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ABSTRACT 
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In the field of mobile robots, many interesting and important algorithms are 

employed in the process of implementing a robust, collision-free multi-robot 

collaboration movement.  

The main objective of this thesis is to introduce strategy software of RoboCup 

multi-robot system, and several related algorithm simulators that we made during 

the development process. Another objective is to introduce several crucial 

algorithm implementations for the system, for instance, Kalman filter, safety 

navigation algorithm and path-planning algorithm.  

This thesis reanalyses, compares against research results in the history and today, 

and then proposes a solution with verification and correction. Along with the 

theory, we construct the theoretical framework of the strategic algorithm system. 

And then we tested the experimental effect with several simulation programs. The 

implementation results have been verified to be success by multiple tests. Finally, 

this thesis also suggests the to-do list and expectations of research directions. 

The main result of the thesis contains the implementation of strategy software, 

algorithm simulators and the implementation of several crucial algorithms.  

All the thesis source codes can be found at:  https://svn.puv.fi/Botnia2011/ 

Key words: Agent-control software, algorithm simulator, algorithm complexity, 

algorithm efficiency, path-planning, navigation, Robocup. 
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1 INTRODUCTION 

1.1 Purpose of Thesis 

This thesis introduces the RoboCup small size league (SSL) implementation to the 

readers. The main work that we had finished for SSL project is strategy software 

and several corresponding simulators. In the following sections, we will introduce 

the structure of the system and explain particularly the structure of the strategy 

software and corresponding algorithm simulators. 

1.2 Overview Structure of Thesis 

This thesis can be divided into 11 Chapters. The first chapter Introduction mainly 

introduces the background of RoboCup and Botnia SSL team. The second chapter 

Structure of System explained several modules in the system, including hardware, 

embedded software, vision software, etc. The third chapter Simulation Software 

illustrated several simulation software. The fourth chapter Strategy Software 

analysed each module in the system and explained the functionalities of each of 

them. The fifth chapter focus on vision system and Kalman Filter, which is a 

powerful algorithm implemented in our system. The sixth chapter implemented 

the safety navigation algorithm in the system to prevent collision. The seventh 

chapter is about motion planning, it highlights a novel design and implementation 

of a RRT-based algorithm. The eighth chapter gives an overview of future to-do 

lists in our team. The ninth chapter suggested an expectation of future research 

directions. The tenth chapter gave a summary of the whole thesis. The eleventh 

chapter is for appendix, which included the completed codes for the previous 

mentioned algorithms. 

1.3 Background of RoboCup 

In 1993, Professor Alan K. Mack Worth from Department of Computer Science at 

the University of British Columbia in Canada brought his innovative idea that 

robot soccer competition would be a suitable research platform for developing 

science and technology in the field of robotics and artificial intelligence. 



 

Figure 1. Two soccer players compete in the Dynamo project [1] 

 

Today, RoboCup (Robot World Cup) [2], an international soccer robot 

competition, whose goal focuses on providing a platform for developing 

innovative solutions in the field of intelligent robots, has become one of the 

largest soccer robot competitions in the world together with FIRA Cup. 

RoboCup competition is held under a dynamic adversarial environment with a 

system of autonomous multi-robot and multi-agent coordination. There are several 

different types of leagues available in RoboCup competition, including 

Humanoid, Middle-Size, Simulation, Small-Size, and Standard-Platform.  

Humanoid League (HL) focuses on human-like soccer robots confrontation. Key 

skills involved in the Humanoid League include balance keeping, walking and 

running, kicking balls, visual signal receiving and processing, self-localization, 

dynamic path finding, collision avoiding, etc. 

Middle Size League (MSL) consists of 6 soccer robot players per team, and the 

soccer ball used in the competition is the same as the regular size FIFA ball. 

Soccer robots rely on on-board sensors to communicate with each other 

wirelessly. 

Simulation League (SL) has two sub-leagues in 2D and 3D. Both are focusing on 

developing simulators for soccer robot competition without hardware support. 
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New artificial intelligence algorithms and team strategies can be tested in a 

simulation environment before applying them to real robots. 

Small Size League (SSL) is known for its highly dynamic environment in which 

all robots are supervised by an overhead camera. All vision information captured 

from the field is collected by a centralized off-field computer running with a 

vision system (SSL-Vision) [3]. By analysing and processing the raw vision 

information, the computer can control and coordinate soccer robots in filed by 

sending and receiving signals. Building a successful SSL team requires 

multidisciplinary knowledge of fields including robotics, computer science, 

electrical engineering, mechanical engineering, etc. 

 

Figure 2. RoboCup SSL Dataflow [2] 

 



 

Figure 3. Field Dimension of RoboCup SSL 2012 [8] 

 

Standard Platform League (SPL) requires soccer robots be able self-localized and 

locating ball since the vision system is forbidden. In SPL, all teams have same 

standard robots hardware, participants would be required to focus on software 

strategy development. 

 

1.4 Background of Botnia SSL Team 

Starting from 2006, Botnia SSL Team has been in the RoboCup world 

championship and ranked top 10 in Small Size League competition. Currently, our 

team is the only qualified RoboCup SSL team in the whole Nordic region.  

Up to now, there have been three major updates (SR4E, SR5, SR6) for hardware 

part of soccer robots in our team. The latest version SR6 of hardware has a 

sophisticated design and an excellent performance. 
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Figure 4. Botnia Robot SR4 and SR6 [4] 

 

Besides a sophisticated hardware, our team also has a complete strategy software 

system. The windows-based software system is used for analysing and processing 

incoming vision information and send precise commands to infield robots based 

on the strategy system. In order to have a better real-time control and 

performance, currently we are rewriting the codes to build a new Linux-based 

strategy software system. 

 

Figure 5. Second Generation of Windows-based Strategy System [4] 

 



1.5 Motivation 

The main motivation of going into this field is that the multi-robot system has 

been a great research platform that has been designed for any newcomers. It 

includes a complicated mechanism behind the iron blocks and the complicated 

circuits. 

People can do research in robotics on the subject of navigation, logic 

programming, computer vision, path-planning, navigation and controller. In the 

international research forum, there are always quite a lot interesting subjects 

popping up including the project which combines the robotics with the evolution 

theorem [1], the project which researches on SLAM (Simultaneous localization 

and mapping) or virtual SLAM [2] and the project which detects the network 

boundaries [3]. 

Our project, however, may be limited to the platform that we are using. According 

to what we know about some research labs. The platforms that people use may 

vary depending on the different purpose. The typical ones are the iRobot, swarm 

robot and the one we are using - the multi-robot system of SSL. 

Influenced by robots, the research topic is also limited to a small range. The tests 

are mainly aimed for the path-planning algorithm and navigation. As a 

consequence, we designed the framework of strategy software and the simulations 

for information transform, evolutionary algorithm, random walk and so on. 

All these are the basis to achieve the final goal of designing a better software 

structure of the multi-robot. If what we have done for robots can move this area a 

little bit forward then we are already happy about it. 

1.6 Terminology 

In this thesis, if we introduce an abbreviation the first time, we would also give its 

full word together. In addition, we will use a grey highlighting to emphasize code 

that is particularly important in the present context. 
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We will use two kinds of code representation. They are code list and code 

example. 

 Code listing is a complete program. As stated before, in most cases, they 

will provide a summary of the code. This summary will tell you the 

environment, compiler instruction, linking instruction, other description 

about the code. 

 Code example is a piece of code which is isolated from other part of the 

program and cannot be run without changes. They are used to represent 

how the API (Application Programming Interface) and algorithms are used.  

1.7 Summary 

In this chapter, the background of RoboCup and Botnia SSL Team are introduced. 

RoboCup SSL is a fascinating competition which requires multi-disciplinary 

knowledge in robotics, computer science, electrical engineering, communication 

technology, mechanical engineering, and so on. Besides, RoboCup provides a 

highly-valuable platform for students to learn both in theoretical and practical 

fields. 

In the next chapter, we will describe structures of this system. 

  



 

2 STRUCTURE OF SYSTEM 

2.1 Introduction 

This chapter will give a general view on the structure of the system. It introduces 

the basic information and background knowledge of entering the technical details 

of the system. After this chapter, we will go through each part individuality. 

2.2 Structure of System 

The structure of the system is as follows. Here, we have instance diagram and 

logic diagram to describe the relationships between the hardware and software 

from different points of view: 

 Instances diagram 

 

Figure 6. the Structure of System 

 



  19(188) 

 

 logic diagram 

From the previous diagram, we can make an abstract diagram to separate each 

functional section. 

 

Figure 7. Logic Structure of System [1] 

 

From the logic structure of the system, we identify there are five main parts in it. 

Namely these five parts are wireless system, vision system, multi-robot system, 

strategy system and reference system. 

1. Wireless System 

The main function of the wireless system is to communicate with the strategy 

software and send the information to robots so that it can control and monitor 

robot properly. To achieve that, we need not only to implement modules in 

strategy software but also in the robot strategy software. 



2. Vision System 

The main function of the vision system is to collect, monitor the environmental 

information on the competition field and then provide the support information of 

position and direction to the strategy system. Now, in the competition, this system 

has been standardized. 

3. Multi-robot System 

The main function of the multi-robot system is to perform the command sent by 

the strategy system under different condition. In this process, it may be able to 

auto-adjust its parameters to suit the dynamic environment. It also needs to be 

able to send information back to let the strategy software to analyse it. 

4. Strategy System 

The main function of the strategy system includes evaluating according to the 

information on the competition field, to make outlined strategy of the multi-robot 

system, to determine the role of each robot in a team. Normally, each team needs 

one computer to deal with this job. 

5. Reference System 

The reference system should be taken care by two parts - both human and the 

reference box. In this case, the referee should cooperate with the reference box. 

RoboCup is a very tightly connected platform, and the reference box will not 

influence the processing of the competition.  

The competitors can improve the vision system, communication system and 

multi-robot system to accomplish mission better. Among all of these systems, the 

strategy system is the dominant factor of relevant factors. As a consequence, the 

improvement on the strategy system can bring better result. The strategy system 

directly decides the rule of behaviour and it also can avoid the obstacles while 

robots are moving around. 

The environment of the competition is as follows: 
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 Real-time 

To ensure the real-time operation is the basic requirement for the multi-robot 

system win the competition. The condition of the football changes quickly and 

dramatically. The fast reaction of each individual robot is the key factor to make a 

goal in the game. 

In the competition, the vision collects information of the field with a period as 

33ms through the camera. Then wireless communication system sends the 

information to the strategy system to evaluate. As a consequence, the strategy 

software, communication sub-system and the multi-robot system need to have 

very fast speed and efficiency to make real-time decisions. 

 Dynamic 

The wheel of each robot in multi-robot system can continuously move with two 

degrees of freedom. In theory, the maximum speed can be 2 meters per second 

and change in velocity and direction can be extremely frequent. This quite 

possibly results robot to collide into each other. For avoiding collision and going 

to the goal, the detector should have fast reactive speed. 

 Uncertain 

This multi-robot system is made by several sub-systems. The vision sub-system is 

responsible for collecting vision information. It is a process of making a 

continuous system to become discrete. Admittedly, it is very hard to record all the 

information. Same part of the graph may be affected to have distortion by light, 

clothes, platform or even the dust in the air. 

The communication is also possible to be influenced by the interferences. When 

small disturbance happens, many robots may run into big messes which then 

generate even more disturbances. Additionally, the multi-robot system may not 

operate accordingly due to lacking of the enough electricity. All of above can 

cause the environment of multi-robot system to be unstable.  



 Non-linear 

The environment of RoboCup competition and the system of multi-robot system 

have obvious non-linear property. This directly leads to a complicated description 

of the system. Simultaneously the strategy software is limited by the time and 

capacity of calculation. Therefore, obtaining the satisfactory solution of path-

planning and navigation is also a big challenge. If we do not have a reasonable 

way of solving this problem, the computational time and the difficulty of 

controlling multi-robot system will be increased dramatically. This shows that, at 

the base of difficult points, which was previously brought by environmental 

properties, no matter the purpose is theoretically researching the problem or 

practically solving the problem, it would bring significant meaning to the decision 

making process and strategic control problem. Among all these problems, the core 

of the strategy software is path-planning problem and collision detection problem 

and these two points are the emphasis in the strategy software chapter. 

From the viewpoint of AI, the environment can also be classified into following 

categories: 

 Partially Observable 

This system is partially observable. The issues like unbalanced light, reference 

system, dynamic environment are strong enough to cause the exact information 

about the item on the field sometimes cannot be fully obtained. For example, the 

colour of the ball is unidentifiable when the light reflected from the ball is blocked 

by a moving robot. [2] 

 Stochastic 

If the next state of the environment is completely determined by the current state 

and the action executed by the agent, then the environment is deterministic. 

Otherwise it is stochastic. [2] 

 Sequential 
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In episodic environment, an agents experience is divided into atomic parts. One 

episode doesn't affect the next. For example: an agent assigned to find defective 

parts in an assembly line is in episodic environment. Sequential is the reverse of 

it. For example: a chess playing agent is in a sequential environment. [2] 

 Dynamic 

If the environment changes while the agent is operating, then it's dynamic, else 

static. If the performance of the agent changes the environment, then it's semi-

dynamic. For example: taxi driving is dynamic, chess is semi-dynamic and 

crossword puzzle is static. [2] 

 Continuous 

The state is continuous. A chess game is of discrete states, while driving a taxi 

requires continuous actions, continuous steering over continuous time. [2] 

 Multi-agent:    

If the agent operates in an environment where the only agent is him, then it's 

single agent environment. Agent playing crossword puzzle is in the single agent 

system. A taxi driving agent is in Multi-agent environment. [2]  



2.3 Hardware 

This system includes four sections of hardware, namely vision hardware platform, 

strategy hardware platform, multi-robot hardware platform, wireless 

communication hardware platform. 

The first one is vision hardware platform, which is also a PC. The software which 

controls the vision system is offered by the SLL organizer. People can download 

and compile it on a Linux-based computer.  

 

Figure 8. the Front Side and Back Side of Vision PC 

On the back side of the server, we can see a high speed camera connected to it 

through a high speed FireWire port.  The protocol used for this connection is an 

IEEE standard called IEEE1394b. This connection is comparable with USB and 

always used together with USB. The reason why we chose this standard method 

as the communication method is because it is widely used for real-time 

information transfer. 

High speed 

FireWire 

port 
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Figure 9. a High Speed Camera Connected to the Vision Server 

The second one is a PC which runs strategy software. This PC is a standard PC 

which has a higher computational rate. For future development, we would like to 

ask the team to install a powerful GPU in it. 

 

Figure 10. the Front End and Back End of Strategy Software PC 

The third part we would like to introduce is the multi-robot system. Each robot in 

the project contains different modules including wireless module, wheel module, 

dribbler module, etc. 

 

RS232 Sender 

Port 



 

Figure 11. the Dribbler and the Wheel of Robot 

 

Figure 12. Wireless Sender Connected with PC and Wireless Receiver on Robot 

 
 
2.4 Embedded Software 

Embedded systems contain processing cores that are either microcontrollers or 

digital signal processors (DSP).A processor is an important unit in the embedded 

system hardware. It is the heart of the embedded system. The key characteristic, 

however, is being dedicated to handle a particular task. Since the embedded 

system is dedicated to specific tasks, design engineers can optimize it to reduce 

the size and cost of the product and increase the reliability and performance. Some 

embedded systems are mass-produced, benefiting from economies of scale. 

Physically, embedded systems range from portable devices such as digital 

watches and MP3 players, to large stationary installations like traffic lights and 

factory controllers. Complexity varies from low, with a single microcontroller 

chip, to very high with multiple units, peripherals and networks mounted inside a 

large chassis or enclosure. 

RS232 

Receiver 
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Figure 13. Basic Embedded System Structure 

  



2.5 Vision Software 

In previous years, the RoboCup Small Size League rules have allowed every team 

to set up their own global vision system as a primary sensor. This option bears 

several organizational limitations and thus impairs the league's progress. 

Additionally, most teams have converged on very similar solutions, and have 

produced only few significant research results to this global vision problem over 

the last years. Hence the responsible committees decided to migrate to a shared 

vision system (including also sharing the vision hardware) for all teams from 

2010. This system - named SSL-Vision - is currently developed by volunteers 

from participating teams. [3] 
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3 SIMULATION SOFTWARE 

3.1 Introduction 

Simulation software is a program used for the user to observe an operation 

through the simulation without actually performing the operation. Normally, it is 

based on a modelling process according to mathematical formulas or an algorithm.   

During the stage of developing the strategy software, we encountered problems of 

making unit tests for algorithms. Therefore, we made the algorithm simulators 

independently for testing and simulating various algorithms. By using these 

algorithm simulators, we are able to visualize the data structure and computation 

process, and as a result, we can see the effect and benchmark of different 

algorithms. 

Each of following sub chapter contains simulation software. The logic map would 

be like a zone as we will introduce them one by one in details.  

Here is the list of small simulation software that we are going to talk about. 

1. Random Walk Simulator For Path-planning project 

2. Parameters Monitoring Web Server 

3. Vision Simulation Software 

4. Rapidly Random Exploring Tree Simulator 

5. Path-planning Simulator 

The first item in the list is the Random Walk Simulator that we made for the path-

planning research. The following Parameters Monitoring Web Server is what we 

implemented for visualizing the data collected in the embedded robot software. 

The Vision Simulation Software is a possible exploration of using python for 

simulating vision software. Then the fourth software Rapidly Random Exploring 

Tree is a prototype for future development of this project. Finally the Path-

planning simulator is a concrete C++ implementation that we used to test the time 

consumption of different algorithms. 



3.2 Random Walk Simulator 

3.2.1 Introduction 

A random walk simulator was made to test the possibility of applying the random 

walk algorithm to the path-planning problem. When it executes, this random walk 

simulator asks key parameters from the user and then simulates the algorithms on 

graph. It offers the functionality of simulating either one-dimensional random 

walk or two-dimensional random walk. 

3.2.2 Motivation 

In 2011, Dr. Karaman presented a thesis discussing about his innovative RRT star 

algorithm of finding the optimal path for automatic system. This algorithm has 

been proven that this is very adaptive in many cases. [4]A system like RoboCup 

project, however, cannot use this algorithm as this algorithm takes a lot of 

computation resources. Although the time complexity and the space complexity of 

RRT and RRT star algorithms are both ܱ(݊ ∗ log	(݊)). [5]The reason of latency 

lies in that the RRT star algorithm generates several paths for comparisons and 

this really dragged the speed down. [4] 

A typical random walk is as follows: 

To define this walk formally, take independent random variablesܼଵ, ܼଶ…, where 

each variable is either 1 or −1, with a 50% probability for either value, and ܵ଴ =

0and ܵ௡ = 	∑ ܼ௡௜ୀ௡
଴  . The set{ܵ௡} and the series is called the simple random walk 

on	ℤ. 

If we apply a random walk on RRT star algorithms, when RRT star algorithm 

converges very slowly, I believe the modified RRT start algorithm can bring a 

better performance. 

3.2.3 User Interface 

1. User Interface  
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The user interface is designed for the convenient test of the algorithm. As a 

consequence, the UI can be simply divided into three parts. The first part is the 

action panel which is on the top of the whole view, the second part is the tab 

widget which is in the middle and the third party preference is on the left of the 

user interface. It specifies the configurations of the simulation. 

 

Figure 14. User Interface of Random Walk Simulator 

 

 Action Panel 

The entrance of the user interface is as presented above. There are five actions in 

the action panel. The first one is to make a new configuration, when it is clicked, 

there will appear another setting window to adjust the key parameters of the 

simulation. The second action is to edit the configuration, if a new configuration 

has been made, the “Edit” action will allow adjusting the existing parameters 

otherwise the “Edit” action will call the same setting window as “New” action but 

with all the values stated as None. 

The parameters needed are initial state, random walk number, upper limit range, 

lower limit range and repeat time. 



 

Figure 15. Activated Configuration Dialogue by New Action 

 

 

Figure 16. Activated Configuration Dialogue by Edit Action 

 

The third action “Run” is to run simulations, the fourth action “Stop” is to stop the 

running, if needed, and the last action “Clear” is applied to clearing the graph. 

 Tab Widget 

The tab widget is a combination of different tabs which are used to show the 

information of the simulation from a different point of view. 

The first “Configuration” tab is a container which stores the configuration of the 

simulation. If you change the parameters in action, the values here will also be 

changed. 
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Figure 17. Configuration Tab 

 

The second “Graph” tab is used to give a virtual representation of the random 

walk. When the simulation runs, the graph will plot the simulation step by step. If 

it is one dimensional plotting, then the x value of the simulation would be from 

zero to the maximum hamming distance. 

The third “Result” tab is a table which stores all the information of the simulation; 

we can check the result for each walker’s each step. In this way, we would see the 

how it changes over time. If it is the one-dimensional simulation, the numbers of 

rows are the same as the walkers and if it is a two-dimensional walk simulation, it 

shows twice the number of the walkers as in total there are two times the number 

of walkers. 

 

Figure 18. Two Dimensional Walk for Two Walkers. 

 



The fourth “Statistics” tab is a tool to gather statistical information. It lists the 

minimum value, maximum value, 10th percentile value, 90th percentile value, 

mean value and the standard deviation for different stages of simulation and 

different walkers. 

 

Figure 19. Statistic Information of 10th and 90th Total Random Steps. 

 

 Preferences 

The preferences contain the settings for this algorithm simulator. In the current 

situation, it only has a selection of dimension. 
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3.2.4 Use Case Diagram 

 

 

 

 

 

 

Figure 20. the User Case Diagram for Random Walk Simulation. 

 

3.2.5 Result of Testing 

This section shows some testing of the random walk simulator with specific 

parameters. 

The following two groups of graphs show the result of simulations under different 

situations. The x-axis and the y-axis do not have any unit as they only indicate 

how big steps each random walker has walked. The first group of graphs shows 

the undirected random walk and the second group shows the directed random 

walk. Both groups contain the one-dimensional and two- dimensional situations. 

 

 

 

 

 

User 

New configuration 

Edit configuration 

Run simulation 

Stop simulation 

Clear graph 

<<extends>> 

Figure 21. 1D and 2D Undirected Random Walk 
(X axies and Y axies are indicating the steps) 



The undirected random walk basically means walking with a fair coin. During the 

process of random walk, the possibility of going to any direction is uniformly 

distributed. As a result, with a reasonable number of walks in a stage, the random 

walk can access almost any direction. 

 

 

 

 

 

 

The directed random walk is different from the undirected random walk.  

From the view of stochastic process, directed random walk is influenced by a not-

evenly-distributed chance. According to the formula provided by E(S୬) =

	∑ E(Z୬)୬
୨ୀଵ , where E(S୬)means the expected value, the random walk, in this case, 

will be directed to a certain place. 

From the view of field theory, the directed random walk can be also applied with 

an artificial potential field. These artificial potential fields will continually 

influence the random walk by generating a force on each step, and this force is 

generated according to the distance from goal to current position. 

3.3 Parameters Monitoring Web Server 

3.3.1 Introduction 

During the development of the system, we also wanted to build the chain of 

information from the FPGA to a web server so that we can monitor the parameters 

in the embedded software. 

Figure 22. 1D and 2D Directed Random Walk 

(X axies and Y axies are indicating the steps) 
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3.3.2 Technical Introduction 

 AJAX 

AJAX (Asynchronous JavaScript and XML) is used for exchanging information 

on dynamical pages. AJAX allows web pages to be updated asynchronously by 

sending requests which contain a small amount of data to the server. The basic 

form is by using JavaScript functions and HTTP methods. 

 FPGA  

FPGA (Field-programmable Gate Array) is an integrated circuit designed as 

general hardware which can be configured latter. The language of making 

configuration is named as hardware description language (HDL). 

 

 SPI 

Serial Peripheral Interface Bus (SPI) is a synchronous serial data link standard. It 

was first announced by Motorola which operates in full duplex mode. The SPI 

connection is normally used under the situation of communicating between two 

different hardware. 

 Highcharts 

Highcharts is a JavaScript library designed for fast implementation of graphs on 

the web pages. It provides rich APIs to generate an interactive, dynamic chart. 

 JSP 

Java Server Pages (JSP) is a technology which helps the software developer to 

create dynamically generated web pages. The system is based on XML, HTML 

etc. The back-end is taken care by Java programming language. 

 

 



3.3.3 Motivations 

There are two main motivations of making this web server service.   

The first is that as we noticed that the Matlib’s 2012b version can automatically 

generate code for embedded software based on the mathematical model, we would 

like to use a monitoring service to test correctness of the mathematical models on 

motor, etc.  

The second reason is that in some case, we need to know what problem caused the 

system to fail. According to the experiences, the failure can be caused by the 

flaws lying in voltage control or current control functions of embedded software. 

Therefore, a tracking mechanism is essential for locating the cause of different 

failures. 

3.3.4 System Structure 
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The system’s structure is as represented above. Firstly we collect the information 

from FPGA. The information is mainly related to RPM (Revolutions per Minute) 

of each wheel. After this, the information goes from the FPGA to ARM through 

the SPI channel. Then the web_data_module.cpp of strategy software will take 

care of receiving from ARM and send to a JSP server on another computer 

through UPD broadcasting. The information at this stage is in the form of Google 

protobuf. As soon as the information has been sent to the JSP server, the serve 

stores the information in an instance and then wait it to be forwarded by quest 

from browser.  

3.3.5 User Interface 

The user interface is designed for flexible usage of checking information from the 

multi-robot system. We used highcharts, which is a JavaScript library, to develop 

the interface. According to the number of parameters, we show the number of 

charts on the graph. For each parameter, the appearances are identical to each 

other. For any chart, the appearance is as follows: 

 
Figure 23. Monitoring Graph 

 



 
Figure 24. Slider of Monitoring Graph Monitoring 

 

The upper side is a normal graph with interactive functions. The user can point the 

cursor to the any point on the graph and it will show the information of the point 

on the web page. The lower side is a drag window. The user can specify the range 

that they would like to use for checking the status of the information 

3.4 Vision Simulation Software (Python) 

3.4.1 Introduction 

The vision simulation software was initially designed for replacing the vision 

system. The vision software is able to receive the information from the strategy 

software and represent vividly on its simulation area. Moreover it can also allow 

users to instantly modify the information of robots and send the status of robot to 

strategy software.  After we found the way of porting the simulation from 

windows platform to Linux platform, this project has been suspended. 

Nevertheless, it is still a reasonable platform for some other future implementation. 

3.4.2 User Interface 

The interface of vision simulation software is designed simply for representing the 

robot on the graph.  
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Figure 25. User Interface of Vision Simulator 

 

The simulator is similar to the C++ version of vision simulator, and the only 

difference is that the broadcasting function has not been implemented. 

 

Figure 26. Setting Panel and Options 

 

When the setting panel is called, the software will be four options in the middle of 

the screen. They are resume simulation, load simulation, options and exit 

respectively.  Among all of these selections, the “option” will show another 

setting window to ask the user to specify the environment of the simulation. 

  



3.4.3 Use Case Diagram 

 

 

 

 

 

 

Figure 27. the User Case Diagram for Vision Simulation Software 

 

3.5 Rapidly Random Exploring Tree Simulator (Python) 

3.5.1 Introduction 

This simulation software is used to virtualize the process of path-planning. At the 

moment, it had only implemented the RRT algorithms 

3.5.2 Technical Introduction 

 Pygame 

Pygame is a set of Python modules designed for writing games. Pygame adds 

functionality on top of the excellent SDL library. This allows you to create fully 

featured games and multimedia programs in the python language. Pygame is 

highly portable and runs on nearly every platform and operating system. Pygame 

itself has been downloaded millions of times, and has had millions of visits to its 

website. [6] 

 NumPy 
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Load Configuration 
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NumPy is the fundamental package for scientific computing with Python. It 

contains among other things: 

 a powerful N-dimensional array object 

 sophisticated (broadcasting) functions 

 tools for integrating C/C++ and Fortran code 

 useful linear algebra, Fourier transform, and random number capabilities 

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined. This 

allows NumPy to seamlessly and speedily integrate with a wide variety of 

databases. [7] 

 SciPy 

SciPy (pronounced "Sigh Pie") is open-source software for mathematics, science, 

and engineering. It is also the name of a very popular conference on scientific 

programming with Python. The SciPy library depends on NumPy, which provides 

convenient and fast N-dimensional array manipulation. The SciPy library is built 

to work with NumPy arrays, and provides many user-friendly and efficient 

numerical routines such as routines for numerical integration and optimization. 

Together, they run on all popular operating systems, are quick to install, and are 

free of charge. NumPy and SciPy are easy to use, but powerful enough to be 

depended upon by some of the world's leading scientists and engineers. [8] 

3.5.3 Advantages and Disadvantages 

Comparing with the C++ version that we built before, this python version is faster 

on the development. The implementation has no more than 100 lines of code for 

one algorithm. Therefore it is very suitable for fast prototyping. When you have 

an interesting idea, you can immediately build a system to test.  

It also has some disadvantages. The most noticeable is that it cannot be 

implemented for a situation which needs fast running speed. The reason lies in 

that the APIs in python are sufficient, but they are not transparent to the users. In 



this case, it is very hard to arrange a test by fixing other factors which may 

influence the speed.  

3.5.4 The Test on RRT 

The following graph shows the how the simulator simulates the process of RRT 

algorithm.  

The maximum point on the graph has been set to 5000. The following pictures 

have been recorded at four different moments.  

Figure 28. Four Different Moments of RRT Expanding Process 
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3.6 Path-planning Simulator 

3.6.1 Introduction 

This simulation software is used to virtualize the process of path-planning.  

Comparing with the python RRT simulator, this C++ simulator is more suitable to 

the serious testing purpose. As we use the standard libraries of Qt to develop this 

software, the same data structure and implementation mechanisms in Qt can 

enable us to give detailed analysis of the different algorithms. 

3.6.2 Technical Introduction 

 Qt Creator 

Qt Creator is a cross-platform integrated development environment (IDE) tailored 

to the needs of Qt developers. It provides: 

 C++ and JavaScript code editor 

 Integrated UI designer 

 Project and build management tools 

 gdb and CDB debuggers 

 Support for version control 

 Simulator for mobile UIs 

 Support for desktop and mobile targets 

[9] 

3.6.3 Implemented Algorithms 

There are two algorithms have been implemented. The first one is definitely the 

most important algorithm RRT. Then we have implemented the RRT start 

algorithm developed by two MIT professors - Sertac Karam and Emilio Frazzoli. 

We actually have a list of algorithms to be hopefully implemented later. These 

algorithms can be very suitable for studying purpose in the field of sampling-

based path-planning algorithms. 



 

Figure 29. Possible Set of Algorithms to be implemented 

3.6.4 User Interface 

 

 
Figure 30. the Unser Interface of RRT Testing 

 
 

 
Figure 31. the User Interface of RRT star Testing 
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4 STRATEGY SOFTWARE 

4.1 Introduction of Software 

4.1.1 General Introduction 

Strategy software is AI software. It offers a set of information management 

mechanisms, utilities and services to help a multi-robot system to automatically 

self-organize.  

Structure of strategy software was designed for smooth and stable computation on 

Linux platform. Based on the previous researches, the Linux platform can provide 

more accurate time functions. This property of the Linux platform is essential for 

a system that is sensitive to communicational environment.  

In our robot soccer project, the strategy software needs to communicate with a 

high speed camera. This condition requires the strategy software to make a 

decision within 1/60 second. The instability of the strategy software, which we 

previously built on windows, leaded us to search for a solution to ensure that the 

time error is limited to a small value. 

During the period of building this version of software, we have to admit that the 

work of the previous developer actually influenced us a lot. After checking several 

papers and talking to some experts, we decided to develop the new version of 

strategy software based on technical tools that we know. 

4.1.2 Main Motivations 

There are three main motivations for designing this software. 

The first motivations what previously mentioned - timing issues. This motivation 

is probably the most important reason. 

The second one is to test system can be as similar as the human brain’s structure. 

In fact, the strategy software was developed according to the structure of how 

human process the information in an intellective way. When we wanted to design 



a structure to show how I can reduce the coupling of each module, the way of how 

human intelligence functions gave me a hint. After I considered the connection 

between the requirements of the program and natural intelligence, we decided to 

organize the software separately as in the process of human thinking. 

The third one is to build a platform which can really test our algorithms on. The 

performance of planning algorithm, navigation algorithm and controller are 

essential to the evaluation of the strategy software. Although the most of the 

algorithms have been de facto since almost they were first invented, there are still 

several problems to notice when applying them to multi-robot system. 

4.1.3 Development Process 

In the 1960s, the software was first called as art-craft by Knuth. Nowadays, we 

cannot simply consider designing software as a person’s heroism. In fact, we need 

to establish an engineering way crafting a complicated software patterns. 

According to the classic methodology of software engineering, there are several 

ways to control the process of software development. A typical OOP (object 

oriented programming) way is stated as follows: 

 

Figure 32. the Development Process of Object-oriented Programming [10] 
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Although we have followed the proper development process, the real situation is 

different. The fact turned out iterative and incremental development is more 

suitable than the traditional process (waterfall model) as the most of the time we 

are not clear about the whole requirements. 

At every stage, we had to face the fact that we need to design a small part of the 

software and analyses of the needs. And then after that we had to focus on 

implementing the project and communication. This whole process helped us to go 

through the project quickly and effectively. 

 

Figure 33. the Iterative Development Process [11] 

 

A typical example is that we formed a small team to develop a communication 

channel function in the software. And then after that we worked as tight as we can, 

communicated as frequently as we can and optimized the APIs (application 

programming interface) as we can. Finally the outcome software is quite sharp 

and the time of development was not long at all. 

As a consequence, I would like to suggest the people who work or will be 

working on the project to try this method. Especially this method is strongly 

emphasized by the software engineering community under the nowadays’ 

condition. 



4.1.4 System Structure Design 

1. File Hierarchical Structure 

As previously mentioned, the file structure follows the pattern of the nature 

intelligence.  

From the neurobiology, cerebrum contains four main areas frontal, temporal, 

occipital, and parietal which are roughly recognized as language, memory, 

and voice and vision functional centre. 

The design of the software, to some extent, follows the structure of natural 

intelligence. The following is the relationship between the file clusters of the 

software: 

 

Figure 34. Modules of Strategy Software 
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4.1.5 Logic Structure Design 

In this system there are several server-client models to consider about. No matter 

whether there is a callback function offered by the OS (operating system), it is 

better to use concurrent structure to deal with the message receiving and sending. 

Although the concurrent programming includes process, I/O (input/output) 

multiplexing and threading, however, in this thesis, the concurrent programming 

here particularly means threading.  

Strongly influenced by a philosophy that brain’s different parts processing 

information interactively, the software, on one hand, is designed differently from 

the design of the file structure, on another hand, the functions are still limited to 

their physical locations. (It is just like the brain, isn’t it?). 

The relationships between the threads are shown below: 

 

Figure 35. Logic Structure of Strategy Software 

 



The code example is shown below: 

 

 

 

 

 

 

 

 

 

Figure 36. Code Example of Thread Implementation 

 

As shown in the previous graph, a concurrent programming method is applied to 

the development of the software.  

 Information Structure Design 

 

The previous section describes the structure picture of the software. This section 

introduces the general information flow between modules. Latter we will talk 

about the information protocol and data structure. 

The whole system has two physical media. One of the media is the air and another 

one is cable. These two channels formed communication infrastructure of the 

strategy software. And after that, we established protocols based on existing 

technology and then specified them according to our need. 

4.1.6 Guide to Thesis 

The previous section describes the structure of the software from different points 

of view including the structure of file orientation, the structure of the logic 

orientation and the information structure. The following sections will first 

introduce the system based on following orders: 

  

// various threading in header file 

StrategyThread* strategy_thread_; 

VisionSendThread* vision_send_thread_; 

VisionReceiveThread* vision_receive_thread_; 

RadioSendThread* radio_send_thread_; 

RadioReceiveThread* radio_receive_thread0_; 

RadioReceiveThread* radio_receive_thread1_; 

RefboxReceiveThread* refbox_receive_thread_; 

NetWebserverSendThread* net_webserver_send_thread_; 
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1. Communication Data Type 

2. Interface Module 

3. Wireless Module  

4. Internet Module 

5. Vision Module  

6. Control Hub Module 

4.2 Communication Data Type 

4.2.1 Introduction 

The information is needed for communication. No matter it is for sending 

calculated information or for monitoring, it can always be proven to be subtle in 

the system as they can ensure that the time of transformation is limited to a small 

range. 

4.2.2 Technical Introduction 

 JSON 

JSON (JavaScript Object Notation) is a text-based open standard for human-

readable information exchange. It uses several data structures in JavaScript 

language to represent relationships between different object. But in reality, it is 

suitable for many languages. Different language has different libraries to parse the 

structure and almost all APIs are efficient and developer-friendly. Comparing 

with XML (Extensible Markup Language), it is faster and more readable. In C++, 

the parser library we used QJson and in Java, we used Gson. 

JSON's basic types are: 

Number: (double precision floating-point format in JavaScript, generally depends 

on implementation) 

String: (double-quoted Unicode, with backslash escaping) 

Boolean: (true or false) 



Array: (an ordered sequence of values, comma-separated and enclosed in square 

brackets; the values do not need to be of the same type) 

Object: (an unordered collection of key: value pairs with the ':' character 

separating the key and the value, comma-separated and enclosed in curly braces; 

the keys must be strings and should be distinct from each other) 

Null: (empty) 

[12] 

 QJson 

QJson is a Qt-based library that maps JSON data to QVariant objects. 

JSON arrays will be mapped to QVariantList instances, while JSON's objects will 

be mapped to QVariantMap. [13] 

 Gson 

Gson is a Java library that can be used to convert Java Objects into their JSON 

representation. It can also be used to convert a JSON string to an equivalent Java 

object. Gson can work with arbitrary Java objects including pre-existing objects 

that you do not have source-code of. [14] 

 Google Protocol Buffer 

GoogleProtocol Buffer (In short, Google protobuf) is a standard introduced by 

Google. As a binary coded communication method, it is much faster than any 

readable format. But it is also a little bit difficult to understand. The RPC (remote 

procedure call) communications between different agents are critical and as a 

result of many researches and selections, we found it is very convenient to let 

several software agents (vision software, strategy software and reference box 

software) to  interchange information. 
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The Google protobuf stores information in a .proto file and it uses a separate 

compile to change the .proto file into a specified language. (E.g. C++, Java and 

Python) 

When it runs, the special compiler provides the setters and getters for the data 

specified in .proto file. When you import the auto-generated file which includes 

API, you can use the setters and getters accordingly. 

 SLIP 

SLIP (serial line inter protocol) is protocol first used to transfer information 

through the serial port using internet protocol. In this project, we use it as a secure 

and error-free way of transforming information from the robot. 

There are four bytes which indicating different meanings of information in SLIP. 

A typical configuration could be END, ESC, ESC_END and ESC_ESC. And 

normally the values of these four kinds of bytes are 0300, 0333, 0334 and 0335 

accordingly. [15] 

According to the rule, we should first send an initial END character to flush out 

any data that may have accumulated in the receiver due to line noise. Then for 

each byte in the packet, send the appropriate character sequence, if it's the same 

code as an END character, we send a special two character code so as not to make 

the receiver think we sent an END, if it's the same code as an ESC character, we 

send a special two character code so as not to make the receiver think we sent an 

ESC. Otherwise, we just send the character.  At the end, we send END to tell the 

receiver that we're done sending the packet. For the improvement, we add a CRC 

check after all the bytes. 

The structure of SLIP in C is listed below: 

#define END 0300/*c0*/ 
/*indicates byte stuffing*/ 
#define ESC 0333/*0xdb*/ 
/*ESC ESC_END means END data byte*/ 
#define ESC_END 0334/*0xdc*/ 
/*ESC ESC_ESC means ESC data byte*/ 



#define ESC_ESC 0335/*0xdd*/ 

 Transparent Protocol 

The transparent protocol is the first protocol that we used to communicate with 

the robot. The data structure is comparatively simple and easy to understand. The 

encapsulation of the package starts with hex number 0x7e and also ends with the 

same number. Between these two numbers, the information of robot is contained. 

 

The other part of this information structure is robot info, and this part is 

implemented by using a struct in C/C++ language. The following graphs show the 

detail of information contained in the codes. 

Code Example: 

typedef struct 
{ 
int index; 
int x_velocity; 
int y_velocity; 
float total_velocity; 
int kick; 
int dribble; 
int chipkick; 
int rotate_velocity; 
    RobotType robot_type; 
}RobotParamters; 

The total length of the package is determined by the number of the robots in a 

team. When a robot receives the information wirelessly, it will filter out the 

information which does not correspond to its robot ID. After that process, the 

embedded software on the robot will pick each piece of information out from the 

data package. 

 DHCP 

Dynamic Host Cogeneration Protocol (DHCP) is a network protocol which is 

used to configure the device on a network. This protocol is used in the project as 

Robot Info 7e 7e Robot Info 7e 7e ……. 
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the second version protocol for sending the information to robot including the 

instant velocity, instant direction and instant. 

 UDP 

User Datagram Protocol (UDP) is widely used unidirectional transmission 

protocol. It is a core function of Internet Protocol (IP) suit, and it is a very useful 

protocol if we want to save the time for transmission. In fact, as in our project, 

many time-critical applications use the UDP for providing fast broadcasting 

service. 

 DECT 

Digital Enhanced Cordless Telecommunications (DECT) is a standard used in 

digital telecommunication system. Unlike the GSM standards, it does not specify 

any internal aspects of the fixed network itself. Connectivity to the fixed network 

(which may be of many different kinds) is done through a base station or "Radio 

Fixed Part" to terminate the radio link, and a gateway to connect calls to the fixed 

network. 

4.2.3 Introduction to Channels 

The channels include the air and the cable. Both ways are essential to this system. 

Wireless is chosen because the Multi-robot system needs to communicate with the 

robot and the cable is used to receive information from the vision software which 

is sensitive and time critical. 

The relationships between the media and protocol structures are listed below: 



4.2.4 Wireless Channel 

 

Figure 37. the Communication Structure of Wireless Channel 

 

The structure of wireless is designed for fast communication between robots and 

the server. The sent information is the command for the robots. Here we introduce 

the graph term by term. 

The first, second and third terms, which has marks ,  and  on the graph 

respectively, represent the connection from robot to strategy software using SLIP 

(Serial Line Internet Protocol).  

The SLIP protocol is used here to ensure the transformation to be efficient and 

almost error free. The original idea was to transfer the files according to the 

internet protocol through serial lines. For the information of original specification, 

please see the appendix.  
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By considering the hardware configurations, we followed the idea of 

encapsulation of the SLIP protocol in this project.  

 

Figure 38. Structure of SLIP Structure [16] 

 

Both parsers in the ARM code and in strategy software use automata to read 

through the information package and encode the information into the command 

using specified bytes with a CRC (cyclic redundancy check). As a consequence, 

we can determine which information is sent from a certain robot.  

The fourth part is the showing the physical layer of the information transformation. 

For convenience, we used DECT (digital enhanced cordless telecommunications) 

structure to find a solution. 

DECT is firstly originated in Europe.  And now it has become a universal 

standard replacing the earlier standards, such as 900 MHz CT1 and CT2. The 

detailed description can be found in the appendix. 

The fifth, sixth, seventh part shows two kinds of protocol we used to implement 

the connection from the computer to the robot. During the development process, 

there were two protocols considered.  



The simpler one is transparent protocol. In this protocol, we assemble all the 

information as a serial command line. After sending through the serial port, when 

all robots received the command, each robot selects the particular part of the 

information that it needs and, at the same time, filters all redundant information.  

The detailed article about this protocol can be found in the appendix.   

Another one is the DHCP (dynamic host configuration protocol). According to the 

description of the standards, it is originally used to configure devices which are 

connected to a network. We noticed the coding scheme is pretty suitable for our 

project. We implemented this protocol in the strategy software as well. The 

detailed article about this protocol can be found in the appendix. 
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4.2.5 Internet Channel 

 

Figure 39. the Communication Structure of Wireless Channel 

 

The connection between the strategy software and broadcast server, the strategy 

software and vision software, the strategy software and the reference server are 

much more difficult than the wireless connection. 

The first reason is that the internet connection has more layers than the wireless 

connection layers. This means the developers should pay more attentions on the 

protocols than algorithms. The second reason is that although the structures from 

physical layer to the transport layer are the same, the protocols in application 

layers are different. We will describe all of them individually in following context.   

The label 5,6 and 7 represent the connection from strategy software to broadcast 

server is built up using UDP protocol. After receiving information from the robots, 

a thread NetWebserverSendThread will forward the information to a JSP server. 



As a consequence, we will be able to monitor the statistics not only on the web 

page but also on the mobile phone. 

In the connection, the information was first collected by the ARM embedded 

software. The structure is as follows: 

Code example 
 
 
 
 
 
 
 
 

Figure 40. the Code Example of Json Structure 

 

Then the protocol of the second side of the application layer is JSON. But the 

information that needs to be transformed contains following information in Java: 

Code example 
 

 

 

Figure 41. the Code Example of Data Type in Java 

 

Based on the definition of JSON structure, we can transform previous parameters 

into following JSON code: 

Code example 

struct { 
unsigned short cell_voltage 
unsigned short capacitor_voltage 
unsigned short kicking_voltage 
unsigned short  current_level[5]; 
unsigned int number_of_package 
}robot_running_info 
 

DOUBLE cell_voltage 
DOUBLE capacitor_voltage 
DOUBLE kicking_voltage 
DOUBLE  current_level 
DOUBLE number_of_package 
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Figure 42. the Code Example of AJAX JavaScript Function 

 

The label 1, 2 and 3 represent the information flaw from the vision server and 

reference box to the strategy software. Although the UDP is the transport layer 

protocol, the application layer uses Googleprotobuf as the container to store the 

information. The basic idea is to assure the efficiency of the communication. 

In the.proto file, the Google protobuf specifies the information sent from the 

vision system to the strategy software. It is assembled from parts; the first part is 

SSL_GeometryFieldSize which specifies the size of the field, the second part 

SSL_GeometryCameraCalibration is used for storing information of the 

calibration parameters. The third part called SSL_GeometryData is used to 

encapsulate the previous two parts into one for convenience of transforming. The 

parameters contained in the data are very self-illustrative. The detailed structure is 

listed below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Code example 
 

message SSL_GeometryFieldSize { 
required int32 line_width = 1; 
required int32 field_length = 2; 
required int32 field_width = 3; 
required int32 boundary_width = 4; 
required int32 referee_width = 5; 
required int32 goal_width = 6; 
required int32 goal_depth = 7; 
required int32 goal_wall_width = 8; 
required int32 center_circle_radius = 9; 
required int32 defense_radius = 10; 
required int32 defense_stretch = 11; 
required int32 free_kick_from_defense_dist = 12; 
required int32 penalty_spot_from_field_line_dist = 13; 
required int32 penalty_line_from_spot_dist = 14; 
} 
 
message SSL_GeometryCameraCalibration { 
required uint32 camera_id     = 1; 
required float focal_length = 2; 
required float principal_point_x = 3; 
required float principal_point_y = 4; 
required float distortion = 5; 
required float q0 = 6; 
required float q1 = 7; 
required float q2 = 8; 
required float q3 = 9; 
required float tx = 10; 
required float ty = 11; 
required float tz = 12; 
optional float derived_camera_world_tx = 13; 
optional float derived_camera_world_ty = 14; 
optional float derived_camera_world_tz = 15; 
} 
 
message SSL_GeometryData { 
required SSL_GeometryFieldSize field = 1; 
repeated SSL_GeometryCameraCalibration calib = 2; 
} 
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Figure 43. the Code Example of Vision Information Exchange Structure 

 

4.3 Interface Module 

4.3.1 Introduction 

The appearance of the user interface was designed to have better simulation and 

control interaction. Besides the menu, there are two parts in the window. The first 

part is the control panel which has buttons and group boxes for each selection. 

 

Figure 44. the User Interface of Strategy Software 

 

The control panel is separated into five parts. From the graph we can see that they 

are general, human, computer, log and referee. The first section “general” is 

taking care of the selection of game status, control source, colour selection, side 

selection and robot selection. The second section “human” specifies the robot 

human can control. The third section “computer” specifies the mode and strategy 

of the strategy software. The fourth section specifies the log information of the 



strategy software. Finally the last section specifies the information sent from the 

referee. 

The simulated field is a place in which robots and balls can be represented in the 

window. When the strategy software is running, the information sent from the 

vision software will be analysed and visualized in this field. The robots will have 

different colour as either red or blue and the ball will be yellow. All the objects in 

the field can be selected. 

By combining these two main areas, the strategy software can control and have a 

feedback view of the system. This ensures the system to have strong robustness.  

Technical introduction: 

 Qt Designer 

The user interface was designed using the Qt designer. Qt designer is Qt’s tool for 

designing and building graphical interface. It contains a full tool chain of 

developing interfaces under Qt’s environment.   

 Qt Style Sheet 

Qt Style Sheets (QSS) are a powerful mechanism that allows people to customize 

the appearance of widgets, in addition to what is already possible by subclassing 

QStyle. The concepts, terminology, and syntax of Qt Style Sheets are heavily 

inspired by HTML Cascading Style Sheets (CSS) but adapted to the world of 

widgets. 
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4.3.2 File Structure 

 

Figure 45. the File Structure of User Interface Module 

 

Among all folders are contained in the user interface module. The field_related 

folder contains specification for all items on the field. The ui_setting folder 

contains the setting window of the strategy software. In the latter sections, each 

folder will be introduced in detail. 

4.3.3 Appearance Design 

The appearance has been decided for functions of control the system. As 

previously introduced, the whole window has been separated into two main 

sections. The control panel has five sub tabs and simulation panel has its own 

component. The function of each part will be introduced in the following content. 

 General 

This section is designed for general control of the system. By including four group 

boxes, the most convenient actions are on this page. The first control box includes 

start, pause and stop. With these functions, the strategy software can decide the 

state of the system. The second box specifies the control source of the system, and 

it can be computer (Artificial intelligence), Keyboard and Joystick. In the third 

group box, the user can specify which side he or she wants to control. If blue is 



selected, the strategy software is going to control the blue team and vice versa. In 

the fourth box, the side of the configuration is specified. If upside is selected, 

robots in the field will try to attack the upper side goal and vice versa. The last 

two group boxes are used for determining which robots are needed for 

competition. The strategy software will try to control all checked robots in these 

group boxes with colour specified above. 

 

Figure 46. General Tab of Strategy Software 

 Human 

This section specifies that how should human control the robot. The implemented 

functions include keyboard control, joystick control and kinect control. At this 

moment, it only has the function of specifying which particular robot the user 

would like to control. 
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Figure 47. Human Tab of Strategy Software 

 

 Computer 

This section specifies which strategy the software would use for the controlling 

multi-robot system. The first group box in the demo asks the user to select which 

mode the user would like the strategy to run. Run strategy mode means the user 

would like strategy software to run as in a competition and the test strategy mode 

means the user would like to test one particular skill, tactic or play for debugging 

purpose. The second group box contains different tests categorized in different 

sections. The last group box shows the current status of the game field so that the 

user can get the basic information. 



 

Figure 47. Computer Tab of Strategy Software 

 

 Log 

The log field contains the output of the strategy software. The first group box 

contains the record of the goals of each team and also the time left for the game. 

The second group box contains the output of whole software, and normally the 

information is mainly related to debugging. 
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Figure 48. Log Tab of Strategy Software 

 

The log section specifies the information on the field. No matter it is about the 

score or about the remaining time, the information will be represented in the table. 

 Referee 

The section shows the status of the referee box and also sometimes used for 

simulating the function of reference box. The first group box contains four 

different selections namely disable, start, stop and auto. If the auto is selected, the 

strategy software box will act according to the command sent by the reference box 

otherwise it will act according to what is selected on the panel.  



 

Figure 49.Referee Tab of Strategy Software 

 

4.3.4 User Interface Style 

The original user interface is designed in Qt designer; and the style is old-

fashioned comparing with our purpose. As a result, we used QSS to redesign the 

appearance of the software. The detailed QSS code is in the appendix. 

 Simulation Panel 

The simulation panel is a place where we store and visualizes the information on 

the field. The whole panel was drawn by the drawing tools provided by the Qt tool 

chain. 

 

Figure 48. the Simulated Robots on Simulation Panel 
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In the folder called field_related, there are several files which are used to 

represent the information of the field. Among all these files 

field_global_function.cpp defines the whole configuration of the simulation panel. 

The two basicfilesarefield_robot.cpp and ball.cpp. These files contain a robot 

class, a ball class and their different properties including the shapes, confidence 

bar etc. These two classes both extend a class called FieldItem defined in 

field_item.cpp. Besides what I mentioned, there also exist two files named as 

field_scene.cpp, field_view.cpp. Each file defines a class, which has a similar 

name to the file’s name, to represent a possible instance. In fact, the FieldView 

class defined in field_view.cpp contains FieldScene class defined in 

field_scene.cpp. To illustrate the idea, the visualized relationships of all classes 

are represented in following graph: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FieldScene FieldView 

FieldRobot FieldBall 

FieldItem FieldScene 
Extend Extend 

Contains Contains 

Contains 

Contains 



4.3.5 Logic Structure 

The logic of the structure was implemented in a file called 

strategy_control_window.cpp.  In the constructor of class, the class sets the 

parameters of the whole project. The following code shows the content in the 

constructor: 

Code example: 

 

 

 

 

 

 

Figure 49. the Code Example of Setup Step 

 

In the previous example code, the contractor establishes the logic structures step 

by step. The name of each step is very demonstrative. 

4.3.6 Control and Animation 

The connection between the animation and the control panel is QT’s signal/slot 

mechanism. Different actions change the state of the field. For example, the radio 

buttons of selecting the robot influence the number of the robots in the field. 

Each action you make on the control panel will firstly be captured by the program 

and then stored in the world class. Then the simulation panel, which is in the main 

thread, will continuously acquire the world class for information. As soon as it 

receives the information, it puts the animated effect onto the objects in the field 

including the direction, confidence of belief, the number of robots etc. 

TimerInitialization(); // initialize the timer 
SetupWindows(); // allocate the memories and establishUI . 
SetupMode(); // set either thread mode or sequential mode of software 
SetupThread(); // setup and initialize each thread 
SetupWindowsComponent(); // set default status of windows component 
SetupGraphicsView(); // setup the status of graphic simulator 
SetupGUIConnection(); // setup the signal-slot connection 
SetupAutoSelection(); // setup the debug connection 
SetupWindowProperties(); // setup the properties of widow e.g. title 
StartTimer(); // start the timer  
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4.4 Wireless Module 

4.4.1 Introduction 

The wireless module was implemented for communication with multi-robot 

system. For communicational efficiency, different protocols were all included in 

this module together. There are two reasons for doing this, the first reason is all 

the wireless protocols need to use the RS232 port for sending signals to the 

wireless hardware, the second reason is that if we offer a standardized API to the 

main class, and then it becomes easier to manage the resources. Nevertheless, the 

resources need to be controlled by different threads, and only by designing a 

simple mechanism, the deadlock avoidance can be achieved. 

4.4.2 File Structure 

 

Figure 50. File Structure of Wireless Module 

 

From the picture, we can see the wireless module is quite clear as it does not 

contain any sub folders. 

4.4.3 Logic Structure 

The main file which provides most of the APIs is serial_server.cpp. It contains a 

class called SerialServer, and this class includes all header files of other protocols. 

Among all files, the port_operation.cpp manages the distribution of serial port, the 

SLIP_operation.cpp defines the operation related SLIP protocol, the 

DECT_operation.cpp defines the protocol related to DECT, and 

transparent_operation.cpp determines the use of transparent protocol. 



 

Figure 51. Structure of Wireless Module 

 

As we can see from the graph, although every individual protocol class has the 

ability to control the serial port, only the SerialServer can really activate the 

hardware. In the constructor of SerialServer, the method firstly opens the port and 

chooses different protocol accordingly. When the main program wants to switch 

from one protocol to another one, it destroys the instance of the previous class and 

then make a new instance of the second class. 

4.5 Internet Module 

4.5.1 Introduction 

As introduced in the section of the information flow structure, the internet module 

takes care of the communication channel. The main goals of this module are to 

establish the stable and fast connection with simulation software, vision software, 
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reference box and the monitoring server. In this case, we have to consider both 

receiver program and sender program for different connection scheme. 

4.5.2 File Structure 

The file structure of internet module is as follows: 

 

Figure 52. File Structure of Internet Module 

 

Among all the files and directories, the message_serialization folder contains all 

the files which are used to change the information from text format to binary 

format. Nevertheless, most of files are automatically generated by Google 

protobuf. In the radio_client_out_files folder, we include one specific version of 

Google protobuf to build this software and also a bash script which can 

automatically install specific version of Google protobuf on a target computer. 

The thread_tools folder contains data structures of timer which is critical to the 

simulation process of the field. The file field_timer.cpp in this folder defines 

several global methods to control the flow of the timer. 



The web_data_model folder contains the files contributed to the communication 

between web monitoring system and strategy software. For example, in this class, 

methods for easier usage of JSON protocol are included. 

The rest of files are mainly related to the communication with simulation software, 

vision software and reference box. Followed by the standard of establishing a 

communication under Qt environment, all of them have similar implementation, 

which is making a subclass of QThread. No matter whether it is a receiver 

program or a sender program, in the run loop (the main loop of a thread), it tries to 

acquire or receive information from the operating system. 

4.5.3 Information Process Method 

The receiver and sender program for each protocol are both using pulling method 

to either receive from or send to a fixed IP address. This method is less efficient, 

however the Linux operating system does not provide an efficient callback 

method to pass the information to our application. As a consequence, we inherited 

the Qt’s thread class to continuously monitor a certain port on computer. In this 

way, the information can be also found and transferred. 

4.5.4 Logic Structure 

The logic structure of internet module is illustrative. Each file in the class 

establishes a thread and exchange with the world class. 
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Figure 53. Logic Structure of Internet Module 

 

4.6 Control Hub Module 

4.6.1 Introduction 

The control hub module is the most significant module in this strategy software. It 

monitors the environment of the field, takes all information to make a logical 

deduction, and makes decision for each action of each robot within a very short 

time interval. It is also the essential core of making a sequence of actions to 

enable the robot to move by itself. Besides controlling a robot automatically, this 

module also specifies several ways for human to control the robot. 

Technical Introduction: 

 Freenect 



The freenect is C++ library designed for the free control of Kinect. It has several 

APIs to activate the Kinect and adjust the functionality of Kinect. 

 TurboC  

TurboC is a C library. With the APIs it provides, people can develop graphical 

applications quickly. It is developed by Ncurses and Xlibs library under Unix 

environment. It is compatible with the GUN gcc project.  

4.6.2 File Structure 

 

Figure 54. Folder Structure of Control Hub Module 

 

The first level of control_hub module contains three parts. To begin with, the 

most important part in the folder is computer_control. In this folder, we included 

all the files which are related to artificial intelligence according to the hierarchical 

structure of strategy. The second folder is for debugging process. We make unit 

test and implement new algorithms in this folder. The third folder includes the 

files for human to control. In a way, we also can say files in this folder 

implemented the interface of human-computer interaction. 

4.6.2.1 Computer Control 

 

Figure 57. Structure of Computer Control 

 

The structure of computer control is heavily inspired by the functionality of the 

brain. There are three parts shown as three folders in the graph. The cerebellum is 
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the Latin name for small brain which enables people to adjust the balance when 

moving around. The second part intelligence and the third part knowledge_base 

together represent the cerebrum, which is ‘the big brain’ in English. 

1. Cerebellum 

In current version, the cerebellum is not implemented fully. Its function was 

implemented in the intelligence folder. The future plan, however, is to place the 

algorithms related to intelligent avoidance to the cerebellum.  

2. Intelligence 

 

Figure 58. File Structure of Intelligence 

 

The intelligence folder contains three folders. They are item_property_executor,  

strategy_executor and world_analyzer individually. The item_property_executor 

folder is responsible for tracking and analysing the information from the vision 

and then assigns all this information to an instance called world. The “world” is a 

class which stores all the information. It will be introduced in detail later.  The 

folder strategy_executor is the most advanced part in this software. It makes the 

strategy for the multi-robot system. It is also the main part of the strategy thread. 

The world_analyzer is another import part of interacting with the “world” class. 

According to our plan, it takes care of the interaction between the strategy 



software and human. When human changes the property of the field, not only by 

using the control panel but also by editing the configuration file, this part will 

automatically assign all the properties to “world” class.  

3. Knowledge_base 

 

Figure 59. File Structure of knowledge_base 

 

The knowledge_base folder is a place where we store all the information of field. 

The concrete methods are to use a class called world to describe the state of the 

field. This class includes the setters and getters of all the parameters, the obstacle 

detection algorithm and the timer settings. 

The concept of this folder is an abstraction of memory of human, and in the folder, 

the strategy software stores the information obtained from the environment. 

4.6.2.2 Human Control 

 

Figure 55. File Structure of Human Control 

 

Three kinds of method were implemented in the human control folder. We can use 

joystick, keyboard or the kinect to control the individual robot. 
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4.6.2.3 Knowledge Base 

 

Figure 56. File Structure of knowledge_base 

 

The knowledge base is a place to store all the information. The concept is 

inherited from expert system. But this part did not really contain the inference 

system or pre-programmed knowledge base structure. It can be an implementation 

in the future. 

Besides the world class which includes the information of the field, this 

knowledge base also contains the basic idea of obstacle. By adopting this concept 

of obstacle, the world can treat robots, walls or even ball as obstacles under 

different situation.  

4.6.3 Logic Structure 

4.6.3.1 Glance 

The logic structure is more difficult than it seems. The following graphs show the 

basic ideas of control hub module. 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 57.  Logic Structure of Strategy Implementation 

 

The progress is similar to the description in the graph. When the constructor of 

main window firstly activated the strategy thread, the strategy thread will begin to 

try to detect which play, tactic and skill belong to current settings. After going 

through the strategic structure, it will focus on several basic issues.  

The first issue is to navigate between several obstacles. The next thing to consider 

about is how we can find a valid path to go to our goal, and the last thing to 

consider is to control the motion of the robot so that it can move according to the 

plan. All these algorithms will be introduced in details later. 

Here we will introduce the strategy structure first. 

4.6.3.2 First Cluster-Strategy Architecture 

The STP (skill, tactic, play) architecture was firstly mentioned by a paper made by 

Carnegie Mellon University. The author, James Bruce was the researcher in the 

RoboCup team. According to what he described in the paper: 
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“The key component of STP is the division between single robot behaviour and 

team behaviour. In short, team behaviour results from executing a coordinated 

sequence of single robot behaviours for each team member.” 

As a consequence, this way of designing strategy would satisfy this complicated, 

dynamic and adversarial environment. 

 

 

 

 

 

 

 

 

 

Figure 58. Structure of First Cluster [17] 

 

4.6.3.3 Second Cluster-From Skill to Motion 

The skill defines sequences of actions to make sure that the robot can move 

according to what has been planned. Each skill class contains the necessary 

methods including load configuration, navigate, call the planner and control 

motion. 

In each action, the strategy software would input the information received and 

analysed from the vision system and then get the processed information from 

different class. 

Play 

Library  

Paly Selection 

Play Excution 

Play Evaluation 

 CM Vision 

High-level Vision 

Tracking 

World Module 

Tactics 

Skills 

Navigation 

Motion Control 

Radio Server 

Serve Loop 

Camera 

Radio  



For now, because the functionalities between skill and tactic are not so clear, the 

skill is implemented as a tactic. The structure of calling from skill to robot is as 

follows: 

 

 

 

 

 

 

 

 

 

 

Figure 59. Structure of First Cluster 

 

The previous graph illustrates how the strategy threads call from the play to skill 

then to the robot. The first element in the graph represents the strategy thread. It 

first gets information from the user interface and when the world state has been 

set to active, it will try to call the run method in specific tactic class. If this tactic 

has overwritten the run method in the base tactic class, then the strategy thread 

will call the method directly, otherwise, it will still to call the common method in 

the RobotTatic class. After entering the process of dealing with the information, 

the RobotTactic will make a selection based on the whether we should warm up or 

compete in the field. Then the class which represents the robot in the field will 

take the responsibility to make intelligent cooperation, aka navigation. The 
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navigation algorithm will give a trajectory as the feedback and based on this 

trajectory and the information about obstacles, the planner will form a sequence of 

points to represent the path. Finally, the go_to_point method will send all the 

information through the internet. 

4.6.4 Problem Definition 

This section defines the problems of motion planning and cooperative safety as 

addressed in this thesis. The major notation used for planning and safety are 

given, along with the definitions of general terms for this whole strategy software 

development. It also pointed out the complex factors for the algorithms mentioned 

in the following content. 

4.6.4.1 Navigation 

Nathaniel Bowditsh firstly defines the navigation as a field of study that focuses 

on the process of monitoring and controlling the movement of a craft from one 

place to another. In order to form a specification for the navigation, a more formal 

definition is adopted.  

In fact, for any mobile device, or multi-mobile system, the main purpose is to 

avoid dangerous situations, for example, the collision, the hot temperature and the 

deep hole. 

 

5 VISION SYSTEM AND KALMAN FILTER 

5.1 Introduction of SSL Vision System 

In Chapter 1.1, we have briefly introduced the background of RoboCup SSL 

competition. It can be seen that RoboCup SSL field is supervised by a camera 

which is placed on top of the field. 

All the in-field soccer robots can be individually distinguished by different colour 

patterns present on top of each robot. 



 

 

Figure 60. The Standard Colour Assignments for RoboCup SSL 2012 [18] [19] 

 

The Figure 10 shows the standard colour assignments for RoboCup SSL 2012. 

Among those 12 patterns, ID 0 to ID 7 is advisable to be used due to stability. 

Generally speaking, the two adversarial teams are separately named “blue team” 

and “yellow team”. It can be observed from these patterns that the colour of the 

centre mark of a certain robot can identify itself to its team. The rest of four colour 

marks which surround the centre mark are used to identify different robot ids and 

orientation in a team. 

The SSL Vision System is a powerful shared vision system developed by 

volunteers from Carnegie Mellon University. By calibrating the overhead cameras 

to supervise the whole field and setting up the right team pattern image marker 

and parameters, SSL Vision System is able to transmit frames of robots and the 

ball to the vision server on every communication cycle. Then SSL Vision System 
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will decode the received frame information into standardized parameters like 

position, and transmits the decoded information to our strategy server by using 

Google Protocol Buffer. 

 

Figure 61. Screenshot of SSL Vision System [19] 

 

5.2 Introduction of Google Protocol Buffers 

Google Protocol Buffer provides a flexible and efficient way to serialize 

structured data. Compared with an XML file, Google Protocol Buffer is much 

simpler, smaller, faster, less ambiguous and more user-friendly. 

All data flows related to the SSL - Vision System are encoded with Google 

Protocol Buffer. In Google Protocol Buffer, a .proto file needs to be defined for 

the data structure and type of message to be transmitted. 

There are three .proto files defined in SSL-Vision System.  



messages_robocup_ssl_detection.proto: this file includes ball and robot 

information, which is the detection result of one camera frame. 

The complete code is here: [3] 

 
 
message SSL_DetectionBall { 
  requiredfloat  confidence =1; 
  optionaluint32 area       =2; 
  requiredfloat  x          =3; 
  requiredfloat  y          =4; 
  optionalfloat  z          =5; 
  requiredfloat  pixel_x    =6; 
  requiredfloat  pixel_y    =7; 
} 
 
message SSL_DetectionRobot { 
  requiredfloat  confidence  =  1; 
  optionaluint32 robot_id    =  2; 
  requiredfloat  x           =  3; 
  requiredfloat  y           =  4; 
  optionalfloat  orientation =  5; 
  requiredfloat  pixel_x     =  6; 
  requiredfloat  pixel_y     =  7; 
  optionalfloat  height      =  8; 
} 
 
message SSL_DetectionFrame { 
  requireduint32             frame_number  =1; 
  requireddouble             t_capture     =2; 
  requireddouble             t_sent        =3; 
  requireduint32             camera_id     =4; 
  repeated SSL_DetectionBall  balls         =5; 
  repeated SSL_DetectionRobot robots_yellow =6; 
  repeated SSL_DetectionRobot robots_blue   =7; 
} 

 

From this file, we could get the ball position and robot position in a raw data 

format, which can be used as the input data for the Kalman Filter of our system. 

messages_robocup_ssl_geometry.proto: this file includes the field size of SSL and 

information related to camera calibration. 

messages_robocup_ssl_wrapper.proto: this file includes the previous two .proto 

files and creates a wrapper for all the detection results that need to be transmitted. 

An example client and an example graphical client are included inside the SSL 

Vision System’s directory. These two clients can be used to as a demo client to 

receive raw vision data from the SSL Vision System. 
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Figure 62. Graphical Client 

 

5.3 Introduction of Kalman Filter 

Although SSL Vision System have already provided a powerful data processing 

and communicating functions, however, the vision system is not inherently 

capable of removing interferences and noises which are produced together with 

vision information, and it is not able to reduce the inevitable transmission delays 

between vision system and strategy server.  

Thus, a vision filter that is able to reduce potential erroneous measurement values 

and predict the future motion is needed in our strategy software system. 

Kalman Filter, which is invented by Rudolf E. Kálmán [20], is an efficient 

recursive algorithm that is able to optimally estimate future system states based on 

the noisy raw data input. The Kalman Filter algorithm has been widely used in 

RoboCup competitions and in other industrial fields like robotics, automation, 

aeronautics, etc. 



5.4 Principle of Kalman Filter 

5.4.1 Principle of Kalman Filter 

Usually speaking, there are two main steps in Kalman Filter Algorithm: State 

Predict step and Measurement Update step. 

 

Figure 63. Kalman Filter Steps 

 

These two steps are executed in a consecutive cycle. That is to say Kalman Filter 

will first execute State Predict Step and then executes Measurement Correct Step 

in the first initial round and execute these two steps in the next rounds based on 

the calculated value in the previous round. 

The merit of the Kalman Filter is that it can calculate a predict/estimate value that 

is close to the real value in reality after many rounds of iteration. The directly 

measured value from the outside world is believed to be jeopardized by all kinds 

of interference and delays, so the measured value cannot be taken directly as an 

accurate value for further calculation. Many rounds of iterative calculation are 

required for Kalman Filter because in the early stage of iteration the calculated 

result by Kalman Filter can be far from the real value, however, Kalman Filter 

will use the measured value which is also not accurate to calibrate its estimated 

value in the next round. After several rounds of calculation, measurement and 

calibration, Kalman Filter will yield a reliable result. The detailed explanation of 

how this works is illustrated below. 
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5.4.2 State Predict Step 

This step involves two mathematical equations: 

 

Xƹ ௞|௞ିଵ = ௞Xƹܣ ௞ିଵ|௞ିଵ +  (1)																															௞ݑ௞ܤ

௞ܲ|௞ିଵ = ௞ܣ ௞ܲିଵ|௞ିଵܣ௞் +ܳ௞ିଵ																												(2) 

 

In the (1) equation, Xƹ ௞|௞ିଵ is called the “priori” estimated state variable which is 

predicted in k round based on k-1 round results. State variable is a set of variables 

that are used to describe the system state of a dynamic system. For example, in 

RoboCup SSL, we can set the state variable of the ball as a set of variables like x-

velocity, y-velocity, x-coordinate, y-coordinate, rotation angle and etc. 

Mathematically, these variables can be grouped into a state variable matrix for 

calculation. For the state variable Xƹ ௞|௞ିଵ, the hat on top of the letter X means that 

this state variable is not the real value of the state variable X, instead it is an 

estimated or predicted value calculated by the equation (1). Besides, the subscript 

of Xƹ ௞|௞ିଵ identifies this estimate state variable is in its k round whose calculation 

is based on the k-1 round result. 

Xƹ ௞ିଵ|௞ିଵis the calibrated state variable in the k-1 round. Together with the state 

transition model ܣ௞, it is used to estimate state variable X in k round. Note that we 

need to initialize this variable, that is Xƹ ଴|଴, for the first round of process. 

௞ܣ is called state transition model, and it is used for calculating the new state 

variable X in its k round based on k-1 round result and that is why it is called the 

state transition model. Mathematically, ܣ௞ can be expressed as a matrix. 

௞ݑ is called system input variable (different from measurement input). For 

example, when applying the Kalman Filter to robots, this variable can be set as a 

set of values like x-velocity, y-velocity, rotating velocity and etc. based on our 



command. For some dynamic systems, there is no system input variable ݑ௞. For 

example, when applying the Kalman Filter to the ball, we do not send any 

command input to the ball system, thus there is no ݑ௞ in the system as well. 

௞ܤ is the control-input model which applied to system input variable ݑ௞  to 

calculate the next round system variable X. 

By applying equation (1), we can get an estimate of system variable X in k round 

purely based on the information in k-1 round and command input information. 

However, the estimate X may not be the same as the real value in reality. It may 

have some variance compared with the real value. Therefore Kalman Filter needs 

to calculate “priori” error covariance in equation (2). 

 

In equation (2), ௞ܲ|௞ିଵ is called the “priori” error covariance matrix in round k, 

and it reflects how much two random variables change together. In this case, 

௞ܲ|௞ିଵ can be expressed as: 

௞ܲ|௞ିଵ = ൫ܺ௞ݒ݋ܿ − X෡௞|௞ିଵ൯ = ܧ ቂ൫ܺ௞ − X෡௞|௞ିଵ൯൫ܺ௞ − X෡௞|௞ିଵ൯
்ቃ 																			(2.1) 

 

௞ܲିଵ|௞ିଵis the “priori” error covariance matrix in round k-1, it is used to calculate 

the “priori” error covariance matrix in round k. The update from ௞ܲିଵ|௞ିଵ  to 

௞ܲ|௞ିଵ reflects the fact that estimate state variable Xƹ ௞|௞ିଵcarries more uncertainty 

compared with state variable Xƹ ௞ିଵ|௞ିଵ  because process noise ݓ௞  and command 

information is brought into the system. 

 

 ௞. This variable is brought into the equationܣ ௞் is the transpose form of matrixܣ

(2) due to the formula of calculating a covariance matrix. 
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ܳ௞ିଵ is called the process noise covariance matrix and it is one of filter 

parameters. Process noise ݓ௞ିଵ is a random variable appeared in State Process 

Step of round k and it is distributed under normal probability distribution with a 

zero mean and a covariance ܳ௞ିଵ: 

,0)ܰ~(௞ିଵݓ)݌ 	ܳ௞ିଵ)																					(2.2) 

And process noise ݓ௞  is involved in generating the estimate state variableX̂௞|௞ିଵ: 

Xƹ ௞|௞ିଵ = ௞Xƹܣ ௞ିଵ|௞ିଵ + ௞ݑ௞ܤ  (2.3)																					௞ିଵݓ+

This equation does not explicitly show in the equations of Kalman Filter, but the 

equation (1) and (2) are actually derived from this equation. 

Up to now, Kalman Filter has gone through its first step – State Predict Step. 

During this step, Kalman Filter calculates a new estimate state variable in k round 

and it also calculates the uncertainty of this new generated estimate state variable. 

The uncertainty can be alleviated during the next step when measurement values 

are brought into the system. 

 

5.4.3 Measurement Update Step 

This step involves three mathematical equations: 

 

K௞ = ௞ܲ|௞ିଵܪ௞்(ܪ௞ ௞ܲ|௞ିଵܪ௞் + ܴ௞)ିଵ																											(3) 

Xƹ ௞|௞ = Xƹ ௞|௞ିଵ ௞ݖ)௞ܭ+ − ௞Xƹܪ ௞|௞ିଵ)																															(4) 

௞ܲ|௞ = ܫ) − K௞ܪ௞) ௞ܲ|௞ିଵ																																																				(5) 

 



These three equations occur in the step of measurement update, which is also 

called the “posteriori” correction step. During this step, the dynamic system 

receives measurement from the outside world, like sensor. Then the Kalman Filter 

uses the received measurement to correct the “priori” estimated state variable 

Xƹ ௞|௞ିଵ  and error covariance matrix ௞ܲିଵ|௞ିଵ . The word “priori” refers to the 

period of time before receiving any measurement in the given round, while 

“posteriori” refers to the period of time after receiving measurement. After 

correction, the estimated state variable will be more close to the truth. 

Equation (3) is an equation to calculate the important factor – Kalman Gain K௞  in 

the k round. Kalman Gain is crucial in the whole Kalman Filter because it plays a 

balancing role between the model prediction and received measurement. When 

Kalman Gain is high, the Kalman Filter will weights more heavily on the 

measurements, that is to say Kalman Filter will trust more on the measurement 

data. When Kalman Gain is low, the Kalman Filter will put more weight on the 

prediction model we built in equation (1), that is to say Kalman Filter will 

consider the measurement data to be not reliable enough. In the most extreme 

situations, when Kalman Gain is zero, the measurement data are completely 

ignored in the following calculations. And when the Kalman Gain is one, the 

prediction model is considered to be totally wrong, thus the estimate state variable 

in the previous step will be completely ignored. 

Actually, Kalman Gain is derived from the minimization of “posteriori” estimate 

covariance matrix ௞ܲ|௞: 

߲( ௞ܲ|௞)
(௞ܭ)߲

= 0																					(6) 

More details of deriving the Kalman Gain can be found from References [21], 

[22], and [23] 

 

௞ܲ|௞ିଵ is the same “priori” error covariance matrix which appears in the equation 

(2). 
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௞ܪ  is called the observation model, which is a matrix that maps the true space  

into the measurement space. Obviously, ܪ௞்  is the transpose form of ܪ௞ . 

ܴ௞  is called the measurement noise covariance matrix. Similar to the process 

noise random variable ݓ௞ିଵ, there is a measurement noise random variable ݒ௞ , 

which is assumed to be distributed under normal probability distribution with a 

zero mean and a covariance ܴ௞: 

,0)ܰ~(௞ݒ)݌ 	ܴ௞)																					(7) 

Note that process noise covariance matrix ܳ௞ିଵ  can be different from the 

measurement noise covariance matrix ܴ௞ . These two matrixes are assumed to be 

independent of each other. 

Together with the observation model ܪ௞  that we explained above, the 

measurement noise ݒ௞ is also considered to be one part of the measurement data 

 :௞ݖ

௞ݖ = ௞Xƹܪ ௞|௞ିଵ +  (8)																					௞ݒ

This equation is also not explicitly show in the equations of Kalman Filter, but the 

equations (3), (4) and (5) are derived from this equation. 

 

After we have calculated Kalman Gain K௞  in the equation (3), we use it as a 

balancing weight in the equation (4) to calculate the “posterior” corrected result of 

state variable Xƹ ௞|௞  after Kalman Filter received the measurement data in k 

round.ݖ௞is the measurement data, which in our case is the measurement of the 

position of the ball or robots in the field. 

The factor (ݖ௞ ௞Xƹܪ− ௞|௞ିଵ)  in the equation (4) is called the “innovation” or 

“residue”. It reflects the difference between the measurement data ݖ௞  and 

predicted measurement ܪ௞Xƹ ௞|௞ିଵ  based on the observation model ܪ௞  and the 

“posterior” estimated state variable Xƹ ௞|௞ିଵ. When the innovation is zero, it means 



that the actual measurement data are the same as the predicted measurement data. 

And the Kalman Gain plays a balancing role between the “posterior” estimated 

state variable Xƹ ௞|௞ିଵ and the innovation factor as we explained above. 

Similar to equation (2), ௞ܲ|௞  is called the “posterior” error covariance matrix in 

round k. In this case, ௞ܲ|௞  can be expressed as: 

௞ܲ|௞ = ൫ܺ௞ݒ݋ܿ − X෡௞|௞൯ = ܧ ቂ൫ܺ௞ − X෡௞|௞൯൫ܺ௞ − X෡௞|௞൯
்ቃ																					 (9) 

More details of deriving the “posterior” error covariance matrix can be found 

from References [21], [22], and [23]. 

5.4.4 Summary 

The following is a figure which nicely combines the five equations used in 

Kalman Filter: 

 

 

Figure 64. Two steps in Kalman Filter [24] 
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From the two steps we discussed above, these two steps are executed recursively a 

number of times to yield an optimal estimate state variable. This feature is 

especially beneficial when it is applied to practical implementations, for example 

when writing iterative functions code when implementing Kalman Filter. 

In fact, there are different kinds of Kalman Filter. The one we discussed above is 

the discrete form of Kalman Filter which is suitable to apply to the situation that 

the estimate process and measurement process are in a linear relationship.  

In a more complex non-linear dynamic system, we may need to apply different 

forms of Kalman Filters, mainly including Extended Kalman Filter (EKF), 

Unscented Kalman Filter, Kalman-Bucy Filter, Hybrid Kalman Filter, Extended 

Kalman-Bucy Filter (EKBF), etc. 

In Chapter 3.5, we will have an investigation on the topic of the specific form of 

Kalman Filter that is suitable when applied to the RoboCup SSL system. 

 

5.5 Introduction of Extended Kalman-Bucy Filter (EKBF) 

Extended Kalman-Bucy Filter (EKBF) is the time-continuous, non-linear system 

variation of the Kalman Filter. Thus it suits perfectly into our RoboCup SSL 

dynamic system. 

5.6 Implementations on Extended Kalman-Bucy Filter (EKBF) 

5.6.1 Overview 

The paper named Improbability Filtering for Rejecting False Positives [25], 

illustrates the detailed methodologies to apply Extended Kalman-Bucy Filter into 

RoboCup SSL and it also introduces a novel way of filtering out false positives by 

calculating probabilities. The paper also includes some important empirical values 

which can be used as a good reference in our implementations. 



5.6.2 Preparation Works: Development Environment 

Considering the fact that the new Botnia RoboCup SSL software system should be 

running on top of a Linux based machine, we choose the following components as 

our development environment. 

 Ubuntu (10.04 and 10.10 have been both tested) OS 

 Qt Framework (version 4.7 or above) 

 Qt Creator IDE (version 2.3 or above) 

 Subversion (version 1.6 or above) 

 G++ Compiler (version 4.4.5 or above) 

 CMake build system (version 2.8.2 or above) 

 Eigen2 Library 

 Google Protocol Buffers (version 2.3 or above) 

 OpenGL Library (version 2.1 or above) 

 OpenGL Utility Library (version 1.3 or above) 

 Libdc1394 Library (version 2.0 or above) 

 Libjpeg Library 

 Libpng Library 

 OpenCV Library (version 2.1 or above) 

Ubuntu OS, Qt Framework and Qt Creator IDE can be respectively downloaded 

from their official website. 

By executing the following command in a terminal window, Ubuntu (10.04 or 

10.10) should install all the required libraries: 

sudo apt-get install build-essential gcc g++ subversion libqt4-dev libeigen2-dev 

protobuf-compiler libprotobuf-dev libdc1394-22 libdc1394-22-dev cmake libjpeg-

dev libpng12-dev libavformat-dev ffmpeg libcv2.1 libcvaux2.1 libhighgui2.1 

python-opencv opencv-doc libcv-dev libcvaux-dev libhighgui-dev 
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After installing the above components successfully, we can start configuring the 

projects inside Qt Creator. 

SSL Vision System [3]has already integrated a graphical sample client 

“graphicalClient” (Figure 13) after we have checkout a copy of source code from 

its SVN repository. This graphical sample client is able to use Google Proto 

Buffer to receive vision data from the vision server and display the ball and robots 

on the field. Thus it serves to be a good base for our further development. 

5.6.3 Preparation Works: EKF OpenCV Support 

OpenCV is a powerful open-source library mainly aimed at real time computer 

vision analysing and processing. OpenCV provides an efficient and user friendly 

way to process computer visions and images. 

During the process of implementations, OpenCV can handle the raw vision data 

and efficiently apply the Kalman Filter Algorithms which require an intensive 

manipulation of matrix calculation in C++ language. 

Although the OpenCV library has the capability of handling discrete linear system 

by employing native inline data structures and functions like CvKalman, 

cvCreateKalman, cvKalmanCorrect, cvKalmanPredict, it is not suitable to apply 

these functions directly in our continuous non-linear case. 

OpenCV Based Extended Kalman Filter Frame [26] is a simple and clear OpenCV 

based Extended Kalman Filter (EKF) abstract implementation, which is released 

under BSD License. By integrating this code frame into our project, it facilitates 

the process of the implementation. We have made some modifications to the 

original code to make it even suitable for our needs. 

 

5.6.4 Ball EKBF Implementations Step I: Theory & Configurations 

The state variable of ball system is 



Xƹ ௞ = ்(௬ݒ௫ݒ	ݕ	ݔ) 																					(10) 

Angular velocity and ball orientation are not present in the state variable because 

they are not needed. Input command is not given into the system either because 

the ball is not driven by itself. 

The ball has two distinguished behaviours in the field. One is that the ball moves 

freely on the carpeted field. The other is that the ball hits the edge of the field and 

moves upwards along the inclined edge. In the previous case, the ball can be 

considered to suffer from a constant friction force; in the latter case, the friction is 

negligible. 

In our case, applying the Kalman Filter to the ball on the carpeted field should be 

regarded to have a higher priority. 

The kinematic model is governed by the following formulas: 

Xƹ ௞|௞ିଵ = Xƹܯ ௞ିଵ|௞ିଵ + ܽܿܿ௞ = ൮

1 0 ݐ∆ 0
0 1 0 ݐ∆
0 0 1 0
0 0 0 1

൲Xƹ ௞ିଵ|௞ିଵ +

⎝

⎜
⎛
ܽ௫∆ݐଶ/2
ܽ௬∆ݐଶ/2
ܽ௫∆ݐ
ܽ௬∆ݐ ⎠

⎟
⎞
(11) 

ܽ௫ = ൝
−ܽ௙௥ܿݏ݋Ψ					|ݒ| > ܽ௙௥∆ݐ

−
௫ݒ
ݐ∆ 	݁ݏ݅ݓݎℎ݁ݐ݋														

 

The parameter Ψ is the angle of travel of the ball, v is the ball speed, and ܽ௙௥ is 

the constant friction deceleration value which empirically set as 245mm/s2. 

For RoboCup SSL system, the state transition model ܣ௞  can be considered the 

same as M which is a 4 by 4 matrix. Control-input model ܤ௞ and system input 

variable ݑ௞  are not involved in the ball’s system.The process noise covariance 

matrix 

ܳ௞ିଵIs set to be a 2 by 2 matrix and its value is ݀݅ܽ݃((ߪ௩ଶ,  ௩ଶ). The observationߪ

model ܪ௞  is a 2 by 4 matrix with the value of (ܫଶ, ܱଶ). The measurement noise 

covariance matrixܴ௞  is a 2 by 2 matrix with value of ݀݅ܽ݃(ߪ௫௬ଶ , ௫௬ଶߪ ) . Two 
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additional matrix variables W and V need also to be set in this case. Matrix W is a 

4 by 2 matrix with the value of (ܱଶ,  ଶ)், and matrix V is a 2 by 2 matrix withܫ

value of ܫଶ. 

The empirical value of the standard variation ߪ௫௬ given by paper [15] is set to be 

25mm, and the velocity standard variation ߪ௩  is governed by the following 

formula: 

௩ߪ = max ൬
ܴ
݀ ோߪ + ൬1 −

ܴ
݀൰ߪ଴, 																					ோ൰ߪ (12) 

And d is the distance between the ball and the nearest robot, R is the maximum 

robot width. ߪோ is set to 100mm/s, and ߪ଴ is set to 10mm/s. 

All these parameters have been tuned based on the practical field tests to fit better 

to our environment. 

Overall, applying the Kalman Filter to the system is a process of finding the 

optimal performance by tuning the Kalman Filter parameter matrixes. And the 

next step would be to code these parameters and the algorithm of the following 

five formulas into our project:  

 

Xƹ ௞|௞ିଵ = ௞Xƹܣ ௞ିଵ|௞ିଵ +  (13)																																										௞ݑ௞ܤ

௞ܲ|௞ିଵ = ௞ܣ ௞ܲିଵ|௞ିଵܣ௞் +ܳ௞ିଵ																																						(14) 

K௞ = ௞ܲ|௞ିଵܪ௞்(ܪ௞ ௞ܲ|௞ିଵܪ௞் + ܴ௞)ିଵ																											(15) 

Xƹ ௞|௞ = Xƹ ௞|௞ିଵ + ௞ݖ)௞ܭ ௞Xƹܪ− ௞|௞ିଵ)																														(16) 

௞ܲ|௞ = ܫ) − K௞ܪ௞) ௞ܲ|௞ିଵ																																																			(17) 

 



Here is an explanation of GLSoccerView::init_EKF() which is used to initiate 

the EKF environment and set up related parameters. All detailed codes can be 

found in the appendix. 

Initialize settings: 

Initialize Kalman Filter 
 
SetDimensions(intx_dimension,intu_dimension,intz_dimension,intw_dimension,i
ntv_dimension) 
 

Set Process noise covariance matrix and measurement noise matrix: 

Process noise covariance matrix, this should be very small (meaning very reliable 
and accurate) 
 
Measurement noise covariance matrix, this should be big  (meaning not reliable 
and accurate) 
 

Set “priori” and “posteriori” error covariance matrix: 

setkalman_P_predicted 
setkalman_P_last 
setkalman_P_updated 
 

Set other involved parameters matrixes, like innovation, Kalman Gain, received 

measurement matrix: 

setkalman_S 
SetZero(kalman_S) 
setkalman_K 
SetZero(kalman_K) 
setkalman_z 
SetZero(kalman_z); 
setkalman_z_predicted 
SetZero(kalman_z_predicted) 
setkalman_x_last 
setkalman_x_predicted 
setkalman_x_updated 
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Set up A, W, H, V these four matrixes in their respective functions, and execute a 

check to ensure all settings are correct: 

Get_A() 
Get_W() 
Get_H() 
Get_V() 
 

The four overwritten functions are listed and commented as follows: 

A:=df/dx 
Set Jacobian matrix 
OutputMat(kalman_A); 
 

Set kalman_W 
 

Set kalman_H 
 

Set kalman_V 
 

Two functions which are used to get predicted results are also implemented and 

commented: 

f(x,u,0) 
 
Update "kalman_x_last" to be "kalman_x_updated" 
Calculate kalman_x_predicted 
 

zk:=h(xk-,0) 
h(xk,0)=H*xk- 
Calculate kalman_z_predicted 
 

Up to now, we have set up the initial configurations of the Kalman Filter. Tuning 

these parameters to the optimal status is a challenging work which requires a 



combination of empirical theory and practical adjusting. For the further 

development, the capability of auto-tuning Kalman Filter parameters based on a 

given dynamic system would be a desired yet more challenging work which may 

require further knowledge on artificial intelligence and machine learning. 

5.6.5 Ball EKBF Implementations Step II: Iterative Callings 

The gist of the Kalman Filter is to iteratively apply the five formulas to the 

system.  In each iterative round, state Prediction step and measurement update 

step have been repeated. However, each repetition would result in a closer 

estimation by combining the latest estimation and new captured measurement 

data. In order to balance the filter performance and timing delays, we apply the 

Kalman Filter with the number of iterations equalling to 10. 

The following code fragment explains how to iteratively make a proper estimation 

by employing the Kalman Filter algorithm: 

1) Get ball's location 
Adjust the looping times based on field testing 
Update "kalman_P_last" to be "kalman_P_updated" 
2) Get measurement raw data 
Apply false positive rejection 
Get a copy of old valid data in case of false positive 
3) Update 
Set "kalman_z_predicted" to be "H*X_predicted" 
Set filtered result back to the ball object 
 

By comparing the raw unfiltered data with filtered data, we discovered that when 

the ball is in a still condition, the raw coordinate of the ball tends to be varying all 

the time, which verifies that raw data contains false data resulting from 

interferences and delays. However, the filtered data have a much less variability 

tendency, which reflects the reality of the still ball in a better way. 
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5.6.6 Ball EKBF Implementations Step III: False Positive Rejection 

Another novel discovery illustrated in the paper [25] is the way to eliminate false 

positives that can appear in the filtering process by employing the method named 

Improbability Filtering (ImpF). 

False positives occur in the situation that the measurement value during the 

Measurement Update Step is significantly different from the estimated value made 

during the State Predict Step. If these false positives are not eliminated from 

Kalman Filter, they will be brought into calculation and cause an obvious 

erroneous estimation in the next iteration. 

 

Figure 65. 1D example of false positive [25] 

 

In Figure 15, we can see clearly the disastrous effect result from the existence of 

false positives on a 1 dimensional system. For example, in the first round, the 

estimated value made by Kalman Filter is 500. But in the Measurement Update 

Step, a measurement value of 2000 is captured, thus cause a new erroneous 

estimation of 1000 in the next round.  



The novel solution to address this problem raised by paper [25] is to calculate the 

conditional probability density function (pdf) for each of measurement values the 

system received. 

The pdf function is governed by the following formula: 

,หX෡௞′ݖൣܲ ௞ܲ൧ =
1

(|௞ܥ|ߨ2)
௡
ଶൗ
݁ି൫௭′ିுೖଡ଼෡ೖ೔൯

೅
஼ೖ
షభ(௭′ିுೖଡ଼෡ೖ೔)/ଶ																					(18) 

With ܥ௞ = ௞ܪ ௞ܲܪ௞் + ܴ 

 ௞: the state covariance matrix transformed to measurement spaceܥ

n: the number of state variables 

 measurement value :′ݖ

Note that the accepted range of probability ܲൣݖ′หX෡௞, ௞ܲ൧ should be determined 

based on on-field testing in order to achieve the optimal performance. 

The following code fragment gives the implementation of checking whether false 

positives exist. 

boolGLSoccerView::check_false_positive(floatraw1,floatraw2) 

{ 

boolretVal=false; 

CvMat*dummy_z=cvCreateMat(2,1,CV_32F); 

cvSetReal2D(dummy_z,0,0,raw1); 

cvSetReal2D(dummy_z,1,0,raw2); 

CvMat*kalman_C=cvCreateMat(2,2,CV_32F); 

CvMat*kalman_Ht=cvCreateMat(kalman_H->cols,kalman_H->rows,CV_32F); 

CvMat*kalman_H_x_P=cvCreateMat(kalman_H->rows,kalman_P_predicted->cols,CV_32F); 

CvMat*kalman_H_x_P_x_Ht=cvCreateMat(kalman_H->rows,kalman_H->rows,CV_32F); 

cvTranspose(kalman_H,kalman_Ht); 

cvMatMul(kalman_H,kalman_P_predicted,kalman_H_x_P); 

cvMatMul(kalman_H_x_P,kalman_Ht,kalman_H_x_P_x_Ht); 

cvAdd(kalman_H_x_P_x_Ht,kalman_R,kalman_C); 

doubleKalman_C_det=cvDet(kalman_C); 

intn=kalman_x_dimension; 
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doubledenominator=pow((2*3.1415926*Kalman_C_det),(n/2)); 

CvMat*kalman_H_x_x=cvCreateMat(2,1,CV_32F); 

cvMatMul(kalman_H,kalman_x_updated,kalman_H_x_x); 

CvMat*kalman_z_minus_H_x_x=cvCreateMat(2,1,CV_32F); 

cvSub(dummy_z,kalman_H_x_x,kalman_z_minus_H_x_x); 

CvMat*kalman_z_minus_H_x_xt=cvCreateMat(1,2,CV_32F); 

cvTranspose(kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt); 

CvMat*kalman_Ct=cvCreateMat(2,2,CV_32F); 

cvTranspose(kalman_C,kalman_Ct); 

CvMat*kalman_z_minus_H_x_xt_Ct=cvCreateMat(1,2,CV_32F); 

cvMatMul(kalman_z_minus_H_x_xt,kalman_Ct,kalman_z_minus_H_x_xt_Ct); 

CvMat*kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x=cvCreateMat(1,1,CV_32F); 

cvMatMul(kalman_z_minus_H_x_xt_Ct,kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt_Ct

_z_minus_H_x_x); 

doublenumerator=pow(2.7183,(-

0.5*cvDet(kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x))); 

doubleprobability=numerator/denominator; 

qDebug()<<Probability:"<<probability; 

//Future adjustment probability range should be based on on-field testing 

    //Rather than the “accept-all” policy used in this example 

if(probability>1||probability<1.0e-5) 

{ 

retVal=false; //Bad value 

} 

else 

{ 

retVal=true; //Good value 

} 

return retVal; 

} 

 

And we can call this function in the previous code fragments to ignore all the 

measurement values belonging to the false positive category. 

 



5.7 Ball EKBF Testing 

I made a YouTube video [27] to show the test results. This video is taken in a real 

RoboCup SSL environment, with raw data transmitted by SSL Vision System. In 

the video, the orange object represents the ball on the field after filtering and the 

blue object represents a soccer robot on the field without filtering. It can be seen 

clearly that the position of the soccer robot varies and the image of it also flashes 

from time to time. However, the position of ball tends to be quite still and the 

image of the ball is also much stable. 

5.8 Summary 

In this chapter, we introduced a powerful algorithm employed in our system. By 

using EKBF filter, we are able to filter out unwanted white noises and minimize 

the problems caused by transmission delays. We also implemented the-state-of-

the-art Improbability Filtering technique to reduce false positives appeared. 
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6 SAFTY NAVIGATION 

6.1 Introduction on Safety Navigation 

One of the most crucial aspects in maintaining an efficient and collision-free 

dynamic soccer robot system is collision detection and prevention mechanism. 

This mechanism should be deployed into our strategy software system and it will 

guarantee that our own teammates will not collide with each other during the 

competition. Note that this mechanism is mainly responsible for maintaining a 

collision-free environment within our own teammates rather than preventing the 

potential collision against opponent robots. The feature of preventing the potential 

collision against opponent robots requires a separate algorithm explained in 

Chapter 5. 

 

Figure 66. Demo of Safety Navigation 

 



Figure 16 is a typical case where safety navigation algorithm works. In this 

imaginary scenario, R1, R2, R3, R4 and R5 are five soccer robots of our team, and 

the orange object is the ball. If in this case where all of the five our team robots 

are chasing towards the ball, safety navigation algorithm will coordinate this 

system by sending proper commands to each of the five robots to prevent 

disastrous collision. 

In paper [28], James Robert Bruce explains a novel safety navigation algorithm 

and we found it well suitable in our case. This Chapter, we will explore this 

algorithm and present a simulation-based implementation of this algorithm. While 

the implementation has mostly followed the core algorithm logic, some methods 

have been modified to make it more suitable for our needs. 

6.2 Introduction of Dynamics Safety Search Algorithm 

Dynamics Safety Search (DSS) is a novel algorithm operates for multiple robot 

agents to provide an exact guarantee of safety.  

This algorithm is originated from the Dynamic Window approach (DW) with 

improvements in many aspects. Compared with Dynamic Window approach, 

some significant improvements include: 

 Provide an exact guarantee of safety. 

 Support multiple robot agents at the same time. 

 Partial support moving obstacle collision detection and prevention. 

 It is an Anytime Algorithm with ܱ(݊ଶ) complexity. 

Some other algorithm like Joint Planning algorithm shares some of the listed 

features. However, the Joint Planning algorithm has an exponential complexity 

which results in a much larger computation delays, so it does not fit into a system 

like RoboCup SSL which requires a high timing precision. 

Assuming under an ideal environment, meaning there is a perfect communication 

between command sender and receiver, a perfect dynamics whose behaviour 
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satisfies theoretical computation, this algorithm can guarantee a safe navigation 

between multiple robot agents. 

6.3 Principle and Implementations on Dynamics Safety Search Algorithm 

6.3.1 Assumptions and Notations 

Some assumptions and constraints need to be applied, and some frequently used 

notations need to be formulated before getting a further understanding of the 

algorithm.  

 Each robot has a safety radius, denoted as ROBOT_RADIUS in the C++ 

code. 

 Each robot has a maximum acceleration value, denoted as MAXACCEL. 

 Each robot has a maximum deceleration value, denoted as DECCEL. 

 Each robot has a maximum velocity value, denoted as MAXVELOCITY. 

 The control period of the system is denoted as FIXTIME. 

 

Some fundamental kinematic equations of classical mechanics are also employed 

in the algorithm, for example: 

௙ݒ = ௜ݒ +  (1)																					ݐܽ

whereݒ௙ is the final velocity, ݒ௜ is the initial velocity, ܽ is the acceleration and ݐ is 

the time of duration. 

௙ݔ = ௜ݔ + ݐ௜ݒ +
1
ݐ2ܽ

ଶ																					(2) 

whereݔ௙ is the final position, ݔ௜ is the initial position, ݒ௜ is the velocity, ݐ is the 

time of duration, and ܽ is the acceleration. 



6.3.2 Structural Hierarchy of the Algorithm 

Following the top-down manner, DSS Algorithm can be divided into three tiers: 

top, middle and bottom. Here is an overview of the functions in each of the tiers: 

 Top Tier consists of three functions: DynamicsSafetySearch, 

ImproveAccel, CheckAccel. 

 Middle Tier consists of two functions: CheckRobot, MakeTrajectory. 

 Bottom Tier consists of one function: CheckParabolic. 

These six functions have been implemented in the C++ code from the pseudo 

code in paper [28] by former Botnia team member Xu Zhang and me. Some 

functions, like CheckParabolic are totally rewritten by me to satisfy our needs. In 

order to test this algorithm more efficiently, we create a Graphical User Interface 

(GUI) by using the Qt Framework to make it well-visualized. 

In order to make it more easy to understand, I use Doxygen Documentation 

System to generate class diagrams, dependency graphs, collaboration diagrams, 

inheritance diagrams, call graphs and caller graphs from the source code directly. 

Figure 17 is a dependency graph for the main window. It can be seen clearly that 

the whole algorithm simulation program is formed by the core DSS Algorithm 

and Qt Framework and Qwt Widgets Library. 

In the core DSS Algorithm part, relevant header files include: RManage.h, 

Robot.h, Rparabolic.h. 

The Qt drawing and plotting part include: mainwindow.h, mainpanel.h, 

QMainwindow, plot.h, QtGui, qwt_plot_curve.h, qwt_plot_grid.h, QTimer, 

qwt_plot.h, dialog.h. 

Other helper part include: RComplex.h, RVector.h, defines.h, math.h. 
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Figure 67. Dependency Graph 

 

We will explore these three algorithm tiers in 4.3.3 to 4.3.6. 

6.3.3 Top Tier 

The main procedure in the top tier is DynamicsSafetySearch. In the procedure, the 

algorithm first checks the velocity of each robot in each control cycle. If the 

checked robot has a velocity, we set the maximum deceleration to the robot. Then 

we calculate the deviation between the desired acceleration and our set value. We 

also calculate the deceleration effective time duration in case the robot may move 

in the opposite direction. Finally, we use the ImproveAccel procedure to provide a 

new acceleration value for each of the robots. 

This procedure is important in the whole algorithm because it can assure every 

robot to be safe in the first place by forcing each robot to decelerate in each 

control cycle. 



The procedure ImproveAccel is called from the procedure DynamicsSafetySearch 

and it works by checking the desired acceleration value of robot by using 

CheckAccel function. If the desired acceleration is valid, we will set the desired 

acceleration value into the robot directly, the deviation to be zero and we finish 

this procedure. This “short-circuit” mechanism makes the algorithm really fast for 

most of the time. However, if the desired acceleration is not valid, we will select a 

random acceleration value from an acceleration set. Then we check the selected 

acceleration to see if it satisfies the safety condition defined in CheckAccel 

function. We iterate each possible value in the acceleration set to find the one with 

lowest deviation from our desired acceleration yet can guarantee safety. Finally, 

we set the optimal selected acceleration value into the robot and we finish 

ImproveAccel procedure. 

In the C++ code implementation, these two functions have been packaged into a 

single dss function under RManage class, and it is called in every update interval. 

 

Figure 68. DSS Function Caller Graph 

 

The function CheckAccel is called by ImproveAccel procedure. It works by 

checking CheckSafetyObs function to see if the robot may collide with the 

boundary of the field. It also examines the collision possibility with each 

teammate robot by calling CheckRobot function. If the given acceleration value 

survives these two tests, this function will verify the acceleration value to be a 

valid one. 

This function is implemented as the checkAccel function under RManage class: 
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Figure 69. checkAccel Function Caller Graph 

 

Up to now, we have finished the explanation for the Top Tier function series. 

6.3.4 Middle Tier 

Function CheckRobot and MakeTrajectory are defined in the middle tier. 

CheckRobot function firstly makes a trajectory for each of the robots to be 

checked by using MakeTrajectory function. The trajectory is made of three 

segments and we need to check whether these three segments can collide with the 

other three segments by using CheckParabolic function defined in the bottom tier. 

If no collision happens between any two segments of trajectories, then the 

algorithm considers these two checked robot to be safe for each other. 

 

Figure 70. checkRobot Function Caller Graph 

 

MakeTrajectory function constructs a three-segment trajectory for a given robot. 

The first segment trajectory is made by the robot’s current position, velocity, 

acceleration and control cycle time duration. Thus, the velocity of the robot in the 

first segment trajectory is still increasing. The second segment trajectory is made 

after the maximum deceleration applies to the robot until a full stop. Thus, the 

velocity of the robot in the second segment trajectory is starting to decrease until a 

full stop. In the third segment trajectory, since the robot is fully stopped, it has a 

zero-value acceleration and velocity value. 



 

Figure 71. makeTrajectory Function Caller Graph 

 

The plotting of velocity-time graph can be seen from the simulation result made 

by our program. 

6.3.5 Bottom Tier and Parabola Intersection Checking 

In the bottom tier, there is only one function CheckParabolic. However, this 

function plays the most fundamental role in the whole algorithm. This function is 

responsible for checking whether two non-linear trajectories may collide with 

each other. In the real implementation, I take a new approach to solve this 

problem instead of the original one illustrated on paper [28].  

The principle of Parabola Intersection Checking mechanism is explained as 

follows. 

We assume the robot A has its radius ܴ௔ , initial position ௔ܲ , velocity ௔ܸ , 

acceleration ܣ௔ and time duration t. And robot B has similar parameters: 

 

௔ܲ(ݐ) = ௔ܲ + ݐ ௔ܸ +  (3)																					௔ܣଶݐ

௕ܲ(ݐ) = ௕ܲ + ݐ ௕ܸ +  (4)																					௕ܣଶݐ

 

We can calculate the distance between these two trajectories: 

 

(ݐ)݀ = | ௔ܲ(ݐ) − ௕ܲ(ݐ)| − (ܴ௔ + ܴ௕)																					(5) 
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In order to find the time t, which is the root of the solution: 

 

| ௔ܲ(ݐ) − ௕ܲ(ݐ)| − (ܴ௔ + ܴ௕) = 0																					(6) 

 

We use several shorthand notations to make it easier: 

 

௔ܲ௕ = ௔ܲ − ௕ܲ																					(7) 

௔ܸ௕ = ௔ܸ − ௕ܸ 																					(8) 

௔௕ܣ = ௔ܣ −  (9)																					௕ܣ

ܴ௔௕ = ܴ௔ − ܴ௕																					(10) 

(ݐ)݀ = | ௔ܲ௕ + ݐ ௔ܸ௕ + |௔௕ܣଶݐ − ܴ௔௕ = 0																					(11) 

 

Expand this equation by square it: 

 

( ௔ܲ௕ ∙ ௔ܲ௕) + )ݐ2 ௔ܲ௕ ∙ ௔ܸ௕) + ))ଶݐ2 ௔ܲ௕ ∙ (௔௕ܣ + ( ௔ܸ௕ ∙ ௔ܸ௕)) + )ଷݐ2 ௔ܸ௕ ∙ (௔௕ܣ

+ ௔௕ܣ)ସݐ ∙ (௔௕ܣ − ܴ௔௕ଶ = 0																					(12) 

 

Then we can collapse the coefficients: 

 

ܽ = ௔௕ܣ ∙  (13)																					௔௕ܣ

ܾ = 2( ௔ܸ௕ ∙  (14)																					௔௕)ܣ



ܿ = 2൫( ௔ܲ௕ ∙ (௔௕ܣ + ( ௔ܸ௕ ∙ ௔ܸ௕)൯																					(15) 

݀ = 2( ௔ܲ௕ ∙ ௔ܸ௕)																					(16) 

݁ = ( ௔ܲ௕ ∙ ௔ܲ௕) − ܴ௔௕ଶ 																					(17) 

 

So we get a simplified quartic equation: 

ସܽݐ + ଷܾݐ + ଶܿݐ + ݀ݐ + ݁ = 0																					(18) 

 

Ferrari’s solution is an elegant way to solve quartic equations, we let: 

 

ܣ =
−3ܾଶ

8ܽଶ +
ܿ
ܽ																					(19) 

ܤ =
ܾଷ

8ܽଷ −
ܾܿ
2ܽଶ +

݀
ܽ																					(20) 

ܥ =
3ܾସ

256ܽସ +
ܾܿଶ

16ܽଷ −
ܾ݀
4ܽଶ +

݁
ܽ 																					(21) 

ܲ =
ଶܣ−

12 −  (22)																					ܥ

ܳ =
ଷܣ−

108 +
ܥܣ
3 −

ଶܤ

8 																					 (23) 

ܴ =
−ܳ
2 +ඨܳ

ଶ

4 +
ܲଷ

27																					(24) 

ܷ = √ܴయ 																					(25) 
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Then we get the value y, which is decided based on the value of U: 

 

ݕ = ൞
−
5
ܣ6 + ܷ −

ܲ
3ܷ 												݂݅	ܷ ≠ 0

−
5
ܣ6 + ܷ − ඥܳయ 												݂݅	ܷ = 0

																					(26) 

ܹ = ඥܣ +  (27)																					ݕ2

ܺ = −
ܤ
 (28)																					ܣ4

ܻ = ܣ3 +  (29)																					ݕ2

ܼ =
ܤ2
ܹ 																					(30) 

 

Finally, we get four roots of quadratic equation: 

 

ଵݐ = ܺ +
+ܹ +ඥ−(ܻ + ܼ)

2 																					(31) 

ଶݐ = ܺ +
+ܹ − ඥ−(ܻ + ܼ)

2 																					(32) 

ଷݐ = ܺ +
−ܹ + ඥ−(ܻ − ܼ)

2 																					(33) 

ସݐ = ܺ +
−ܹ − ඥ−(ܻ − ܼ)

2 																					(34) 

And our solution should be the minimum of the four possible roots: 

 



ݐ = min	(ݐଵ, ,ଶݐ	 ,ଷݐ	  (35)																					ସ)ݐ	

 

The implementation in C++ code is listed as follows: 

StatusRParabolic::checkParabolic(RParabolicp1,RParabolicp2,doubler

) 

{ 

double tMin=-1; 

 

RVectorXab=RVector(p2.m_postion.x-p1.m_postion.x,p2.m_postion.y-

p1.m_postion.y); 

RVectorVab=RVector(p2.m_velocity.x-

p1.m_velocity.x,p2.m_velocity.y-p1.m_velocity.y); 

RVectorAab=RVector(p2.m_acceleration.x-

p1.m_acceleration.x,p2.m_acceleration.y-p1.m_acceleration.y); 

 

double Rab=r; 

 

double XabXab=Xab*Xab; 

double XabVab=Xab*Vab; 

double XabAab=Xab*Aab; 

double VabVab=Vab*Vab; 

double VabAab=Vab*Aab; 

double AabAab=Aab*Aab; 

 

double A=AabAab; 

double B=2*VabAab; 

double C=2*(XabAab+VabVab); 

double D=2*XabVab; 

double E=XabXab-Rab*Rab; 

 

if(fabs(A)<0.1) 

if(A==0) A=0.1; 

else A=(A>0?1:-1)*0.1; 

 

double a=-(3*B*B)/(8*A*A)+C/A; 

double b=(B*B*B)/(8*A*A*A)-(B*C)/(2*A*A)+D/A; 

double c=-(3*B*B*B*B)/(256*A*A*A*A)+(C*B*B)/(16*A*A*A)-

(B*D)/(4*A*A)+(E/A); 
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double P=-(a*a)/12-c; 

double Q=-(a*a*a)/108+(a*c)/3-(b*b)/8; 

 

Complex R=Complex::plus((-Q/2),Complex::Sqrt((Q*Q)/4+(P*P*P)/27)); 

Complex U=Complex::Pow(R,1.0/3.0); 

 

Complexy(0,0); 

 

if(Complex::Abs(U)<0.00001f) 

y=Complex::minus(Complex::plus(-

(5.0/6.0)*a,U),Complex::Pow(Q,1.0/3.0)); 

else 

y=Complex::minus(Complex::plus(-

(5.0/6.0)*a,U),Complex::divide(P,Complex::multiple(3,U))); 

 

Complex W=Complex::Sqrt(Complex::plus(a,Complex::multiple(2,y))); 

Double X=-B/(4*A); 

Complex Y=Complex::plus(3*a,Complex::multiple(2,y)); 

Complex Z=Complex::divide(2*b,W); 

 

Complex 

t1=Complex::plus(X,Complex::divide(Complex::plus(W,Complex::Sqrt(C

omplex::negative(Complex::plus(Y,Z)))),2)); 

Complex 

t2=Complex::plus(X,Complex::divide(Complex::minus(W,Complex::Sqrt(

Complex::negative(Complex::plus(Y,Z)))),2)); 

Complex 

t3=Complex::plus(X,Complex::divide(Complex::plus(Complex::negative

(W),Complex::Sqrt(Complex::negative(Complex::plus(Y,Z)))),2)); 

Complex 

t4=Complex::plus(X,Complex::divide(Complex::minus(Complex::negativ

e(W),Complex::Sqrt(Complex::negative(Complex::plus(Y,Z)))),2)); 

 

std::list<double> tList; 

std::list<double>::iterator it=tList.begin(); 

 

if(Complex::IsNaN(t1)==false && Complex::IsReal(t1)==true && 

t1.Re>=0)tList.push_back(t1.Re); 

if(Complex::IsNaN(t2)==false && Complex::IsReal(t2)==true && 

t2.Re>=0)tList.push_back(t2.Re); 

if(Complex::IsNaN(t3)==false &&Complex::IsReal(t3)==true && 

t3.Re>=0)tList.push_back(t3.Re); 



if(Complex::IsNaN(t4)==false && Complex::IsReal(t4)==true && 

t4.Re>=0)tList.push_back(t4.Re); 

 

if(tList.size()>0) 

{ 

it=tList.begin(); 

tMin=*it; 

 

for(it=tList.begin();it!=tList.end();it++) 

if(*it<tMin)tMin=*it; 

} 

 

return(tMin>0)?Unsafe:Safe; 

} 

 

 

Figure 72. Caller Graph of checkParabolic Function 

 

6.3.6 Collaboration Diagrams and Call Diagrams 

Up to now, we have explained the three tiers in the algorithm. The followings are 

some important Collaboration diagrams and call diagrams of the implementation 

work. 
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Figure 73. Collaboration Diagram for RManage Class 

 

 

Figure 74. Collaboration Diagram for RParabolic Class 
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Figure 75. Call Diagram of DSS Function 

 

 

Figure 76. Call Diagram of checkParabolic Function 

 



6.3.7 Testing 

In the simulation program, firstly we simulate a situation where two robots are 

moving towards each other with a velocity of 1 m/s and without acceleration. 

 

Figure 77. Two Robots Simulation 1 

 

After we start the simulation: 

  

Figure 78. Two Robots Simulation 2 

 



  129(188) 

 

When the simulation is finished, we can see from Figure 29 that the two robots 

stop in a safe distance, which is the diameter of the robot in this case. 

 

Figure 79. Two Robots Simulation 3 

 

And we can also plot a real-time velocity-time chart for the first robot (left one). 

The robot decelerates itself to zero velocity after it is applied the maximum 

deceleration. 



 

Figure 80. Velocity-Time Chart 

 

Secondly, we can test a simulation when the robot has an acceleration. In this 

case, robot1 has a velocity -1 m/s and an acceleration 1 1m/s2. Robot2 has a 

velocity -1 m/s. 

After starting the simulation: 

 

Figure 81. Two Robots Simulation 4 
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Figure 82. Two Robots Simulation 5 

 

 

Figure 83. Two Robots Simulation 6 

 

From Figure 31 to Figure 33 we can see that robot1 first moves to left with the 

velocity decelerated to zero, then it moves to right with an acceleration and finally 

it decelerates again to zero velocity to avoid collide with robot2. This can also be 

seen clearly from the velocity-time chart in Figure 34. 



 

Figure 84. Velocity-Time Chart 

 

This program can also support multiple robot agents as promised in the algorithm. 

Here is an example to roughly simulate the situation in Figure 16. 

 

 

Figure 85. Multiple Robots Simulation 1 
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Figure 86. Multiple Robots Simulation 2 

 

 

Figure 87. Multiple Robots Simulation 3 

 

It can be seen that for multiple robot agents moving at the same time, this 

algorithm can still handle the system well. Those robots (Robot 1, 3, 4) that may 



collide with each other should not interfere the movement of other robots (Robot 

2, 5). (Robot ID is made based on Figure 16) 

By testing, the algorithm proves itself to be an effective one and the 

implementation is also a successful work. 

6.4 Summary 

In this chapter, we have implemented a crucial algorithm to maintain safety 

among multiple robot agents in our team. Collision detection and prevention has 

always been a critical topic in the domain of robotics. The application of Dynamic 

Safety Search algorithm can also be used in automation and aeronautics, for 

example unmanned aerial vehicle. 
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7 MOTION PLANNING 

7.1 Introduction of Motion Planning 

In Chapter 6, we mention that in order to prevent the potential collision against 

opponent robots, we require to employ a separate algorithm in the RoboCup SSL 

software system. The algorithm we used here is named Extended Rapidly-

exploring Random Tree (ERRT) Algorithm. 

Motion planning is a field in robotics on the topic of how to produce a valid path 

and navigate the robot from the initial position to the goal position without 

colliding with obstacles in that domain. 

 

Figure 88. Illustration of Motion Planning [29] 

 

For instance, in Figure [29], there is a domain contains multiple obstacles and an 

initial position and a goal position. The robot needs to construct a valid path to 

navigate itself to successfully reach the goal position. 

Motion planning together with safety navigation we introduced in Chapter 4, we 

can construct a complete motion system to apply it in the RoboCup SSL 

competition. 



7.2 Possible path planning solutions 

There are several existing path planning algorithms available, however, they have 

their own defects. [30] [31] 

1) Geometric Algorithms (e.g., Visibility graph, Cell decomposition) 

Algorithms of this category cannot scale well with the number of obstacles. 

2) Grid-Based Search Algorithms (e.g., A*, D*, Field D*, Dijkstra’s algorithm) 

Algorithms of this category require an explicit representation of the free space, 

leading to computational inefficiency. For instance, A* algorithm may try all 

edges, while RRT can probabilistically subsample all edges.  

3) Potential Fields 

Many heuristic parameters must be adjusted for each individual problem. 

4) Sampling-Based Algorithms  

Ariadne’s Clew algorithm: Difficult to solve optimization problems. 

Expansive-space planning: Requires substantial parameter tuning for different 

problems. 

Random-walk planner: Has trouble to move across long, winding domains. 

 

7.3 Introduction on Rapidly-exploring Random Tree (RRT) Algorithm 

Rapidly-exploring Random Tree (RRT) is an efficient algorithm and data 

structure to explore and make path planning in a non-convex and high-

dimensional space without colliding with obstacles. RRT algorithm was first 

developed by Steven M. Lavalle and James Kuffner. 
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RRT algorithm has many practical applications in the field of robotics, gaming 

and aeronautics. It can be applied to high-dimensional space; however, we only 

apply it in a two-dimensional domain in the RoboCup SSL. 

The main advantage of RRT algorithm is that it can find a valid path in a complex 

domain in most of the times. However, the found path does not guarantee to be 

the optimal one. 

In order to find a valid path in Figure 38, here is how RRT algorithm does: 

1) In a general configuration space C, we first set the root of the tree to be the 

initial point ݍ௜௡௜௧. 

2) Then we generate a random point ݍ௥௔௡ௗ in the collision-free space ܥ௙௥௘௘ . 

3) Then we choose the nearest vertex ݍ௡௘௔௥௘௦௧  to the random pointݍ௥௔௡ௗ in the 

tree. 

4) Then we expand a certain distance v from ݍ௡௘௔௥௘௦௧ directly to ݍ௥௔௡ௗ, thus we 

create the point ݍ௡௘௪. 

5) If the ݍ௡௘௪ is not locate in the obstacle space ܥ௢௕௦, we add this point and the 

new edge into the tree. Otherwise, we go back to step 2. 

6) Keep looping from step 2 to step 5 until ݍ௡௘௪ is close enough goal position 

 .௚௢௔௟ݍ

 

Figure 39 is a graphical illustration of how the RRT algorithm is executed. In the 

figure, the four black points in a rectangle box represent an existing RRT tree. The 

green point represents the generated random point in the collision-free space and 

the yellow point represents a new point generated in the direction from the nearest 

point in the RRT tree towards the random green point. Finally, the initial point 

and goal point are also represented in the figure. 

 



 

Figure 89.  Illustration of RRT Algorithm 

 

The following figure gives a simulation of the growth of an RRT tree. 

 

 

Figure 90. Growth of RRT Tree [32] 

 

Starting from a single initial point, the RRT tree will quickly expand the whole 

configuration space and find a valid path towards the goal position. 

Although the RRT algorithm has been an effective method when we are dealing 

with path planning problem, there still many improvements can be made to 

optimize the efficiency of algorithm.  
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7.4 Robot model used in SSL 

In the SSL competition, we used a holonomic robot model which has the 

following assumptions [22]. 

1) The robot has a safety radius. 

2) The robot has control over its acceleration within some set. 

3) The robot has a maximum deceleration for emergency stop. 

4) The robot has a maximum allowed velocity. 

The 4-omni-wheel holonomic soccer robot we used in the competition is shown in 

Figure 2. 

 

Figure 91. Soccer Robot in SSL 

 

7.5 RRT and RRT* features and issues 

RRT algorithm has some significant features: 

 No need to have an explicit representation of the free space. 

 Scale well to changes in the environment, e.g.: obstacles. 

 Effectively handle systems with complex constraints. 



 State-of-the-art and most widely used robot path planning algorithm today. 

Some more work can be done to improve the effect of RRT: 

 By using the RRT* algorithm to optimize the path. 

 Path smoothing technique. 

 Search speed can be improved by constructing two RRT tree in both 

initiate position and the goal position.  

Here is an implementation of normal RRT and RRT* algorithm. 

 

Figure 92. Multiple Run of RRT 
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Figure 93. Run of RRT* 

 

 

Figure 94. Run of RRT* 

 

7.6 Safety-guaranteed RRT 

Despite the fact that RRT algorithm has been an effective method when we are 

dealing with the path planning problem, it fits not that well when applying into a 

real field environment. 

It has the following flaws when we apply the baseline RRT algorithm into 

RoboCup SSL competition.  



1) In RRT, it presumes the moving object to be a particle without considering the 

physical feature of the moving object. 

2) In RRT, it assumes the moving object is moving at a constant velocity, which is 

not feasible for a reality robot agent. 

3) In RRT, it does not consider the dynamics feature of robot agent, thus the 

generated path cannot guarantee safety in the dynamic domain. 

Based on the robot model mentioned in the previous part, the following dynamics 

formula can be listed: 

v୤ = v୧ + at									(1) 

 

where	v୤ is the final velocity, v୧ is the initial velocity, a is the acceleration and t is 

the time of duration. 

 

x୤ = x୧ + v୧t +
1
2 at

ଶ								(2) 

 

where	x୤ is the final position, x୧ is the initial position, v୧ is the velocity, t is the 

time of duration, and a is the acceleration. 

Obviously, the moving velocity of each robot agent cannot exceed the maximum 

allowed value V୫ୟ୶ . Therefore, we have the formula: 

‖v୧ + Ca୧‖ ≤ 	V୫ୟ୶								(3) 

 

where	v୧ is the velocity of i-th robot, a୧ is the acceleration, and C is the time for a 

fixed control period. 



  143(188) 

 

Suppose the emergency stop maximum deceleration is D, then we have: 

v୧ + D ∙ t = 	0								(4) 

 

where	t is the time required to guarantee robot come to a stop under maximum 

deceleration and current velocity. 

So, it is possible to calculate the safety distance S required to guarantee 

deceleration without hitting any obstacle. 

 

S = 	ብ
v୧ଶ

2 ∙ D
ብ								 (5) 

 

In order to maintain safety, among moving robot with obstacles, the safety 

distance S is needed to be considered in the RRT algorithm. 

Therefore, we have an improved version of RRT algorithm named safe rrt which 

is described in pseudo-code: 

proceduresafe_rrt() : Path 

 startNode ← new MyNode 

 myTree ← new RRT Tree 

 myTree.addNode(startNode, NULL) 

 while not found do 

 randomNode ← getRandomNode(myTree, env) 

 nearestNode ← getNearestNode(myTree, random Node) 



 if validSegment(nearestNode, randomNode) do 

  newNode ← createNewNode(nearestNode,    

 randomNode, maxLen) 

  myTree.addNode(newNode, nearestNode) 

  nearestNode ← newNode 

  if hit Target do 

  found ← true 

   return path 

  end 

 end 

end 

 

The safe_rrt() procedure includes some sub-routines which we have applied safety 

check in it. 

In it, getRandomNode() is a function, which returns a random node in the given 

environment domain without colliding with any obstacles. 

functiongetRandomNode(myTree:Tree, env) : MyNode 

while loop do 

randomX ← randomized x inside env 

randomY ← randomized y inside env 

randomNode ← new MyNode(randomX, randomY) 
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nearestNode ←getNearestNode(myTree, random       Node) 

nearestX ← nearestNode.x() 

nearestY ← nearestNode.y() 

rotateAngle ← atan((randomY-nearestY) / (randomX-nearestX)) 

rect ← create rectangle based on safe distance and rotate angle 

foreach obstacle do 

 if collide(obs, rect) do 

 collide ← true 

 end 

end 

if !collide do 

 loop ← false 

 return randomNode 

end 

end 

end 

 

In getRandomNode() function, we construct a virtual rotated rectangle boundary 

based on the random node and the nearest node, then check it against each 

obstacle. If no collision happens, the function returns the random node. 

 



functiongetNearestNode(myTree, randomNode) : MyNode 

x ← randomNode.x() 

y ← randomNode.y() 

min ← max value available 

for node in myTree do 

d ← distance between randomNode and node 

if d< min do 

 min ← d 

 nearestNode ← node 

end 

end 

return nearest Node 

end 

 

IngetNearestNode(), we compare the randomized node against each node from the 

tree to calculate the distance between them. Therefore, we get the nearest node 

from the existing tree. 

function validSegment(nearestNode, randomNode) : bool 

randomX ← randomized x inside env 

randomY ← randomized y inside env 
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randomNode ← new MyNode(randomX, randomY) 

nearestNode ← getNearestNode(myTree, random       Node) 

nearestX ← nearestNode.x() 

nearestY ← nearestNode.y() 

rotateAngle ← atan((randomY-nearestY) / (randomX-nearestX)) 

sweepRect ← create rectangle based on safe distance and rotate angle 

foreach obstacle do 

 if collide(obs, sweepRect) do 

 return false 

 end 

end 

return true 

end 

Function validSegment() calculates whether any collision may happen in the way 

between the nearest node and randomized node. It works by constructing a virtual 

rectangle which sweeps the rectangle area covered from the nearest node to the 

randomized node. 

7.7 Testing 

We have implemented the novel algorithm into a C++ based simulation software 

to better illustrate.  



 

Figure 95. Demo 1 

Figure 3 demonstrates an example which employed the safety rrt algorithm. The 

green circle indicates the start position of the robot and its size. The red circle 

indicates the goal position for the robot, while two black circle indicates the 

obstacles existing in the field. By running the algorithm, it returns a valid 

highlight path for the robot navigation. 

 

Figure 96. Demo 2 

In Figure4, it shows how getRandomNode() function works in the algorithm. The 

virtual yellow rectangles confined by the safety distance are created to guarantee 

no collision happens for the new randomized node. 
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Figure 97. Demo 3 

In Figure5, it shows how validSegment() works in the algorithm. The virtual 

yellow rectangles are confined by the area which cover from the nearest node to 

the random node. Thus it guarantees no collision may happen in the path. 

7.8 Summary 

RRT algorithm excels at exploring free space in larger environments and it is 

parallelizable. 

From the experiments and analysis, it can be verified that the new safety rrt 

algorithm is more applicable to the reality field environment such as RoboCup 

SSL competition because of the safety mechanism. 

The safety distance should be decided based on the physical configurations of the 

robot. In this paper, we use a rectangle-bound area to calculate the collision 

possibilities. For future work, a partial ellipse bound area can be used to make 

comparisons. 

 

 

 

 



8 OVERVIEW OF TO-DO LISTS IN BOTNIA SSL TEAM 

8.1 Structure 

In order to build a complete new Linux-based strategy software system, many 

tasks are required to be done. Since RoboCup is a relatively large project, among 

all those tasks, there are some tasks which are especially crucial to the success of 

the whole system need to be done in a relatively higher priority. Taking the 

bottom-up development approach, here is a graph which briefly describes these 

tasks. 

 

 

Figure 98. the Hierarchy of Priority Tasks 
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From the bottom to top, there are mainly four major tasks which serve as the 

foundation of the whole RoboCup Botnia software system. 

 

8.2 Vision Filter 

From Figure 2 we can see that there is a high definition camera that oversees the 

whole field in real time, and this camera transmit captured vision frames to the 

vision server and the strategy server which runs our strategy software system in 

every frame interval. However, the captured vision frame is not noise-free. But 

instead, together with valuable vision information, vision frame also includes a 

certain level of random Gaussian white noise produced during the capture and 

transmission. 

In order to remove these unwanted Gaussian white noise to improve the accuracy 

of computation, a vision filter needs to be employed in the software system. 

In the Chapter 3 of this thesis, Kalman Filter will be introduced in detail. 

 

8.3 Motion Control 

8.3.1 Introduction 

Motion control has been widely used not only in robotics, but also in the whole 

industrial control systems. 

Common motion controls used in RoboCup are velocity control, position control, 

force control, power control, etc. These controls are vital to the accuracy of 

decision making in the upper-layer strategy software system. 

For instance, the wheel velocity of soccer robots can be controlled by output 

PWM (Pulse Width Modulation) value which is determined by the strategy 

software system. If we hope the robot moves in a straight line, then the value of 

velocity of all wheels should be set identically by the system. However, it is very 



unlikely that all wheels can run at the same velocity for a relatively long distance 

because of possible flaws from the inner motors and all kinds of disturbance from 

the outside environment. 

In order to provide a better motion performance and anti-disturbance capability, 

motion control needs to be implemented in the system. More specifically, some 

auto-tuning methods need to be integrated. 

 

8.3.2 Bang-bang controller 

Bang-bang controller is a three-position (negative, zero, and positive) feedback 

controller. 

 

Figure 99. A Bang-bang, Closed-loop Control System [33] 

 

From Figure 6, we can see that in Bang-bang controller, the controller generates 

input u (t) for the plant based on a calculated error value e(t) and its algorithm. 

The error value e(t) is calculated by the difference of desired output vector yd(t) 

and observed output vector y(t) 

(ݐ)݁ = (ݐ)ௗݕ −  (1)																					(ݐ)ݕ

 

Base on calculated e(t), bang-bang controller can determine the input value u(t) 

for the plant: 
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(ݐ)ݑ = 		 ൝
௠௔௫ݑ 	, ݁	ℎ݁݊ݓ > ݁ଶ

݁ଵ	ℎ݁݊ݓ																	,0								 < ݁ < ݁ଶ
௠௔௫ݑ− ݁	ℎ݁݊ݓ						, < ݁ଵ

																					(2) 

 

In the formula, umax is a preset maximum value. 

 

Figure 100. Output of Bang-bang Controller (input of  plant) [33] 

 

The bang - bang controller can always product the constant maximum positive or 

negative value when the error value e (t) is not located in the dead zone. Thus, 

bang-bang controller is more reasonable when it is used in the plant environment 

that requires a constant and maximum input. 

  



8.3.3 PID Controller 

Proportional Integral Derivative (PID) Controller is a widely used loop feedback 

controller in robotics and automation.  

PID Controller can minimize the difference between the desired set value and 

actual measured value by tuning the suitable value for the three controllers (PID) 

involved in the control process.  

Proportional controller or P controller’s output value is proportional to the 

calculated error value through the parameter Kp. Integral controller or I 

controller’s output is proportional to the amount of time that errors have been 

accumulated. Derivative controller or D controller’s output value is proportional 

to the changing rate of error with respect to time. 

 

Figure 101. PID Controller Block Diagram 

 

In the Figure 8, Kp is the proportional gain, Ki is the integral gain, and Kp is the 

derivative gain. 
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The formula for PID Controller is: 

(ݐ)ݑ = (ݐ)௣݁ܭ + ߬݀(߬)௜න݁ܭ + ௗܭ
(ݐ)݁݀
ݐ݀

௧

଴

																					 (3) 

 

In RoboCup competition, PID controller needs to be integrated in order to achieve 

a better performance. By automatically tuning three parameters in PID controller 

with the algorithm like genetic algorithm, it can alleviate the interferences caused 

by environment. 

8.4 Navigation 

8.4.1 Introduction 

With a robust support from the previous two steps, the major task for this step is 

related to the problem on how to direct a robot from one position to another 

desired position efficiently and safely.  

In the RoboCup Small Size League, there are two adversarial teams with five 

soccer robots per team moving at the same time in the field. Because of the fact 

that the “world” of the field may keep changing on every control interval, team 

robot players need to recalculate to find a suitable path to move without colliding 

with any other robots in the field. It requires the strategy software system to 

employ some high-efficiency algorithms to achieve this goal. Two well-known 

algorithms frequently will be introduced here. 

 

8.4.2 ERRT 

Rapidly-exploring Random Tree (RRT) is an algorithm developed by Steven M. 

Lavalle and James Kuffner. RRT has been widely used to efficiently solve the 

problems about searching non-convex, high-dimensional space. 



Extended Rapidly-exploring Random Tree (ERRT) is an improved searching 

algorithm based on RRT with optimization on many aspects. By using ERRT 

algorithm, it is possible for the robot to build a viable path to the target position 

on every control cycle. 

Details related to ERRT algorithm will be illustrated in Chapter 4. 

 

8.4.3 Safety Navigation 

Safety Navigation Algorithm, which is developed by James Robert Bruce from 

Carnegie Mellon University, is a novel algorithm for keeping safety among a set 

of cooperating robots. Under conditions of noiseless sensing, perfect dynamics, 

and perfect communication, this algorithm can guarantee no collisions will take 

place as the robots move about the environment. [28] 

This algorithm is crucial for maintaining a non-collision system for our team 

robots. It is documented that by employing this algorithm into the strategy 

software system, the number of collisions between high-speed SSL soccer robots 

is dramatically reduced. 

Details related to Safety Navigation algorithm will be illustrated in Chapter 5. 

8.5 Skills 

Skills are a series of motions to achieve a desired goal. With the support from the 

previous three steps, it is possible to make soccer robots accomplish some basic 

skills, for example moving in a straight path, or sine path, moving around a circle, 

kicking, dribbling, passing balls and simple cooperation between two robots like 

“one-touch shot” strategy.  

The topic on how to assemble multiple basic skills to build up the effective attack 

or defence strategies for soccer robots is beyond the scope of this thesis. Some 

effective strategies have already been developed and existed in our code base. 
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8.6 Summary 

This chapter, we describe some of the most important to-dos to build up a sound 

and robust system in a bottom-up approach. Many works have already been done 

for these four modules in Botnia SSL Team. 

Next chapter, we will start describing the principle of Vision Filter module in 

detail and how it can be implemented and integrated into the whole system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 EXPECTATION OF RESEARCH DIRECTION 

9.1 Complex Network Analysis 

9.1.1 Theoretical Definition 

 Complex graph 

Real-world graphs ܩ	(݊,݉)	(n nodes, m edges) are more or less “complex” in the 

sense that different topological features deviate from random graphs. [34] 

 

 Betweenness 

 

Figure 102. a Typical Strong Betweenness Connection 

 

Edge  betweenness is the  total  number  of  shortest  paths  from  any  pair  of  

vertices that cross the edge(Anthonisse,  1971)and it is omputable with algorithms 

based on breadth-first-search,with complexity O(m*n) (Brandes,  2001) 

                (1) 

Whereσୱ୲ is the total number of shortest paths from nodes to nodet and σୱ୲(v) is 

the number of those paths that pass through. (Freeman, Linton, 1977) 

Figure 103. Formula of Betweenness Connection 
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9.1.2 Problem and Potential Solution 

In the field, there are twelve robots going to compete in two teams. A good 

algorithm should not only focuses on the completion of the robot’s movement of 

its own team, but also detect the robots in the other team. In doing this, the 

algorithm should have the intelligence to make a deduction on the tendency of its 

opponent. At first I considered if we have enough resources, we may use the 

machining learning algorithm to accomplish this goal, and then the problem is 

laying on modelling of classification of different situation. However, according to 

the evaluation of the modelling process, it is quite time-consuming. In fact, a 

mature and ready-established logic is much easier to adopt and to apply.  

A complex network was initially studied by people’s curiosity on social networks. 

After researching for years, it was adopted for the analysis of internet social 

network. My suggestion is that we also can apply and enhance the algorithms to 

this RoboCup game. As we only have six robots in the field, the computation 

would not be very complicated. As a consequence, it is reasonable to make a 

research on this area. 

The communities of robots can be defined through a fitness measure. 

For example, in a famous paper wrote by Newman& Girvan in 2004 describes the 

steps of the algorithm as following: 

Girvan-Newman algorithm 

1. Calculate the betweenness of all edges 

2. Remove the one with highest betweenness 

3. Recalculate the betweenness of the remaining edges  

4. Repeat from 2 

The complexity of the algorithm is O (m n) O (n3) [on a sparse graph]  

9.1.3 Research Perspective 

The problems in our case are similar but still different.  



1. There are six robots in opposing team and there is not known connection 

between any of them. But we can also assume that there exist virtual 

connections between each of them. We probably need to do theoretical work 

to formulate this kind of analysis. 

2.  In the RoboCup game, unlike a social network, the more frequent 

cooperation is between two robots. The cooperation between several robots 

should be considered to give a penalty factor. 

 

 

 

 

 

 

 

Figure 104. Types of Dynamic Community 

 

 
3. Besides the cooperation detection, we also can have the community detection. 

This function is essential for cooperation detection. A good algorithm in the 

community detection can improve the accuracy of cooperation detection 

dramatically. 
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Figure 105. Different Algorithms Related to Cooperation Detection. [35] 

 

1. Monitoring the past actions of the opponent robots can be also a contribution 

to the analysis. By considering this, the process then will still remain as a 

stochastic learning process based on the complex network. 

9.2 Expert System and Inference System 

9.2.1 Theoretical Definition 

 Expert System 

The expert system is a computer software that emulates the decision making 

process of a human expert. The expert system can normally contribute to the 

development of a complex system that needs a large scale of knowledge base. 

Auther Label Order 

Girven & Neman GN ܱ(݊ ∗ ݉ଶ) 

Clauset et al. Clauset et al. ܱ(݊ ∗ log	(݊)ଶ) 

Blondel et al. Blondel et al. ܱ(݉) 

Guimera et al. Sim. Ann Parameter dependent 

Radicchi et al. Radicchi et al. ܱ(݉ସ/݊ଶ) 

Palla et al. Cfinder ܱ(exp	(݊)) 

Van Dongen MCL ܱ(݊ ∗ ݇ଶ), 
݇ <  ݏݎ݁ݐ݁݉ܽݎܽ݌	݊

Rosvall & Bergstorm Infomod Parameter dependent 

Rosvall & Bergstorm Infomap ܱ(݉) 

Donetti & Munos DM ܱ(݊ଷ) 

Newman & Leicht EM Parameter dependent 

Ronhovde & Nussinov RN ܱ൫݊ఉ൯, 
 1~ߚ



 

 

 

 

 

 

Figure 106. Components of Expert System [36] 

 

 Inference System 

The expert system contains two key concepts. One of them is the knowledge 

base and another of them is the inference system. As one key concept in the 

expert system, the inference system normally can establish the connection 

between the knowledge base and the query. Inside the inference system, the 

knowledge is normally listed as a set of rules formalized in a specific 

language.  

Normally we store several kinds of logic into the system. E.g. propositional 

logic, predicates of order 1 or more, epistemic logic, modal logic, temporal 

logic and fuzzy logic. 
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Figure 107. User's View of Expert System [37] 

 

9.2.2 Problem and Potential Solution 

The problem in our project is that our project is huge and complex. But we do not 

have enough time to manage the documentation in our daily lives. 

The expected solution of this problem is to establish a system that can give 

information to the developer and the user by giving a reasonable quarry. We also 

can treat this system as an information system framework which we can use to 

store and analyse information related to this multi robot system. 

9.2.3 Research Perspective 

The research perspective can be focused on two points.  

1. The first purpose to consider about is how to represent the relationship 

between the classes in an expert system.  

2. An expert system is depending not only on the inference logics but also on the 

algorithms related to data mining and machine learning. The more real model 

of developing expert system can be combining inference system and also 

deduction 
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9.3 Heterogeneous Computing For Fast Computation 

9.3.1 Theoretical Definition 

 Heterogeneous Computing  

The heterogeneous computing refers an electronic system which contains different 

computational unit. For example, the combination of CPU, GPU and FPGA can 

be called as a heterogeneous system.  

By giving the tasks to the GPU, the performance can be increased rapidly. The 

following graph can show how the speed can be increased by heterogeneous 

computing. 

 

Figure 108. Speed-efficiency of Matrix Multiplication Algorithm [38] 

 

The New Landscape of Parallel Computer Architecture.1 Cyclotron Road, 

Berkeley California, 94720, USA 

9.3.2 Problem and Potential Solution 

In the near future, as we add more and more functionalities to the calculating 

process, probably, by using traditional methods, we cannot complete 60 times 
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calculation within one minute, which is the frequency of receiving and analysing 

the information from the vision system. Although the RRTs algorithms have 

logarithmic complexity, as randomized algorithms, in some real cases, they still 

cannot perform very well. 

Algorithm Propabilistic 
Completeness 

Asymptotic 
Optimality 

Computational 
Complexity 

RRT Yes No ܱ(log	(݊)) 
RRT* Yes Yes ܱ(log	(݊)) 
BRRT N/A N/A ܱ(log	(݉ ∗ 2݊)) 
 
 
Where N and n are the expended node number, m is the number of  nodes on the 
boundary (details on BRRT algorithm). 

Figure 109. the Computational Complexity of Several RRT Algorithms [39] 

 
 State 1 State 2 State 3 State 4 State 5 

Success rate 100 100 99 100 16 

Time(ms) 1.04 2.83 2.96 1.96 7.74 

Length(mm) 3754 4096 4146 4229 4996 

 

Figure 110. Time Expenses of RRT Algorithm Using C++ [1] 

 

 State 1 State 2 State 3 State 4 State 5 

Success rate 100 100 100 100 100 

Time(ms) 1.04 2.83 2.96 1.96 7.74 

Length(mm) 3754 4096 4146 4229 4996 

 

Figure 111. Time Expenses of BRRT Algorithm Using C++ [1] 

 



In this case, we need to focus on the methods which can improve the performance 

of calculation. The two obvious ways we have considered about are parallel 

computing and heterogeneous computing. The first way, parallel computing is 

easier to implement but it is also difficult to make optimization on improving the 

speed limit. 

Caused by the time consumption of network communication, the heterogeneous 

computing, however, may have more possibility to help us to complete the 

mission. The combination of CPU and GPU can be a powerful mechanism to 

increase the speed as the GPU contains more floating point units. 

9.3.3 Research Perspective 

1. The heterogeneous computing is efficient in many ways, but it also requires 

an efficiently designed pattern for fast communication. 

9.4 Conclusion 

The previously listed views are only suggestions. If any of the direction turned out 

to be unsuitable for the future development of our project, you can drop it.  
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10 SUMMARY 

At this moment, although the system did not really finish all functions that we 

intended to make at first place, we still think we have built a foundation for future 

development of the system.  

We not only managed to build the strategy software, several algorithm simulators 

but also implemented the critical algorithms for this project. As a result the other 

team members can use what we have done to continue implementing the Strategy-

Tactic-Play (STP) structure of the strategy software. Simultaneously they can also 

insert the implemented code to a newer version. The reliability of the strategy 

software and the algorithm simulators is relatively robust. There exist some bugs 

in the software, but the overall performance is modest. 

The research contribution of this thesis lies in following aspects. Firstly we 

applied the EKBF to filter the noise of the ball. Secondly we innovatively 

simulated several crucial algorithms in the algorithms simulators. Thirdly, we 

used a newly designed structure to implement the strategy software. And finally, 

we suggested several research directions for the future development of the team. 

However, our work also has some limitations. There is some functionality under 

development. The robustness and efficiency are not always ensured.   

By standing on the ground of innovation, we also would like to encourage other 

members in the team to continue thinking about the solutions of the system. No 

matter it is related to improving the design or algorithm, we would like to hear 

your voice and we can evaluate the plan together. 

The best way of thinking a new topic is to absorb the knowledge from a new field. 

For example we were taking a summer course called evolution algorithms for 

solving complex problems. The professor recommended us to research an uprising 

field called morphogenetic robotics. In fact, after considering the relationship 

between that topic and our robot project, several ideas showed up in our head. 

They actually attracted us a lot and we guess if we have time, we would like to 



have a deep dive into it.  As a consequence, we also would like to encourage the 

people who consider doing research in robotics or finding a job related to robots 

to try hard to learn by themselves. 

There are several sources of learning from internet. The first one is probably 

Coursera and Udacity. You can find a lot of courses related to artificial 

intelligence (AI) and robotics. The second way of checking details in your 

interesting subject is to do a simple search using Google scholar. 

Both ways enable you to enjoy the process of developing concepts by yourselves. 

If you have really tasted the feeling of devotion, you know how they can give you 

the feeling of happiness. 

We are here wishing a good luck to everyone who reads this a bright future. 
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11 APPENDIX 

 
11.1 Qt Style Sheet for strategy software’s user interface 

/* The tab widget frame */ 
 QTabBar::tab { 
background: gray; 
border: 10px solid gray;  
color: white; 
 } 
 QTabBar::tab:selected { 
background: lightgray; 
border-color: #9B9B9B; 
border-bottom-color: lightgrey;  
border-right-color: lightgrey; 
 } 
/* make non-selected tabs look smaller */ 
 QTabBar::tab:!selected { 
margin-top: 6px;  
 } 
QGroupBox::title {  
background: gray; 
color: white; 
padding: 10px; 
 } 
 
QGroupBox 
{ 
background-color: gray; 
margin-bottom: 2ex; /* leave space at the top for the title */ 
border: 10px solid lightgray;  
} 
QPushButton 
{ 
color: white; 
background: gray; 
border-color: #9B9B9B; 
border-top:transparent; 
border-bottom:  transparent; 
border-right: transparent; 
border-left:  transparent; 
padding: 10px; 
 
} 
 
 QPushButton::hover {  



background: lightgray; 
color: white; 
padding: 10px; 
 } 
QPushButton:focus:active 
{ 
background: lightgray; 
color: white; 
padding: 10px; 
} 
QRadioButton { 
color: white; 
background: gray; 
border-top: transparent; 
border-bottom: transparent; 
border-right: transparent; 
border-left: transparent; 
padding: 10px; 
} 
 QRadioButton::hover {  
background: lightgray; 
color: white; 
padding: 10px; 
 } 
 
QRadioButton:checked 
{ 
background: lightgray; 
color: white; 
padding: 10px; 
} 
QCheckBox 
{ 
color: white; 
background: gray; 
border-top: transparent; 
border-bottom: transparent; 
border-right: transparent; 
border-left: transparent; 
padding: 10px; 
 
} 
 QCheckBox::hover {  
background: lightgray; 
color: white; 
padding: 10px; 
 } 
QTableWidget 
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{ 
color: white; 
background: lightgray; 
padding: 10px; 
 
} 
 QTableWidget::hover {  
background: lightgray; 
color: white; 
padding: 10px; 
 } 
QHeaderView::section { 
color: white; 
background: grey; 
border-top: transparent; 
border-bottom: transparent; 
border-right: transparent; 
border-left: transparent; 
} 
 
11.2 DECT Description 

Digital Enhanced Cordless Telecommunications (DECT™) is the ETSI standard 
for short-range cordless communications, which can be adapted for many 
applications and can be used over unlicensed frequency allocations world-wide. 

DECT™ is suited to voice (including PSTN and VoIP telephony), data and 
networking applications with a range up to 500 metres. 

DECT™ dominates the cordless residential market and the enterprise PABX 
(Private Automatic Branch eXchange) market. DECT™ is also used in the 
Wireless Local Loop to replace copper in the 'last mile' for user premises. 

The ETSI Technical Committee DECT (TC DECT) has the overall responsibility 
over the technology. [40] 

11.3 Complete code for Kalman Filter 

11.3.1 Ball EKBF Implementations Step I: Theory & Configurations 

Here is some frequently used data structures and functions excerpted from the 

EKF code frame. 

//Data Structures: 

//==============================Dimensions======================// 

//Dimension of State Vector 



int kalman_x_dimension; 

//Dimension of Measuremen tVector 

int kalman_z_dimension; 

//Dimension of Control Vector 

int kalman_u_dimension; 

//Dimension of Process Noise Vector 

int kalman_w_dimension; 

//Dimension of Measurement Noise Vector 

int kalman_v_dimension; 

//===============================Vectors========================// 

//State Vector 

CvMat* kalman_x_last;//x_hat_k-1_k-1 

CvMat* kalman_x_predicted;//x_hat_k_k-1 

CvMat* kalman_x_updated;//x_hat_k_k 

//Control Vector 

CvMat* kalman_u;//u_k-1 

//Measurement Vector 

CvMat* kalman_z;//z_k 

CvMat* kalman_z_predicted;//z_hat_k 

//==============================Matrices=======================// 

CvMat* kalman_P_last;//P_k-1_k-1 

CvMat* kalman_P_predicted;//P_k_k-1 

CvMat* kalman_P_updated;//P_k_k 

CvMat* kalman_A;//Jacobian matrix of partial derivatives with respect to x 

CvMat* kalman_W;//Jacobian matrix of partial derivatives with  

 //respect to w 

CvMat* kalman_H;//Jacobian matrix of partial derivatives with 

   //respect t ox 

CvMat* kalman_V;//Jacobian matrix of partial derivatives with   

 //respect to v 

CvMat* kalman_Q;//Process noise covariance matrix 

CvMat* kalman_R;//Measurement noise covariance matrix 

CvMat* kalman_S;//Innovation or residual covariance matrix 

CvMat* kalman_K;//Kalman gain 

 

//Functions: 

 

//==========================Auxiliary Functions==========================// 

Int CheckDimension(CvMat* M1,CvMat* M2); 

Int GetSubMatrix(CvMat* M1,CvMat* M2,int start_row,int start_col); 



  173(188) 

 

Int SetSubMatrix(CvMat* M1,CvMat* M2,int start_row,int start_col); 

//Combine M1 M2 as [M1 M2] 

Int RowCombineSubMatrix(CvMat* M1,CvMat* M2,CvMat* M3); 

//Combine M1 M2 as [M1;M2] 

Int ColCombineSubMatrix(CvMat* M1,CvMat* M2,CvMat* M3); 

//Delete M1(:,col) from M1 

Int DelCol(CvMat* M1,CvMat* M2,int col); 

//Delete M1(row,:) from M1 

Int DelRow(CvMat* M1,CvMat* M2,int row); 

//Insert column V before col(0based) 

Int InsertCol(CvMat* M1,CvMat* V,CvMat* M2,int col); 

//InsertcolumnVtbeforerow(0based) 

Int InsertRow(CvMat* M1,CvMat* Vt,CvMat* M2,in trow); 

Int OutputMat(CvMat* M,int order=0); 

//=======================Output Matrices to Files=======================// 

Int OutputMatFile(CvMat* M,char* filename,int num,int order=0); 

//======================Initialize Functions=============================// 

//Note: start using EKF from here! 

int SetDimensions(int x_dimension, 

int u_dimension, 

int z_dimension, 

int w_dimension, 

int v_dimension); 

int InitMatrices(); 

int ClearMatrices(); 

 

//========================EKF Working Functions=========================// 

//=============================Setter===================================// 

//Note: We should set this value from the camera raw data 

//Se tMeasurement 

Int Set_z(CvMat* z); 

//Set process noise Q & measurement noise R 

Int Set_NoiseCovariance(CvMat* Q,CvMat* R); 

//==========================Getter=====================================// 

//======The following pure virtual functions need to be rewritten======//   

//====================(by calculating Jacobian function)==============// 

//f(x,u,0) 

virtual int Get_x_predicted()=0; 

//A:=df/dx 



//Jacobian matrix of partial derivatives off with respect to x 

virtual int Get_A()=0; 

//W:=df/dw 

// Jacobian matrix of partial derivatives off with respect to w 

virtual int Get_W()=0; 

//H:=dz/dx 

// Jacobian matrix of partial derivatives off with respect to x 

virtual int Get_H()=0; 

//zk:=h(xk-,0) 

Virtual int Get_z_predicted()=0; 

//V:=dh/dv 

// Jacobian matrix of partial derivatives off with respect to v 

virtual int Get_V()=0; 

//========================Predict Step=============================// 

//P-:=A*P*At+W*Q*Wt 

int Get_P_predicted(); 

//========================Update Step==============================// 

//S:=H*P-*Ht+V*R*VtV=I 

//Innovationorresidualcovariancematrix 

int Get_S(); 

//K:=P*Ht*S_inv 

//KalmanGain 

int Get_K(); 

//x_updated:=x_predicted+K(z-z_predicted); 

int Get_x_updated(); 

//P:=(I-K*H)*P_predicted 

int Get_P_updated(); 

 

 

Initialize settings: 

qDebug()<<"init_EKF() starts:"; 

temp_mat1=cvCreateMat(4,1,CV_32F); 

temp_mat2=cvCreateMat(2,1,CV_32F); 

last_raw_x=0.0; 

last_raw_y=0.0; 

last_raw_vx=0.0; 
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last_raw_vy=0.0; 

//Initialize Kalma nFilter 

//SetDimensions(intx_dimension,intu_dimension,intz_dimension,intw_dimension,int

v_dimension) 

SetDimensions(4,4,2,4,2); 

 

Set Process noise covariance matrix and measurement noise matrix: 

//Process noiseco variance matrix, this should be very small(meaning very 

reliable and accurate) 

kalman_Q=cvCreateMat(2,2,CV_32F); 

cvSetReal2D(kalman_Q,0,0,0.000001); 

cvSetReal2D(kalman_Q,0,1,0); 

cvSetReal2D(kalman_Q,1,0,0); 

cvSetReal2D(kalman_Q,1,1,0.000001); 

//Measurement noise covariance matrix, this should be big(meaning not reliable 

and accurate) 

kalman_R=cvCreateMat(2,2,CV_32F); 

cvSetReal2D(kalman_R,0,0,5); 

cvSetReal2D(kalman_R,0,1,0); 

cvSetReal2D(kalman_R,1,0,0); 

cvSetReal2D(kalman_R,1,1,5); 

set_NoiseCovariance(kalman_Q,kalman_R); 

 

Set “priori” and “posteriori” error covariance matrix: 

kalman_P_predicted=cvCreateMat(4,4,CV_32F); 

kalman_P_last=cvCreateMat(4,4,CV_32F); 

kalman_P_updated=cvCreateMat(4,4,CV_32F); 

cvSetReal2D(kalman_P_predicted,0,0,1000); 

cvSetReal2D(kalman_P_predicted,0,1,0); 

cvSetReal2D(kalman_P_predicted,0,2,0); 

cvSetReal2D(kalman_P_predicted,0,3,0); 

cvSetReal2D(kalman_P_predicted,1,0,0); 

cvSetReal2D(kalman_P_predicted,1,1,1000); 

cvSetReal2D(kalman_P_predicted,1,2,0); 

cvSetReal2D(kalman_P_predicted,1,3,0); 



cvSetReal2D(kalman_P_predicted,2,0,0); 

cvSetReal2D(kalman_P_predicted,2,1,0); 

cvSetReal2D(kalman_P_predicted,2,2,1000); 

cvSetReal2D(kalman_P_predicted,2,3,0); 

cvSetReal2D(kalman_P_predicted,3,0,0); 

cvSetReal2D(kalman_P_predicted,3,1,0); 

cvSetReal2D(kalman_P_predicted,3,2,0); 

cvSetReal2D(kalman_P_predicted,3,3,1000); 

cvSetReal2D(kalman_P_last,0,0,1000); 

cvSetReal2D(kalman_P_last,0,1,0); 

cvSetReal2D(kalman_P_last,0,2,0); 

cvSetReal2D(kalman_P_last,0,3,0); 

cvSetReal2D(kalman_P_last,1,0,0); 

cvSetReal2D(kalman_P_last,1,1,1000); 

cvSetReal2D(kalman_P_last,1,2,0); 

cvSetReal2D(kalman_P_last,1,3,0); 

cvSetReal2D(kalman_P_last,2,0,0); 

cvSetReal2D(kalman_P_last,2,1,0); 

cvSetReal2D(kalman_P_last,2,2,1000); 

cvSetReal2D(kalman_P_last,2,3,0); 

cvSetReal2D(kalman_P_last,3,0,0); 

cvSetReal2D(kalman_P_last,3,1,0); 

cvSetReal2D(kalman_P_last,3,2,0); 

cvSetReal2D(kalman_P_last,3,3,1000); 

cvSetReal2D(kalman_P_updated,0,0,1000); 

cvSetReal2D(kalman_P_updated,0,1,0); 

cvSetReal2D(kalman_P_updated,0,2,0); 

cvSetReal2D(kalman_P_updated,0,3,0); 

cvSetReal2D(kalman_P_updated,1,0,0); 

cvSetReal2D(kalman_P_updated,1,1,1000); 

cvSetReal2D(kalman_P_updated,1,2,0); 

cvSetReal2D(kalman_P_updated,1,3,0); 

cvSetReal2D(kalman_P_updated,2,0,0); 

cvSetReal2D(kalman_P_updated,2,1,0); 

cvSetReal2D(kalman_P_updated,2,2,1000); 

cvSetReal2D(kalman_P_updated,2,3,0); 

cvSetReal2D(kalman_P_updated,3,0,0); 

cvSetReal2D(kalman_P_updated,3,1,0); 

cvSetReal2D(kalman_P_updated,3,2,0); 

cvSetReal2D(kalman_P_updated,3,3,1000); 
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Set other involved parameters matrixes, like innovation, Kalman Gain, received 

measurement matrix: 

kalman_S=cvCreateMat(2,2,CV_32F); 

cvSetZero(kalman_S); 

kalman_K=cvCreateMat(4,2,CV_32F); 

cvSetZero(kalman_K); 

kalman_z=cvCreateMat(2,1,CV_32F); 

cvSetZero(kalman_z); 

kalman_z_predicted=cvCreateMat(2,1,CV_32F); 

cvSetZero(kalman_z_predicted); 

kalman_x_last=cvCreateMat(4,1,CV_32F); 

kalman_x_predicted=cvCreateMat(4,1,CV_32F); 

kalman_x_updated=cvCreateMat(4,1,CV_32F); 

 

Set up A, W, H, V these four matrixes in their respective functions, and execute a 

check to ensure all settings are correct: 

Get_A(); 
Get_W(); 
Get_H(); 
Get_V(); 

#if0 

qDebug()<<"A:";OutputMat(kalman_A); 

qDebug()<<"W:";OutputMat(kalman_W); 

qDebug()<<"H:";OutputMat(kalman_H); 

qDebug()<<"V:";OutputMat(kalman_V); 

qDebug()<<"Q:";OutputMat(kalman_Q); 

qDebug()<<"R:";OutputMat(kalman_R); 

#endif 

 

The four overwritten functions are listed and commented as follows: 

//A:=df/dx 

// Jacobian matrix of partial derivatives off with respect to x 

int GLSoccerView::Get_A() 
{ 

kalman_A=cvCreateMat(4,4,CV_32F); 

cvSetReal2D(kalman_A,0,0,1); 

cvSetReal2D(kalman_A,0,1,0); 

cvSetReal2D(kalman_A,0,2,delta_t); 



cvSetReal2D(kalman_A,0,3,0); 

cvSetReal2D(kalman_A,1,0,0); 

cvSetReal2D(kalman_A,1,1,1); 

cvSetReal2D(kalman_A,1,2,0); 

cvSetReal2D(kalman_A,1,3,delta_t); 

cvSetReal2D(kalman_A,2,0,0); 

cvSetReal2D(kalman_A,2,1,0); 

cvSetReal2D(kalman_A,2,2,1); 

cvSetReal2D(kalman_A,2,3,0); 

cvSetReal2D(kalman_A,3,0,0); 

cvSetReal2D(kalman_A,3,1,0); 

cvSetReal2D(kalman_A,3,2,0); 

cvSetReal2D(kalman_A,3,3,1); 

//OutputMat(kalman_A); 

return0; 

} 

 

int GLSoccerView::Get_W() 
{ 

kalman_W=cvCreateMat(4,2,CV_32F); 

cvSetReal2D(kalman_W,0,0,0); 

cvSetReal2D(kalman_W,0,1,0); 

cvSetReal2D(kalman_W,1,0,0); 

cvSetReal2D(kalman_W,1,1,0); 

cvSetReal2D(kalman_W,2,0,1); 

cvSetReal2D(kalman_W,2,1,0); 

cvSetReal2D(kalman_W,3,0,0); 

cvSetReal2D(kalman_W,3,1,1); 

return0; 

} 

 

int GLSoccerView::Get_H() 
{ 

kalman_H=cvCreateMat(2,4,CV_32F); 

cvSetReal2D(kalman_H,0,0,1); 

cvSetReal2D(kalman_H,0,1,0); 

cvSetReal2D(kalman_H,0,2,0); 
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cvSetReal2D(kalman_H,0,3,0); 

cvSetReal2D(kalman_H,1,0,0); 

cvSetReal2D(kalman_H,1,1,1); 

cvSetReal2D(kalman_H,1,2,0); 

cvSetReal2D(kalman_H,1,3,0); 

return0; 

} 

 

int GLSoccerView::Get_V() 

{ 

kalman_V=cvCreateMat(2,2,CV_32F); 

cvSetReal2D(kalman_V,0,0,1); 

cvSetReal2D(kalman_V,0,1,0); 

cvSetReal2D(kalman_V,1,0,0); 

cvSetReal2D(kalman_V,1,1,1); 

return0; 

} 

 

Two functions which are used to get predicted values are also implemented and 

commented: 

//f(x,u,0) 

int GLSoccerView::Get_x_predicted() 
{ 

CvMat* temp1=cvCreateMat(4,1,CV_32F); 

//Update"kalman_x_last"tobe"kalman_x_updated" 

kalman_x_last=cvCloneMat(kalman_x_updated); 

cvMatMul(kalman_A,kalman_x_last,temp1); 

float ax=-1.0*(cvmGet(kalman_x_last,2,0))/delta_t; 

float ay=-1.0*(cvmGet(kalman_x_last,3,0))/delta_t; 

float 

float_temp2[]={0.5*ax*delta_t*delta_t,0.5*ay*delta_t*delta_t,ax*delta_t,ay*delt

a_t}; 

CvMat* temp2=&cvMat(4,1,CV_32F,float_temp2); 

cvAdd(temp1,temp2,kalman_x_predicted); 



//Output Mat(kalman_x_last); 

 

Return 0; 

} 

 

//zk:=h(xk-,0) 

int GLSoccerView::Get_z_predicted() 
{ 

//h(xk,0)=H*xk- 

cvMul(kalman_H,kalman_x_predicted,kalman_z_predicted); 

return 0; 

} 

11.3.2 Ball EKBF Implementations Step II: Iterative Callings 

The following code fragment explains how to iteratively make a proper estimation 

by employing the Kalman Filter algorithm: 

for(inti=0;i<numBalls;i++){ 

 

sslBall=detection.balls(i); 

//Get ball'slocation 

float raw_x=sslBall.x(); 

float raw_y=sslBall.y(); 

int loop=0; 

float filtered_x; 

float filtered_y; 

boolflag=true; 

float raw_z1[]={0.0,0.0,0.0,0.0}; 

float raw_z2[]={0.0,0.0}; 

//Adjust the looping times based on field testing 

while(loop<10) 

{ 

//1)Predict 

Get_x_predicted(); 

//Update "kalman_P_last" to be "kalman_P_updated" 

kalman_P_last=cvCloneMat(kalman_P_updated); 

Get_P_predicted(); 
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//2)Get measurement raw data 

raw_x=sslBall.x(); 

raw_y=sslBall.y(); 

//Apply false positive rejection 

flag=check_false_positive(raw_x,raw_y); 

qDebug()<<"checkfalse_positive:"<<flag; 

#if1 

//timeline<3 is the initiating time 

if(flag||timeline<1) 

{ 

raw_z1[0]=raw_x; 

raw_z1[1]=raw_y; 

raw_z1[2]=cvmGet(kalman_x_last,2,0); 

raw_z1[3]=cvmGet(kalman_x_last,3,0); 

raw_z2[0]=raw_x; 

raw_z2[1]=raw_y; 

cvSetReal2D(temp_mat1,0,0,raw_z1[0]); 

cvSetReal2D(temp_mat1,1,0,raw_z1[1]); 

cvSetReal2D(temp_mat1,2,0,raw_z1[2]); 

cvSetReal2D(temp_mat1,3,0,raw_z1[3]); 

cvSetReal2D(temp_mat2,0,0,raw_z2[0]); 

cvSetReal2D(temp_mat2,1,0,raw_z2[1]); 

kalman_x_last=cvCloneMat(temp_mat1); 

Set_z(temp_mat2); 

//Get a copy of old valid data in case of false positive 

last_raw_x=raw_x; 

last_raw_y=raw_y; 

last_raw_vx=cvmGet(kalman_x_last,2,0); 

last_raw_vy=cvmGet(kalman_x_last,3,0); 

} 

else 

{ 

raw_z1[0]=last_raw_x; 

raw_z1[1]=last_raw_y; 

raw_z1[2]=cvmGet(kalman_x_last,2,0); 

raw_z1[3]=cvmGet(kalman_x_last,3,0); 

raw_z2[0]=last_raw_x; 

raw_z2[1]=last_raw_y; 

cvSetReal2D(temp_mat1,0,0,raw_z1[0]); 

cvSetReal2D(temp_mat1,1,0,raw_z1[1]); 



cvSetReal2D(temp_mat1,2,0,raw_z1[2]); 

cvSetReal2D(temp_mat1,3,0,raw_z1[3]); 

cvSetReal2D(temp_mat2,0,0,raw_z2[0]); 

cvSetReal2D(temp_mat2,1,0,raw_z2[1]); 

kalman_x_last=cvCloneMat(temp_mat1); 

Set_z(temp_mat2); 

} 

#endif 

//3)Update 

Get_S(); 

Get_K(); 

//Set "kalman_z_predicted" to be "H*X_predicted" 

cvMatMul(kalman_H,kalman_x_predicted,kalman_z_predicted); 

Get_x_updated(); 

Get_P_updated(); 

filtered_x=cvmGet(kalman_x_updated,0,0); 

filtered_y=cvmGet(kalman_x_updated,1,0); 

loop++; 

} 

#if1 

qDebug()<<"raw_x="<<raw_x; 

qDebug()<<"last_raw_x="<<last_raw_x; 

qDebug()<<"Filteredx="<<filtered_x; 

qDebug(); 

#endif 

//Set filtered result back to the ball object 

ball.set(filtered_x,filtered_y); 

balls[cam].append(ball); 

} 

 

11.3.3 Ball EKBF Implementations Step III: False Positive Rejection 

The following code fragment gives the implementation of checking whether false 

positives exist. 
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bool GLSoccerView::check_false_positive(float raw1,float raw2) 

{ 

Bool retVal=false; 

CvMat* dummy_z=cvCreateMat(2,1,CV_32F); 

cvSetReal2D(dummy_z,0,0,raw1); 

cvSetReal2D(dummy_z,1,0,raw2); 

CvMat* kalman_C=cvCreateMat(2,2,CV_32F); 

CvMat* kalman_Ht=cvCreateMat(kalman_H->cols,kalman_H->rows,CV_32F); 

CvMat* kalman_H_x_P=cvCreateMat(kalman_H->rows,kalman_P_predicted-

>cols,CV_32F); 

CvMat* kalman_H_x_P_x_Ht=cvCreateMat(kalman_H->rows,kalman_H->rows,CV_32F); 

cvTranspose(kalman_H,kalman_Ht); 

cvMatMul(kalman_H,kalman_P_predicted,kalman_H_x_P); 

cvMatMul(kalman_H_x_P,kalman_Ht,kalman_H_x_P_x_Ht); 

cvAdd(kalman_H_x_P_x_Ht,kalman_R,kalman_C); 

double Kalman_C_det=cvDet(kalman_C); 

int n=kalman_x_dimension; 

double denominator=pow((2*3.1415926*Kalman_C_det),(n/2)); 

CvMat* kalman_H_x_x=cvCreateMat(2,1,CV_32F); 

cvMatMul(kalman_H,kalman_x_updated,kalman_H_x_x); 

CvMat* kalman_z_minus_H_x_x=cvCreateMat(2,1,CV_32F); 

cvSub(dummy_z,kalman_H_x_x,kalman_z_minus_H_x_x); 

CvMat* kalman_z_minus_H_x_xt=cvCreateMat(1,2,CV_32F); 

cvTranspose(kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt); 

CvMat* kalman_Ct=cvCreateMat(2,2,CV_32F); 

cvTranspose(kalman_C,kalman_Ct); 

CvMat* kalman_z_minus_H_x_xt_Ct=cvCreateMat(1,2,CV_32F); 

cvMatMul(kalman_z_minus_H_x_xt,kalman_Ct,kalman_z_minus_H_x_xt_Ct); 

CvMat*kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x=cvCreateMat(1,1,CV_32F); 

cvMatMul(kalman_z_minus_H_x_xt_Ct,kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt_Ct

_z_minus_H_x_x); 

double numerator=pow(2.7183, 

(-0.5*cvDet(kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x))); 

double probability=numerator/denominator; 

qDebug()<<Probability:"<<probability; 

//Future adjustment probability range should be basedonon-field testing 

    //rather than the “accept-all” policy used in this example 



if(probability>1||probability<1.0e-5) 

{ 

retVal=false;//Bad value 

} 

else 

{ 

retVal=true;//Good value 

} 

Return retVal; 

} 
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