

Tuukka Luoma

DEVELOPMENT OF INTELLIGENT WHEELCHAIR

2

DEVELOPMENT OF INTELLIGENT WHEELCHAIR

Tuukka Luoma

Bachelor’s Thesis

Spring 2013

Degree Programme in Automation Engineering

Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences

Degree Programme in Automation Engineering

Author(s): Tuukka Luoma

Title of thesis: Development of Intelligent Wheelchair

Supervisor(s): Tero Hietanen

Term and year when the thesis was submitted: Spring 2013

Number of pages: 58 + 14 appendices

The purpose of this thesis was to develop an intelligent wheelchair using a 9-axis motion

sensor. The goal was to create a control system that allows a user of an electric-powered

wheelchair control it hands-free.

Used devices were installed and configuration was done. A control system was built

using MATLAB and its Simulink environment. The control system used fuzzy logic

controllers to imitate the behaviour of a joystick controlled electric-powered wheelchair.

The fuzzy control system bypassed the joystick control and it controlled the motors of

the wheelchair directly.

The result of this project was a control system that is capable of controlling a wheelchair

using body movements of its user. It provides a platform for further development and

tuning of the developed control system.

Keywords:

Wheelchair, motion control, motion sensor, fuzzy control, MATLAB, simulink

4

ACKNOWLEDGEMENTS

This Bachelor’s Thesis was commissioned by Kumamoto National College of

Technology (KNCT). The supervisor from KNCT was Professor Hirofumi Ohtsuka

from Department of Control and Information Systems Engineering. The supervisor from

Department of Automation Engineering of Oulu University of Applied Sciences was

Senior Lecturer Tero Hietanen.

I would like to thank Professors Hirofumi Ohtsuka and Kousei Nojiri for their invaluable

help throughout this project. A thank you to Senior Lecturer Tero Hietanen for helping

bringing the documentation of the project into a closure. I would also like to thank

English teacher Marjo Heikkinen who helped with the layout and grammar of this thesis.

I would like to say thanks also to my wife Yuka who supported me throughout the

difficulties I faced while writing this documentation.

May 11th, 2013

Tuukka Luoma

5

CONTENTS

ABSTRACT ... 3

ACKNOWLEDGEMENTS .. 4

CONTENTS ... 5

TERMS AND ABBREVIATIONS ... 7

1 INTRODUCTION ... 8

2 METHODS TO DEVELOP INTELLIGENT WHEELCHAIR 9

2.1 Wheelchair .. 9

2.2 Motion Tracking ... 11

2.3 Inertial Measurement Unit ... 12

2.4 Controller Area Network ... 13

2.4.1 Physical Layer .. 14

2.4.2 Frame Formats.. 16

2.5 Fuzzy Control System ... 16

2.6 MATLAB ... 17

2.6.1 Simulink ... 18

2.6.2 Fuzzy Logic Toolbox .. 20

2.6.3 Data Acquisition Toolbox ... 23

3 MODIFICATIONS TO WHEELCHAIR .. 25

3.1 Electric-Powered Wheelchair ... 27

3.2 Motion Sensor ... 31

3.3 CAN to USB ADAPTER .. 32

3.4 I/O PC Card .. 33

3.5 Screw Terminal ... 35

4 EXECUTION OF CONTROL SYSTEM ... 37

4.1 Configuration of Motion Sensor .. 37

4.2 Data Acquisition in MATLAB ... 41

4.3 ZMP IMU-Z MATLAB Package ... 42

4.4 Processing of Measurement Data ... 45

4.5 Fuzzy Logic Controller .. 46

4.6 Analog Output... 51

4.7 Building a Control System ... 52

5 SUMMARY... 55

6

6 REFERENCES .. 57

APPENDICES

7

TERMS AND ABBREVIATIONS

A Ampere, the SI unit of electric current

Ah Ampere-hour, a unit of electric charge

CAN Controller Area Network

CANopen A communication protocol used in automation

CiA CAN in Automation

deg/s Degree per second, an unit of rotational speed

EPW Electric-Powered Wheelchair

G Gauss, an unit of magnetic flux density in magnetic field B

g An unit of g-force measured by accelerometer

gn Standard gravity, defined as 9.806 65 m/s
2

GUI Graphical User Interface

IMU Inertial Measurement Unit

IMU-Z ZMP IMU-Z, a 9-axis motion sensor

I/O Input/Output

KNCT Kumamoto National College of Technology

Mbit/s Megabit per second, a unit of data transfer rate

M-file MATLAB source code file

NiMH Nickel-metal hydride, a type of battery

PLC Programmable logic controller

RS-232 A series of standards commonly used in computer serial ports

USB Universal Serial Bus, a standard for connecting computer peripherals

V Volt, the SI unit for electric potential difference

ZMP ZMP INC., a Japanese robot company that developed the IMU-Z sensor

8

1 INTRODUCTION

A wheelchair is a chair designed for people who need an aid to replace walking. Reason

for such need can be either illness or disability that prevents a person from walking

normally. There are several different kinds of wheelchairs depending on their purpose

and the way they are powered. In this thesis the main focus is on the electric-powered

wheelchair (EPW).

The main goal for this thesis was to develop an intelligent hands-free wheelchair that is

controlled by the movements of the wheelchair user. In this thesis the movements were

tracked with a 9-axis motion sensor that was attached to the body of the wheelchair

user. Kumamoto National College of Technology (KNCT) has developed different types

of intelligent hands-free wheelchairs in the past such as voice and pressure mat operated

systems.

This thesis presents one of the many possible ways to develop a control system for an

electric-powered wheelchair. It is by no means the best solution but given the time frame

and resources it gave acceptable results and a platform for further development of the

system.

The project was executed with MATLAB and its Simulink environment. MATLAB is a

widely used platform for building control systems and it gives easy and versatile

possibilities to tune a system. Because of this reason MATLAB was chosen as the

platform of the project to be built upon.

9

2 METHODS TO DEVELOP INTELLIGENT

WHEELCHAIR

In this section the theory and techniques to build an intelligent wheelchair are taken a

closer look at.

2.1 WHEELCHAIR

A wheelchair is a device designed to help people who need a replacement for walking.

The need for this can be caused by a illness, injury or disability. Wheelchairs come in

different kinds and they can be categorised for example by design, control method and

use.

Most wheelchairs share the same basic design that contains a seat, foot rests, two small

caster wheels in the front and two large wheels in the back. Many wheelchairs also

incorporate handles in the back for a helper to push the wheelchair from the back.

The main difference between the early wheelchairs and the modern wheelchairs is the

chassis. The first wheelchairs were rigid chairs as the mechanical know-how at the time

was not up to present day standards yet. Modern wheelchairs come in two major

designs: folding or rigid. Folding chairs are a good option if the chair needs to be put in

a storage. A folding chassis makes it possible for the chair to fit in much smaller space

that rigid chairs. On the other hand rigid chairs also come often with means to dismantle

the chair in order to fit it in a car for transit. Also the materials are vastly different now.

The early wheelchairs from pre-20th century were mainly built from materials from

nature such as wood. The chassis of a modern wheelchair today is made of metal.

Especially the rigid chairs incorporate lightweight materials like aluminium and titanium.

These materials also make the wheelchairs very durable.

A more relevant way for this thesis to categorise wheelchairs is done based on how the

chair is powered. Manually powered wheelchairs require a human to move the

wheelchair. This can be done by the user or in some cases also a helper can move the

10

wheelchair by pushing it from the back. The most common way to move a manually

powered wheelchair is for the user to turn the wheels by pushing the wheels forward

using handrims attached to outer rims of the back wheels. In some cases also a foot

propulsion can be used. This happens when the user has limited hand movement. There

are many variants of hand and foot propulsion that incorporate either propulsion with

one or two limbs.

A modern electric-powered wheelchair can be seen in figure 1 below.

Fig. 1. A modern electric-powered wheelchair[1]

Electric-powered wheelchairs (EPW) are moved by electric motors and a navigational

control system. Speed of an EPW is usually 6-10 km/h. The most common control

system is a joystick attached to the armrest. If the user cannot use an armrest mounted

joystick, there are other options such as chin-operated joysticks and sip-and-puff

sensors. Also other special control methods can be used such as motion control. The

electric motors are usually powered by 4 or 5 A rechargeable batteries.[2]

11

2.2 MOTION TRACKING

Motion tracking is a method used since the 1970s to track movement and make digital

models based on the tracked data. The movements are recorded in high sample rate.

Only the movements of an actor are recorded, not the visual appearance. The movement

data is then processed into a model. This model performs the same movements as the

human actor. It has many uses in military, entertainment and robotics. For example

motion tracking is commonly used in movie industry these days to make animated

characters using recorded movements of a human actor.[3]

There are several different ways to do motion tracking and each one has its own

advantages and shortages. Unfortunately there is no perfect single method to do motion

tracking. However, different methods can still give good results on specific tasks. The

main advantages and shortages are listed in table 1.

12

Table 1. Advantages and shortages of different motion tracking methods.[4]

Sensing method Advantages Shortages

Acoustic +Range compared to some

other sensing methods

-Accuracy is affected by conditions

(wind, temperature, humidity, etc...)

-Low measure rate due to 5...100 ms

delay caused by multi-path

-Line-of-sight required

Inertial +Self-contained -Bias error of accelerometer causes drift

(4.5 meters after 30 seconds) +No line-of-sight required

+Resistant to noise and

electromagnetic field

+Low latency (≤ 5 ms)

+High measure rate

+1000's of sample per second

+Very low jitter

Magnetic +Small size -Limited range

+No line-of-sight required -Conductive material (changes the

shape of the magnetic field) +Multiple sensors excited by a

single source

Mechanical +Precise -Small range

Optical +High spatial precision -Line-of-sight required

 +High measure rate

Radio and

microwave

 -Equipment big and expensive

 -Cannot be used indoors due to multi-

path problems

2.3 INERTIAL MEASUREMENT UNIT

An Inertial Measurement Unit, or IMU for short, is a device designed to measure

velocity, orientation and gravitational forces of a craft of some kind. Common uses for

IMU are in aircrafts and different kinds of spacecrafts. Sometimes IMUs are used in

motion capture work but a more well-known example of an IMU in use is the self-

balancing Segway Personal Transporter. The IMU works by detecting changes in

acceleration and rotation using its accelerometers and gyroscopes.

An IMU is an electronic device that usually incorporates several accelerometers and

gyroscopes. In some cases there can also be additional sensors. The sensors are placed in

13

orthogonal pattern so that each accelerometer and gyroscope detects changes on a single

axis in a three dimensional space. Figure shows the construction of the sensor

placements in an IMU.[5]

Fig. 2. Placements of accelerometers and gyroscopes in an IMU[6]

2.4 CONTROLLER AREA NETWORK

Controller Area Network (CAN) was originally designed for the needs of the car

industry. Because of this starting point the interference resistance and the reliability of

data transfer were the main objectives when CAN was developed. In each CAN-message

there is a checksum that is used to make sure that the message is delivered in its original

form. In addition to this CAN-bus is a serial bus which means increased resistance for

interference. In the beginning of a CAN-message there is an ID-field that helps

identifying commands and signals that are sent to different devices. All messages that are

moving in CAN-bus can be read by all devices. In other words there is no need to send

the same information more than once. Moreover this makes diagnostics easy because

diagnostics device will not affect other devices.[7, p.2]

CAN-bus is a multi-master bus where each node can send a message through the bus on

its own initiative. Each message can contain up to 8 bytes (64 bits) of information. The

messages are broadcasted to all nodes but only the nodes that need the information are

to receive the message. The sender is not sending the message to any node specifically

but the sent message is available to all nodes. CAN does not use addresses for

14

communication. This means that in principle there is no set maximum number of nodes

on the bus. In practice transceiver chips always set a maximum number of nodes.

Maximum transfer rate of CAN-bus is 1 Mbit/s when the bus is no longer than 40 meters.

[8, p.4-5]

CAN-bus can be used in many kinds of environments. These include busses, elevators,

robots, measuring equipment and PLC-units. CAN-bus can be fitted in almost any kind

of device as long as the data transfer range is relatively short and the objective is a real-

time communication between controllers. Because of its limitations in transfer rates

CAN-bus is not the ideal method when big quantities of data has to be transferred, for

instance video stream.[8, p.1]

One could describe CAN-bus as a network of processors as opposed to traditional sense

of an industrial computer network. Regardless of this CAN-bus is often used like other

industrial network systems.[8, p.2]

2.4.1 Physical Layer

The purpose of the physical layer in CAN-bus is the data transfer between the different

devices on the hardware level. The layer can be divided in three parts as shown in table

2. A wiring structure of CAN-bus is presented in figure 3.

Table 2. Three parts of physical layer in CAN-bus[7, p.3]

Formation of the physical signal Bit encoding and decoding

 Bit timing

 Synchronization

 Message filters by hardware

Connection of the physical transmission path Properties of transmitter and receiver

Transmission path dependent connection Cables

 Connectors

15

Fig. 3. Wiring of CAN-bus

In the figure 3 one can see how the devices (nodes) are connected in parallel to a two-

wire cable. At the ends of the pair-wire cable there are termination resistors to prevent

signals from refraction. The devices are observing the voltage in the bus. This voltage

represents two signals: CAN low (bit value 0) and CAN high (bit value 1).

The physical maximum length of CAN-bus is limited by the delay that increases as the

bus gets longer. The table 3 shows the maximum lengths of a bus for some transfer rates.

Table 3. Maximum lengths of CAN-bus for

different data transfer rates[7, p.4]

Data transfer rate Maximum length of bus

1 Mbit/s 30 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

62.5 kbit/s 1 km

20 kbit/s 2 km

10 kbit/s 5 km

When designing CAN-bus it is important to take notice of the number of nodes. As the

number of nodes increases also both capacitance and resistance increases. This interferes

the identification of signals. It is possible to make the CAN-bus longer by using repeaters

that amplify the moving signals. On the other hand, repeaters can add some delay to the

bus so in some cases it is necessary to decrease the data transfer rates.[7, p.4]

16

2.4.2 Frame Formats

CAN-devices support two different kinds of data frame formats; base frame and

extended frame. The main difference between the two formats is the length of the ID-

field. The standard frame has an ID-field of 11 bits and the extended frame has 29 bits in

its ID-field. The ID-field contains information such as the type of message and which

device the message is intended to. The extended frame offers more possibilities for

message types and device addresses. Despite this the extended frame is not as widely

used as the standard frame. For example the popular higher level protocol CANopen,

that is based on CAN, uses the standard frame.

Typical data frame formats of the base frame and extended frame can be seen in

appendix 1.

In addition to data frames there are also remote frame, error frame and overload frame.

The purpose of the remote frame is to request a transmission of a specific ID. Error

frame is transmitted by a device that detects an error. Overload frame causes delay

between data and remote frames to prevent overloading of transmissions.[9]

2.5 FUZZY CONTROL SYSTEM

Fuzzy logic is a mathematical method that compares analog input signals to pre-

determined logical variables, membership functions or “fuzzy sets”, that correspond to

values between 0 and 1. The main difference between traditional digital logic is that in

fuzzy logic values between 0 and 1 are allowed as in the purely digital logic only

acceptable values are 0 and 1.

Fuzzy logic is used in control system to imitate a human-like decisions in control. While

many different control methods can give a good performance in certain tasks, the main

advantage of fuzzy logic is that the problem and solution are often easy to be described

in a way that human operators can understand.

Fuzzy sets are the brain of a fuzzy control system. Fuzzy sets are in charge of converting

analog input values into scale of 0 to 1. This new value of 0 to 1 describes how strong

17

measured input corresponds to pre-determined membership functions. This whole

process that fuzzy sets do is called “fuzzification”.[10]

Fuzzy logic could be used in an everyday situation that does not have an absolute truth

but many truths. A common example is how to describe a temperature using fuzzy logic.

Below in figure 4 is showed how a temperature could be expressed in fuzzy logic

membership functions.

Fig. 4. Fuzzy logic membership functions to represent temperature[11]

The figure above can be translated into human language very easily. For example

temperature T1 could be +10 °C and T2 could be +15 °C. Temperature of +12.5 °C has

equal memberships of both “cold” and “cool” functions. Therefore it could be expressed

as “pretty cold”. Likewise “pretty hot” would take place somewhere between

temperatures T4 and T5.

2.6 MATLAB

MATLAB is a software environment for numerical programming developed by

MathWorks. It is a versatile tool for matrix manipulations, plotting of functions and

data, creation of user interfaces, simulation of control systems and many other

applications used in engineering.

An overview of MATLAB can be seen in figure 5.

18

Fig. 5. An overview of MATLAB

2.6.1 Simulink

Simulink is a block diagram environment that is integrated to MATLAB. It is a graphical

editor that allows building, controlling and simulating continuous-time and discrete-time

systems. It comes with libraries of blocks that are used to simulate control systems in

graphical editor.

Some of the block libraries in Simulink are shown in figure 6. Simulink comes with many

blocks suitable for numerous different purposes in control system designing.

19

Fig. 6. Simulink Library Browser

Simulink is a graphical tool that requires little to none knowledge of programming. Only

knowledge of how the simulated system works is needed. Below in figure 7 there is an

example Simulink model of a PID control system created in Simulink.

Fig. 7. A PID control system in Simulink environment

20

2.6.2 Fuzzy Logic Toolbox

Fuzzy Logic Toolbox is not required for designing fuzzy logic systems in MATLAB but

it provides tools that make building fuzzy systems easy. The two main additions to

MATLAB in this toolbox are FIS Editor and fuzzy logic Simulink blocks. The FIS

Editor is shown in figure 8 below.

Fig. 8. FIS Editor

FIS Editor is used for designing fuzzy logic controllers. Input and output signals are

determined by choosing the desired shape and number of membership functions in

Membership Function Editor (seen in figure 9). Also the range of signals can be changed

in Membership Function Editor.

21

Fig. 9. Membership Function Editor

Fuzzy rules are a set of rules that the fuzzy controller works according to. These rules

can be determined in Rule Editor (figure 10).

22

Fig. 10. Rule Editor

The other important tool in Fuzzy Logic Toolbox is the collection of Simulink blocks for

fuzzy control systems. There are two different kinds of fuzzy controller blocks. One with

ruleviewer and one without. Ruleviewer is a graphical tool that lets users see which rules

are in effect in their system in real-time while running the system. Also blocks to

determine the membership functions and their shapes are provided in the toolbox. The

Simulink blocks can be seen in figures 11 and 12.

The Fuzzy Logic Controller blocks use FIS-files and they can be designed with FIS-

editor also available in Fuzzy Logic Toolbox.

23

Fig. 11. Fuzzy Logic Controller Simulink blocks

Fig. 12. Fuzzy Logic Membership Function Simulink blocks

2.6.3 Data Acquisition Toolbox

Data Acquisition Toolbox adds support for connecting a range of devices to MATLAB

for data acquisition purposes. The connection can be used both ways: to and from

MATLAB.

Also the toolbox adds six new blocks to Simulink library. The new I/O blocks are

presented in figure 13.

24

Fig. 13. Simulink blocks in Data Acquisition Toolbox

25

3 MODIFICATIONS TO WHEELCHAIR

The equipment used in this project consisted of three main devices: an electric-powered

wheelchair, motion sensors and a computer. In addition to these devices various other

peripherals were used in order to form control signals.

First the EPW needed to be able to receive input signals that are used for controlling the

EPW. In normal case the signals are equivalent to movements of the joystick but since

the project was to develop a hands-free system, the joystick control needed to be by-

passed. The solution to produce the needed input signals in alternative way was to use a

laptop running a Simulink based system that sends the input signals to the main

controller of EPW through an I/O card and a screw terminal attached to the EPW. The

layout of alternative input signal routes to the main controller is shown in figure 14.

Fig. 14. Flowchart of data transfer in EPW control system

The modifications made included attaching a screw terminal on the side of the EPW and

connecting a switch that allows choosing either joystick or hands-free control. The

installed parts can be seen in figure 15.

26

Fig. 15. Modifications made to EPW

27

3.1 ELECTRIC-POWERED WHEELCHAIR

The electric-powered wheelchair used in this project was the Towny Joy manufactured

by Yamaha. The Towny Joy has a folding chassis. This makes it easy to store for transit.

Drive system is a rear wheel drive with electric motors powering each rear wheel

separately. Specifications of Towny Joy can be seen in appendix 2[12]. A picture of

Yamaha Towny Joy EPW is shown in figure 16.

Fig. 16. Yamaha Towny Joy electric-powered wheelchair

A picture of one of the motors that powers the wheelchair can be seen in figure 17.

28

Fig. 17. One of the two motors powering the wheelchair

Yamaha Towny Joy uses a rechargeable NiMH dry cell battery. The battery is removable

and comes with a separate charger unit. Output voltage is 24 V and its electric charge of

6.7 Ah is enough to power the wheelchair for 5 hours. The battery is protected by a 20

A automotive fuse. The battery of the EPW used is shown in figure 18.

Fig. 18. The rechargeable NiMH battery used in Yamaha EPW

29

By default the Yamaha EPW uses a joystick (seen in figure 19) to control the

wheelchair. In addition to the joystick there are also switches for power and sensitivity.

For research purposes in this project the joystick controller was bypassed and the motion

sensors were connected to a computer that was used for controlling the movements of

the EPW.

Fig. 19. A joystick that is used to control Yamaha EPW

The layout of the EPW control system is shown in figure 20.

Fig. 20. Control System Layout of the Yamaha EPW

30

To determine what kind of signals are used for controlling the EPW some measurements

were carried out. The goal was to measure the voltage the joystick sends to the main

controller. The layout of possible signals based on the measurements done can be seen in

figure 21.

Fig. 21. Joystick Control chart of control signals

This chart can be interpreted that when X-Axis is 0 V, the wheelchair turns left. When

the X-Axis is 5 V, the wheelchair turns right. Same principle is true for Y-Axis: 0 V

means backwards and 5 V means forward. The wheelchair stays still when X and Y are

both exactly 2.5 V. These X and Y-values will be used later on in this thesis.

31

3.2 MOTION SENSOR

IMU-Z by ZMP INC. is a small and lightweight motion sensor designed to include

acceleration sensor, gyroscopic sensor and compass sensor in one unit. In other words

this 9-axis sensor is composed of three individual sub-sensors that each is a 3-axis sensor

on its own. One motion tracking system can consist of up to 28 units simultaneously.

The more units are used simultaneously the more precise data of the movements can be

gathered. IMU-Z can be connected to a computer through CAN-bus or wirelessly

through Bluetooth. A picture of IMU-Z is shown in figure 22.

Fig. 22. ZMP IMU-Z motion sensor

Specifications of ZMP IMU-Z can be found in appendix 3[13]. For more info on CAN

message formats used by ZMP IMU-Z please refer to appendix 4.

To make the IMU-Z system more mobile, a batterybox is available as an optional

accessory. This makes it possible to use sensors without AC-adapter. The batterybox

can be seen in figure 23.

32

Fig. 23. Batterybox for IMU-Z

3.3 CAN TO USB ADAPTER

CANUSB is an CAN to USB adapter manufactured by Lawicel AB that is designed to

give an affordable access to CAN devices through the USB port of a computer. When

connected the adapter works like a standard serial RS-232 port. This means no special

drivers are needed. On the other hand custom drivers can improve data transfer rates and

allows bigger bus loads. Data transfers can be done in standard ASCII format. Figure 24

shows a picture of CANUSB adapter.

33

Fig. 24. Lawicel AB CANUSB adapter required for connection

Detailed specifications of CANUSB can be found in appendix 5[14].

The pin arrangement of the CANUSB adapter is presented in figure 25. As USB port

provides the needed voltage there is no need to connect power to pin 9. Only pin 2

(CAN_L), pin 7 (CAN_H) and pin 3 (CAN_GND) are used.

Fig. 25. Pin arrangement according to CiA recommendations DS102-1[14]

3.4 I/O PC CARD

ADA16-32/2(CB)F is a multi-function Type II size standard CardBus I/O card

manufactured by CONTEC. It contains analog inputs (16-bit, 32 channels), analog

outputs (16-bit, 2 channels), digital inputs (4 channels), digital outputs (4 channels) and

counters (32-bit binary, 1 channel). A picture of the card is shown in figure 26.

34

Fig. 26. CONTEC ADA16-32/2(CB)F Analog I/O PC Card

The device comes with driver libraries that support many programming platforms

through Win32 API functions. Also various plug-ins are available that add support for

MATLAB and LabVIEW softwares.

ADA16-32/2(CB)F comes included with an event controller for integrated hardware

control. This can be used to build a simple yet effective PC-based measurement and

control system that is ideal for controlling small-sized systems. The overview of the

event controller can be seen in figure 27 below.

The arrows in the figure are the control signals between the event controller and I/O

connections. The main control signals include clock signals and signals to start or stop

operations.

35

Fig. 27. Overview of event controller[15, p.1]

In order to use the I/O Card on MATLAB, installation of Data Acquisition library is

needed. The file is available on CONTEC website.

3.5 SCREW TERMINAL

DTP-64(PC) is a screw terminal that relays the I/O wirings to a CONTEC I/O card

through 96-pin half-pitch connector. An external device can be connected by fastening

the wires using screws. The DTP-64(PC) with I/O wiring connected is presented in

figure 28.

36

Fig. 28. CONTEC DTP-64(PC) Screw Terminal

The route of the control signal can be seen in the overview of DTP-64 connections

(figure 29). The signal travels from left to right.

Fig. 29. Overview of CONTEC DTP-64(PC) Connections [16, p.2]

37

4 EXECUTION OF CONTROL SYSTEM

The next sections describe the execution of the control system for EPW. The main steps

are configuration of devices and software, determination of the needed components in

Simulink program and fitting the components together.

4.1 CONFIGURATION OF MOTION SENSOR

ZMP IMU-Z software installation CD contains everything that is needed for

configuration of an IMU-Z unit. The installation program installs the drivers for IMU-Z

and all needed software. For configuration IMU-Z Firmware Updater and IMU-Z

Configuration Tool are needed.

The very first recommended thing to do before starting the actual configuration is to

update the firmware the IMU-Z unit. Version 3 or higher works more reliably compared

to previous versions that have had problems with saving settings. The firmware can be

updated with IMU-Z Firmware Updater tool. ZMP IMU-Z Manual provides detailed

instructions on firmware updates.

38

Parameters that can be changed and their units:

 period [ms]

 range for each sensor

o acceleration [g]

 2, 4 or 8 g

o gyroscope [deg/s]

 500 or 2000 deg/s

o compass [G]

 0.7; 1.0; 1.5; 2.0; 3.2; 3.8 or 4.5 G

 node number (1-28)

 role

o SingleBT

o CAN-MasterBT

o CAN-slave

 message format

o text

o binary

IMU-Z configuration is done with IMU-Z Configuration Tool program, pictured in

figure 30.

39

Fig. 30. IMU-Z Configuration Tool

Configuration is started by opening the connection to the device. This can be done from

File->Open. Next a new window appears (figure 31).

Fig. 31. IMU-Z Configuration: Connection type

40

COM-interface and a connection type need to be chosen. IMU-Z supports Bluetooth

(Bt) and CAN standards. In this case CAN was used. The connection is opened by

clicking “Open”. The window closes and configuration continues in the main window.

Button “Get Status” shows the current saved parameters. An example of a two sensor

system status is presented in figure 32.

Fig. 32. IMU-Z Configuration: Get Status

The parameters were changed and saved by clicking “Save”. The parameters used in this

configuration are shown in figure 33. The parameters were chosen by testing all different

options and trying to achieve as fast output response time as possible when the IMU-Z

was moved in significant way. Each project are different therefore the desired parameter

values need to be determined for each system separately.

41

Fig. 33. IMU-Z sensor parameters

4.2 DATA ACQUISITION IN MATLAB

CONTEC I/O cards require a dedicated library called ML-DAQ in order to

communicate with MATLAB. The library is available for download at CONTEC

website. The library file (mwcontec.dll) is to be extracted to following location:

 $MATLAB/toolbox/daq/daq/private

 $MATLAB is the directory where the MATLAB is installed.

The registration of the CONTEC I/O card is done by execution of the following

commands in Command Window in MATLAB:

 rehash toolboxcache

 daqregister(‘contec’)

42

Confirmation of valid device registration can be seen by execution of the following

command in Command Window:

 daqhwinfo(‘contec’)

Registration of CONTEC I/O card in MATLAB enables the use of Simulink blocks in

Data Acquisition Toolbox. The configuration of analog output block used in this system

is introduced later on.[17, p.4-5]

4.3 ZMP IMU-Z MATLAB PACKAGE

The most important piece in the Simulink program is the IMU-Z MATLAB package

from ZMP. It contains the MATLAB libraries needed to read data from IMU-Z sensors

in MATLAB environment. The package is a commercial product that is available as

common license (20,000 yen) or academic license (10,000 yen).

The package contains the libraries and an example program files. The example program

contains Simulink program for reading the data from IMU-Z sensor and M-files that set

up the communication through the libraries. Also a graphical user interface (GUI) code

in M-file is included. The program can be started by running the M-file

“IMUZ_START.m”. The code in IMUZ_START.m can be found in appendix 6.

The example Simulink program can be seen in figure 34.

Fig. 34. Example Simulink program

43

As seen above the example program is very simple. The purpose of the program is to

read measurement data from the IMU-Z sensor in real-time. The “Real-time” block

contains a subsystem that synchronises the Simulink clock with real time. The “Real-

time” subsystem is presented in figure 35.

Fig. 35. A subsystem for synchronisation of Simulink clock with real time

The last block of this subsystem contains functions located in M-file ”waitfortreal.m”.

The code can be found in appendix 7.

The ”IMU_Z” block contains functions from M-file “sfun_Imuz_sp.m” for loading

libraries, reading measurement data and plotting functions. The code can be found in

appendix 8. Output signals from this block are acceleration, gyro and compass data.

Each of these contains information of said signal in three dimensions.

Figure 36 presents an example of the user interface and measurement data.

Fig. 36. 9-axis measurement data in user interface and oscilloscope[18]

44

This example program was used as a platform to build on when the control system for

EPW was developed. The M-files work as they are and there was no need to edit them

for this project.

For ease of use the user interface was translated from the original Japanese language to

English. The translated version is shown in figure 37.

Fig. 37. Translated version of the user interface

The user interface can be used for starting and stopping the measurements. There is also

a possibility to save measurement data. Button “START” near the top of the window

runs the M-file “Imuz_CAN_start.m” (appendix 9). Button “STOP” near the top of the

window runs the M-file “Imuz_CAN_stop.m” (appendix 10). Button “save Data” runs

the M-file “Imuz_data_save.m” (appendix 11).

45

Communication mode and port can be chosen from drop-down lists. Because of this

there is no need to change the communication parameters in M-files. All configurations

can be done graphically in GUI and Simulink model.

4.4 PROCESSING OF MEASUREMENT DATA

Using the example Simulink model the measurement data can be read from the IMU-Z

sensor with the ”IMU_Z” block. The three output signals coming out of the block are

acceleration, gyroscope and compass data. Each one contains 3-axis data.

As mentioned before in section 3.1 the control signals that ultimately goes to the main

controller of the EPW are in range of 0...5 V for X and Y-axis each. Upon closer

inspection of the wirings of the joystick it was noticed that there are separate wires for X

and Y-axis movement. For this reason also two output channels were needed in Simulink

program. Now it is known how many signals are needed and what range they need to be

in.

For the purpose of processing the data into format that could be used, a pre-made

Simulink model was used. It was originally made for another motion sensor but it was

modified to work with IMU-Z. In the Simulink model that was used in this thesis for

data processing, only acceleration and gyroscope data was used. The model can be seen

in figure 38.

Fig. 38. Processing of acceleration and gyroscope data

46

The top part of the model is for processing the data from gyroscope and the bottom part

processes the acceleration data. From these two the model calculates the angle of the

IMU-Z sensor. This processed info can be used in the next step of the program.

4.5 FUZZY LOGIC CONTROLLER

Using fuzzy logic control system for projects like this thesis is a very convenient way to

create a human like control scheme. It is a very straightforward system to be designed

and suits a vast range of applications in the field of engineering.

Fuzzy logic controller allows a stepless speed variation for the motors of the EPW

instead of a predetermined cases that only allow a certain number of different speed

variations. Also fuzzy logic can be used for scaling the signals in order to have them in

range that the application required them to be.

The control system requires two separate fuzzy logic controller blocks because the

signals that simulate the movement of joystick need to be kept separated in X and Y-

axis.

Each fuzzy logic controller block uses two input signals: processed measurement data

and a feedback connection was used to give a smoother control. The output signal will

be in range of -2.5...+2.5 V.

The operation of the fuzzy logic control has been explained in next six figures (fig. 39-

43).

Figure 39 shows the overview of the fuzzy logic controller that controls the forward and

backward movement of the EPW. Two input signals called ”joystick” and ”feedback”

will determine the output signal called ”control” according to the set of fuzzy rules.

47

Fig. 39. Overview of fuzzy logic controller of forward and backward movement

In figure 40 a closer look at ”joystick” signal is taken. This signal will be the more

dominant one that the output signal is based on. There are three different membership

functions defined.

Function membership ”joystickdown” is ranged -5...0 V and its peak is at -2.5 V. This

works so that also signals of -2.5 V and below are considered as part of this

membership. Respectively ”joystickup” is ranged 0...+5 V and peaks at +2.5 V. Between

these two function memberships is ”joystickneutral” that represents the situation when

IMU-Z unit is in neutral position.

48

Fig. 40. Membership functions of fuzzy logic controller of forward and backward

movement

Input signal ”feedback” is a feedback signal that tells the fuzzy controller the current

direction of movement. This is used so that the EPW would not do any sudden changes

in movement. For example if the EPW is moving backwards but the IMU-Z gives a

command to go forward, the fuzzy controller would stop the movement first smoothly

and after that the forward movement can be commenced. Fuzzy set for signal “feedback”

can be seen in figure 41.

49

Fig. 41. Membership functions of feedback signal of fuzzy logic controller of forward

and backward movement

Figure 42 shows the output signal ”control”. The membership functions shown

correspond directly to what signal is sent to the EPW through I/O card.

50

Fig. 42. Membership functions of output signal of fuzzy logic controller of forward and

backward movement

The set of fuzzy rules are presented in figure 43. These rules are very human like as they

follow a simple formula. The formula is as following: if input A is X and input B is Y

then output is Z.

51

Fig. 43. Fuzzy rules for fuzzy logic controller of forward and backward movement

After setting the parameters for the fuzzy controller, it can be saved as an FIS-file. This

file can be also created in text editor instead of the graphical editor. The contents of the

FIS-file can be seen in appendix 12.

The fuzzy logic controller for turning the EPW is almost identical to the controller for

forward and backward movement. Therefore it will be presented in appendix 13.

4.6 ANALOG OUTPUT

An analog output block was needed to feed the already processed signals into the EPW.

Therefore an analog output block was placed into the Simulink model. The used block

with its parameters can be seen in figure 44.

52

Fig. 44. Analog Output block

The analog output block has two channels. HWChannel0 is for turning the EPW and

HWChannel1 is for going forward and backwards. 50 samples per sec was found to be a

sufficient rate of sampling.

4.7 BUILDING A CONTROL SYSTEM

The goal for the developed Simulink program was to get input data to the control

system from the IMU-Z sensor, process it into two signals that can be transferred to the

EPW using the I/O card.

The previously presented main components are not all that is needed to build a complete

control system. A number of additional blocks are needed to fill the gaps and move

information between the blocks. The complete Simulink model is presented in figure 45.

Fig. 45. The complete control system for EPW

A better view of the Simulink model can be found in appendix 14.

In the figure 45 there are four areas marked. They are the areas described in past four

sections. Area 1 is the ZMP IMU-Z MATLAB model. Area 2 is the block that contains

53

the processing of measurement data. Area 3 includes two fuzzy logic controllers. The

top one controls the turning of the EPW. The bottom controller handles the forward and

backward movement. Area 4 is the analog output block that is in charge of transfering

the control signals to the EPW through the I/O card.

As mentioned before the areas 1 and 2 were pre-made tools that were accessible when

this project was carried out. Between these areas there are simply wires connected that

transfer gyro and acceleration data from IMU-Z into the data processing block (area 2).

The signal that comes from output port of data processing block contains 3-axis

information of position of the IMU-Z. Three dimensional information is not needed this

time. Two dimensional data is suitable for the purpose of controlling the EPW.

Separating the needed signals can be done using a demux block. These signals that

contain only 1-axis information need to be transfered into area 3.

Area 3 contains the fuzzy logic controllers of the control system. Feedback connections

were added to both fuzzy controllers. The feedback signals go through mux blocks to

join the feedback signal together with signals coming from area 2. Even after the mux

blocks the signals can be processed separately inside the fuzzy logic controller blocks.

Feedback signals have one step delay.

In section 3.1 there was mentioned that each axis of the joystick control work in range

of 0...+5 V. Signals coming out of fuzzy controllers are in range of -2.5...+2.5 V.

Because of this a constant is needed. A constant of 2.5 is added to each of the two

signals coming the fuzzy controllers. This way the signals are in needed range. Now the

signals are acceptable to be transferred to the EPW through the I/O card.

The used simulation parameters can be seen in figure 46.

54

Fig. 46. Simulation parameters of the Simulink program

55

5 SUMMARY

First big step in this project was choosing the platform to develop the control system on.

MATLAB and Simulink was chosen instead of using a mere programming language.

Simulink is a graphical editor and therefore gives a complete overview of the whole

control system in just a few windows. Simulink served the purpose of building and

tuning the system very well in this project.

Preparing the equipment consisted of assembling the I/O system, connecting the cables

and installing drivers for used devices. Some measurements were made in order to

design the control system to feed right kind of signals into the wheelchair through the

I/O card.

The control system was built in Simulink environment. Commercially available libraries

were used for communication between the motion sensor and MATLAB. Fuzzy logic

controllers were built from scratch. Fuzzy control system suited this system well and it

was easy to build.

Using the EPW is very simple. A single M-file starts the user interface and Simulink

model. Communication settings can be selected from the user interface. Also the

Simulink program can be started from the user interface. As the program is running and

the IMU-Z is switched on the EPW can be controlled using the hands-free system.

Because the control system is operated using the angular changes in the IMU-Z, the

system is relatively flexible of the placement of the IMU-Z. It could be attached to the

head of a EPW user when the EPW movements correspond to the head movements. For

example turning a head turns the EPW. A little nod of a head could make the EPW move

forward.

When testing the built control system the performance of the system left a lot to be

desired. It worked as required but was very slow. Tuning the Simulink program did not

seem to have much effect on the performance. Due to time restrictions of the project

56

testing and tuning were left to very minimum. The built control system along with

created files were passed on to next person who would take responsibility of further

development of this project.

57

6 REFERENCES

1. Golden Technologies 2011. Golden Technologies Mobility Products | Alante DX.

Available at: http://www.goldentech.com/products/alante-dx/. Accessed May 1st, 2013.

2. Wikipedia contributors 2011. Motorized wheelchair. Wikipedia, The Free

Encyclopedia. Available at:

http://en.wikipedia.org/w/index.php?title=Motorized_wheelchair&oldid=469638234.

Accessed January 17th, 2012.

3. Wikipedia contributors 2011. Motion capture. Wikipedia, The Free Encyclopedia.

Available at:

http://en.wikipedia.org/w/index.php?title=Motion_capture&oldid=469188812. Accessed

January 18th, 2012.

4. Shi, Huxia 2009. Motion Tracking in VR. York University. Available at:

http://www.cse.yorku.ca/~huxiashi/6335.ppt. Accessed December 13th, 2011.

5. Wikipedia contributors 2013. Inertial measurement unit. Wikipedia, The Free

Encyclopedia. Available at:

http://en.wikipedia.org/w/index.php?title=Inertial_measurement_unit&oldid=550602245

. Accessed May 1st, 2013.

6. Zentrum für Sensorsysteme 2012. Navigation. Available at: http://www.zess.uni-

siegen.de/home/das-zess/forschung/navigation.html. Accessed: March 12th, 2012.

7. Lammila, Mika & Karhu, Otso 2007. CAN ja CANopen -perusteet.

8. Alanen, Jarmo 2000. CAN-ajoneuvojen ja koneiden sisäinen paikallisväylä. VTT

Automaatio, Koneautomaatio.

58

9. Wikipedia contributors 2013. CAN bus. Wikipedia, The Free Encyclopedia.

Available at: http://en.wikipedia.org/w/index.php?title=CAN_bus&oldid=552095285.

Accessed April 28th, 2013.

10. Wikipedia contributors 2013. Fuzzy control system. Wikipedia, The Free

Encyclopedia. Available at:

http://en.wikipedia.org/w/index.php?title=Fuzzy_control_system&oldid=540419607.

Accessed March 21st, 2013.

11. Goebel, Greg 2003. Introduction to fuzzy logic & fuzzy control. Available at:

http://www.faqs.org/docs/fuzzy/. Accessed March 21st, 2013.

12. Yamaha 2004. ヤハマ・タウニィジョイ軽量型電動車イス取り扱説明書.

Yahama Towny Joy User’s manual.

13. ZMP INC. 2011. ZMP IMU-Z Manual: Overview.

14. Lawicel AB 2013. CANUSB. Available at: http://www.can232.com/?page_id=16.

Accessed April 28th, 2013.

15. CONTEC Co., Ltd. 2011. High Resolution & Speed Analog I/O Card ADA16-

32/2(CB)F User's Guide.

16. CONTEC Co., Ltd. 2006. Screw Terminal DTP-64(PC) User's Guide.

17. CONTEC Co., Ltd. 2009. Data Acquisition Library for MATLAB - ML-DAQ

Setup & Reference Guide.

18. ZMP INC. 2013. 9軸（加速度・ジャイロ・地磁気）ワイヤレスモーション

センサ＆SDK e-nuvo IMU-Z2 | MATLAB/Simulink対応. Available at:

http://www.zmp.co.jp/imu-z_matlab.html. Accessed May 1st, 2013.

APPENDIX 1

Base data frame format.

Field Length Purpose

Start-of-Frame 1 bit Starter bit of a CAN-message frame

ID 11 bits Identifier used to determine the priority.

Remote transmission

request

1 bit Defines whether a message is a normal data

message or a transmission request.

IDE 1 bit Identifier extension bit.

Reserved bit (r0) 1 bit

Data length code 4 bits Length of the data in the message.

Data 0-8 bytes The actual data sent to a device.

Cyclic redundancy check

(CRC)

15 bits Checksum of the message. If the checksum

fails the message is rejected.

CRC delimiter 1 bit

ACK slot 1 bit Acknowledgement of a received message.

ACK delimiter 1 bit

End-of-Frame 7 bits Bits that tell a device that the message has

come to an end.

Extended data frame format.

Field Length Purpose

Start-of-Frame 1 bit Starter bit of a CAN-message frame

ID A 11 bits First part of the identifier used to determine the

priority.

Substitute remote

request

1 bit

IDE 1 bit Identifier extension bit.

ID B 18 bits Second part of the identifier used to determine

the priority.

Remote transmission

request

1 bit Defines whether a message is a normal data

message or a transmission request.

Reserved bits (r0 & r1) 2 bits

Data length code 4 bits Length of the data in the message.

Data 0-8 bytes The actual data sent to a device.

Cyclic redundancy check

(CRC)

15 bits Checksum of the message. If the checksum

fails the message is rejected.

CRC delimiter 1 bit

ACK slot 1 bit Acknowledgement of a received message.

ACK delimiter 1 bit

End-of-Frame 7 bits Bits that tell a device that the message has

come to an end.

APPENDIX 2

Specifications of Yamaha Towny Joy.

Specifications

Product name Towny Joy

Drive system Rear-wheel drive

Dimensions (length x width x height) 1000 x 550 x 900 mm

Weight 22 kg (battery included)

Steering method
Self Joystick

Caregiver Manual steering

Driving wheels 16"

Caster wheels 7"

Control system Microcomputer

Braking system Electromagnetic brakes, engine braking

Motors 24 V 90 W

Top speed
Drive Low gear 2.5 km/h, High gear 4.5 km/h

Reverse 2.0 km/h

Steepest climbable slope 6°

Battery
NiMH, 2.9 kg

24 V 6.7 Ah

Battery charger

Input AC 100 V ~ 240 V 50/60 Hz

Charging system Fully automatic

Charging time 2~3 hours (room temperature)

Range with one recharge 10 km

Frame

Material Reinforced aluminum

Armrest Removable

Footrest Removable

APPENDIX 3

Specifications of ZMP IMU-Z motion sensor.

Specifications

Product name ZMP IMU-Z

Acceleration sensor 3-axis ± 2 g, ± 4 g, ± 8 g

Gyroscopic sensor 3-axis ± 500 °/s, ± 2000 °/s

Compass sensor 3-axis ± 0.7 G ~ ± 4.5 G

Connections Bluetooth, CAN

Sampling rate 10 ms ~ 10 s, 10 ms steps

Dimensions

Length 42 mm

Width 52.5 mm

Height 20.5 mm

Weight 35 g

Maximum number of

sensors at a time
28

APPENDIX 4/1

IMU-Z CAN message format

ver 1.3

2010-06-30

SegaWa.

==

CAN_ID

--

 CAN-ID (11)

 +------------+--------------+---------------+

 | NODE_NO(5) | DIRECTION(1) | MESSAGE_ID(5) |

 +------------+--------------+---------------+

 NODE_NO

 0 : host

 1-28 : IMU-Z

 29 : reserve

 30 : reserve

 31 : all

 DIRECTION

 0 : Slave <- Host, Slave <- Master (Command)

 1 : Slave -> Master, Slave -> Host (Respose, Data)

==

MESSAGE_ID

--

 ECHO (target_no)(0x0)(0x01)

 +----------+

 +----------+

 ECHO (sender_no)(0x1)(0x01)

 +----------+

 +----------+

 MEASUREMENT_ACC (sender_no)(0x1)(0x02)

 +----------+

 0| time_h

 1| time_l

 2| acc_x_h

 3| acc_x_l

 4| acc_y_h

 5| acc_y_l

 6| acc_z_h

 7| acc_z_l

 +----------+

 MEASUREMENT_GYRO (sender_no)(0x1)(0x03)

 +----------+

 0| time_h

 1| time_l

 2| gyro_x_h

 3| gyro_x_l

 4| gyro_y_h

 5| gyro_y_l

 6| gyro_z_h

 7| gyro_z_l

 +----------+

APPENDIX 4/2

 MEASUREMENT_COMPASS (sender_no)(0x1)(0x04)

 +----------+

 0| time_h

 1| time_l

 2| comp_x_h

 3| comp_x_l

 4| comp_y_h

 5| comp_y_l

 6| comp_z_h

 7| comp_z_l

 +----------+

 STATUS (target_no)(0x0)(0x05)

 +----------+

 +----------+

 STATUS (sender_no)(0x1)(0x05)

 +----------+

 0| role

 1| period_h

 2| period_l

 3| range_acc(2) range_gyro(2) range_comp(3)

 4| batt

 5| msg_foramt

 +----------+

 SET_ROLE (target_no)(0x0)(0x06)

 +----------+

 0| role

 +----------+

 SET_PERIOD (target_no)(0x0)(0x07)

 +----------+

 0| period_h

 1| period_l

 +----------+

 SET_RANGE (target_no)(0x0)(0x08)

 +----------+

 0| range_acc(2) range_gyro(2) range_comp(3)

 +----------+

 SET_NODE_NO (target_no)(0x0)(0x09)

 +----------+

 0| node_no

 +----------+

 SAVE (target_no)(0x0)(0x0a)

 +----------+

 +----------+

 RESET_TIMESTAMP (target_no)(0x0)(0x0b)

 +----------+

 +----------+

 SET_MEASUREMENT_STATE (target_no)(0x0)(0x0c)

 +----------+

 0| enable(1)

 +----------+

 DEVICEP_PROFILE (target_no)(0x0)(0x0d)

 +----------+

 +----------+

APPENDIX 4/3

 DEVICEP_PROFILE (sender_no)(0x1)(0x0d)

 +----------+

 0| hardware

 1| firmware

 2| btaddr[0]

 3| btaddr[1]

 4| btaddr[2]

 5| btaddr[3]

 6| btaddr[4]

 7| btaddr[5]

 +----------+

 FACTORY_RESET (target_no)(0x0)(0x0e)

 +----------+

 +----------+

 SET_BINARY (target_no)(0x0)(0x0f)

 +----------+

 0| enable(1)

 +----------+

==

ID & MASK

--

 Single node

 *config mode

 mask 11111|1|00000

 slot0 Receive req command

 (my_no)|0|XXXXX

 slot1 Receive broadcast req command

 (bc_no)|0|XXXXX

 slot8 Send response of command

 (my_no)|1|XXXXX

 *run mode

 mask 11111|1|00000

 Master node

 *config mode

 mask 11111|1|00000

 slot0 Receive req command

 (my_no)|0|XXXXX

 slot1 Receive broadcast req command

 (bc_no)|0|XXXXX

 slot8 Send response of command

 (my_no)|1|XXXXX

 *run mode

 mask XXXXX|1|XXXXX

 slot2 Collect all report

 XXXXX|1|XXXXX

APPENDIX 4/4

 Slave node

 *config mode

 mask 11111|1|00000

 slot0 Receive req command

 (my_no)|0|XXXXX

 slot1 Receive broadcast req command

 (bc_no)|0|XXXXX

 slot8 Send response of command

 (my_no)|1|XXXXX

 *run mode

 mask 11111|1|00000

 slot0 Receive req command

 (my_no)|0|XXXXX

 slot1 Receive broadcast req command

 (bc_no)|0|XXXXX

 slot8 Send response of command

 (my_no)|1|XXXXX

 slot9 Send report

 (my_no)|1|XXXXX

APPENDIX 5

Lawicel AB CANUSB

Dimensions:

 Length: 55 mm

 Width: 36 mm

 Height: 16 mm

Specifications:

 CAN bitrate of up to 1Mbit/s

 Functional in industril temperature range -40°C…+85°C

 USB 2.0 full speed using FTDI FT245RL chip

 Philips SJA1000 CAN controller running at 16 MHz

 ISO 11898-24V compatible Philips 82C251 CAN transceiver

 Complies with CAN 2.0A (11-bit IDs) and CAN 2.0B (29-bit IDs)

 RTR frame support

 32 CAN frames deep FIFO buffer

 CiA DS102-1 standard compatible

 LED lights to indicate activity and errors

 Supports Windows and Linux platforms

APPENDIX 6/1

% IMUZ_START.m

close all
clear all
clc

global portName Imuz_node_no Imuz_time Imuz_Acc1 Imuz_Acc2 Imuz_Acc3

Imuz_gyro1 Imuz_gyro2 Imuz_gyro3 Imuz_comp1 Imuz_comp2 Imuz_comp3
global plot1 plot2 plot3 ui_8 ui_4 ui_6 CB_old bode_old ui_10 ui_12

ui_17
global line1_1 line1_2 line1_3 line2_1 line2_2 line2_3 line3_1 line3_2

line3_3
global ui_Acc1 ui_Acc2 ui_Acc3 ui_Gyro1 ui_Gyro2 ui_Gyro3 ui_Comp1

ui_Comp2 ui_Comp3
global OUT_data nodeNo_plot save_data dll_path

simmodel='IMU_Z_simmodel';
open([simmodel,'.mdl']);
stime=0.1;%%simulation time
% clc
%%%
dll_path='C:\Program Files\ZMP\IMU-Z MATLAB Connection';
%%%
dll_path=[dll_path,'\'];

portName='';
Imuz_node_no =0;
Imuz_time=0;
Imuz_Acc1=0; Imuz_Acc2=0; Imuz_Acc3=0;
Imuz_gyro1=0; Imuz_gyro2=0; Imuz_gyro3=0;
Imuz_comp1=0; Imuz_comp2=0; Imuz_comp3=0;

for i=1:28
 OUT_data(i).nodeNo=[];
 OUT_data(i).time=[];
 OUT_data(i).data=[];
 OUT_data(i).time_off=[];
 OUT_data(i).save_start_time=[];
 OUT_data(i).save_stop_time=[];
 OUT_data(i).save_start_ren=[];
 OUT_data(i).save_stop_ren=[];
end
nodeNo_plot=1;

save_data.start_swith=0;
save_data.stop_swith=0;
save_data.node_length=[];
save_data.time_real=0;
save_data.save_path=cd;
save_data.label_box={'NodeNo','time','AccX','AccY','AccZ','GyroX','Gyr

oY','GyroZ','CompX','CompY','CompZ'};
save_Data.save_node_old={};

%%
fig_handle=figure(100);
set(fig_handle,'Position',[30 200 690 570]);
set(fig_handle,'Color',[0.92549 0.913725 0.847059]);
set(fig_handle,'Menubar','none')
set(fig_handle,'name','IMU_Z Viewer GUI');

APPENDIX 6/2
%%
ui_id_frame=uicontrol('style','frame');
set(ui_id_frame,'position',[15 525 290 40]);
set(ui_id_frame,'BackgroundColor',[0.92549 0.913725 0.847059]);

ui_comp_frame=uicontrol('style','frame');
set(ui_comp_frame,'position',[5 217 680 2]);
set(ui_comp_frame,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_comp_frame,'ForegroundColor',[0.75 0.75 0.75]);

ui_gyro_frame=uicontrol('style','frame');
set(ui_gyro_frame,'position',[5 367 680 2]);
set(ui_gyro_frame,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_gyro_frame,'ForegroundColor',[0.75 0.75 0.75]);

ui_Acc_frame=uicontrol('style','frame');
set(ui_Acc_frame,'position',[5 515 680 2]);
set(ui_Acc_frame,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_Acc_frame,'ForegroundColor',[0.75 0.75 0.75]);

ui_save_frame=uicontrol('style','frame');
set(ui_save_frame,'position',[5 70 680 2]);
set(ui_save_frame,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_save_frame,'ForegroundColor',[0.75 0.75 0.75]);

ui_save_frame=uicontrol('style','frame');
set(ui_save_frame,'position',[15 10 660 45]);
set(ui_save_frame,'BackgroundColor',[0.92549 0.913725 0.847059]);

%%
ui_1=uicontrol('style','pushbutton');
set(ui_1,'position',[320 530 80 30]);
set(ui_1,'string','START');
set(ui_1,'Callback','Imuz_CAN_start;');

ui_2=uicontrol('style','pushbutton');
set(ui_2,'position',[400 530 80 30]);
set(ui_2,'string','STOP');
set(ui_2,'Callback','Imuz_CAN_stop');

ui_3=uicontrol('style','text');
set(ui_3,'string','Mode:');
set(ui_3,'position',[20 530 70 20]);
set(ui_3,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_3,'HorizontalAlignment','left');

CB_old={};
CB_old(1)={'CAN'};
CB_old(2)={'Bluetooth'};

ui_4=uicontrol('style','popu');
set(ui_4,'position',[80 485 80 70]);
set(ui_4,'string',CB_old);
set(ui_4,'BackgroundColor',[1 1 1]);

ui_5=uicontrol('style','text');
set(ui_5,'string','Board:');
set(ui_5,'position',[170 530 70 20]);
set(ui_5,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_5,'HorizontalAlignment','left');

APPENDIX 6/3
bode_old={};
for i=1:40
 eval(['bode_old(',num2str(i),')={''COM',num2str(i),'''};']);
end

ui_6=uicontrol('style','popu');
set(ui_6,'position',[220 485 80 70]);
set(ui_6,'string',bode_old);
set(ui_6,'BackgroundColor',[1 1 1]);

ui_7=uicontrol('style','text');
set(ui_7,'string','Node No:');
set(ui_7,'position',[495 530 70 20]);
set(ui_7,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_7,'HorizontalAlignment','left');

node_old={};
for i=1:28
 eval(['node_old(',num2str(i),')={''',num2str(i),'''};']);
end

ui_8=uicontrol('style','popu');
set(ui_8,'position',[550 485 120 70]);
set(ui_8,'string',node_old);
set(ui_8,'BackgroundColor',[1 1 1]);

%% data save

ui_9=uicontrol('style','text');
set(ui_9,'position',[30 40 60 20]);
set(ui_9,'string','data save')
set(ui_9,'FontWeight',' bold');

ui_10=uicontrol('style','edit');
set(ui_10,'position',[100 20 40 20]);
% set(ui_10,'Enable','Off');
set(ui_10,'Enable','On');
set(ui_10,'string',[]);

ui_11=uicontrol('style','text');
set(ui_11,'position',[145 15 10 20]);
set(ui_11,'string','?`')
set(ui_11,'Enable','Off');

ui_12=uicontrol('style','edit');
set(ui_12,'position',[160 20 40 20]);
% set(ui_12,'Enable','Off');
set(ui_12,'Enable','On');
set(ui_12,'string',[]);

ui_13=uicontrol('style','pushbutton');
set(ui_13,'position',[210 15 50 30]);
set(ui_13,'string','START');
set(ui_13,'Callback','for

i=save_data.node_length;OUT_data(i).save_start_time=[];OUT_data(i).sav

e_stop_time=[];end;save_data.start_swith=1;save_data.stop_swith=0;');

ui_14=uicontrol('style','pushbutton');
set(ui_14,'position',[260 15 50 30]);
set(ui_14,'string','STOP');

APPENDIX 6/4
set(ui_14,'Callback','save_data.start_swith=0;save_data.stop_swith=1;'

);

ui_15=uicontrol('style','pushbutton');
set(ui_15,'position',[310 15 50 30]);
set(ui_15,'string','RESET');
set(ui_15,'Callback','save_data.start_swith=0;save_data.stop_swith=0;'

);

ui_16=uicontrol('style','pushbutton');
set(ui_16,'position',[580 15 90 30]);
set(ui_16,'string','save Data');
set(ui_16,'Callback','Imuz_data_save');

save_node_old={};
save_node_old(1)={'All'};
for i=1:28
 eval(['save_node_old(',num2str(i+1),')={''',num2str(i),'''};']);
end
save_data.save_node_old=save_node_old;

ui_17=uicontrol('style','popu');
set(ui_17,'position',[470 10 110 30]);
set(ui_17,'string',save_data.save_node_old);
set(ui_17,'BackgroundColor',[1 1 1]);

ui_18=uicontrol('style','text');
set(ui_18,'string','save Node No:');
set(ui_18,'position',[390 15 80 20]);
set(ui_18,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_18,'HorizontalAlignment','left');

ui_19=uicontrol('style','text');
set(ui_19,'string','save Time [s]:');
set(ui_19,'position',[20 15 80 20]);
set(ui_19,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(ui_19,'HorizontalAlignment','left');

%%
% %%%%%%%%%%%%%%%%Imuz_Acc1 Imuz_Acc2 Imuz_Acc3
ui_Acc1_txt=uicontrol('style','text');
set(ui_Acc1_txt,'position',[500 460 50 20]);
set(ui_Acc1_txt,'string','AccX')
set(ui_Acc1_txt,'HorizontalAlignment','left');

ui_Acc2_txt=uicontrol('style','text');
set(ui_Acc2_txt,'position',[500 430 50 20]);
set(ui_Acc2_txt,'string','AccY')
set(ui_Acc2_txt,'HorizontalAlignment','left');

ui_Acc3_txt=uicontrol('style','text');
set(ui_Acc3_txt,'position',[500 400 50 20]);
set(ui_Acc3_txt,'string','AccZ')
set(ui_Acc3_txt,'HorizontalAlignment','left');
%%unit[G]
ui_Acc1_txt=uicontrol('style','text');
set(ui_Acc1_txt,'position',[630 460 50 20]);
set(ui_Acc1_txt,'string','[g]')
set(ui_Acc1_txt,'HorizontalAlignment','left');

APPENDIX 6/5

ui_Acc2_txt=uicontrol('style','text');
set(ui_Acc2_txt,'position',[630 430 50 20]);
set(ui_Acc2_txt,'string','[g]')
set(ui_Acc2_txt,'HorizontalAlignment','left');

ui_Acc3_txt=uicontrol('style','text');
set(ui_Acc3_txt,'position',[630 400 50 20]);
set(ui_Acc3_txt,'string','[g]')
set(ui_Acc3_txt,'HorizontalAlignment','left');

ui_Acc1=uicontrol('style','edit');
set(ui_Acc1,'position',[540 465 90 18]);
set(ui_Acc1,'string',Imuz_Acc1)
set(ui_Acc1,'BackgroundColor',[1,1,1]);

ui_Acc2=uicontrol('style','edit');
set(ui_Acc2,'position',[540 435 90 18]);
set(ui_Acc2,'string',Imuz_Acc2)
set(ui_Acc2,'BackgroundColor',[1,1,1]);

ui_Acc3=uicontrol('style','edit');
set(ui_Acc3,'position',[540 405 90 18]);
set(ui_Acc3,'string',Imuz_Acc3)
set(ui_Acc3,'BackgroundColor',[1,1,1]);

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%Imuz_gyro1 Imuz_gyro2 Imuz_gyro3
ui_Gyro1_txt=uicontrol('style','text');
set(ui_Gyro1_txt,'position',[500 315 50 20]);
set(ui_Gyro1_txt,'string','GyroX')
set(ui_Gyro1_txt,'HorizontalAlignment','left');

ui_Gyro2_txt=uicontrol('style','text');
set(ui_Gyro2_txt,'position',[500 285 50 20]);
set(ui_Gyro2_txt,'string','GyroY')
set(ui_Gyro2_txt,'HorizontalAlignment','left');

ui_Gyro3_txt=uicontrol('style','text');
set(ui_Gyro3_txt,'position',[500 255 50 20]);
set(ui_Gyro3_txt,'string','GyroZ')
set(ui_Gyro3_txt,'HorizontalAlignment','left');

ui_Gyro1_txt=uicontrol('style','text');
set(ui_Gyro1_txt,'position',[630 315 70 20]);
set(ui_Gyro1_txt,'string','[deg/s]')
set(ui_Gyro1_txt,'HorizontalAlignment','left');

ui_Gyro2_txt=uicontrol('style','text');
set(ui_Gyro2_txt,'position',[630 285 70 20]);
set(ui_Gyro2_txt,'string','[deg/s]')
set(ui_Gyro2_txt,'HorizontalAlignment','left');

ui_Gyro3_txt=uicontrol('style','text');
set(ui_Gyro3_txt,'position',[630 255 70 20]);
set(ui_Gyro3_txt,'string','[deg/s]')
set(ui_Gyro3_txt,'HorizontalAlignment','left');

ui_Gyro1=uicontrol('style','edit');
set(ui_Gyro1,'position',[540 320 90 18]);
set(ui_Gyro1,'string',Imuz_gyro1)

APPENDIX 6/6

set(ui_Gyro1,'BackgroundColor',[1,1,1]);

ui_Gyro2=uicontrol('style','edit');
set(ui_Gyro2,'position',[540 290 90 18]);
set(ui_Gyro2,'string',Imuz_gyro2)
set(ui_Gyro2,'BackgroundColor',[1,1,1]);

ui_Gyro3=uicontrol('style','edit');
set(ui_Gyro3,'position',[540 260 90 18]);
set(ui_Gyro3,'string',Imuz_gyro3)
set(ui_Gyro3,'BackgroundColor',[1,1,1]);

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%Imuz_comp1 Imuz_comp2 Imuz_comp3
ui_Comp1_txt=uicontrol('style','text');
set(ui_Comp1_txt,'position',[500 165 50 20]);
set(ui_Comp1_txt,'string','CompX')
set(ui_Comp1_txt,'HorizontalAlignment','left');

ui_Comp2_txt=uicontrol('style','text');
set(ui_Comp2_txt,'position',[500 135 50 20]);
set(ui_Comp2_txt,'string','CompY')
set(ui_Comp2_txt,'HorizontalAlignment','left');

ui_Comp3_txt=uicontrol('style','text');
set(ui_Comp3_txt,'position',[500 105 50 20]);
set(ui_Comp3_txt,'string','CompZ')
set(ui_Comp3_txt,'HorizontalAlignment','left');

ui_Comp1_txt=uicontrol('style','text');
set(ui_Comp1_txt,'position',[630 165 50 20]);
set(ui_Comp1_txt,'string','[G]')
set(ui_Comp1_txt,'HorizontalAlignment','left');

ui_Comp2_txt=uicontrol('style','text');
set(ui_Comp2_txt,'position',[630 135 50 20]);
set(ui_Comp2_txt,'string','[G]')
set(ui_Comp2_txt,'HorizontalAlignment','left');

ui_Comp3_txt=uicontrol('style','text');
set(ui_Comp3_txt,'position',[630 105 50 20]);
set(ui_Comp3_txt,'string','[G]')
set(ui_Comp3_txt,'HorizontalAlignment','left');

ui_Comp1=uicontrol('style','edit');
set(ui_Comp1,'position',[540 170 90 18]);
set(ui_Comp1,'string',Imuz_comp1)
set(ui_Comp1,'BackgroundColor',[1,1,1]);

ui_Comp2=uicontrol('style','edit');
set(ui_Comp2,'position',[540 140 90 18]);
set(ui_Comp2,'string',Imuz_comp2)
set(ui_Comp2,'BackgroundColor',[1,1,1]);

ui_Comp3=uicontrol('style','edit');
set(ui_Comp3,'position',[540 110 90 18]);
set(ui_Comp3,'string',Imuz_comp3)
set(ui_Comp3,'BackgroundColor',[1,1,1]);

APPENDIX 6/7

%%%%%%%%%%%%%%%%
plot1=axes('position',[.10 .71 .60 .15]);
 line1_1=plot(0,0,'r+-','LineWidth',2);hold on
 line1_2=plot(0,0,'g+-','LineWidth',2);hold on
 line1_3=plot(0,0,'b+-','LineWidth',2);hold off
 line1_legend=legend([line1_1,line1_2,line1_3],'X','Y','Z',1);
 set(line1_legend,'Orientation','horizontal');
 set(line1_legend,'position',[0.1007 0.8240 0.2671

0.0351])
 xlabel('Time [s]');ylabel('Acceleration [g]');grid on
 set(plot1,'ylim',[-2 2]);
 set(plot1,'xlim',[0 7]);

plot2=axes('position',[.10 .45 .60 .15]);
 line2_1=plot(0,0,'r+-','LineWidth',2);hold on
 line2_2=plot(0,0,'g+-','LineWidth',2);hold on
 line2_3=plot(0,0,'b+-','LineWidth',2);hold off
 line2_legend=legend([line2_1,line2_2,line2_3],'X','Y','Z');
 set(line2_legend,'Orientation','horizontal');
 set(line2_legend,'position',[0.1007 0.5646 0.2671

0.0351])
 xlabel('Time [s]');ylabel('Angular velocity[deg/s]');grid on
 set(plot2,'ylim',[-1000 1000]);
 set(plot2,'xlim',[0 7]);

plot3=axes('position',[.10 .19 .60 .15]);
 line3_1=plot(0,0,'r+-','LineWidth',2);hold on
 line3_2=plot(0,0,'g+-','LineWidth',2);hold on
 line3_3=plot(0,0,'b+-','LineWidth',2);hold off
 line3_legend=legend([line3_1,line3_2,line3_3],'X','Y','Z');
 set(line3_legend,'Orientation','horizontal');
 set(line3_legend,'position',[0.1007 0.3049 0.2671

0.0351])
 xlabel('Time [s]');ylabel('Magnetic field [G]');grid on
 set(plot3,'ylim',[-0.7 0.7]);
 set(plot3,'xlim',[0 7]);

%%plot application screen
plot1_txt=uicontrol('style','text');
set(plot1_txt,'string','Accelerometer');
set(plot1_txt,'position',[260 495 90 15]);
set(plot1_txt,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(plot1_txt,'HorizontalAlignment','left');
set(plot1_txt,'FontWeight',' bold');

plot2_txt=uicontrol('style','text');
set(plot2_txt,'string','Gyroscope');
set(plot2_txt,'position',[260 345 90 15]);
set(plot2_txt,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(plot2_txt,'HorizontalAlignment','left');
set(plot2_txt,'FontWeight',' bold');

plot3_txt=uicontrol('style','text');
set(plot3_txt,'string','Compass');
set(plot3_txt,'position',[260 195 90 15]);
set(plot3_txt,'BackgroundColor',[0.92549 0.913725 0.847059]);
set(plot3_txt,'HorizontalAlignment','left');
set(plot3_txt,'FontWeight',' bold');

%%%%%%%%%%%%%%%

APPENDIX 7

% waitfortreal.m

function waitfortreal(tsim)
% This function is intended to synchronize the Simulink clock with

real time.
% When called with t = 0, the beginning time is established.

Subsequent calls, with
% tsim > 0, enter a busy wait state until the real-time clock catches

up to tsim.
% It is assumed that the Simulink clock, tsim, is faster than real

time.

%
% Stan Quinn December 1996
% Copyright (c) 1995-97 by The MathWorks, Inc.
% $Revision: 1.1 $
%

global waitfortrealTstart
time = clock;
if (tsim == 0)
 waitfortrealTstart = time;
else
 while etime(clock, waitfortrealTstart) < tsim
 end
end

APPENDIX 8/1

% sfun_Imuz_sp.m

function sfun_Imuz_sp(block)
setup(block);

function setup(block)
 block.NumDialogPrms = 0;

 block.NumInputPorts = 1;
 block.NumOutputPorts = 3;

 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;

 % Override input port properties
 block.InputPort(1).DatatypeID = 0; % double
 block.InputPort(1).Complexity = 'Real';
 block.InputPort(1).DirectFeedThrough = true;
 block.InputPort(1).SamplingMode = 'Sample';
 block.InputPort(1).Dimensions = 1;

 block.OutputPort(1).Complexity = 'Real';
 block.OutputPort(1).DataTypeId = 0;
 block.OutputPort(1).SamplingMode = 'Sample';
 block.OutputPort(1).Dimensions = 3;

 block.OutputPort(2).Complexity = 'Real';
 block.OutputPort(2).DataTypeId = 0;
 block.OutputPort(2).SamplingMode = 'Sample';
 block.OutputPort(2).Dimensions = 3;

 block.OutputPort(3).Complexity = 'Real';
 block.OutputPort(3).DataTypeId = 0;
 block.OutputPort(3).SamplingMode = 'Sample';
 block.OutputPort(3).Dimensions = 3;

 block.SampleTimes = [0 0];

 %% ---
 % M-file
 block.SetAccelRunOnTLC(false);
 block.RegBlockMethod('Start', @Start);
 %%
 block.RegBlockMethod('Outputs', @Outputs);
 %%
 block.RegBlockMethod('Terminate', @Terminate);

function Start(block)
 global portName ui_4 ui_6 CB_old bode_old dll_path
 kk1=get(ui_4,'Value');
 kk2=get(ui_6,'Value');
 portName=[char(CB_old(kk1)),'(', char(bode_old(kk2)),')'];

 if libisloaded([dll_path,'ImuzCommunication'])
 else

loadlibrary([dll_path,'ImuzCommunication.dll'],[dll_path,'mat_ImuzComm

unication.h'])
 end
 if libisloaded([dll_path,'SimpleCom'])

 APPENDIX 8/2
 else

loadlibrary([dll_path,'SimpleCom.dll'],[dll_path,'mat_SimpleCom.h'])
 end
 if libisloaded([dll_path,'ImuzMatInterface'])
 else
 loadlibrary([dll_path,'ImuzMatInterface.dll'],

[dll_path,'mat_ImuzMatInterface.h'])
 end
 calllib('ImuzMatInterface', 'ImuzIf_Open', portName);

%endfunction

function Outputs(block)
global Imuz_Acc1 Imuz_Acc2 Imuz_Acc3 Imuz_gyro1 Imuz_gyro2 Imuz_gyro3

Imuz_comp1 Imuz_comp2 Imuz_comp3
global nodeNo_plot ui_10 ui_12 ui_17
global plot1 plot2 plot3
global line1_1 line1_2 line1_3 line2_1 line2_2 line2_3 line3_1 line3_2

line3_3
global Data reLen OUT_data ui_8 save_data
global ui_Acc1 ui_Acc2 ui_Acc3 ui_Gyro1 ui_Gyro2 ui_Gyro3 ui_Comp1

ui_Comp2 ui_Comp3

%%
%%%%--------------------GetRecentData----------------------
% %
 save_data.time_real = block.InputPort(1).Data;

 nodeNo_plot=get(ui_8,'Value');

 nodeNo=nodeNo_plot;

 st.node_no = 0;
 st.time = 0;
 st.acc(1) = 0; st.acc(2) = 0; st.acc(3) = 0;
 st.gyro(1) = 0; st.gyro(2) = 0; st.gyro(3) = 0;
 st.comp(1) = 0; st.comp(2) = 0; st.comp(3) = 0;
%
 s = libstruct('ParamImuzMeasurement', st);
 calllib('ImuzMatInterface', 'ImuzIf_GetRecentData',nodeNo, s);

 Imuz_Acc_123=[double(s.acc(1)),double(s.acc(2)),double(s.acc(3))];

Imuz_gyro_123=[double(s.gyro(1)),double(s.gyro(2)),double(s.gyro(3))];

Imuz_comp_123=[double(s.comp(1)),double(s.comp(2)),double(s.comp(3))];

 block.OutputPort(1).Data = Imuz_Acc_123 ;
 block.OutputPort(2).Data = Imuz_gyro_123;
 block.OutputPort(3).Data = Imuz_comp_123;

%%
 %%%-----------------GetData-----------------------
 maxLen=10;
 reLen_1=0;
 pv_reLen = libpointer('int32Ptr', reLen_1);
 reLen = get(pv_reLen, 'Value');

 Data_1=[];

APPENDIX 8/3
 for i=1:110
 Data_1=[Data_1,0];
 end
 pv = libpointer('singlePtr', Data_1);
 Data=get(pv, 'Value');

 calllib('ImuzMatInterface', 'ImuzIf_GetData',pv, pv_reLen,maxLen);
 Data=get(pv, 'Value');
 reLen=get(pv_reLen, 'Value');

 for i=1:reLen
 k=Data(11*(i-1)+1);
 if k==0
 break
 end
 OUT_data(k).data=[OUT_data(k).data;double(Data(11*(i-

1)+1:11*i))];
 OUT_data(k).nodeNo=k;
 OUT_data(k).time=OUT_data(k).data(1,2);
 end
 for i=1:28
 if size(OUT_data(i).nodeNo,1) ~= 0
 yebi_data=OUT_data(i).data;
 OUT_data(i).time_off=(yebi_data(:,2)-

OUT_data(i).time)./1000;
 else
 OUT_data(i).time_off=[];
 end
 end

 plot_data=double(OUT_data(nodeNo_plot).data);

 if size(plot_data,1) ~=0
 plot_data_time0=double(OUT_data(nodeNo_plot).time);
 else
 plot_data_time0=0;
 plot_data(1,1:11)=0;
 end

 Imuz_Acc1=plot_data(end,3); Imuz_Acc2=plot_data(end,4);

Imuz_Acc3=plot_data(end,5);
 Imuz_gyro1=plot_data(end,6); Imuz_gyro2=plot_data(end,7);

Imuz_gyro3=plot_data(end,8);
 Imuz_comp1=plot_data(end,9); Imuz_comp2=plot_data(end,10);

Imuz_comp3=plot_data(end,11);

set(ui_Acc1,'string',Imuz_Acc1);set(ui_Acc2,'string',Imuz_Acc2);set(ui

_Acc3,'string',Imuz_Acc3);

set(ui_Gyro1,'string',Imuz_gyro1);set(ui_Gyro2,'string',Imuz_gyro2);se

t(ui_Gyro3,'string',Imuz_gyro3);

set(ui_Comp1,'string',Imuz_comp1);set(ui_Comp2,'string',Imuz_comp2);se

t(ui_Comp3,'string',Imuz_comp3);

 %%%%%--------------------plot------------------
 time=(plot_data(:,2)-plot_data_time0)./1000;

 if time(end)>=7
 set(plot1,'xlim',[time(end)-6,time(end)+1]);
 set(plot2,'xlim',[time(end)-6,time(end)+1]);

APPENDIX 8/4
 set(plot3,'xlim',[time(end)-6,time(end)+1]);
 else
 set(plot1,'xlim',[0 7]);
 set(plot2,'xlim',[0 7]);
 set(plot3,'xlim',[0 7]);
 end

% axes(plot1)
 set(line1_1,'XData',time,'YData',plot_data(:,3));
 set(line1_2,'XData',time,'YData',plot_data(:,4));
 set(line1_3,'XData',time,'YData',plot_data(:,5));

 % axes(plot2)
 set(line2_1,'XData',time,'YData',plot_data(:,6));
 set(line2_2,'XData',time,'YData',plot_data(:,7));
 set(line2_3,'XData',time,'YData',plot_data(:,8));

% axes(plot3)
 set(line3_1,'XData',time,'YData',plot_data(:,9));
 set(line3_2,'XData',time,'YData',plot_data(:,10));
 set(line3_3,'XData',time,'YData',plot_data(:,11));
%%
 %%%%%--------------------save------------------
 for i=1:28
 if size(OUT_data(i).nodeNo,1) ~= 0
 if save_data.start_swith==1 &

save_data.stop_swith==0 %#ok<AND2>
 if size(OUT_data(i).save_start_time,1)==0

OUT_data(i).save_start_time=OUT_data(i).time_off(end);

OUT_data(i).save_stop_time=OUT_data(i).time_off(end);

OUT_data(i).save_start_ren=size(OUT_data(i).time_off,1);

OUT_data(i).save_stop_ren=size(OUT_data(i).time_off,1);
 else

OUT_data(i).save_stop_time=OUT_data(i).time_off(end);

OUT_data(i).save_stop_ren=size(OUT_data(i).time_off,1);
 end
 elseif save_data.start_swith==0 &

save_data.stop_swith==1 %#ok<AND2>
 else
 OUT_data(i).save_start_time=[];
 OUT_data(i).save_stop_time=[];
 OUT_data(i).save_start_ren=[];
 OUT_data(i).save_stop_ren=[];
 end
 else
 OUT_data(i).save_start_time=[];
 OUT_data(i).save_stop_time=[];
 OUT_data(i).save_start_ren=[];
 OUT_data(i).save_stop_ren=[];
 end
 end

 set(ui_10,'string',OUT_data(nodeNo_plot).save_start_time);
 set(ui_12,'string',OUT_data(nodeNo_plot).save_stop_time);

 save_node_old={};

APPENDIX 8/5
save_node_old(1)={'All'};
 node_length=[];
 for i=1:28
 if size(OUT_data(i).nodeNo,1) ~= 0
 k=OUT_data(i).nodeNo;
 kk=length(save_node_old);

eval(['save_node_old(',num2str(kk+1),')={''',num2str(k),'''};']);
 node_length=[node_length,k];
 else
 end
 end
 if length(save_node_old) == 1
 save_data.save_node_old={' '};
 save_data.node_length=[];
 else
 save_data.save_node_old=save_node_old;
 save_data.node_length=node_length;
 end
 set(ui_17,'string',save_data.save_node_old);

%%
function Terminate(block)
 calllib('ImuzMatInterface', 'ImuzIf_Close');
 unloadlibrary('ImuzMatInterface');
 unloadlibrary('ImuzCommunication');
 unloadlibrary('SimpleCom');

APPENDIX 9

% Imuz_CAN_start.m

global OUT_data nodeNo_plot ui_8 ui_4 ui_6 CB_old bode_old

 for i=1:28
 OUT_data(i).nodeNo=[];
 OUT_data(i).time=[];
 OUT_data(i).data=[];
 OUT_data(i).time_off=[];
 OUT_data(i).save_start_time=[];
 OUT_data(i).save_stop_time=[];
 OUT_data(i).save_start_ren=[];
 OUT_data(i).save_stop_ren=[];
 end
 kk1=get(ui_4,'Value');
 kk2=get(ui_6,'Value');
 portName=[char(CB_old(kk1)),'(', char(bode_old(kk2)),')'];

 nodeNo_plot=get(ui_8,'Value');

 set_param(simmodel,'SimulationCommand','start');

 set(ui_3,'Enable','Off');
 set(ui_4,'Enable','Off');
 set(ui_5,'Enable','Off');
 set(ui_6,'Enable','Off');

 set(ui_13,'Enable','ON');
 set(ui_14,'Enable','ON');
 set(ui_15,'Enable','ON');

APPENDIX 10

% Imuz_CAN_stop.m

set_param(simmodel,'SimulationCommand','stop');

set(ui_3,'Enable','ON');
set(ui_4,'Enable','ON');
set(ui_5,'Enable','ON');
set(ui_6,'Enable','ON');

set(ui_13,'Enable','OFF');
set(ui_14,'Enable','OFF');
set(ui_15,'Enable','OFF');

save_data.start_swith=0;save_data.stop_swith=1;

APPENDIX 11

% Imuz_data_save.m

global OUT_data save_data ui_17
if save_data.start_swith==0 & save_data.stop_swith==1 %#ok<AND2>
 if save_data.node_length ~= 0 & size(get(ui_10,'string'),1) ~=0 &

size(get(ui_12,'string'),1)~=0 %#ok<AND2>

 save_data_node=get(ui_17,'value');

 title6 = char(save_data.label_box(1));
 format = '%f';
 for ii = 2:11
 title6 = [title6,' ',char(save_data.label_box(ii))];
 format = [format '\t%f'];
 end
 format = [format '\r\n'];

 if save_data_node == 1
 run_data=save_data.node_length;
 else
 run_data=save_data_node-1;
 end

 for i=run_data;
 DataGr_old=OUT_data(i).data;
 DataGr_old(:,2)=OUT_data(i).time_off;

DataGr_old=DataGr_old(OUT_data(i).save_start_ren:OUT_data(i).save_stop

_ren,:);
 fname=['IMUZ_save_data_',num2str(i),'.txt'];
 if length(fname) > 2
 dialogTitle='Save As...';
 cd(save_data.save_path);
 save_path=save_data.save_path;
 [fname,save_path] = uiputfile(fname,dialogTitle);
 if fname == 0
 break
 end
 cd(save_data.save_path);
 if ~ischar(fname)
 return;
 end

 fid = fopen(fname,'w');
 fprintf(fid,'%s\r\n',title6);
 fprintf(fid, format, DataGr_old');
 fclose(fid);
 clear DataGr_old i fname save_path
 end
 end
 clear title6 format run_data
 else
 end
else
end

APPENDIX 12

FIS-file of forward and backward movement.

APPENDIX 13/1

APPENDIX 13/2

APPENDIX 13/3

APPENDIX 13/4

FIS-file of turning movement.

APPENDIX 14

