

MIDI INTERPRETER SOFTWARE

Bachelor's thesis

Information Technology

Forssa, 25 November 2009

Timo Vahtera

BACHELOR'S THESIS

Information Technology

HAMK University of Applied Sciences

Title MIDI Interpreter Software

Author Timo Vahtera

Supervised by Juha Sarkula

Approved on _____._____.20_____

Approved by

ABSTRACT

FORSSA

Degree Programme in Information Technology

Author Timo Vahtera Year 2009

Subject of Bachelor’s thesis MIDI interpreter software

ABSTRACT

The MIDI interpreter was part of the HAMK Örch Orchestra project. The

goal of the Örch Orchestra was to compete in the Artemis musical robot

competition held in Athens 3.6.2008.

The MIDI interpreter is a standalone hardware and software solution that

interprets MIDI messages for a piano playing robot. This thesis involves

everything from designing and creating the MIDI interpreter software, in-

cluding relevant information about the hardware it was programmed for

and about the Örch Orchestra project as a whole.

The function of the MIDI interpreter software is to receive MIDI messages

for a MIDI sequencer and to interpret the messages into commands for the

piano playing mechanical fingers of the robot.

The MIDI interpreter software’s final version was completed on

28.5.2008; it was successfully used in the Artemis competition 3.6.2008.

Keywords MIDI, Interpreter, Music, Instrument, Piano, Robotics

Pages 33 pp. + appendices 10 pp.

 TIIVISTELMÄ

FORSSA

Tietotekniikan koulutusohjelma

Tekijä Timo Vahtera Vuosi 2009

Työn nimi MIDI-tulkkiohjelma

TIIVISTELMÄ

MIDI-tulkki oli osa Hämeen ammattikorkeakoulun Örch Orkesteri projek-

tia. Örch Orkesterin tavoitteena oli kilpailla Artemis musiikkirobottikilpai-

lussa joka pidettiin Ateenassa 3.6.2008.

MIDI-tulkki on itsenäinen laitteisto- ja ohjelmistosovitus joka tulkitsee

MIDI-viestejä pianoa soittavalle mekaniikalle. Tämä opinnäytetyö sisältää

kaiken MIDI-tulkin suunnittelusta toteutukseen, sekä kaiken tarvittavan it-

se alustasta ja HAMK Örch Orkesterista.

MIDI-tulkin tehtävä on ottaa vastaan MIDI-viestejä ja tulkata niitä ko-

mennoiksi robotin pianoa soittavalle sormimekaniikalle.

MIDI-tulkin ohjelmiston viimeinen versio oli valmis 28.5.2008; tulkkia

käytettiin onnistuneesti Artemis kilpailussa 3.6.2008.

Avainsanat MIDI, Tulkki, Musiikki, Instrumentti, Piano, Robotiikka

Sivut 33 s. + liitteet 10 s.

CONTENTS

1 INTRODUCTION ... 1

1.1 Premise .. 1
1.1.1 Contest Rules ... 2

1.2 Robot ... 3
1.2.1 Tempo Recognition Unit ... 4
1.2.2 MIDI Sequencer .. 5

1.2.3 MIDI interpreter and Mechanics Controller Boards................................ 6
1.2.4 Mechanics .. 7

2 TECHNOLOGIES ... 10

2.1 MIDI Primer .. 10
2.1.1 MIDI Technology .. 12

2.2 UART Primer .. 13
2.2.1 Protocol .. 14

2.3 I
2
C Primer .. 15

2.3.1 Physical design .. 15

2.3.2 Hardware Protocol ... 16
2.3.3 Software Protocol .. 17

3 MIDI INTERPRETER .. 18

3.1 Development ... 18

3.1.1 Hardware ... 19
3.1.2 Software ... 21

3.2 Interpretation ... 22

3.2.1 Messages .. 23
3.2.2 Interpretation process .. 25
3.2.3 Initialization of the board .. 27
3.2.4 Updating MCBs & Waiting for MIDI message bytes 27

3.2.5 Aggregating MIDI message bytes ... 28
3.2.6 Transpositioning notes for piano scale .. 29
3.2.7 Resolve mechanics controller board & finger 30

3.2.8 Running Status and error handling .. 31
3.2.9 Source code.. 31

4 CONCLUSION ... 31

4.1 Future .. 31

4.2 Interpreter .. 32

SOURCES .. 33

APPENDIX 1 MIDI INTERPRETER SOURCE CODE

APPENDIX 2 MIDI INTERPRETER HARDWARE SCHEMATIC

APPENDIX 3 MECHANICS CONTROLLER BOARD HW SCHEMATIC

MIDI Interpreter Software

1

1 INTRODUCTION

The purpose of this thesis was to design and program a MIDI interpreter

software as part of the HAMK Örch Orchestra Musical Robot project.

Problem

The problem of this thesis is controlling an instrument playing robots me-

chanical fingers with MIDI messages.

Solution

The solution is to create an embedded electronics controller board that

receives MIDI messages, interprets those messages, and then controls the

robot’s mechanics according to the received messages.

1.1 Premise

The Örch Orchestra team’s motive was to create a musical instrument

playing robot to compete in the Artemis Orchestra contest. The contest is

an event directed towards electronics enthusiasts who would like to test

their skill and gain experience in the field of embedded systems develop-

ment. (Artemis Orchestra Contest 2008)

The aim of the Artemis contest is to create an embedded system that plays

an instrument. The Artemis contest jury decides the winner by observing

the execution, style and outcome of each contestant robot or robots. Essen-

tially, whoever builds the most impressive solution wins. (Artemis Or-

chestra Contest 2008)

The creation of the Örch Orchestra robot was a team effort. Each member

of the ten person team had their own role within the project. My responsi-

bility was to program the software that would interpret MIDI messages in-

to mechanical commands for the robot; this is also the main subject of this

thesis.

MIDI Interpreter Software

2

1.1.1 Contest Rules

The robots entering the contest had to follow the Artemis contest rules set

by the Artemisia Association. The rulebook was a 10 page PDF document

given to the contest participants. It had 51 separate rules, some of them

covering the procedures on entering the contest, others on common com-

petition rules, scoring and so on.

Here are some robot specific rules worth mentioning:

- The instrument that was played should not be modified in any way

- The instrument should be detachable from the robot

- The robot must play the instrument from the same interface a human

would play it

- The robots weight limit is 20 kg when not including the instrument

- The robot should wirelessly fetch the music file from a special contest

server

- Robots should play the instruments using LilyPond as the music file

format

- The robot should follow conducting using a conductors baton and

change the speed of playing accordingly

(Artemis Orchestra Contest Rules 2008)

The idea of the contest was to specifically make a machine play an unmo-

dified instrument the same way a human would. This is why the no mod-

ified instruments, detachable instruments and human interface rules were

the three most important rules in the contest. The detaching rule ensured

that the robot was built in a way that the instrument is exchangeable and

that the instrument is not part of the robot.

In the end these rules turned out to be more like guidelines as not even one

contestant followed all of the rules to the letter. For example our robot had

a total weight of about 75 kg, almost four times as much as the contest

limit. Even with the extra weight we were allowed to enter the contest.

The other rule that was completely ignored by all the contestants was the

LilyPond rule. At the contest site it turns out that none of the contestants

used LilyPond files. Instead of using LilyPond as the robot’s default music

file media, all of the contestants used MIDI files. The reason for this was

that converting MIDI files to LilyPond files was very troublesome and

playing them with a robot doubly so. The LilyPond rule was incompre-

hensible to begin with because LilyPond is a program used to create music

engraving (music engraving is the art of drawing music notation). This

was the reason why nobody used it in the competition. MIDI files are real-

ly common as there are thousands upon thousands of MIDI music files on

the internet, anything from classical music to contemporary TV-series

themes. MIDI files are only files that contain note data; this is better ex-

plained in chapter 2.1 MIDI Primer. MIDI files are specifically created to

be used in musical instruments and that is why every contestant used

MIDI files instead of LilyPond files.

MIDI Interpreter Software

3

A conducting solution was also built as stated in the rules. The conducting

unit is called the Tempo Recognition Unit. More information on the tempo

recognition unit can be found in chapter 1.2.1 Tempo recognition unit.

1.2 Robot

The instrument chosen by our team was a 61-key electronic piano. The pi-

ano was chosen because it is a fairly common instrument and it is relative-

ly easy to play by a machine. There was discussion about building a guitar

playing robot and a drum playing robot in addition to the piano so we

would have an actual orchestra to enter the contest with. Unfortunately the

additional robots were never built as we did not have enough time or man-

power.

After the instrument was chosen two of our team members began to build

a 61 fingered mechanical apparatus. This was to be the mechanical part of

the robot that would do the physical playing. The other members focused

on building a tempo recognition unit, a MIDI sequencer and a MIDI inter-

preter.

A previously made flute robot was also part of our orchestra. The flute ro-

bot was created by a different team for an Artemis contest held the pre-

vious year. It was incorporated in our Örch Orchestra project as the second

instrument playing robot. In the competition the flute robot played beside

the piano robot.

There are four parts in the piano robot all in all: The tempo recognition

unit; the MIDI sequencer; the MIDI interpreter with the mechanics con-

trollers and the mechanics. These four parts as a whole make the robot.

These four parts can be seen in Figure 1. Each of these components is ex-

plained in its respective chapter. The piano is obviously not counted as a

part of the robot.

MIDI Interpreter Software

4

Figure 1 – Diagram showing the four parts of the robot and the relationships of these

parts. Arrows show flow of data, except the last arrow from mechanics to piano stands

for mechanical operation.

1.2.1 Tempo Recognition Unit

The Tempo Recognition Unit (also known as the Conducting Unit) is a

camera connected to an FPGA board that has software programmed to

recognize the movements of a specially made conductor’s baton using a

camera. The conductor’s baton is a short stick with a red LED mounted on

the other end.

When the LED is moved in front of the camera its position is being ob-

served by the Tempo Recognition Unit software programmed for the

FPGA. Between every image capture interval the tempo software calcu-

lates the speed of the baton’s movement. Every time a new value is calcu-

lated the software sends the tempo information to the MIDI sequencer.

Figure 2 shows the tempo recognition unit in use.

MIDI Interpreter Software

5

Figure 2 – Tempo recognition unit in use at the Artemis competition. The tempo recogni-

tion units FPGA board is in the lower right corner of the image. Above the FPGA board

is the camera. (Photo: Artemis Project 2008)

1.2.2 MIDI Sequencer

A MIDI sequencer is in essence a MIDI music file player program. This

means it opens a MIDI file and plays it through speakers or sends it to

some other device that is capable of receiving and acting upon MIDI mes-

sages.

The sequencer created for this project is a program that runs on a Linux

operating system. Its function is to read Standard MIDI Files and parse the

relevant information for sending to the MIDI interpreter.

What is special about this sequencer is that it is also continuously receiv-

ing information from the tempo recognition unit. Using the tempo recogni-

tion unit’s information the sequencer adjusts the speed of the playback.

An already existing MIDI sequencer could have been used if the contest

would not have required special conducting of the robot. As there was no

MIDI sequencer with such special capabilities, a sequencer capable of re-

ceiving real-time tempo information had to be programmed from scratch.

MIDI Interpreter Software

6

1.2.3 MIDI interpreter and Mechanics Controller Boards

The interpreter is a small microcontroller circuit board that is connected to

4 additional circuit boards that are called the Mechanics Controller

Boards. The interpreter and the mechanics controllers work together to

control the mechanical fingers.

When MIDI messages from the sequencer arrive to the interpreter, the in-

terpreter uses the messages to control the Mechanics Controller Boards

which in term control the mechanical fingers. The four MCBs can control

each finger in the 61-finger array individually; corresponding to the inter-

preter’s received messages.

The interpreter’s hardware and software are better covered in their respec-

tive chapters 3.1.1 Hardware and 3.1.2 Software.

MIDI Interpreter Software

7

1.2.4 Mechanics

The mechanics were built from 61 linear solenoids connected to an array

of mechanical fingers, one solenoid for each finger on the finger array. A

solenoid can pull one finger down and hold it down for as long as a Me-

chanics Controller Board controls it to do so. Each of the four Mechanics

Controller Boards is mounted to an acrylic glass frame with 16 solenoids

as seen in Figure 3.

Figure 3 –Four mechanics controller board frames with one MIDI interpreter frame in

the middle. The white cabling running to the right is attached to the mechanical fingers.

(Photo: Artemis Project 2008)

A solenoid’s operating principle is to retract whenever electric current is

run through it. When a MIDI Note-On message is received by the interpre-

ter it sends a command to the mechanics controller board to let electric

current through for a specific solenoid controlling the right finger. This

pulls the finger down and presses the key on the piano. Note-Off messages

work the same way but only in reverse. Figure 4 shows a close-up photo

of the fingers on top of piano keys.

MIDI Interpreter Software

8

Figure 4 – Photo of a portion of the keys. In this image the fingers are not yet connected

to the cables and the pull-up rubber bands are missing as well. (Photo: Artemis Project

2008)

Figures 5 and 6 both show the finger mechanics from two different pers-

pectives. Unfortunately no better photos can be taken, as at the time of

writing this thesis the finger mechanics have been dismantled. Figure 7 is

an image of the entire finger array when it was still under development.

Figure 5 – Finger mechanics placed on top of the piano as seen from behind. On the bot-

tom the white cables are each connected to one of the fingers with a yellow string, the

other end of the cables are connected to solenoids. (Photo: Artemis Project 2008)

MIDI Interpreter Software

9

Figure 6 – Finger mechanics placed on top of piano keys. This design was deemed non-

functional because the fingers did not go down and back up correctly most of the time.

This realization came unfortunately too late, this was the reason we came last in the con-

test. (Photo: Artemis Project 2008)

Figure 7 – Incomplete finger mechanics. There are 61 solenoids on the right side of the

table. The solenoids were later put into acrylic frames with their respective mechanics

controller boards. (Photo: Artemis Project 2008)

MIDI Interpreter Software

10

Piano

The piano used was a Casio CTK-496, a full-size 61-key electronic piano.

Any piano could have been used as the mechanical fingers could play any

kind of a piano as long as the piano keys are of standard size and the fin-

ger mechanics are placed correctly in front of the piano. There was no

special reason for choosing this specific piano, other than the fact that it

was pretty cheap. Figure 8 is a picture of the piano.

Figure 8 – A Casio CTK-496, the piano used by our robot. (Photo: Artemis Project 2008)

2 TECHNOLOGIES

The three main technologies used by the interpreter are MIDI, UART and

I
2
C. Each one of these technologies is better explained in their respective

chapters. MIDI and UART walk hand in hand, as MIDI is the way musical

performances are represented in digital format and UART is the technolo-

gy used to transmit MIDI between devices. I
2
C is used between the MIDI

interpreter and the four Mechanics Controller Boards.

2.1 MIDI Primer

MIDI is short for Musical Instrument Digital Interface. It was created by

the MIDI Manufacturer’s Association for the purpose of enabling elec-

tronic musical instruments to communicate with each other. (MIDI Manu-

facturers Association 2008a)

MIDI Interpreter Software

11

In most cases MIDI devices fall into one of two categories. These two cat-

egories are:

 MIDI controlling devices

 MIDI controllable devices

This is somewhat self-explanatory as MIDI controlling devices are devices

that send MIDI messages to MIDI controllable devices. MIDI controllable

devices are devices which generate sound according to the received MIDI

messages. (MIDI Manufacturers Association 2008a)

Most typical electronic pianos – also known as keyboard synthesizers –

are both MIDI controllers and sound generators. The reason for this is that

electronic pianos have built-in speakers to produce the necessary sounds

for musical playback and the ability to control other instruments attached

to them. Yet there are electronic pianos available that have no speakers,

these are intended to be used as purely with computers or other MIDI con-

trollable devices. (MIDI Manufacturers Association 2008a)

Most modern musical keyboards have MIDI capabilities. Even though

MIDI was primarily designed for keyboard players, MIDI is also used in

different kinds of instruments. There are MIDI wind controllers, MIDI

guitars, MIDI drums, even MIDI accordions. These non-keyboard devices

are referred to as 'alternate MIDI controllers.' (MIDI Manufacturers Asso-

ciation 2008a)

Specialized control devices are quite separate from alternate MIDI con-

trollers or electronic pianos because they are not used to trigger notes on a

MIDI controllable device; they control the mechanics of a MIDI music

device using controllers similar to that of a mixing console. Such MIDI

controllers can be used to control anything from music software to a light-

ing rig used in concerts. (MIDI Manufacturers Association 2008a)

All modern computers have the ability to create and play MIDI files, and

also the ability to connect with other MIDI enabled devices with appropri-

ate accessories. Anyone with a personal computer can compose, arrange,

and record music, or use a computer to learn about music or how to play

an instrument. Given that the computer has the necessary software in-

stalled. (MIDI Manufacturers Association 2008a)

There are countless software applications that involve MIDI. For example:

- MIDI sequencers and editors

- Auto accompaniment applications

- Notation programs

- Music teaching software

- Games

- DJ and remixing environments

(MIDI Manufacturers Association 2008a)

MIDI Interpreter Software

12

2.1.1 MIDI Technology

MIDI devices do not transmit recorded audio, nor are MIDI files recorded

audio. MIDI files and MIDI transmissions are a series of event messages

which hold information such as the musical notes to play. MIDI music

files are somewhat analogous to music sheets, but in electronic form.

Since the music is simply note data rather than recorded audio, the file size

of MIDI files is tiny compared to recorded audio.

Usually MIDI devices are equipped with separate MIDI-In and a MIDI-

Out connectors. MIDI devices are connected to each other with one-way

MIDI cables through these connectors. MIDI devices use the standardized

DIN 5-pin at 180° connectors as the MIDI connectors. Illustration of the

port can be seen in Figure 9. The DIN connectors are circular, 13.2 mm in

diameter, with a notched round metal shield that limits the orientation in

which the plug and the socket can connect. There are 5 metallic pins inside

the shield positioned in a semicircle, hence the “180°” in the name. (MIDI

Technical Brainwashing Center 2009a)

Figure 9 – MIDI devices use DIN 5-pin at 180° connector for cables and connectors. The

connectors on instruments are female, cables are male.

The major MIDI messages fall into four types. These categories are Chan-

nel Voice messages, Channel Mode messages, System Common messages

and System Real Time messages. Descriptions of each message type can be

found in Table 1. Table 2 is a closer inspection of messages in the Chan-

nel Voice message type. There is no reason for closer inspection of the

other types as the interpreter only uses Channel Voice Messages. (MIDI

Manufacturers Association 2008b)

Most MIDI messages represent a common musical performance event or

gesture such as note-on, note-off, volume, pedal, modulation signals, pitch

bend, program change, aftertouch, channel pressure and so on. The Sys-

tem Common and System Real Time messages affect the playing device it-

self and have less to do with the actual musical performance. (MIDI Man-

ufacturers Association 2008b)

MIDI Interpreter Software

13

Table 1 – Shows the main MIDI Message types and their descriptions.

Message Type Description

Channel Voice Contains musical performance information.

Channel Mode Controls how synthesizers respond to MIDI

messages.

System Common Intended for all receivers in the system.

System Real Time Used for synchronization between clock-based

MIDI components.

Table 2 – Channel Voice Messages and their descriptions. Messages used by the inter-

preter are highlighted in green.

Message Description

Note-Off Note information. Sent when a note ends.

Note-On Note information. Sent when a note begins.

Polyphonic Key

Pressure

Pressure information. Works only on pressure

sensitive synthesizers. (Aka. Aftertouch)

Control Change Controls controller volume, pedal, etc.

Program Change Specify instrument on a given channel.

Channel Pressure Pressure information. Sends single greatest pres-

sure value. (Aka. Aftertouch)

Pitch Wheel Change Pitch information. Change in pitch wheel.

In this project however, we are not using MIDI exactly as it is supposed to

be used. Instead of connecting the MIDI sequencer to an electronic piano’s

MIDI-In port, we do the playing in a roundabout way by connecting the

MIDI sequencer to a device - the interpreter – which translates the MIDI

messages to movement of the mechanical fingers which in term play the

piano from the actual keys.

MIDI messages are transferred between devices using UART. This means

that the MIDI sequencer is connected to the interpreter with a DIN 5-pin

cable and the MIDI is transmitted using UART.

2.2 UART Primer

UART stands for Universal Asynchronous Receiver/Transmitter. It is used

for serial communication between devices such as PCs, modems, termin-

als and MCUs. It also happens to be the technology MIDI uses to transmit

MIDI messages between devices. (Extreme Electronics 2008)

The UART transmitter sends bytes of data bit by bit in sequence, serially

over one data line, as opposed to transferring data in parallel over multiple

lines. At the receiving end an UART receiver gathers the received bits and

re-assembles them to complete bytes again. (Extreme Electronics 2008)

MIDI Interpreter Software

14

2.2.1 Protocol

The essence of asynchronous transmission is that the data can be sent

without a clock line, using only a data line. The sending and receiving

units are configured beforehand to have the right clock timing and bit pa-

rameters. This allows the sending of bits without having a separate clock

line to signal the receiving device when to read the data line. Word is the

unit of one transmission burst; this consists of a start bit, 5 to 8 data bits,

an optional parity bit and a stop bit. Figure 10 is an illustration of a typical

data word. (Extreme Electronics 2008)

Figure 10 – UART data line with 8 data bits and a parity bit. TXD stands for Transmitter

on the sending device and RXD for the Receiver in the receiving device.

Each word sent out by the transmitter starts with a start bit. The receiving

device uses the start bit to synchronize its internal clock to be in the same

phase as that of the transmitters. This is the key component in asynchron-

ous data transfer. Every start bit sent synchronizes the internal clock of the

receiver unit. This allows the receiver to read the rest of the data bits from

the data line by looking the lines high/low state at exactly the right times.

(Extreme Electronics 2008)

Following the start bit are the data bits. The data bits are sent starting with

the Least Significant Bit. All of the bits are transmitted for exactly the

same amount of time. Taking advantage of this, the receiver examines the

state of the data line exactly at the midpoint of every bit sent in the line.

Because the transmitter and receiver are preconfigured to have the same

transmission settings the receiver knows how many data bits to expect and

also if there is a parity bit before the stop bit. (Extreme Electronics 2008)

The parity bit is used to make the bit count always even or odd, depending

on the transmission settings. This way the receiver will be able to do sim-

ple error checking on the received word. If the received word has an odd

number of high bits, but the transmission parameters were set so that the

words would always have an even number of high bits, the receiver can

detect that at least one of the bits has changed its value. Of course this on-

ly works when the errors occur in odd numbers, because if two bits would

swap their respective values the parity would not change. If one assumes

that the receiver, transmitter and the data line are configured correctly and

working as they are supposed to, the error rate drops to be so infinitesimal-

ly small that if more than one bit ever changes its value inside a data word

it would be a very strong sign of something being wrong with one of the

devices or the data line. (Extreme Electronics 2008)

The final bit in the word is the stop bit. It signals the end of the data word.

It is only after the receiver has received the stop bit that it assembles the

serially received data bits to a complete byte. The start, stop and parity bits

MIDI Interpreter Software

15

are not saved; they are only used as means to an end and therefore are dis-

regarded when the whole word has arrived. If for some reason the receiver

does not receive a stop bit, it will regard the word as corrupt data and raise

a Framing Error. The most usual cause for the Framing Error is that the

transmitter’s and receiver’s clocks are not in sync, or are running at differ-

ent speeds. (Extreme Electronics 2008)

The start bit of a new word can be sent immediately after the previous

word’s stop bit was sent. And in this manner the receiver and the transmit-

ter communicate as long as there are words to send. When there is nothing

to send, the data line can be idle. Whenever new data words are sent, the

receiver self synchronizes itself with the transmitter when it receives the

start bit. (Extreme Electronics 2008)

The speed of UART transmission is measured in Bauds. One Baud is

equivalent to one state change per second. So a baud rate of 19200 would

mean that the data line can change 19200 times in a second. This however

does not translate to 19200 bits transferred per second because each byte is

accompanied by at least two extra bits (three with parity) that do not count

as data, these are the start and stop bits. (Extreme Electronics 2008)

The MIDI devices use UART in a configuration that has one start bit, 8

data bits and one stop bit with the baud rate of 31250 baud. Thus the MIDI

sequencer sending the MIDI messages and the MIDI interpreter receiving

the MIDI messages have both been configured with these parameters. (Ex-

treme Electronics 2008)

2.3 I
2
C Primer

I
2
C, short for Inter-Integrated Circuit-bus, is a low speed serial bus con-

nection. Because of licensing issues some device manufacturers have im-

plemented the same technology under the name of Two Wire Interface

(TWI) which is essentially the same thing. In the Atmel ATmega16 MCU

we are using in the interpreter the bus is called TWI. In this thesis howev-

er this technology is addressed as I
2
C because that is the name majority of

people recognize. (Robot Electronics 2009)

I
2
C is used by the interpreter to control the Mechanics Controller Boards.

Describing I
2
C is easier when it is cut down into separate parts. These sep-

arate parts are physical design, hardware protocol and software protocol.

2.3.1 Physical design

The I
2
C bus consists of two wires. These two wires are:

- SCL - Clock line

- SDA - Data line

MIDI Interpreter Software

16

All devices in the bus are connected to these two lines. Both of these lines

are open drain drivers. This means that the bus lines are always high un-

less pulled down by one of the devices. Both of the lines are pulled back

up by a 5V supply voltage with a pull-up resistor for each. In Figure 11

below is an illustration of a typical I
2
C connection between a master de-

vice and slaves.

Figure 11 – A typical I

2
C connection. Red line stands for SDA (data line), green line

stands for SCL (clock line). RP is a pull-up resistor, one for each line.

2.3.2 Hardware Protocol

Devices on the bus are either masters or slaves. The master is the device

which controls the clock line. The master is also the only device that can

initiate data transfer. In a typical I
2
C bus setup there is a single master and

multiple slaves. Having a bus with multiple masters is possible but this se-

tup is unusual. (Robot Electronics 2009)

Every time a master device wishes to start or stop a data transfer it has to

send a special sequence on the bus. These two sequences are known as the

start sequence and the stop sequence, shown in Figure 11. What is special

about these two sequences is that both of them change the data line (SDA)

when the clock line (SCL) is up. This is how the start and stop sequence

are identified by the slave devices. All other data transfer happens only

when the clock line is low. (Robot Electronics 2009)

Figure 11 – Start and stop sequences. These two sequences are the only ones which

change the data line when the clock line is high.

After the start sequence the data is transferred. In I
2
C the data is sent in 8

bit sequences starting with the MSB (Most Significant Bit). After each

byte the device receiving the data sends back an acknowledgement bit

MIDI Interpreter Software

17

(ACK). So for each sent data byte there are 9 clock cycles, 8 cycles for

each bit in the byte and one for the ACK bit. Figure 12 shows the data and

clock lines when transmitting a byte. A low ACK bit means that the re-

ceiving device is ready for more data. If for some reason the receiving de-

vice sends a high ACK bit it means that it cannot accept any more data

(memory full or error of some sort). If the master receives a high ACK bit

it will terminate the transfer and send the stop sequence. (Robot Electron-

ics 2009)

Figure 12 – The clock and data lines during a data byte transfer.

The master can send data to and receive data from each one of the slaves

individually. This is achieved by giving each of the slaves a unique ad-

dress. In most cases these addresses are 7 bit, however there are some de-

vices that can handle 10 bit addresses. The 7 bits used for device address-

ing allows for a total of 128 slave devices on a single I
2
C bus. As all data,

this one is also sent out as a byte. The 8th bit after the address is the

Read/Write bit. Both lines are shown in Figure 13. (Robot Electronics

2009)

Figure 13 – The clock and data lines during an address & R/W byte transfer.

The original I
2
C specification had a clock speed of 100 KHz. The specifi-

cation was later updated by Philips to accommodate faster data transfer.

These new speeds were called Fast mode (400 KHz) and High Speed

mode (3.4 MHz). (Robot Electronics 2009)

2.3.3 Software Protocol

When the master wants to write to one of its slave devices first it has to

send out the start sequence. After that, the address bits with the R/W bit.

Then a byte is sent containing the internal register number where the mas-

ter will write to. Then all the data bytes are sent, one or more in consecu-

tive order. After all the necessary data bytes are sent the master sends a

stop sequence to mark the ending of the transaction. The writing process

from the master’s perspective looks something like this:

MIDI Interpreter Software

18

1. Send a start sequence

2. Send the 7 address bits and the R/W bit (R/W bit is low)

a. Receive ACK

3. Send internal register number that the master wants to write to

a. Receive ACK

4. Send the data byte

a. Receive ACK

5. [Send Optional data bytes]

a. [Receive ACK]

6. Sends a stop sequence.

The reading is a bit more complicated, but not by much. When the master

wants to read from one of its slave devices it has to send the starting se-

quence and the address bits with the R/W like before. After this the inter-

nal register number is sent, this is to inform the slave that the master wants

to read that particular register. Then the start sequence is sent again, this is

called a restart. This is where the process differs from writing. After the

restart sequence the master sends the address bits again, but this time the

R/W bit is high, signaling that it is ready to receive the slave’s data. The

slave then takes control of the data line, sending its internal registers byte

to the master. After this the master sends the stop sequence to terminate

the transaction. In short it happens like this:

1. Send a start sequence

2. Send the 7 address bits and the R/W bit (R/W bit is low)

a. Receive ACK

3. Send internal register number that the master wants to read from

a. Receive ACK

4. Send a start sequence again

5. Send the 7 address bits and the R/W bit (R/W bit is high)

a. Receive ACK

6. Read data byte from slave

a. Send ACK

7. Send the stop sequence

The MIDI interpreter uses only the writing aspect of I
2
C. Each time the

MIDI interpreter communicates with one of the Mechanics Controller

Boards the interpreter opens a master slave communication and writes to

both of the two registers the Mechanics Controller Board slave devices

has. Each of the two registers in one MCB controls 8 fingers, 16 in total.

This is better explained in the 3.2.2 Interpretation process chapter. (Robot

Electronics 2009)

3 MIDI INTERPRETER

3.1 Development

The interpreter software was developed to run on an Atmel ATmega16

microcontroller. The ATmega16 microcontroller unit was chosen because:

MIDI Interpreter Software

19

- It is sufficiently powerful for handling MIDI interpretation

- It has UART capabilities

o Used to receive MIDI messages

- It has I
2
C capabilities

o Used to control the Mechanics Controller Boards

- It was readily available

- I knew how to program for it

(AVR Freaks 2009 & Atmel Product Page 2009)

The reason for ATmega16’s high availability was that it is the microcon-

troller used in HAMK microcontroller programming courses. The idea

was to use our school’s own resources as the contest jurors favored self-

built solutions over expensive commercial ones. If ATmega16 had not

been chosen, any similarly capable microcontroller would have worked as

an alternative.

3.1.1 Hardware

Figure 14 shows the connection between different parts of the interpreter

unit and the mechanics.

Figure 14 – Diagram showing the relations and connections between the interpreter unit,

the mechanics and the instrument

A specially made integrated circuit board was designed to hold the ATme-

ga16 and the needed input and output connectors. On the circuit board

there are two MIDI connection interfaces, one for MIDI input from the se-

quencer and another one for MIDI pass-through. The pass-through is used

MIDI Interpreter Software

20

to pass the MIDI messages to the flute playing robot. There is also a con-

nector that is used for sending I
2
C messages to the Mechanics Controller

Boards. A picture of the MIDI interpreter circuit board is shown in Figure

15. The schematics for the interpreter board are in Appendix 2.

Figure 15 – The MIDI interpreter board. Two MIDI connectors on the lower left side of

the board, I2C bus cabling on the right, ATmega16 programming cable on top right.

(Photo: Artemis Project 2008)

The ATmega16 was set to operate at 8 MHz which was more than enough

to handle the MIDI interpretation. The reason for choosing an 8 MHz

clock was to get the right baud rate to receive MIDI, as the UART receiver

is dependent on the clock rate of the device it is part of. Therefore a clock

rate had to be used which was compatible with a baud rate of 31250 baud.

When powered on the interpreter continuously sends I
2
C messages to all

of the mechanics controller boards. These messages contain information

on which solenoids should retract.

MIDI Interpreter Software

21

Figure 16 – Mechanics controller board with two solenoids attached. On the left there is

a cable connected to the interpreter, and to the right there is a connector for additional

mechanics controller boards to be connected in sequence. (Photo: Artemis Project 2008)

There are four Mechanics Controller Boards. Because of limitations in

supplying power to the MCBs and practical circuit board sizes the 61 fin-

gers are separated into four groups. Each one of the mechanics controller

boards can control up to 16 fingers. Therefore the first three controllers

control 16 fingers each, and the last one controls only 13 making a total of

61 fingers.

The MCBs are connected to each other in sequence where only the first

one is connected to the interpreter. Figure 16 is an image of one of the

Mechanics Controller Boards. All of the four boards are similar in appear-

ance.

3.1.2 Software

The interpreter software was developed using:

- A standard desktop PC

- Ubuntu Linux, operating system

- Gedit, source code editor

- GCC, GNU Compiler Connection

MIDI Interpreter Software

22

- AVRDUDE, AVR downloader and uploader

There were two reasons to choose a Linux operating system. The main

reason was performance as the computer used to develop the interpreter

was quite old. It was best to use a lightweight operating system so that

working would not be hindered by performance issues. The second reason

was that the available software was easily downloadable and non-

proprietary. (Canonical Ltd. 2009)

For source code editing the default Ubuntu text editor – gedit (written in

lowercase on purpose) – was used. A proper programming IDE like Anju-

ta or KDevelop could have also been used with built-in source code com-

pilers, debuggers and interpreters. Even without any advanced functionali-

ty, gedit was sufficient as a text editor because of its syntax highlighting.

(Gedit 2009)

The source code for the interpreter was compiled using the GNU C Com-

piler which is part of the GNU Compiler Collection. (GNU Compiler Col-

lection 2009)

AVRDUDE is software for programming AVR microcontrollers. AVR-

DUDE is purely a command line operated program without a graphical in-

terface. It was used to upload the compiled interpreter software from the

computer to the microcontroller unit on the MIDI interpreter board.

(AVRDUDE 2009)

The compiled binary hex file was uploaded to the ATmega16 using

AVRDUDE with the following parameters:

avrdude -p m16 -e -c stk200 -U flash:w:pohja.hex

Where:

 p, part number

o m16 = ATmega16

 e, erase chip content

 c, programmer id

 U, memory operation

o flash = type of memory

o w = write

o pohja.hex = filename

(AVRDUDE Option Descriptions 2009)

3.2 Interpretation

The interpretation happens by analyzing messages received by the inter-

preter and then acting upon these messages accordingly. After each re-

ceived message byte the interpreter goes through several phases to deter-

mine the message’s content. After receiving a whole message the interpre-

ter sends a message to the correct Mechanics Controller Board, informing

MIDI Interpreter Software

23

which finger should be down and which up. More on this in the 3.2.2 In-

terpretation process chapter.

3.2.1 Messages

From the abundance of messages only few are relevant from the interpre-

ter’s point of view. When playing a piano the most relevant information is

the piano key pressed, how long it is down, and when it is released. In

terms of MIDI messaging these are known as Note-On and Note-Off mes-

sages. Any other messages are being ignored by the interpreter as the me-

chanics did not need anything else to play successfully. The specially

made MIDI Sequencer even parsed all the unnecessary messages and only

sent Note-On and Note-Off messages.

MIDI messages are usually of variable length depending on the type of the

message. Fortunately for the purposes of the interpreter the Note-On and

Note-Off messages are both always three bytes long.

The first byte in the MIDI message is the status byte and the two bytes fol-

lowing it are the note byte and velocity byte. The status byte contains the

type of the message and the channel it is on. A status bytes upper nibble

holds the message type, and the lower nibble holds the channel of the

message. Status bytes always have the seventh bit set. A dissection of a

MIDI Note-On message can be seen in Figure 17. (MIDI Technical

Brainwashing Center 2009b)

 Figure 17 - Dissection of a typical Note-On message. Note that the bytes are represented

as hexadecimal values using the C programming notation where hexadecimal values are

indicated with a preceding 0x.

All MIDI messages include a channel number to separate different instru-

ments. There are 16 channels in the MIDI protocol. In some MIDI files

especially made for pianos the left and right hand portions are separated

by putting them on a different channel. There is no rule how the channels

should be used, but usually they are divided by instruments.

The purpose of the Note-On message is to signal when a note starts play-

ing, and at what velocity. Velocity is the force at which the note is played,

in this case, how strongly the piano key on the keyboard is pressed. In our

MIDI Interpreter Software

24

case the velocity value is completely ignored as the mechanics that press

the keys use constant force and cannot change the power at which the keys

are pressed. The only exception regarding the velocity is that when the ve-

locity of a Note-On message is 0x00 (zero), the Note-On message is to be

interpreted as a Note-Off message. (MIDI Technical Brainwashing Center

2009c)

Note-Off works with the exact same principle as the Note-On message, in-

stead of turning notes on it turns them off. The value of a Note-Off status

byte is 0x80 (instead of 0x90 like the Note-On message). The velocity

byte on the Note-Off message indicates how quickly the note should be re-

leased, as with the Note-On velocity, this byte is disregarded as the me-

chanics do not have such fine level of control. (MIDI Technical Brain-

washing Center 2009d)

Running status is a special case of MIDI messaging where the status byte

is omitted for maximizing efficiency. When several consecutive messages

with the same status are sent, the status byte can be left out, sending only

the two data bytes. This is called a running status. The status byte is left

out for as long as messages with the same status are sent. A sequence of

MIDI messages without running status can be seen in Table 3. (MIDI

Technical Brainwashing Center 2009e)

In Table 4 for example, three Note-On messages are sent with only the

first one having a status byte. The fourth message in the sequence is a

Note-Off message, therefore a Note-Off status byte is sent to mark the end

of the Note-On running status. All the messages after the first Note-Off

status byte will be Note-Off messages until a new message with a different

status byte is sent. (MIDI Technical Brainwashing Center 2009e)

A device that is receiving MIDI messages must always remember the last

status byte received. If after two received data bytes the device does not

receive a status byte, but a data byte instead, the receiving device will as-

sume that the messages are using running status and continue processing

the messages using the latest status byte received. This is how the interpre-

ter does it as well.

MIDI Interpreter Software

25

Legend

Status byte

First data byte (note)

Second data byte (velocity)

Table 3 – Sequence of MIDI messages without running status.

0x90 0x3C 0x7F 0x90 0x40 0x7F 0x90 0x43 0x7F ...

First message Second message Third message ...

Table 4 – Sequence of MIDI messages with running status.

0x90 0x3C 0x7F 0x40 0x7F 0x43 0x7F 0x80 0x40 ...

First message Second Third Fourth

(MIDI Technical Brainwashing Center 2009e)

3.2.2 Interpretation process

The interpretation process can be categorized into five phases, including

the initialization even though it only happens once in the beginning. The

walkthrough for each phase can be found after the phase flowchart in Fig-

ure 18. The phase flowchart is a simplification of the interpretation and it

only shows the general outline of the interpretation process. A bit more

detailed explanation of each phase is in its own subchapter after the chart.

MIDI Interpreter Software

26

Figure 18 – Flowchart of the MIDI interpreter software’s general operating principle. An

in depth explanation of each phase is in the following subchapters. Texts that are in bold

are variables.

MIDI Interpreter Software

27

3.2.3 Initialization of the board

When powered on the board goes through the initialization phase. During

the initialization all the variables are initialized as well as I
2
C and UART.

The UART receiver is set for a baud rate of 31250 baud with a word of 8

data bits without a parity bit. As covered before, this is the right configura-

tion for receiving MIDI message bytes from the MIDI sequencer.

The I
2
C is set to work in a master transmitter mode with a clock rate of

83.33 kHz. Being the master of the I
2
C gives the interpreter complete con-

trol over the mechanics controller boards connected to it as slaves as de-

scribed in 2.3 I
2
C Primer.

The most noteworthy variables in the interpreter are:

 Status Byte

o Holds the status byte of a received MIDI message

o From Figure 17 this variable would hold 0x90

 Note Byte

o Holds the note byte of a received MIDI message

o From Figure 17 this variable would hold 0x3C

 Velocity Byte

o Holds the velocity byte of a received MIDI message

o From Figure 17 this variable would hold 0x7F

 Byte Counter

o Goes from 0 to 3

o 0 = no bytes received

o 1 = status byte received

o 2 = status byte and note byte received

o 3 = status byte, note byte and velocity byte received

 MCB Finger State array

o 4 × 16 𝑏𝑖𝑡𝑠

The Status, Note and Velocity Byte variables are quite self-explanatory.

Each holds the corresponding byte of an incoming message.

Byte Counter counts the number of bytes that have been received. This is

used to determine the contents of the data bytes.

MCB Finger State array is an array of four 16-bit sequences, one 16-bit

sequence for every MCB. Each bit represents a finger that the MCB con-

trols. If a finger has its corresponding bit set to 0 it means that the finger is

not pressed (finger is up). A bit set to 1 would mean that the finger is

pressed (finger is down).

3.2.4 Updating MCBs & Waiting for MIDI message bytes

The main program loop of the interpreter is the MCB updating loop. It

takes the MCB Finger State array and sends it over to the MCBs using

I
2
C. The first 16 bit sequence of the Finger State array is sent to the first

MIDI Interpreter Software

28

card, the second sequence is sent to the second card and so on. This is

done by sending each 16-bit sequence in two parts to the corresponding

address of the MCB I
2
C slave device. The I

2
C slave device on each of the

boards looks at the content of the Finger State array it has received and

sets its corresponding outputs to match the array. The slave device has 16

outputs, and each of these outputs is connected to a single solenoid (fin-

ger). This way each of the MCBs is updated with the information on

which finger should be down and which up.

On system start up the MCB Finger State array is initialized to be full of

zeros. This means that all of the fingers should be up. The first time the

program enters the loop it sends to all of the MCBs this empty Finger

State array. All the fingers are up. This is expected as the sequencer has

not yet started sending any MIDI message bytes. The loop keeps on updat-

ing the MCBs even though there is nothing happening. Nothing will hap-

pen before the MIDI Sequencer program starts sending message bytes.

When the first MIDI message byte arrives to the UART receiver, it creates

an interrupt. This means that the interpreter stops going through the loop

and goes to the UART interrupt function. The UART interrupt function is

called every time a data word arrives to the UART buffer. In this case the

byte that arrives is a MIDI message byte. The program then goes from the

loop to the interrupt function to operate on the received byte.

3.2.5 Aggregating MIDI message bytes

The first thing checked in the UART interrupt function is the type of the

message byte. This happens by examining two things: examining the most

significant bit of the byte and the relation to previously received bytes. In

the case of the first received byte the Byte Counter variable is 0 and the

most significant bit is set.

The examination of the most significant bit tells us if the byte is a status

byte or a data byte. All status bytes always have the MSB set, and all data

bytes do not. With this the status bytes can be easily identified. When the

first byte has been identified as a status byte it is saved into the Status

Byte variable after which the Byte Counter is set to 1. After this the inter-

rupt function runs to its end and the program is back in the MCB update

loop. Nothing has changed from the MCBs point of view and nothing will

happen on the MCB end until a complete MIDI message has been received

by the interpreter.

Data bytes go into two categories, note number and velocity. Note number

byte comes always after the status byte, and before the velocity byte.

There is no special bit to identify data bytes, so the only way to identify a

data byte is by observing the previous bytes. If the previous byte was a

status byte then it is fair to assume that the byte is a note byte. If the pre-

vious byte was a note byte, then of course the byte currently under obser-

vation is a velocity byte.

MIDI Interpreter Software

29

Promptly after the status byte a note byte follows. This raises the interrupt

function again, only this time the MSB is not set and the Byte Counter is

1. Using this, the interpreter determines that the received byte is a note

byte. It is then saved into the Note Byte variable. The Byte Counter is in-

cremented by one to a value of 2. Again the interrupt function ends and

the interpreter goes back to the MCB update loop.

After the status byte comes the velocity byte. Once again the interrupt

function is called. The MSB is not set and the Byte Counter is 2. This

makes the arrived byte a velocity byte. The value is then saved to the Ve-

locity Byte variable and the Byte Counter is incremented by one and is

now 3. A full MIDI message has now been received.

After aggregating a complete set of bytes the interpreter then goes onto the

next phase.

3.2.6 Transpositioning notes for piano scale

It was decided that if our robot would ever play a song that had notes it

could not play they would be transpositioned into the playable range in-

stead of just not playing the notes.

Transpositioning is essentially moving a note up or down one octave at a

time. The reason for doing this is simple; if the note is too high or too low

the piano we used cannot play it. Our piano has keys from 36 to 96 using

the MIDI note numbering. In Table 5 there is a table that shows how the

MIDI note numbers translate to actual notes in different octaves.

If a note were too high for our piano to play it would be transpositioned to

a lower octave. This happens by subtracting 12 from the note number for

as long as the note number gets below 97. If the note were from an octave

too low the same transpositioning would happen, but only in reverse. The

reason for subtracting or adding 12 each time is that each octave is 12

notes long.

After ensuring that the Note Byte is in playable range the interpreter will

move on to the next phase.

MIDI Interpreter Software

30

Table 5 – Note numbers to note and octave. The green areas in the middle represent the

octaves playable by the piano we use. The four different green shadings separated by a

thick black border represent each of the MCBs playing range. The red areas are out of

range of the piano and are transpositioned to the nearest octave.

Octave
Note Numbers

C C# D D# E F F# G G# A A# B

-1 0 1 2 3 4 5 6 7 8 9 10 11

0 12 13 14 15 16 17 18 19 20 21 22 23

1 24 25 26 27 28 29 30 31 32 33 34 35

2 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59

4 60 61 62 63 64 65 66 67 68 69 70 71

5 72 73 74 75 76 77 78 79 80 81 82 83

6 84 85 86 87 88 89 90 91 92 93 94 95

7 96 97 98 99 100 101 102 103 104 105 106 107

8 108 109 110 111 112 113 114 115 116 117 118 119

9 120 121 122 123 124 125 126 127

Legend

Mechanics Controller Board #1

Mechanics Controller Board #2

Mechanics Controller Board #3

Mechanics Controller Board #4

3.2.7 Resolve mechanics controller board & finger

In the final phase the interpreter looks at the Status Byte first. It does not

matter if the Status Byte is a Note-On or a Note-Off; the interpreter has to

resolve the correct MCB and finger either way. Resolving the MCB essen-

tially means finding out which of the four MCB plays the note in the Note

Byte variable. In Table 6 the green areas are split into four parts. Each of

these parts represents an area playable by one of the MCBs, the lightest

green for the first MCB, second lightest for the second MCB and so forth.

If the Note Byte holds the value 76 (decimal), the resolved MCB would be

the third MCB. Resolving the finger means finding out which one of the

fingers controlled by the MCB plays the note found in Note Byte. In the

case of note 76 the finger would be the fifth finger that the third MCB

controls. After resolving the MCB and the finger the interpreter then

changes the corresponding bit in the Finger State Array. This bit would be

the fifth bit in the third 16-bit sequence.

After changing the Finger State Array the interrupt function comes to an

end. The software goes back to the MCB update loop. This time around

the Finger State array has been changed, the new Finger State Array data

MIDI Interpreter Software

31

is sent to each of the MCBs. The third MCB receives a 16-bit sequence

where one of the bits is 1 instead of 0. This turns on the state of one of the

outputs in the slave device. This output is connected to the fifth finger in

the third MCB. The finger goes down and plays the key on the piano.

In this manner the interpreter goes on playing the piano. If a Note-Off

message arrived, the process would be exactly the same except that the bit

in Finger State Array would be changed to 0 instead of 1. The resulting

change from 1 to 0 would change the corresponding output of the slave

device to turn off. This loosens the solenoid and lets the rubber bands pull

the finger back up, releasing the piano key.

3.2.8 Running Status and error handling

The running status is handled simply by never erasing the Status Byte. If a

status byte is not received the interpreter uses the previous status as long

as a new one arrives.

There is no error handling built into the interpreter. If for whatever reason

the MIDI Sequencer starts sending bytes that are not part of a MIDI mes-

sage the interpreter would most likely do nothing. The interpreter specifi-

cally “listens” for status messages that are either Note-On or Note-Off

messages on channel zero. This means that if the MIDI Sequencer sends

anything else than 0x90 or 0x80 as its first byte, the byte will be ignored.

Were the note or velocity byte to be a random number, the interpreter

would handle them just like any other note or velocity byte as there is no

way of knowing what the note or velocity is supposed to be.

3.2.9 Source code

There is not much to say about the source code itself. The source code

consists of approximately 550 lines of code when not counting empty

lines. The source code file size is about 8 kilobytes. It is written using the

C programming language. The compiled hex file is 5 kilobytes in size.

The well commented source code for the interpreter can be found in Ap-

pendix 1. This is not the exact source code used in the interpreter at the

time of the competition. In functionality it is the same, but the names of

several variables have been changed to better reflect their respective func-

tions. This was the best way to ensure the legibility of the code.

4 CONCLUSION

4.1 Future

The interpreter was development only the piano robot mechanics in mind.

Hence the MIDI interpretation was focused only on the Note-On and

Note-Off messages. This simple approach works on an instrument like the

MIDI Interpreter Software

32

piano because of its simple operation principle. With alterations to the

source code it would theoretically be possible to add functionality which

would enable the interpreter to operate with other instruments. However

the Mechanics Controller Boards were specifically designed to be part of

the piano finger mechanics and would be of little use with other instru-

ments.

Each new instrument would require a different type of mechanics control-

lers. The modular design of the interpreter unit board and the mechanics

controllers is well suited for such scenarios would anyone be interested to

use it. If the interpreter were used to play different instruments parts of the

source code would need to be rewritten.

After the 2008 Artemis contest development of the interpreter software

has seized. A new team was assembled to enter the 2009 Artemis contest.

The team of 2009 built new mechanics but used the interpreter discussed

in this thesis. Unfortunately the interpreter had an unexpected power surge

and burned into a fine crisp when attempted to be used at the 2009 contest.

Consequently the 2009 team became last in the contest.

4.2 Interpreter

One could come to the conclusion that the interpreter in its entirety was a

success, even though the mechanics failed to play their part. The problem

of controlling the robot mechanics with MIDI messages was solved by

creating a simple system to receive MIDI messages, interpret them, and

control the mechanics according to them. A fairly simple idea, but devel-

oping it into a working program took several months of painstaking plan-

ning and programming. The final version of the interpreter software works

finely.

In retrospect the source code of the interpreter software could have been

more robust and efficient, but as the first serious microcontroller unit pro-

gramming work I have ever done it ended up better than I dared to hope

when I first started working on it.

Unfortunately the MIDI interpreter project itself did not contribute to the

scientific field of computer engineering in any way, nor was it particularly

ground breaking. It could be concluded that this project was a personal

learning experience more than it was anything else.

MIDI Interpreter Software

33

SOURCES

Artemis Orchestra Contest 2008. Orchestra Competition '08 Contest &

Gallery website. Read 28.8.2009.

https://www.artemisia-association.org/photo_gallery_2007-2008

Artemis Orchestra Contest Rules 2008.

Given to contest participants.

Atmel ATmega16 product page. Read 21.10.2009

http://www.atmel.com/dyn/products/Product_card.asp?part_id=2010

AVR Freaks 2009. Atmel ATmega16 device page. Read 30.8.2009.

http://www.avrfreaks.net/index.php?module=Freaks%20Devices&func=di

splayDev&objectid=56

AVRDUDE 2009. AVRDUDE website. Read 30.8.2009.

http://savannah.nongnu.org/projects/avrdude/

AVRDUDE 2009 Option Descriptions. AVRDUDE website. Read

31.10.2009.

http://www.nongnu.org/avrdude/user-manual/avrdude_4.html

Canonical Ltd. 2009. Ubuntu website. What is Ubuntu? Read 30.8.2009.

http://www.ubuntu.com/products/whatisubuntu

Extreme Electronics 2008. RS232 Communication – The Basics. Read

26.10.2009.

http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-

basics/

Gedit 2009. Gedit website. Read 30.8.2009.

http://projects.gnome.org/gedit/index.html

GNU Compiler Collection 2009. GCC website. Read 30.8.2009.

http://gcc.gnu.org/

MIDI Manufacturers Association 2008a. MIDI Products. Read 30.8.2009.

http://www.midi.org/aboutmidi/products.php

MIDI Manufacturers Association 2008b. MIDI Messages. Read

21.10.2009.

http://www.midi.org/techspecs/midimessages.php

MIDI Technical Brainwashing Center 2009a. Hardware. Read 21.10.2009.

http://home.roadrunner.com/~jgglatt/tech/midispec.htm

MIDI Technical Brainwashing Center 2009b. Messages. Read 30.8.2009.

http://home.roadrunner.com/~jgglatt/tech/midispec/messages.htm

MIDI Interpreter Software

34

MIDI Technical Brainwashing Center 2009c. Note-On. Read 30.8.2009.

http://home.roadrunner.com/~jgglatt/tech/midispec/noteon.htm

MIDI Technical Brainwashing Center 2009d. Note-Off. Read 30.8.2009.

http://home.roadrunner.com/~jgglatt/tech/midispec/noteoff.htm

MIDI Technical Brainwashing Center 2009e. Running Status. Read

30.8.2009.

http://home.roadrunner.com/~jgglatt/tech/midispec/run.htm

Robot Electronics 2009. Using the I2C Bus. Read 26.10.2009.

http://www.robot-electronics.co.uk/htm/using_the_i2c_bus.htm

MIDI Interpreter Software

APPENDIX 1/1

MIDI INTERPRETER SOURCE CODE

/***

 Designer: Timo Vahtera

 Date: 28.5.2008

 Version: 1.2

 State: Finished / Working

 Description: MIDI-Interpreter for ATmega16

;**/

#include <avr/io.h>

#include <avr/delay.h>

#include <avr/interrupt.h>

#include <string.h>

#include <math.h>

// UART baud rate (MIDI input)

#define BAUDRATE 15 // (15 = 31250 Bauds @ 8MHz)

// Mechanics Controller Board I2C slave addresses

#define CARD1 0x42

#define CARD2 0x44

#define CARD3 0x46

#define CARD4 0x48

// MIDI status byte upper nibble

#define NOTEON 0x90

#define NOTEOFF 0x80

// Electronic piano scale (MIDI note numbering)

#define STARTNOTE 36

#define ENDNOTE 95

// ### UART Function prototypes ###

// Initialize UART, baudrate as parameter

void UART_Init (unsigned int);

// ### I2C Function prototypes ###

// I2C Initialization, MCB board address as parameter

void I2C_Init(unsigned char);

// I2C Data sending, MCB

void I2C_Send(unsigned char, unsigned short int);

// ### Interpreter Internal Function prototypes ###

// Which Mechanics Controller Board?

unsigned char Resolve_MCB(unsigned char);

// Which finger on the Mechanics Controller Board?

unsigned short int Resolve_MCB_Finger(unsigned char);

// Array of MCB Finger states

// MCB_Finger_States[0] = MCB1, MCB_Finger_States[1] = MCB2, etc.

volatile unsigned short int MCB_Finger_States[4] =

{0x0000,0x0000,0x0000,0x0000};

// ### MAIN ### //

MIDI Interpreter Software

APPENDIX 1/2

MIDI INTERPRETER SOURCE CODE

int main(void)

{

 // Initialize I2C ports

 I2C_Init(CARD1);

 I2C_Init(CARD2);

 I2C_Init(CARD3);

 I2C_Init(CARD4);

 // Must disable JTAG for PORTC usage (I2C/TWI uses PORTC)

 MCUCSR = 0x80; // JTAG disabled (JTD = 1)

 MCUCSR = 0x80; // twice to deactivate

 // MOSFET Init

 // Used by UART

 DDRD = 0xC0;

 PORTD = 0xC0;

 DDRB = 0xFF;

 PORTB = 0x00;

 // Initialize UART for MIDI input, baudrate as parameter (15 =

31250 @ 8MHz)

 UART_Init(BAUDRATE);

 while (1) {

 I2C_Send(CARD1, MCB_Finger_States[0]);

 I2C_Send(CARD2, MCB_Finger_States[1]);

 I2C_Send(CARD3, MCB_Finger_States[2]);

 I2C_Send(CARD4, MCB_Finger_States[3]);

 }

}

// ### Variables used in UART Interrupt ###

// UART input counter [0-3], because Note-ON & Note-OFF are 3 bytes

volatile unsigned int Byte_Counter = 0;

volatile unsigned char Status_Byte;

volatile unsigned char Note_Byte;

volatile unsigned char Velocity_Byte;

// ### UART Receive Interrupt ###

ISR(UART_RXC_vect)

{

 unsigned char Received_Byte = UDR;

 unsigned char MSB_Test;

 MSB_Test = Received_Byte & 0x80;

 // Find out if the received byte is Status, Note or Velocity

 if (MSB_Test == 0x80) {

 Status_Byte = Received_Byte;

 Byte_Counter = 1;

 } else if ((Status_Byte == NOTEON || Status_Byte == NOTEOFF) &&

Byte_Counter == 1) {

 Note_Byte = Received_Byte;

MIDI Interpreter Software

APPENDIX 1/3

MIDI INTERPRETER SOURCE CODE

 Byte_Counter++;

 } else if ((Status_Byte == NOTEON || Status_Byte == NOTEOFF) &&

Byte_Counter == 2) {

 Velocity_Byte = Received_Byte;

 Byte_Counter++;

 }

 // Byte_Count = 3 when a full MIDI message is received

 if (Byte_Counter == 3) {

 // Transposition for notes that go over or under our scale

 while (Note_Byte < STARTNOTE) {

 Note_Byte += 12;

 }

 while (Note_Byte > ENDNOTE) {

 Note_Byte -= 12;

 }

 // Message is a NOTE ON, Set the correct bit to 1 in

MCB_Finger_States

 if (Status_Byte == NOTEON && Velocity_Byte != 0x00) {

 switch (Resolve_MCB(Note_Byte)) {

 case CARD1:

 MCB_Finger_States[0] |= Resolve_MCB_Finger(Note_Byte);

 break;

 case CARD2:

 MCB_Finger_States[1] |= Resolve_MCB_Finger(Note_Byte);

 break;

 case CARD3:

 MCB_Finger_States[2] |= Resolve_MCB_Finger(Note_Byte);

 break;

 case CARD4:

 MCB_Finger_States[3] |= Resolve_MCB_Finger(Note_Byte);

 break;

 }

 }

 // Message is a NOTE OFF, Set the correct bit to 0 in

MCB_Finger_States

 else if ((Status_Byte == NOTEON && Velocity_Byte == 0x00) ||

(Status_Byte == NOTEOFF)) {

 switch (Resolve_MCB(Note_Byte)) {

 case CARD1:

 MCB_Finger_States[0] &=

~Resolve_MCB_Finger(Note_Byte);

 break;

 case CARD2:

 MCB_Finger_States[1] &=

~Resolve_MCB_Finger(Note_Byte);

 break;

 case CARD3:

 MCB_Finger_States[2] &=

~Resolve_MCB_Finger(Note_Byte);

 break;

 case CARD4:

MIDI Interpreter Software

APPENDIX 1/4

MIDI INTERPRETER SOURCE CODE

 MCB_Finger_States[3] &=

~Resolve_MCB_Finger(Note_Byte);

 break;

 }

 }

 }

 // Running Status fix

 if (Byte_Counter >= 3 || (Status_Byte != NOTEON && Status_Byte !=

NOTEOFF)) {

 Byte_Counter = 1;

 }

}

unsigned char MCB_Address_Table[] = {CARD1,CARD2,CARD3,CARD4};

// Finds out which MCB controls the finger that plays the note

unsigned char Resolve_MCB(unsigned char pNoteByte)

{

 unsigned char card = (unsigned char)floor((pNoteByte-

STARTNOTE)/16);

 return MCB_Address_Table[card];

}

unsigned short int Finger_Table[] = {

 0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,

 0x0100,0x0200,0x0400,0x0800,0x1000,0x2000,0x4000,0x8000,

 0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,

 0x0100,0x0200,0x0400,0x0800,0x1000,0x2000,0x4000,0x8000,

 0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,

 0x0100,0x0200,0x0400,0x0800,0x1000,0x2000,0x4000,0x8000,

 0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,

 0x0100,0x0200,0x0400,0x0800,0x1000,0x2000,0x4000,0x8000

};

// Finds out which finger plays the note on the MCB

unsigned short int Resolve_MCB_Finger(unsigned char pNoteByte)

{

 return Finger_Table[pNoteByte-STARTNOTE];

}

// ### INITIALIZE UART, baudrate as parameter (15 = 31250 @ 8MHz) ###

//

void UART_Init (unsigned int ubrr)

{

 /* Set baud rate */

 UBRRH = (unsigned char)(ubrr>>8);

 UBRRL = (unsigned char)ubrr;

 /* Enable receiver and transmitter */

 UCSRB = (1<<RXEN)|(1<<TXEN)|(1<<RXCIE);

MIDI Interpreter Software

APPENDIX 1/5

MIDI INTERPRETER SOURCE CODE

 /* Set frame format: 8data, 1stop bit */

 UCSRC = (1<<URSEL)|(0<<USBS)|(1<<UCSZ1)|(1<<UCSZ0);

 // Enable the Global Interrupt Enable flag so that interrupts can

be processed

 sei();

}

// ### I2C PORT INITIALIZATION, card address as parameter ### //

void I2C_Init(unsigned char card)

{

 // Set I2C Bitrate

 TWBR=10;

 TWSR=((1<<TWPS0)|(0<<TWPS1)); // Prescaler value = 4

 // SCL frequency = CPU Clock frequency / (16+2(TWBR)*4^TWPS)

 // SCL frequency = 8 Mhz / (16+2(10)*4^1) = 0.08333 MHz = 83.33

kHz

 // ### PORT 1 ###

 // Start Condition

 TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

 while (!(TWCR & (1<<TWINT)));

 // Address

 TWDR = card;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // PORT Configuration Selection

 // * 0x06 = Port 1

 // * 0x07 = Port 2

 TWDR = 0x06;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // Make selected PORT => output

 TWDR = 0x00;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // ### PORT 2 ###

 // Start Condition

 TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

 while (!(TWCR & (1<<TWINT)));

 // Address

 TWDR = card;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 TWDR = 0x07;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

MIDI Interpreter Software

APPENDIX 1/6

MIDI INTERPRETER SOURCE CODE

 // Make selected PORT => output

 TWDR = 0x00;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // Stop Condition

 TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

}

// ### I2C DATA SENDING, card number and data (=2 bytes) as parameter

//

void I2C_Send(unsigned char card, unsigned short int data) //(unsigned

char port, unsigned char data)

{

 // ### PORT 1 ###

 // Start Condition

 TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

 while (!(TWCR & (1<<TWINT)));

 // Address

 // * 0x42 = Card 1

 // * 0x44 = Card 2

 // * 0x46 = Card 3

 // * 0x48 = Card 4

 TWDR = card;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // PORT Selection

 // * 0x02 = Port 1

 // * 0x03 = Port 2

 TWDR = 0x02;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // Data to send

 TWDR = (unsigned char)(data & 0x00FF) ;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // ### PORT 2 ###

 // Start Condition

 TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

 while (!(TWCR & (1<<TWINT)));

 // Address

 // * 0x42 = Card 1

 // * 0x44 = Card 2

 // * 0x46 = Card 3

 // * 0x48 = Card 4

 TWDR = card;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // PORT Selection

MIDI Interpreter Software

APPENDIX 1/7

MIDI INTERPRETER SOURCE CODE

 // * 0x02 = Port 1

 // * 0x03 = Port 2

 TWDR = 0x03;

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // Data to send

 TWDR = (unsigned char)(data >> 8);

 TWCR=(1<<TWINT) | (1<<TWEN);

 while (!(TWCR & (1<<TWINT)));

 // Stop Condition

 TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

}

MIDI Interpreter Software

APPENDIX 2/1

MIDI INTERPRETER HARDWARE SCHEMATIC

MIDI Interpreter Software

APPENDIX 2/2

MIDI INTERPRETER HARDWARE SCHEMATIC

MIDI Interpreter Software

APPENDIX 3/1

MECHANICS CONTROLLER BOARD HW SCHEMATIC

