foods in

the shopping cart and send the order to the web service. On the server side, the

web service has keeps and handles data of foods, places and orders.

And the implementation has been done on server side are create, update, remove

and edit on food and place, get list of order and order detail and remove order.

The most challenging part in my application is to send the data from the client to

the web service. And the function upload the data has also challenges me.

The application can be further developed in the following ways: the data from

mobile phone can be synchronized with the web service, the view list of food can

be displayed by collection view (collection view is a new view controller in

iOS6), the passbook application will be integrated.

 114

8 REFERENCES

/1/ JSON – Introducing JSON (2003). [referred 15.05.2012] Available on the

Internet: <URL:http://www.json.org/>

/2/ Wikipedia – Cocoa (API) (2012). [WWW]. [referred 16.05.2012] Available

on the Internet: <URL:http://en.wikipedia.org/wiki/Cocoa_(API)/>

/3/ Wikipedia – JSON (2012). [WWW]. [referred 16.05.2012] Available on the

Internet: <URL:http:/ /en.wikipedia.org/wiki/JSON/>

/4/ Apple Developer – What Is Cocoa? (2010). [WWW]. [referred 16.05.2012]

Available on the Internet:

<URL:http://developer.apple.com/library/mac/#documentation/Cocoa/Conc

eptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html>

/5/ WWDC 10 Videos – Session 117 – Building a Server-driven User

Experience (2010). [WWW]. [referred 16.05.2012] Available on the Itunes:

<URL:https://developer.apple.com/itunes/?destination=adc.apple.com.4092

349126.04109539109.4144345611?i=1991648002>

/6/ Apple Developer – iOS Technology Overview (2011). [WWW]. [referred

16.05.2012] Available on the Internet:

<URL:http://developer.apple.com/library/ios/#documentation/Miscellaneou

s/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html>

/7/ Apple Developer – About iOS Development (2011). [WWW]. [referred

16.0.5.2012] Available on the Internet:

<URL:http://developer.apple.com/library/ios/#documentation/Miscellaneou

s/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOver

view.html#//apple_ref/doc/uid/TP40007898-CH4-SW1>

/8/ Apple Developer – iOS Developer Tools (2011). [WWW]. [referred

16.05.2012] Available on the Internet:

<URL:http://developer.apple.com/library/ios/#documentation/Miscellaneou

s/Conceptual/iPhoneOSTechOverview/iPhoneOSDeveloperTools/iPhoneOS

DeveloperTools.html#//apple_ref/doc/uid/TP40007898-CH7-SW1>

 115

/9/ Wikipedia – Ruby on Rails (2012). [WWW]. [referred 17.05.2012]

Available on the Internet:

<URL:http://en.wikipedia.org/wiki/Ruby_on_Rails>

/10/ Wikipedia – Ruby (programming language) (2012). [WWW]. [referred

23.10.2012] Available on the Internet: <URL:

http://en.wikipedia.org/wiki/Ruby_(programming_language)>

/11/ Heroku – Cloud Application Platform (2012). [WWW]. [referred

25.10.2012] Available on the Internet: <URL: http://www.heroku.com>

/12/ Heroku – Business (2012). [WWW]. [referred 25.10.2012] Available on the

Internet: <URL:http://www.heroku.com/business>

