

Bin Feng, Yuan Gao (in alphabetical order)

Development of Strategy Software and

Algorithm Simulators for Multi-Agent

System in Dynamic Environments

Technology and Communication

2013

PREFACE

We have implemented the applications at the Telecommunication and Information

Technology Department in the Vaasa University of Applied Sciences from

December 2011 to December 2012.

The thesis is co-written by Yuan Gao and Bin Feng. Yuan Gao is in charge of

Chapter 2 Structure of System, Chapter 3 Simulation Software, Chapter 4 Strategy

Software, Chapter 9 Expectation of Research Direction. Bin Feng is in charge of

Chapter 5 Vision System and Kalman Filter, Chapter 6 Safety Navigation,

Chapter 7 Motion Planning, Chapter 8 Overview of To-do Lists in Botnia SSL

Team. The rest of the chapters are written together by us.

Firstly, we would like to express our greatest gratitude to our thesis supervisor, Dr.

Yang Liu, for his splendid advises. Ever since, he has supported us not only by

delivering a research and development assistantship over almost four years, but

also academically and emotionally through multiple milestones to finish this

thesis. He helped us come up with the thesis topic and guided us over almost a

year of development. Whenever we came across difficulties he gave us the moral

assistance and the independence we needed to move on.

We are also very grateful to Dr. Chao Gao, Mr. Matila Jukka, Dr. Moghadampour

Ghodrat, Mr. Chavez Santiago, Mr. Ahvonen Jani, Mr. Virtanen Antti, Mr.

Hahtokari Tapani, Dr. Reino Virrankoski, Mr. Tobias Glocker who together

assisted us by providing constructive comments and suggestions, all of which

have helped improve the content and quality of this thesis. Their deep thoughts

and suggestions have made a strong salutary impact to the whole research and

development process.

We also would like to credit all members of Telecommunication and Information

Technology Department at Vaasa University of Applied Sciences for providing us

decent, cosy, development-focused environment during our four years study time.

I, Yuan Gao, am grateful to my beloved girlfriend, Chuyi Yang, for her support,

understanding, comprehension, and patience all throughout my time of studying

and producing this thesis. Simultaneously, I thank my friends for their caring

when I am in a situation of misfortune. I also would like to thank my parents for

their love, care, great sacrifice during all these years.

I, Bin Feng, thank my fellow lab-mates in the RoboCup robotics lab for the

inspiring discussions, for all those days and nights devoted to those challenging

work, and for all the joys we had during the past four years. I also thank my

family for giving me a full support in my study and life.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Program of Information Technology

ABSTRACT

Author Bin Feng, Yuan Gao (in alphabetical order)
Title Implementations on RoboCup Algorithms
Year 2013
Language English
Pages 194
Name of Supervisor Yang Liu

In the field of mobile robots, many interesting and important algorithms are

employed in the process of implementing a robust, collision-free multi-robot

collaboration movement.

The main objective of this thesis is to introduce strategy software of RoboCup

multi-robot system, and several related algorithm simulators that we made during

the development process. Another objective is to introduce several crucial

algorithm implementations for the system, for instance, Kalman filter, safety

navigation algorithm and path-planning algorithm.

This thesis reanalyses, compares against research results in the history and today,

and then proposes a solution with verification and correction. Along with the

theory, we construct the theoretical framework of the strategic algorithm system.

And then we tested the experimental effect with several simulation programs. The

implementation results have been verified to be success by multiple tests. Finally,

this thesis also suggests the to-do list and expectations of research directions.

The main result of the thesis contains the implementation of strategy software,

algorithm simulators and the implementation of several crucial algorithms.

All the thesis source codes can be found at: https://svn.puv.fi/Botnia2011/

Key words: Agent-control software, algorithm simulator, algorithm complexity,

algorithm efficiency, path-planning, navigation, Robocup.

 1(188)

CONTENTS

ABSTRACT

CONTENTS .. 1

1 INTRODUCTION ... 11

1.1 Purpose of Thesis ... 11

1.2 Overview Structure of Thesis ... 11

1.3 Background of RoboCup .. 11

1.4 Background of Botnia SSL Team ... 14

1.5 Motivation.. 16

1.6 Terminology... 16

1.7 Summary .. 17

2 STRUCTURE OF SYSTEM ... 18

2.1 Introduction .. 18

2.2 Structure of System .. 18

2.3 Hardware ... 24

2.4 Embedded Software ... 26

2.5 Vision Software.. 28

3 SIMULATION SOFTWARE .. 29

3.1 Introduction .. 29

3.2 Random Walk Simulator .. 30

3.2.1 Introduction .. 30

3.2.2 Motivation .. 30

3.2.3 User Interface ... 30

3.2.4 Use Case Diagram .. 35

3.2.5 Result of Testing ... 35

3.3 Parameters Monitoring Web Server .. 36

3.3.1 Introduction .. 36

3.3.2 Technical Introduction .. 37

3.3.3 Motivations ... 38

3.3.4 System Structure ... 38

3.3.5 User Interface ... 39

3.4 Vision Simulation Software (Python) ... 40

3.4.1 Introduction .. 40

3.4.2 User Interface ... 40

3.4.3 Use Case Diagram .. 42

3.5 Rapidly Random Exploring Tree Simulator (Python)............................ 42

3.5.1 Introduction .. 42

3.5.2 Technical Introduction .. 42

3.5.3 Advantages and Disadvantages ... 43

3.5.4 The Test on RRT .. 44

3.6 Path-planning Simulator ... 45

3.6.1 Introduction .. 45

3.6.2 Technical Introduction .. 45

3.6.3 Implemented Algorithms .. 45

3.6.4 User Interface ... 46

4 STRATEGY SOFTWARE .. 47

4.1 Introduction of Software ... 47

4.1.1 General Introduction ... 47

4.1.2 Main Motivations.. 47

4.1.3 Development Process .. 48

4.1.4 System Structure Design ... 50

4.1.5 Logic Structure Design ... 51

4.1.6 Guide to Thesis ... 52

4.2 Communication Data Type ... 53

4.2.1 Introduction .. 53

4.2.2 Technical Introduction .. 53

4.2.3 Introduction to Channels ... 57

4.2.4 Wireless Channel .. 58

4.2.5 Internet Channel ... 61

4.3 Interface Module .. 65

4.3.1 Introduction .. 65

4.3.2 File Structure .. 67

4.3.3 Appearance Design ... 67

4.3.4 User Interface Style .. 72

 3(188)

4.3.5 Logic Structure ... 74

4.3.6 Control and Animation.. 74

4.4 Wireless Module .. 75

4.4.1 Introduction .. 75

4.4.2 File Structure .. 75

4.4.3 Logic Structure ... 75

4.5 Internet Module .. 76

4.5.1 Introduction .. 76

4.5.2 File Structure .. 77

4.5.3 Information Process Method ... 78

4.5.4 Logic Structure ... 78

4.6 Control Hub Module .. 79

4.6.1 Introduction .. 79

4.6.2 File Structure .. 80

4.6.3 Logic Structure ... 83

4.6.4 Problem Definition ... 87

5 VISION SYSTEM AND KALMAN FILTER.. 87

5.1 Introduction of SSL Vision System .. 87

5.2 Introduction of Google Protocol Buffers ... 89

5.3 Introduction of Kalman Filter ... 91

5.4 Principle of Kalman Filter .. 92

5.4.1 Principle of Kalman Filter ... 92

5.4.2 State Predict Step .. 93

5.4.3 Measurement Update Step .. 95

5.4.4 Summary .. 98

5.5 Introduction of Extended Kalman-Bucy Filter (EKBF) 99

5.6 Implementations on Extended Kalman-Bucy Filter (EKBF) 99

5.6.1 Overview .. 99

5.6.2 Preparation Works: Development Environment....................... 100

5.6.3 Preparation Works: EKF OpenCV Support 101

5.6.4 Ball EKBF Implementations Step I: Theory & Configurations 101

5.6.5 Ball EKBF Implementations Step II: Iterative Callings 106

5.6.6 Ball EKBF Implementations Step III: False Positive Rejection 107

5.7 Ball EKBF Testing ... 110

5.8 Summary .. 110

6 SAFTY NAVIGATION .. 111

6.1 Introduction on Safety Navigation .. 111

6.2 Introduction of Dynamics Safety Search Algorithm 112

6.3 Principle and Implementations on Dynamics Safety Search Algorithm113

6.3.1 Assumptions and Notations ... 113

6.3.2 Structural Hierarchy of the Algorithm 114

6.3.3 Top Tier .. 115

6.3.4 Middle Tier ... 117

6.3.5 Bottom Tier and Parabola Intersection Checking 118

6.3.6 Collaboration Diagrams and Call Diagrams 124

6.3.7 Testing .. 128

6.4 Summary .. 134

7 MOTION PLANNING .. 135

7.1 Introduction of Motion Planning... 135

7.2 Possible path planning solutions ... 136

7.3 Introduction on Rapidly-exploring Random Tree (RRT) Algorithm 136

7.4 Robot model used in SSL ... 139

7.5 RRT and RRT* features and issues .. 139

7.6 Safety-guaranteed RRT .. 141

7.7 Testing ... 147

7.8 Summary .. 149

8 OVERVIEW OF TO-DO LISTS IN BOTNIA SSL TEAM 150

8.1 Structure... 150

8.2 Vision Filter ... 151

8.3 Motion Control ... 151

8.3.1 Introduction .. 151

8.3.2 Bang-bang controller .. 152

8.3.3 PID Controller .. 154

8.4 Navigation.. 155

 5(188)

8.4.1 Introduction .. 155

8.4.2 ERRT ... 155

8.4.3 Safety Navigation ... 156

8.5 Skills .. 156

8.6 Summary .. 157

9 EXPECTATION OF RESEARCH DIRECTION 158

9.1 Complex Network Analysis .. 158

9.1.1 Theoretical Definition ... 158

9.1.2 Problem and Potential Solution ... 159

9.1.3 Research Perspective .. 159

9.2 Expert System and Inference System .. 161

9.2.1 Theoretical Definition ... 161

9.2.2 Problem and Potential Solution ... 163

9.2.3 Research Perspective .. 163

9.3 Heterogeneous Computing For Fast Computation............................... 164

9.3.1 Theoretical Definition ... 164

9.3.2 Problem and Potential Solution ... 164

9.3.3 Research Perspective .. 166

9.4 Conclusion ... 166

10 SUMMARY .. 167

11 APPENDIX ... 169

11.1 Qt Style Sheet for strategy software’s user interface 169

11.2 DECT Description .. 171

11.3 Complete code for Kalman Filter.. 171

11.3.1 Ball EKBF Implementations Step I: Theory & Configurations 171

11.3.2 Ball EKBF Implementations Step II: Iterative Callings 180

11.3.3 Ball EKBF Implementations Step III: False Positive Rejection 182

12 BIBLIOGRAPHY ... 185

LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BRRT Boarded Rapidly-Exploring Random Tree

CRC Cyclic Redundancy Check

DECT Digital Enhanced Cordless Telecommunication

DHCP Dynamic Host Configuration Protocol

DRRT Dynamic Rapidly-Exploring Random Tree

ERRT Extended Rapidly-Exploring Random Tree

FPGA Field-programmable Gate Array

JSON JavaScript Object Notation

PRM Probabilistic roadmaps

QSS Qt Style Sheet

RPM Revolutions per Minute

RRT Rapidly-Exploring Random Tree

SLIP Serial Line Internet (or, Interface) Protocol

SLL Small Size Robot League

SPI Serial Peripheral Interface Bus

UDP User Datagram Protocol

XML Extensible Markup Language

 7(188)

LIST OF FIGURES AND TABLES

Figure 1. Two soccer players compete in the Dynamo project [1] 12

Figure 2. RoboCup SSL Dataflow [2] .. 13

Figure 3. Field Dimension of RoboCup SSL 2012 [8] .. 14

Figure 4. Botnia Robot SR4 and SR6 [4] .. 15

Figure 5. Second Generation of Windows-based Strategy System [4] 15

Figure 6. the Structure of System ... 18

Figure 7. Logic Structure of System [1] ... 19

Figure 8. the Front Side and Back Side of Vision PC ... 24

Figure 9. a High Speed Camera Connected to the Vision Server......................... 25

Figure 10. the Front End and Back End of Strategy Software PC 25

Figure 11. the Dribbler and the Wheel of Robot ... 26

Figure 12. Wireless Sender Connected with PC and Wireless Receiver on Robot

 .. 26

Figure 13. Basic Embedded System Structure .. 27

Figure 14. User Interface of Random Walk Simulator .. 31

Figure 15. Activated Configuration Dialogue by New Action 32

Figure 16. Activated Configuration Dialogue by Edit Action 32

Figure 17. Configuration Tab ... 33

Figure 18. Two Dimensional Walk for Two Walkers. .. 33

Figure 19. Statistic Information of 10th and 90th Total Random Steps. 34

Figure 20. the User Case Diagram for Random Walk Simulation. 35

Figure 21. 1D and 2D Undirected Random Walk ... 35

Figure 22. 1D and 2D Directed Random Walk ... 36

Figure 23. Monitoring Graph ... 39

Figure 24. Slider of Monitoring Graph Monitoring ... 40

Figure 25. User Interface of Vision Simulator .. 41

Figure 26. Setting Panel and Options ... 41

Figure 27. the User Case Diagram for Vision Simulation Software 42

Figure 28. Four Different Moments of RRT Expanding Process 44

Figure 29. Possible Set of Algorithms to be implemented................................... 46

Figure 30. the Unser Interface of RRT Testing ... 46

Figure 31. the User Interface of RRT star Testing .. 46

Figure 32. the Development Process of Object-oriented Programming [10] 48

Figure 33. the Iterative Development Process [11] ... 49

Figure 34. Modules of Strategy Software ... 50

Figure 35. Logic Structure of Strategy Software ... 51

Figure 36. Code Example of Thread Implementation ... 52

Figure 37. the Communication Structure of Wireless Channel 58

Figure 38. Structure of SLIP Structure [16] .. 59

Figure 39. the Communication Structure of Wireless Channel 61

Figure 40. the Code Example of Json Structure .. 62

Figure 41. the Code Example of Data Type in Java .. 62

Figure 42. the Code Example of AJAX JavaScript Function 63

Figure 43. the Code Example of Vision Information Exchange Structure 64

Figure 44. the User Interface of Strategy Software ... 65

Figure 45. the File Structure of User Interface Module 67

Figure 46. General Tab of Strategy Software.. 68

Figure 47. Human Tab of Strategy Software .. 69

Figure 48. the Simulated Robots on Simulation Panel .. 72

Figure 49. the Code Example of Setup Step ... 74

Figure 50. File Structure of Wireless Module ... 75

Figure 51. Structure of Wireless Module .. 76

Figure 52. File Structure of Internet Module .. 77

Figure 53. Logic Structure of Internet Module ... 79

Figure 54. Folder Structure of Control Hub Module ... 80

Figure 55. File Structure of Human Control ... 82

Figure 56. File Structure of knowledge_base .. 83

Figure 57. Logic Structure of Strategy Implementation 84

Figure 58. Structure of First Cluster [17] .. 85

Figure 59. Structure of First Cluster ... 86

Figure 60. The Standard Colour Assignments for RoboCup SSL 2012 [18] [19] 88

Figure 61. Screenshot of SSL Vision System [19] .. 89

Figure 62. Graphical Client .. 91

 9(188)

Figure 63. Kalman Filter Steps ... 92

Figure 64. Two steps in Kalman Filter [24] .. 98

Figure 65. 1D example of false positive [25] .. 107

Figure 66. Demo of Safety Navigation ... 111

Figure 67. Dependency Graph .. 115

Figure 68. DSS Function Caller Graph ... 116

Figure 69. checkAccel Function Caller Graph .. 117

Figure 70. checkRobot Function Caller Graph.. 117

Figure 71. makeTrajectory Function Caller Graph.. 118

Figure 72. Caller Graph of checkParabolic Function .. 124

Figure 73. Collaboration Diagram for RManage Class 126

Figure 74. Collaboration Diagram for RParabolic Class 126

Figure 75. Call Diagram of DSS Function .. 127

Figure 76. Call Diagram of checkParabolic Function 127

Figure 77. Two Robots Simulation 1 .. 128

Figure 78. Two Robots Simulation 2 .. 128

Figure 79. Two Robots Simulation 3 .. 129

Figure 80. Velocity-Time Chart ... 130

Figure 81. Two Robots Simulation 4 .. 130

Figure 82. Two Robots Simulation 5 .. 131

Figure 83. Two Robots Simulation 6 .. 131

Figure 84. Velocity-Time Chart ... 132

Figure 85. Multiple Robots Simulation 1 .. 132

Figure 86. Multiple Robots Simulation 2 .. 133

Figure 87. Multiple Robots Simulation 3 .. 133

Figure 88. Illustration of Motion Planning [29] .. 135

Figure 89. Illustration of RRT Algorithm .. 138

Figure 90. Growth of RRT Tree [32] .. 138

Figure 91. Soccer Robot in SSL ... 139

Figure 92. Multiple Run of RRT .. 140

Figure 93. Run of RRT*... 141

Figure 94. Run of RRT*... 141

Figure 95. Demo 1 ... 148

Figure 96. Demo 2 ... 148

Figure 97. Demo 3 ... 149

Figure 98. the Hierarchy of Priority Tasks .. 150

Figure 99. A Bang-bang, Closed-loop Control System [33] 152

Figure 100. Output of Bang-bang Controller (input of plant) [33] 153

Figure 101. PID Controller Block Diagram .. 154

Figure 102. a Typical Strong Betweenness Connection 158

Figure 103. Formula of Betweenness Connection ... 158

Figure 104. Types of Dynamic Community .. 160

Figure 105. Different Algorithms Related to Cooperation Detection. [35] 161

Figure 106. Components of Expert System [36] ... 162

Figure 107. User's View of Expert System [37] .. 163

Figure 108. Speed-efficiency of Matrix Multiplication Algorithm [38] 164

Figure 109. the Computational Complexity of Several RRT Algorithms [39] ... 165

Figure 110. Time Expenses of RRT Algorithm Using C++ [1] 165

Figure 111. Time Expenses of BRRT Algorithm Using C++ [1] 165

 11(188)

1 INTRODUCTION

1.1 Purpose of Thesis

This thesis introduces the RoboCup small size league (SSL) implementation to the

readers. The main work that we had finished for SSL project is strategy software

and several corresponding simulators. In the following sections, we will introduce

the structure of the system and explain particularly the structure of the strategy

software and corresponding algorithm simulators.

1.2 Overview Structure of Thesis

This thesis can be divided into 11 Chapters. The first chapter Introduction mainly

introduces the background of RoboCup and Botnia SSL team. The second chapter

Structure of System explained several modules in the system, including hardware,

embedded software, vision software, etc. The third chapter Simulation Software

illustrated several simulation software. The fourth chapter Strategy Software

analysed each module in the system and explained the functionalities of each of

them. The fifth chapter focus on vision system and Kalman Filter, which is a

powerful algorithm implemented in our system. The sixth chapter implemented

the safety navigation algorithm in the system to prevent collision. The seventh

chapter is about motion planning, it highlights a novel design and implementation

of a RRT-based algorithm. The eighth chapter gives an overview of future to-do

lists in our team. The ninth chapter suggested an expectation of future research

directions. The tenth chapter gave a summary of the whole thesis. The eleventh

chapter is for appendix, which included the completed codes for the previous

mentioned algorithms.

1.3 Background of RoboCup

In 1993, Professor Alan K. Mack Worth from Department of Computer Science at

the University of British Columbia in Canada brought his innovative idea that

robot soccer competition would be a suitable research platform for developing

science and technology in the field of robotics and artificial intelligence.

Figure 1. Two soccer players compete in the Dynamo project [1]

Today, RoboCup (Robot World Cup) [2], an international soccer robot

competition, whose goal focuses on providing a platform for developing

innovative solutions in the field of intelligent robots, has become one of the

largest soccer robot competitions in the world together with FIRA Cup.

RoboCup competition is held under a dynamic adversarial environment with a

system of autonomous multi-robot and multi-agent coordination. There are several

different types of leagues available in RoboCup competition, including

Humanoid, Middle-Size, Simulation, Small-Size, and Standard-Platform.

Humanoid League (HL) focuses on human-like soccer robots confrontation. Key

skills involved in the Humanoid League include balance keeping, walking and

running, kicking balls, visual signal receiving and processing, self-localization,

dynamic path finding, collision avoiding, etc.

Middle Size League (MSL) consists of 6 soccer robot players per team, and the

soccer ball used in the competition is the same as the regular size FIFA ball.

Soccer robots rely on on-board sensors to communicate with each other

wirelessly.

Simulation League (SL) has two sub-leagues in 2D and 3D. Both are focusing on

developing simulators for soccer robot competition without hardware support.

 13(188)

New artificial intelligence algorithms and team strategies can be tested in a

simulation environment before applying them to real robots.

Small Size League (SSL) is known for its highly dynamic environment in which

all robots are supervised by an overhead camera. All vision information captured

from the field is collected by a centralized off-field computer running with a

vision system (SSL-Vision) [3]. By analysing and processing the raw vision

information, the computer can control and coordinate soccer robots in filed by

sending and receiving signals. Building a successful SSL team requires

multidisciplinary knowledge of fields including robotics, computer science,

electrical engineering, mechanical engineering, etc.

Figure 2. RoboCup SSL Dataflow [2]

Figure 3. Field Dimension of RoboCup SSL 2012 [8]

Standard Platform League (SPL) requires soccer robots be able self-localized and

locating ball since the vision system is forbidden. In SPL, all teams have same

standard robots hardware, participants would be required to focus on software

strategy development.

1.4 Background of Botnia SSL Team

Starting from 2006, Botnia SSL Team has been in the RoboCup world

championship and ranked top 10 in Small Size League competition. Currently, our

team is the only qualified RoboCup SSL team in the whole Nordic region.

Up to now, there have been three major updates (SR4E, SR5, SR6) for hardware

part of soccer robots in our team. The latest version SR6 of hardware has a

sophisticated design and an excellent performance.

 15(188)

Figure 4. Botnia Robot SR4 and SR6 [4]

Besides a sophisticated hardware, our team also has a complete strategy software

system. The windows-based software system is used for analysing and processing

incoming vision information and send precise commands to infield robots based

on the strategy system. In order to have a better real-time control and

performance, currently we are rewriting the codes to build a new Linux-based

strategy software system.

Figure 5. Second Generation of Windows-based Strategy System [4]

1.5 Motivation

The main motivation of going into this field is that the multi-robot system has

been a great research platform that has been designed for any newcomers. It

includes a complicated mechanism behind the iron blocks and the complicated

circuits.

People can do research in robotics on the subject of navigation, logic

programming, computer vision, path-planning, navigation and controller. In the

international research forum, there are always quite a lot interesting subjects

popping up including the project which combines the robotics with the evolution

theorem [1], the project which researches on SLAM (Simultaneous localization

and mapping) or virtual SLAM [2] and the project which detects the network

boundaries [3].

Our project, however, may be limited to the platform that we are using. According

to what we know about some research labs. The platforms that people use may

vary depending on the different purpose. The typical ones are the iRobot, swarm

robot and the one we are using - the multi-robot system of SSL.

Influenced by robots, the research topic is also limited to a small range. The tests

are mainly aimed for the path-planning algorithm and navigation. As a

consequence, we designed the framework of strategy software and the simulations

for information transform, evolutionary algorithm, random walk and so on.

All these are the basis to achieve the final goal of designing a better software

structure of the multi-robot. If what we have done for robots can move this area a

little bit forward then we are already happy about it.

1.6 Terminology

In this thesis, if we introduce an abbreviation the first time, we would also give its

full word together. In addition, we will use a grey highlighting to emphasize code

that is particularly important in the present context.

 17(188)

We will use two kinds of code representation. They are code list and code

example.

 Code listing is a complete program. As stated before, in most cases, they

will provide a summary of the code. This summary will tell you the

environment, compiler instruction, linking instruction, other description

about the code.

 Code example is a piece of code which is isolated from other part of the

program and cannot be run without changes. They are used to represent

how the API (Application Programming Interface) and algorithms are used.

1.7 Summary

In this chapter, the background of RoboCup and Botnia SSL Team are introduced.

RoboCup SSL is a fascinating competition which requires multi-disciplinary

knowledge in robotics, computer science, electrical engineering, communication

technology, mechanical engineering, and so on. Besides, RoboCup provides a

highly-valuable platform for students to learn both in theoretical and practical

fields.

In the next chapter, we will describe structures of this system.

2 STRUCTURE OF SYSTEM

2.1 Introduction

This chapter will give a general view on the structure of the system. It introduces

the basic information and background knowledge of entering the technical details

of the system. After this chapter, we will go through each part individuality.

2.2 Structure of System

The structure of the system is as follows. Here, we have instance diagram and

logic diagram to describe the relationships between the hardware and software

from different points of view:

 Instances diagram

Figure 6. the Structure of System

 19(188)

 logic diagram

From the previous diagram, we can make an abstract diagram to separate each

functional section.

Figure 7. Logic Structure of System [1]

From the logic structure of the system, we identify there are five main parts in it.

Namely these five parts are wireless system, vision system, multi-robot system,

strategy system and reference system.

1. Wireless System

The main function of the wireless system is to communicate with the strategy

software and send the information to robots so that it can control and monitor

robot properly. To achieve that, we need not only to implement modules in

strategy software but also in the robot strategy software.

2. Vision System

The main function of the vision system is to collect, monitor the environmental

information on the competition field and then provide the support information of

position and direction to the strategy system. Now, in the competition, this system

has been standardized.

3. Multi-robot System

The main function of the multi-robot system is to perform the command sent by

the strategy system under different condition. In this process, it may be able to

auto-adjust its parameters to suit the dynamic environment. It also needs to be

able to send information back to let the strategy software to analyse it.

4. Strategy System

The main function of the strategy system includes evaluating according to the

information on the competition field, to make outlined strategy of the multi-robot

system, to determine the role of each robot in a team. Normally, each team needs

one computer to deal with this job.

5. Reference System

The reference system should be taken care by two parts - both human and the

reference box. In this case, the referee should cooperate with the reference box.

RoboCup is a very tightly connected platform, and the reference box will not

influence the processing of the competition.

The competitors can improve the vision system, communication system and

multi-robot system to accomplish mission better. Among all of these systems, the

strategy system is the dominant factor of relevant factors. As a consequence, the

improvement on the strategy system can bring better result. The strategy system

directly decides the rule of behaviour and it also can avoid the obstacles while

robots are moving around.

The environment of the competition is as follows:

 21(188)

 Real-time

To ensure the real-time operation is the basic requirement for the multi-robot

system win the competition. The condition of the football changes quickly and

dramatically. The fast reaction of each individual robot is the key factor to make a

goal in the game.

In the competition, the vision collects information of the field with a period as

33ms through the camera. Then wireless communication system sends the

information to the strategy system to evaluate. As a consequence, the strategy

software, communication sub-system and the multi-robot system need to have

very fast speed and efficiency to make real-time decisions.

 Dynamic

The wheel of each robot in multi-robot system can continuously move with two

degrees of freedom. In theory, the maximum speed can be 2 meters per second

and change in velocity and direction can be extremely frequent. This quite

possibly results robot to collide into each other. For avoiding collision and going

to the goal, the detector should have fast reactive speed.

 Uncertain

This multi-robot system is made by several sub-systems. The vision sub-system is

responsible for collecting vision information. It is a process of making a

continuous system to become discrete. Admittedly, it is very hard to record all the

information. Same part of the graph may be affected to have distortion by light,

clothes, platform or even the dust in the air.

The communication is also possible to be influenced by the interferences. When

small disturbance happens, many robots may run into big messes which then

generate even more disturbances. Additionally, the multi-robot system may not

operate accordingly due to lacking of the enough electricity. All of above can

cause the environment of multi-robot system to be unstable.

 Non-linear

The environment of RoboCup competition and the system of multi-robot system

have obvious non-linear property. This directly leads to a complicated description

of the system. Simultaneously the strategy software is limited by the time and

capacity of calculation. Therefore, obtaining the satisfactory solution of path-

planning and navigation is also a big challenge. If we do not have a reasonable

way of solving this problem, the computational time and the difficulty of

controlling multi-robot system will be increased dramatically. This shows that, at

the base of difficult points, which was previously brought by environmental

properties, no matter the purpose is theoretically researching the problem or

practically solving the problem, it would bring significant meaning to the decision

making process and strategic control problem. Among all these problems, the core

of the strategy software is path-planning problem and collision detection problem

and these two points are the emphasis in the strategy software chapter.

From the viewpoint of AI, the environment can also be classified into following

categories:

 Partially Observable

This system is partially observable. The issues like unbalanced light, reference

system, dynamic environment are strong enough to cause the exact information

about the item on the field sometimes cannot be fully obtained. For example, the

colour of the ball is unidentifiable when the light reflected from the ball is blocked

by a moving robot. [2]

 Stochastic

If the next state of the environment is completely determined by the current state

and the action executed by the agent, then the environment is deterministic.

Otherwise it is stochastic. [2]

 Sequential

 23(188)

In episodic environment, an agents experience is divided into atomic parts. One

episode doesn't affect the next. For example: an agent assigned to find defective

parts in an assembly line is in episodic environment. Sequential is the reverse of

it. For example: a chess playing agent is in a sequential environment. [2]

 Dynamic

If the environment changes while the agent is operating, then it's dynamic, else

static. If the performance of the agent changes the environment, then it's semi-

dynamic. For example: taxi driving is dynamic, chess is semi-dynamic and

crossword puzzle is static. [2]

 Continuous

The state is continuous. A chess game is of discrete states, while driving a taxi

requires continuous actions, continuous steering over continuous time. [2]

 Multi-agent:

If the agent operates in an environment where the only agent is him, then it's

single agent environment. Agent playing crossword puzzle is in the single agent

system. A taxi driving agent is in Multi-agent environment. [2]

2.3 Hardware

This system includes four sections of hardware, namely vision hardware platform,

strategy hardware platform, multi-robot hardware platform, wireless

communication hardware platform.

The first one is vision hardware platform, which is also a PC. The software which

controls the vision system is offered by the SLL organizer. People can download

and compile it on a Linux-based computer.

Figure 8. the Front Side and Back Side of Vision PC

On the back side of the server, we can see a high speed camera connected to it

through a high speed FireWire port. The protocol used for this connection is an

IEEE standard called IEEE1394b. This connection is comparable with USB and

always used together with USB. The reason why we chose this standard method

as the communication method is because it is widely used for real-time

information transfer.

High speed

FireWire

port

 25(188)

Figure 9. a High Speed Camera Connected to the Vision Server

The second one is a PC which runs strategy software. This PC is a standard PC

which has a higher computational rate. For future development, we would like to

ask the team to install a powerful GPU in it.

Figure 10. the Front End and Back End of Strategy Software PC

The third part we would like to introduce is the multi-robot system. Each robot in

the project contains different modules including wireless module, wheel module,

dribbler module, etc.

RS232 Sender

Port

Figure 11. the Dribbler and the Wheel of Robot

Figure 12. Wireless Sender Connected with PC and Wireless Receiver on Robot

2.4 Embedded Software

Embedded systems contain processing cores that are either microcontrollers or

digital signal processors (DSP).A processor is an important unit in the embedded

system hardware. It is the heart of the embedded system. The key characteristic,

however, is being dedicated to handle a particular task. Since the embedded

system is dedicated to specific tasks, design engineers can optimize it to reduce

the size and cost of the product and increase the reliability and performance. Some

embedded systems are mass-produced, benefiting from economies of scale.

Physically, embedded systems range from portable devices such as digital

watches and MP3 players, to large stationary installations like traffic lights and

factory controllers. Complexity varies from low, with a single microcontroller

chip, to very high with multiple units, peripherals and networks mounted inside a

large chassis or enclosure.

RS232

Receiver

 27(188)

Figure 13. Basic Embedded System Structure

2.5 Vision Software

In previous years, the RoboCup Small Size League rules have allowed every team

to set up their own global vision system as a primary sensor. This option bears

several organizational limitations and thus impairs the league's progress.

Additionally, most teams have converged on very similar solutions, and have

produced only few significant research results to this global vision problem over

the last years. Hence the responsible committees decided to migrate to a shared

vision system (including also sharing the vision hardware) for all teams from

2010. This system - named SSL-Vision - is currently developed by volunteers

from participating teams. [3]

 29(188)

3 SIMULATION SOFTWARE

3.1 Introduction

Simulation software is a program used for the user to observe an operation

through the simulation without actually performing the operation. Normally, it is

based on a modelling process according to mathematical formulas or an algorithm.

During the stage of developing the strategy software, we encountered problems of

making unit tests for algorithms. Therefore, we made the algorithm simulators

independently for testing and simulating various algorithms. By using these

algorithm simulators, we are able to visualize the data structure and computation

process, and as a result, we can see the effect and benchmark of different

algorithms.

Each of following sub chapter contains simulation software. The logic map would

be like a zone as we will introduce them one by one in details.

Here is the list of small simulation software that we are going to talk about.

1. Random Walk Simulator For Path-planning project

2. Parameters Monitoring Web Server

3. Vision Simulation Software

4. Rapidly Random Exploring Tree Simulator

5. Path-planning Simulator

The first item in the list is the Random Walk Simulator that we made for the path-

planning research. The following Parameters Monitoring Web Server is what we

implemented for visualizing the data collected in the embedded robot software.

The Vision Simulation Software is a possible exploration of using python for

simulating vision software. Then the fourth software Rapidly Random Exploring

Tree is a prototype for future development of this project. Finally the Path-

planning simulator is a concrete C++ implementation that we used to test the time

consumption of different algorithms.

3.2 Random Walk Simulator

3.2.1 Introduction

A random walk simulator was made to test the possibility of applying the random

walk algorithm to the path-planning problem. When it executes, this random walk

simulator asks key parameters from the user and then simulates the algorithms on

graph. It offers the functionality of simulating either one-dimensional random

walk or two-dimensional random walk.

3.2.2 Motivation

In 2011, Dr. Karaman presented a thesis discussing about his innovative RRT star

algorithm of finding the optimal path for automatic system. This algorithm has

been proven that this is very adaptive in many cases. [4]A system like RoboCup

project, however, cannot use this algorithm as this algorithm takes a lot of

computation resources. Although the time complexity and the space complexity of

RRT and RRT star algorithms are both ܱ(݊ ∗ log	(݊)). [5]The reason of latency

lies in that the RRT star algorithm generates several paths for comparisons and

this really dragged the speed down. [4]

A typical random walk is as follows:

To define this walk formally, take independent random variablesܼଵ, ܼଶ…, where

each variable is either 1 or −1, with a 50% probability for either value, and ܵ଴ =

0and ܵ௡ = 	∑ ܼ௡௜ୀ௡
଴ . The set{ܵ௡} and the series is called the simple random walk

on	ℤ.

If we apply a random walk on RRT star algorithms, when RRT star algorithm

converges very slowly, I believe the modified RRT start algorithm can bring a

better performance.

3.2.3 User Interface

1. User Interface

 31(188)

The user interface is designed for the convenient test of the algorithm. As a

consequence, the UI can be simply divided into three parts. The first part is the

action panel which is on the top of the whole view, the second part is the tab

widget which is in the middle and the third party preference is on the left of the

user interface. It specifies the configurations of the simulation.

Figure 14. User Interface of Random Walk Simulator

 Action Panel

The entrance of the user interface is as presented above. There are five actions in

the action panel. The first one is to make a new configuration, when it is clicked,

there will appear another setting window to adjust the key parameters of the

simulation. The second action is to edit the configuration, if a new configuration

has been made, the “Edit” action will allow adjusting the existing parameters

otherwise the “Edit” action will call the same setting window as “New” action but

with all the values stated as None.

The parameters needed are initial state, random walk number, upper limit range,

lower limit range and repeat time.

Figure 15. Activated Configuration Dialogue by New Action

Figure 16. Activated Configuration Dialogue by Edit Action

The third action “Run” is to run simulations, the fourth action “Stop” is to stop the

running, if needed, and the last action “Clear” is applied to clearing the graph.

 Tab Widget

The tab widget is a combination of different tabs which are used to show the

information of the simulation from a different point of view.

The first “Configuration” tab is a container which stores the configuration of the

simulation. If you change the parameters in action, the values here will also be

changed.

 33(188)

Figure 17. Configuration Tab

The second “Graph” tab is used to give a virtual representation of the random

walk. When the simulation runs, the graph will plot the simulation step by step. If

it is one dimensional plotting, then the x value of the simulation would be from

zero to the maximum hamming distance.

The third “Result” tab is a table which stores all the information of the simulation;

we can check the result for each walker’s each step. In this way, we would see the

how it changes over time. If it is the one-dimensional simulation, the numbers of

rows are the same as the walkers and if it is a two-dimensional walk simulation, it

shows twice the number of the walkers as in total there are two times the number

of walkers.

Figure 18. Two Dimensional Walk for Two Walkers.

The fourth “Statistics” tab is a tool to gather statistical information. It lists the

minimum value, maximum value, 10th percentile value, 90th percentile value,

mean value and the standard deviation for different stages of simulation and

different walkers.

Figure 19. Statistic Information of 10th and 90th Total Random Steps.

 Preferences

The preferences contain the settings for this algorithm simulator. In the current

situation, it only has a selection of dimension.

 35(188)

3.2.4 Use Case Diagram

Figure 20. the User Case Diagram for Random Walk Simulation.

3.2.5 Result of Testing

This section shows some testing of the random walk simulator with specific

parameters.

The following two groups of graphs show the result of simulations under different

situations. The x-axis and the y-axis do not have any unit as they only indicate

how big steps each random walker has walked. The first group of graphs shows

the undirected random walk and the second group shows the directed random

walk. Both groups contain the one-dimensional and two- dimensional situations.

User

New configuration

Edit configuration

Run simulation

Stop simulation

Clear graph

<<extends>>

Figure 21. 1D and 2D Undirected Random Walk
(X axies and Y axies are indicating the steps)

The undirected random walk basically means walking with a fair coin. During the

process of random walk, the possibility of going to any direction is uniformly

distributed. As a result, with a reasonable number of walks in a stage, the random

walk can access almost any direction.

The directed random walk is different from the undirected random walk.

From the view of stochastic process, directed random walk is influenced by a not-

evenly-distributed chance. According to the formula provided by E(S୬) =

	∑ E(Z୬)୬
୨ୀଵ , where E(S୬)means the expected value, the random walk, in this case,

will be directed to a certain place.

From the view of field theory, the directed random walk can be also applied with

an artificial potential field. These artificial potential fields will continually

influence the random walk by generating a force on each step, and this force is

generated according to the distance from goal to current position.

3.3 Parameters Monitoring Web Server

3.3.1 Introduction

During the development of the system, we also wanted to build the chain of

information from the FPGA to a web server so that we can monitor the parameters

in the embedded software.

Figure 22. 1D and 2D Directed Random Walk

(X axies and Y axies are indicating the steps)

 37(188)

3.3.2 Technical Introduction

 AJAX

AJAX (Asynchronous JavaScript and XML) is used for exchanging information

on dynamical pages. AJAX allows web pages to be updated asynchronously by

sending requests which contain a small amount of data to the server. The basic

form is by using JavaScript functions and HTTP methods.

 FPGA

FPGA (Field-programmable Gate Array) is an integrated circuit designed as

general hardware which can be configured latter. The language of making

configuration is named as hardware description language (HDL).

 SPI

Serial Peripheral Interface Bus (SPI) is a synchronous serial data link standard. It

was first announced by Motorola which operates in full duplex mode. The SPI

connection is normally used under the situation of communicating between two

different hardware.

 Highcharts

Highcharts is a JavaScript library designed for fast implementation of graphs on

the web pages. It provides rich APIs to generate an interactive, dynamic chart.

 JSP

Java Server Pages (JSP) is a technology which helps the software developer to

create dynamically generated web pages. The system is based on XML, HTML

etc. The back-end is taken care by Java programming language.

3.3.3 Motivations

There are two main motivations of making this web server service.

The first is that as we noticed that the Matlib’s 2012b version can automatically

generate code for embedded software based on the mathematical model, we would

like to use a monitoring service to test correctness of the mathematical models on

motor, etc.

The second reason is that in some case, we need to know what problem caused the

system to fail. According to the experiences, the failure can be caused by the

flaws lying in voltage control or current control functions of embedded software.

Therefore, a tracking mechanism is essential for locating the cause of different

failures.

3.3.4 System Structure

FPGA ARM Strategy Software

PC Robot

PC Server

Java Server Pages Web Pages

SPI SLIP

UDP, JSON

UDP, AJAX

 Software orHardware

Information Flow

 Communication Method

Running on

 39(188)

The system’s structure is as represented above. Firstly we collect the information

from FPGA. The information is mainly related to RPM (Revolutions per Minute)

of each wheel. After this, the information goes from the FPGA to ARM through

the SPI channel. Then the web_data_module.cpp of strategy software will take

care of receiving from ARM and send to a JSP server on another computer

through UPD broadcasting. The information at this stage is in the form of Google

protobuf. As soon as the information has been sent to the JSP server, the serve

stores the information in an instance and then wait it to be forwarded by quest

from browser.

3.3.5 User Interface

The user interface is designed for flexible usage of checking information from the

multi-robot system. We used highcharts, which is a JavaScript library, to develop

the interface. According to the number of parameters, we show the number of

charts on the graph. For each parameter, the appearances are identical to each

other. For any chart, the appearance is as follows:

Figure 23. Monitoring Graph

Figure 24. Slider of Monitoring Graph Monitoring

The upper side is a normal graph with interactive functions. The user can point the

cursor to the any point on the graph and it will show the information of the point

on the web page. The lower side is a drag window. The user can specify the range

that they would like to use for checking the status of the information

3.4 Vision Simulation Software (Python)

3.4.1 Introduction

The vision simulation software was initially designed for replacing the vision

system. The vision software is able to receive the information from the strategy

software and represent vividly on its simulation area. Moreover it can also allow

users to instantly modify the information of robots and send the status of robot to

strategy software. After we found the way of porting the simulation from

windows platform to Linux platform, this project has been suspended.

Nevertheless, it is still a reasonable platform for some other future implementation.

3.4.2 User Interface

The interface of vision simulation software is designed simply for representing the

robot on the graph.

 41(188)

Figure 25. User Interface of Vision Simulator

The simulator is similar to the C++ version of vision simulator, and the only

difference is that the broadcasting function has not been implemented.

Figure 26. Setting Panel and Options

When the setting panel is called, the software will be four options in the middle of

the screen. They are resume simulation, load simulation, options and exit

respectively. Among all of these selections, the “option” will show another

setting window to ask the user to specify the environment of the simulation.

3.4.3 Use Case Diagram

Figure 27. the User Case Diagram for Vision Simulation Software

3.5 Rapidly Random Exploring Tree Simulator (Python)

3.5.1 Introduction

This simulation software is used to virtualize the process of path-planning. At the

moment, it had only implemented the RRT algorithms

3.5.2 Technical Introduction

 Pygame

Pygame is a set of Python modules designed for writing games. Pygame adds

functionality on top of the excellent SDL library. This allows you to create fully

featured games and multimedia programs in the python language. Pygame is

highly portable and runs on nearly every platform and operating system. Pygame

itself has been downloaded millions of times, and has had millions of visits to its

website. [6]

 NumPy

User

Drag & Drop Robot

F1 (Extra Panel)

Resume

Load Configuration

Options
Exit

 43(188)

NumPy is the fundamental package for scientific computing with Python. It

contains among other things:

 a powerful N-dimensional array object

 sophisticated (broadcasting) functions

 tools for integrating C/C++ and Fortran code

 useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined. This

allows NumPy to seamlessly and speedily integrate with a wide variety of

databases. [7]

 SciPy

SciPy (pronounced "Sigh Pie") is open-source software for mathematics, science,

and engineering. It is also the name of a very popular conference on scientific

programming with Python. The SciPy library depends on NumPy, which provides

convenient and fast N-dimensional array manipulation. The SciPy library is built

to work with NumPy arrays, and provides many user-friendly and efficient

numerical routines such as routines for numerical integration and optimization.

Together, they run on all popular operating systems, are quick to install, and are

free of charge. NumPy and SciPy are easy to use, but powerful enough to be

depended upon by some of the world's leading scientists and engineers. [8]

3.5.3 Advantages and Disadvantages

Comparing with the C++ version that we built before, this python version is faster

on the development. The implementation has no more than 100 lines of code for

one algorithm. Therefore it is very suitable for fast prototyping. When you have

an interesting idea, you can immediately build a system to test.

It also has some disadvantages. The most noticeable is that it cannot be

implemented for a situation which needs fast running speed. The reason lies in

that the APIs in python are sufficient, but they are not transparent to the users. In

this case, it is very hard to arrange a test by fixing other factors which may

influence the speed.

3.5.4 The Test on RRT

The following graph shows the how the simulator simulates the process of RRT

algorithm.

The maximum point on the graph has been set to 5000. The following pictures

have been recorded at four different moments.

Figure 28. Four Different Moments of RRT Expanding Process

 45(188)

3.6 Path-planning Simulator

3.6.1 Introduction

This simulation software is used to virtualize the process of path-planning.

Comparing with the python RRT simulator, this C++ simulator is more suitable to

the serious testing purpose. As we use the standard libraries of Qt to develop this

software, the same data structure and implementation mechanisms in Qt can

enable us to give detailed analysis of the different algorithms.

3.6.2 Technical Introduction

 Qt Creator

Qt Creator is a cross-platform integrated development environment (IDE) tailored

to the needs of Qt developers. It provides:

 C++ and JavaScript code editor

 Integrated UI designer

 Project and build management tools

 gdb and CDB debuggers

 Support for version control

 Simulator for mobile UIs

 Support for desktop and mobile targets

[9]

3.6.3 Implemented Algorithms

There are two algorithms have been implemented. The first one is definitely the

most important algorithm RRT. Then we have implemented the RRT start

algorithm developed by two MIT professors - Sertac Karam and Emilio Frazzoli.

We actually have a list of algorithms to be hopefully implemented later. These

algorithms can be very suitable for studying purpose in the field of sampling-

based path-planning algorithms.

Figure 29. Possible Set of Algorithms to be implemented

3.6.4 User Interface

Figure 30. the Unser Interface of RRT Testing

Figure 31. the User Interface of RRT star Testing

 47(188)

4 STRATEGY SOFTWARE

4.1 Introduction of Software

4.1.1 General Introduction

Strategy software is AI software. It offers a set of information management

mechanisms, utilities and services to help a multi-robot system to automatically

self-organize.

Structure of strategy software was designed for smooth and stable computation on

Linux platform. Based on the previous researches, the Linux platform can provide

more accurate time functions. This property of the Linux platform is essential for

a system that is sensitive to communicational environment.

In our robot soccer project, the strategy software needs to communicate with a

high speed camera. This condition requires the strategy software to make a

decision within 1/60 second. The instability of the strategy software, which we

previously built on windows, leaded us to search for a solution to ensure that the

time error is limited to a small value.

During the period of building this version of software, we have to admit that the

work of the previous developer actually influenced us a lot. After checking several

papers and talking to some experts, we decided to develop the new version of

strategy software based on technical tools that we know.

4.1.2 Main Motivations

There are three main motivations for designing this software.

The first motivations what previously mentioned - timing issues. This motivation

is probably the most important reason.

The second one is to test system can be as similar as the human brain’s structure.

In fact, the strategy software was developed according to the structure of how

human process the information in an intellective way. When we wanted to design

a structure to show how I can reduce the coupling of each module, the way of how

human intelligence functions gave me a hint. After I considered the connection

between the requirements of the program and natural intelligence, we decided to

organize the software separately as in the process of human thinking.

The third one is to build a platform which can really test our algorithms on. The

performance of planning algorithm, navigation algorithm and controller are

essential to the evaluation of the strategy software. Although the most of the

algorithms have been de facto since almost they were first invented, there are still

several problems to notice when applying them to multi-robot system.

4.1.3 Development Process

In the 1960s, the software was first called as art-craft by Knuth. Nowadays, we

cannot simply consider designing software as a person’s heroism. In fact, we need

to establish an engineering way crafting a complicated software patterns.

According to the classic methodology of software engineering, there are several

ways to control the process of software development. A typical OOP (object

oriented programming) way is stated as follows:

Figure 32. the Development Process of Object-oriented Programming [10]

 49(188)

Although we have followed the proper development process, the real situation is

different. The fact turned out iterative and incremental development is more

suitable than the traditional process (waterfall model) as the most of the time we

are not clear about the whole requirements.

At every stage, we had to face the fact that we need to design a small part of the

software and analyses of the needs. And then after that we had to focus on

implementing the project and communication. This whole process helped us to go

through the project quickly and effectively.

Figure 33. the Iterative Development Process [11]

A typical example is that we formed a small team to develop a communication

channel function in the software. And then after that we worked as tight as we can,

communicated as frequently as we can and optimized the APIs (application

programming interface) as we can. Finally the outcome software is quite sharp

and the time of development was not long at all.

As a consequence, I would like to suggest the people who work or will be

working on the project to try this method. Especially this method is strongly

emphasized by the software engineering community under the nowadays’

condition.

4.1.4 System Structure Design

1. File Hierarchical Structure

As previously mentioned, the file structure follows the pattern of the nature

intelligence.

From the neurobiology, cerebrum contains four main areas frontal, temporal,

occipital, and parietal which are roughly recognized as language, memory,

and voice and vision functional centre.

The design of the software, to some extent, follows the structure of natural

intelligence. The following is the relationship between the file clusters of the

software:

Figure 34. Modules of Strategy Software

 51(188)

4.1.5 Logic Structure Design

In this system there are several server-client models to consider about. No matter

whether there is a callback function offered by the OS (operating system), it is

better to use concurrent structure to deal with the message receiving and sending.

Although the concurrent programming includes process, I/O (input/output)

multiplexing and threading, however, in this thesis, the concurrent programming

here particularly means threading.

Strongly influenced by a philosophy that brain’s different parts processing

information interactively, the software, on one hand, is designed differently from

the design of the file structure, on another hand, the functions are still limited to

their physical locations. (It is just like the brain, isn’t it?).

The relationships between the threads are shown below:

Figure 35. Logic Structure of Strategy Software

The code example is shown below:

Figure 36. Code Example of Thread Implementation

As shown in the previous graph, a concurrent programming method is applied to

the development of the software.

 Information Structure Design

The previous section describes the structure picture of the software. This section

introduces the general information flow between modules. Latter we will talk

about the information protocol and data structure.

The whole system has two physical media. One of the media is the air and another

one is cable. These two channels formed communication infrastructure of the

strategy software. And after that, we established protocols based on existing

technology and then specified them according to our need.

4.1.6 Guide to Thesis

The previous section describes the structure of the software from different points

of view including the structure of file orientation, the structure of the logic

orientation and the information structure. The following sections will first

introduce the system based on following orders:

// various threading in header file

StrategyThread* strategy_thread_;

VisionSendThread* vision_send_thread_;

VisionReceiveThread* vision_receive_thread_;

RadioSendThread* radio_send_thread_;

RadioReceiveThread* radio_receive_thread0_;

RadioReceiveThread* radio_receive_thread1_;

RefboxReceiveThread* refbox_receive_thread_;

NetWebserverSendThread* net_webserver_send_thread_;

 53(188)

1. Communication Data Type

2. Interface Module

3. Wireless Module

4. Internet Module

5. Vision Module

6. Control Hub Module

4.2 Communication Data Type

4.2.1 Introduction

The information is needed for communication. No matter it is for sending

calculated information or for monitoring, it can always be proven to be subtle in

the system as they can ensure that the time of transformation is limited to a small

range.

4.2.2 Technical Introduction

 JSON

JSON (JavaScript Object Notation) is a text-based open standard for human-

readable information exchange. It uses several data structures in JavaScript

language to represent relationships between different object. But in reality, it is

suitable for many languages. Different language has different libraries to parse the

structure and almost all APIs are efficient and developer-friendly. Comparing

with XML (Extensible Markup Language), it is faster and more readable. In C++,

the parser library we used QJson and in Java, we used Gson.

JSON's basic types are:

Number: (double precision floating-point format in JavaScript, generally depends

on implementation)

String: (double-quoted Unicode, with backslash escaping)

Boolean: (true or false)

Array: (an ordered sequence of values, comma-separated and enclosed in square

brackets; the values do not need to be of the same type)

Object: (an unordered collection of key: value pairs with the ':' character

separating the key and the value, comma-separated and enclosed in curly braces;

the keys must be strings and should be distinct from each other)

Null: (empty)

[12]

 QJson

QJson is a Qt-based library that maps JSON data to QVariant objects.

JSON arrays will be mapped to QVariantList instances, while JSON's objects will

be mapped to QVariantMap. [13]

 Gson

Gson is a Java library that can be used to convert Java Objects into their JSON

representation. It can also be used to convert a JSON string to an equivalent Java

object. Gson can work with arbitrary Java objects including pre-existing objects

that you do not have source-code of. [14]

 Google Protocol Buffer

GoogleProtocol Buffer (In short, Google protobuf) is a standard introduced by

Google. As a binary coded communication method, it is much faster than any

readable format. But it is also a little bit difficult to understand. The RPC (remote

procedure call) communications between different agents are critical and as a

result of many researches and selections, we found it is very convenient to let

several software agents (vision software, strategy software and reference box

software) to interchange information.

 55(188)

The Google protobuf stores information in a .proto file and it uses a separate

compile to change the .proto file into a specified language. (E.g. C++, Java and

Python)

When it runs, the special compiler provides the setters and getters for the data

specified in .proto file. When you import the auto-generated file which includes

API, you can use the setters and getters accordingly.

 SLIP

SLIP (serial line inter protocol) is protocol first used to transfer information

through the serial port using internet protocol. In this project, we use it as a secure

and error-free way of transforming information from the robot.

There are four bytes which indicating different meanings of information in SLIP.

A typical configuration could be END, ESC, ESC_END and ESC_ESC. And

normally the values of these four kinds of bytes are 0300, 0333, 0334 and 0335

accordingly. [15]

According to the rule, we should first send an initial END character to flush out

any data that may have accumulated in the receiver due to line noise. Then for

each byte in the packet, send the appropriate character sequence, if it's the same

code as an END character, we send a special two character code so as not to make

the receiver think we sent an END, if it's the same code as an ESC character, we

send a special two character code so as not to make the receiver think we sent an

ESC. Otherwise, we just send the character. At the end, we send END to tell the

receiver that we're done sending the packet. For the improvement, we add a CRC

check after all the bytes.

The structure of SLIP in C is listed below:

#define END 0300/*c0*/
/*indicates byte stuffing*/
#define ESC 0333/*0xdb*/
/*ESC ESC_END means END data byte*/
#define ESC_END 0334/*0xdc*/
/*ESC ESC_ESC means ESC data byte*/

#define ESC_ESC 0335/*0xdd*/

 Transparent Protocol

The transparent protocol is the first protocol that we used to communicate with

the robot. The data structure is comparatively simple and easy to understand. The

encapsulation of the package starts with hex number 0x7e and also ends with the

same number. Between these two numbers, the information of robot is contained.

The other part of this information structure is robot info, and this part is

implemented by using a struct in C/C++ language. The following graphs show the

detail of information contained in the codes.

Code Example:

typedef struct
{
int index;
int x_velocity;
int y_velocity;
float total_velocity;
int kick;
int dribble;
int chipkick;
int rotate_velocity;
 RobotType robot_type;
}RobotParamters;

The total length of the package is determined by the number of the robots in a

team. When a robot receives the information wirelessly, it will filter out the

information which does not correspond to its robot ID. After that process, the

embedded software on the robot will pick each piece of information out from the

data package.

 DHCP

Dynamic Host Cogeneration Protocol (DHCP) is a network protocol which is

used to configure the device on a network. This protocol is used in the project as

Robot Info 7e 7e Robot Info 7e 7e …….

 57(188)

the second version protocol for sending the information to robot including the

instant velocity, instant direction and instant.

 UDP

User Datagram Protocol (UDP) is widely used unidirectional transmission

protocol. It is a core function of Internet Protocol (IP) suit, and it is a very useful

protocol if we want to save the time for transmission. In fact, as in our project,

many time-critical applications use the UDP for providing fast broadcasting

service.

 DECT

Digital Enhanced Cordless Telecommunications (DECT) is a standard used in

digital telecommunication system. Unlike the GSM standards, it does not specify

any internal aspects of the fixed network itself. Connectivity to the fixed network

(which may be of many different kinds) is done through a base station or "Radio

Fixed Part" to terminate the radio link, and a gateway to connect calls to the fixed

network.

4.2.3 Introduction to Channels

The channels include the air and the cable. Both ways are essential to this system.

Wireless is chosen because the Multi-robot system needs to communicate with the

robot and the cable is used to receive information from the vision software which

is sensitive and time critical.

The relationships between the media and protocol structures are listed below:

4.2.4 Wireless Channel

Figure 37. the Communication Structure of Wireless Channel

The structure of wireless is designed for fast communication between robots and

the server. The sent information is the command for the robots. Here we introduce

the graph term by term.

The first, second and third terms, which has marks ,  and  on the graph

respectively, represent the connection from robot to strategy software using SLIP

(Serial Line Internet Protocol).

The SLIP protocol is used here to ensure the transformation to be efficient and

almost error free. The original idea was to transfer the files according to the

internet protocol through serial lines. For the information of original specification,

please see the appendix.

 59(188)

By considering the hardware configurations, we followed the idea of

encapsulation of the SLIP protocol in this project.

Figure 38. Structure of SLIP Structure [16]

Both parsers in the ARM code and in strategy software use automata to read

through the information package and encode the information into the command

using specified bytes with a CRC (cyclic redundancy check). As a consequence,

we can determine which information is sent from a certain robot.

The fourth part is the showing the physical layer of the information transformation.

For convenience, we used DECT (digital enhanced cordless telecommunications)

structure to find a solution.

DECT is firstly originated in Europe. And now it has become a universal

standard replacing the earlier standards, such as 900 MHz CT1 and CT2. The

detailed description can be found in the appendix.

The fifth, sixth, seventh part shows two kinds of protocol we used to implement

the connection from the computer to the robot. During the development process,

there were two protocols considered.

The simpler one is transparent protocol. In this protocol, we assemble all the

information as a serial command line. After sending through the serial port, when

all robots received the command, each robot selects the particular part of the

information that it needs and, at the same time, filters all redundant information.

The detailed article about this protocol can be found in the appendix.

Another one is the DHCP (dynamic host configuration protocol). According to the

description of the standards, it is originally used to configure devices which are

connected to a network. We noticed the coding scheme is pretty suitable for our

project. We implemented this protocol in the strategy software as well. The

detailed article about this protocol can be found in the appendix.

 61(188)

4.2.5 Internet Channel

Figure 39. the Communication Structure of Wireless Channel

The connection between the strategy software and broadcast server, the strategy

software and vision software, the strategy software and the reference server are

much more difficult than the wireless connection.

The first reason is that the internet connection has more layers than the wireless

connection layers. This means the developers should pay more attentions on the

protocols than algorithms. The second reason is that although the structures from

physical layer to the transport layer are the same, the protocols in application

layers are different. We will describe all of them individually in following context.

The label 5,6 and 7 represent the connection from strategy software to broadcast

server is built up using UDP protocol. After receiving information from the robots,

a thread NetWebserverSendThread will forward the information to a JSP server.

As a consequence, we will be able to monitor the statistics not only on the web

page but also on the mobile phone.

In the connection, the information was first collected by the ARM embedded

software. The structure is as follows:

Code example

Figure 40. the Code Example of Json Structure

Then the protocol of the second side of the application layer is JSON. But the

information that needs to be transformed contains following information in Java:

Code example

Figure 41. the Code Example of Data Type in Java

Based on the definition of JSON structure, we can transform previous parameters

into following JSON code:

Code example

struct {
unsigned short cell_voltage
unsigned short capacitor_voltage
unsigned short kicking_voltage
unsigned short current_level[5];
unsigned int number_of_package
}robot_running_info

DOUBLE cell_voltage
DOUBLE capacitor_voltage
DOUBLE kicking_voltage
DOUBLE current_level
DOUBLE number_of_package

 63(188)

Figure 42. the Code Example of AJAX JavaScript Function

The label 1, 2 and 3 represent the information flaw from the vision server and

reference box to the strategy software. Although the UDP is the transport layer

protocol, the application layer uses Googleprotobuf as the container to store the

information. The basic idea is to assure the efficiency of the communication.

In the.proto file, the Google protobuf specifies the information sent from the

vision system to the strategy software. It is assembled from parts; the first part is

SSL_GeometryFieldSize which specifies the size of the field, the second part

SSL_GeometryCameraCalibration is used for storing information of the

calibration parameters. The third part called SSL_GeometryData is used to

encapsulate the previous two parts into one for convenience of transforming. The

parameters contained in the data are very self-illustrative. The detailed structure is

listed below:

Code example

message SSL_GeometryFieldSize {
required int32 line_width = 1;
required int32 field_length = 2;
required int32 field_width = 3;
required int32 boundary_width = 4;
required int32 referee_width = 5;
required int32 goal_width = 6;
required int32 goal_depth = 7;
required int32 goal_wall_width = 8;
required int32 center_circle_radius = 9;
required int32 defense_radius = 10;
required int32 defense_stretch = 11;
required int32 free_kick_from_defense_dist = 12;
required int32 penalty_spot_from_field_line_dist = 13;
required int32 penalty_line_from_spot_dist = 14;
}

message SSL_GeometryCameraCalibration {
required uint32 camera_id = 1;
required float focal_length = 2;
required float principal_point_x = 3;
required float principal_point_y = 4;
required float distortion = 5;
required float q0 = 6;
required float q1 = 7;
required float q2 = 8;
required float q3 = 9;
required float tx = 10;
required float ty = 11;
required float tz = 12;
optional float derived_camera_world_tx = 13;
optional float derived_camera_world_ty = 14;
optional float derived_camera_world_tz = 15;
}

message SSL_GeometryData {
required SSL_GeometryFieldSize field = 1;
repeated SSL_GeometryCameraCalibration calib = 2;
}

 65(188)

Figure 43. the Code Example of Vision Information Exchange Structure

4.3 Interface Module

4.3.1 Introduction

The appearance of the user interface was designed to have better simulation and

control interaction. Besides the menu, there are two parts in the window. The first

part is the control panel which has buttons and group boxes for each selection.

Figure 44. the User Interface of Strategy Software

The control panel is separated into five parts. From the graph we can see that they

are general, human, computer, log and referee. The first section “general” is

taking care of the selection of game status, control source, colour selection, side

selection and robot selection. The second section “human” specifies the robot

human can control. The third section “computer” specifies the mode and strategy

of the strategy software. The fourth section specifies the log information of the

strategy software. Finally the last section specifies the information sent from the

referee.

The simulated field is a place in which robots and balls can be represented in the

window. When the strategy software is running, the information sent from the

vision software will be analysed and visualized in this field. The robots will have

different colour as either red or blue and the ball will be yellow. All the objects in

the field can be selected.

By combining these two main areas, the strategy software can control and have a

feedback view of the system. This ensures the system to have strong robustness.

Technical introduction:

 Qt Designer

The user interface was designed using the Qt designer. Qt designer is Qt’s tool for

designing and building graphical interface. It contains a full tool chain of

developing interfaces under Qt’s environment.

 Qt Style Sheet

Qt Style Sheets (QSS) are a powerful mechanism that allows people to customize

the appearance of widgets, in addition to what is already possible by subclassing

QStyle. The concepts, terminology, and syntax of Qt Style Sheets are heavily

inspired by HTML Cascading Style Sheets (CSS) but adapted to the world of

widgets.

 67(188)

4.3.2 File Structure

Figure 45. the File Structure of User Interface Module

Among all folders are contained in the user interface module. The field_related

folder contains specification for all items on the field. The ui_setting folder

contains the setting window of the strategy software. In the latter sections, each

folder will be introduced in detail.

4.3.3 Appearance Design

The appearance has been decided for functions of control the system. As

previously introduced, the whole window has been separated into two main

sections. The control panel has five sub tabs and simulation panel has its own

component. The function of each part will be introduced in the following content.

 General

This section is designed for general control of the system. By including four group

boxes, the most convenient actions are on this page. The first control box includes

start, pause and stop. With these functions, the strategy software can decide the

state of the system. The second box specifies the control source of the system, and

it can be computer (Artificial intelligence), Keyboard and Joystick. In the third

group box, the user can specify which side he or she wants to control. If blue is

selected, the strategy software is going to control the blue team and vice versa. In

the fourth box, the side of the configuration is specified. If upside is selected,

robots in the field will try to attack the upper side goal and vice versa. The last

two group boxes are used for determining which robots are needed for

competition. The strategy software will try to control all checked robots in these

group boxes with colour specified above.

Figure 46. General Tab of Strategy Software

 Human

This section specifies that how should human control the robot. The implemented

functions include keyboard control, joystick control and kinect control. At this

moment, it only has the function of specifying which particular robot the user

would like to control.

 69(188)

Figure 47. Human Tab of Strategy Software

 Computer

This section specifies which strategy the software would use for the controlling

multi-robot system. The first group box in the demo asks the user to select which

mode the user would like the strategy to run. Run strategy mode means the user

would like strategy software to run as in a competition and the test strategy mode

means the user would like to test one particular skill, tactic or play for debugging

purpose. The second group box contains different tests categorized in different

sections. The last group box shows the current status of the game field so that the

user can get the basic information.

Figure 47. Computer Tab of Strategy Software

 Log

The log field contains the output of the strategy software. The first group box

contains the record of the goals of each team and also the time left for the game.

The second group box contains the output of whole software, and normally the

information is mainly related to debugging.

 71(188)

Figure 48. Log Tab of Strategy Software

The log section specifies the information on the field. No matter it is about the

score or about the remaining time, the information will be represented in the table.

 Referee

The section shows the status of the referee box and also sometimes used for

simulating the function of reference box. The first group box contains four

different selections namely disable, start, stop and auto. If the auto is selected, the

strategy software box will act according to the command sent by the reference box

otherwise it will act according to what is selected on the panel.

Figure 49.Referee Tab of Strategy Software

4.3.4 User Interface Style

The original user interface is designed in Qt designer; and the style is old-

fashioned comparing with our purpose. As a result, we used QSS to redesign the

appearance of the software. The detailed QSS code is in the appendix.

 Simulation Panel

The simulation panel is a place where we store and visualizes the information on

the field. The whole panel was drawn by the drawing tools provided by the Qt tool

chain.

Figure 48. the Simulated Robots on Simulation Panel

 73(188)

In the folder called field_related, there are several files which are used to

represent the information of the field. Among all these files

field_global_function.cpp defines the whole configuration of the simulation panel.

The two basicfilesarefield_robot.cpp and ball.cpp. These files contain a robot

class, a ball class and their different properties including the shapes, confidence

bar etc. These two classes both extend a class called FieldItem defined in

field_item.cpp. Besides what I mentioned, there also exist two files named as

field_scene.cpp, field_view.cpp. Each file defines a class, which has a similar

name to the file’s name, to represent a possible instance. In fact, the FieldView

class defined in field_view.cpp contains FieldScene class defined in

field_scene.cpp. To illustrate the idea, the visualized relationships of all classes

are represented in following graph:

FieldScene FieldView

FieldRobot FieldBall

FieldItem FieldScene
Extend Extend

Contains Contains

Contains

Contains

4.3.5 Logic Structure

The logic of the structure was implemented in a file called

strategy_control_window.cpp. In the constructor of class, the class sets the

parameters of the whole project. The following code shows the content in the

constructor:

Code example:

Figure 49. the Code Example of Setup Step

In the previous example code, the contractor establishes the logic structures step

by step. The name of each step is very demonstrative.

4.3.6 Control and Animation

The connection between the animation and the control panel is QT’s signal/slot

mechanism. Different actions change the state of the field. For example, the radio

buttons of selecting the robot influence the number of the robots in the field.

Each action you make on the control panel will firstly be captured by the program

and then stored in the world class. Then the simulation panel, which is in the main

thread, will continuously acquire the world class for information. As soon as it

receives the information, it puts the animated effect onto the objects in the field

including the direction, confidence of belief, the number of robots etc.

TimerInitialization(); // initialize the timer
SetupWindows(); // allocate the memories and establishUI .
SetupMode(); // set either thread mode or sequential mode of software
SetupThread(); // setup and initialize each thread
SetupWindowsComponent(); // set default status of windows component
SetupGraphicsView(); // setup the status of graphic simulator
SetupGUIConnection(); // setup the signal-slot connection
SetupAutoSelection(); // setup the debug connection
SetupWindowProperties(); // setup the properties of widow e.g. title
StartTimer(); // start the timer

 75(188)

4.4 Wireless Module

4.4.1 Introduction

The wireless module was implemented for communication with multi-robot

system. For communicational efficiency, different protocols were all included in

this module together. There are two reasons for doing this, the first reason is all

the wireless protocols need to use the RS232 port for sending signals to the

wireless hardware, the second reason is that if we offer a standardized API to the

main class, and then it becomes easier to manage the resources. Nevertheless, the

resources need to be controlled by different threads, and only by designing a

simple mechanism, the deadlock avoidance can be achieved.

4.4.2 File Structure

Figure 50. File Structure of Wireless Module

From the picture, we can see the wireless module is quite clear as it does not

contain any sub folders.

4.4.3 Logic Structure

The main file which provides most of the APIs is serial_server.cpp. It contains a

class called SerialServer, and this class includes all header files of other protocols.

Among all files, the port_operation.cpp manages the distribution of serial port, the

SLIP_operation.cpp defines the operation related SLIP protocol, the

DECT_operation.cpp defines the protocol related to DECT, and

transparent_operation.cpp determines the use of transparent protocol.

Figure 51. Structure of Wireless Module

As we can see from the graph, although every individual protocol class has the

ability to control the serial port, only the SerialServer can really activate the

hardware. In the constructor of SerialServer, the method firstly opens the port and

chooses different protocol accordingly. When the main program wants to switch

from one protocol to another one, it destroys the instance of the previous class and

then make a new instance of the second class.

4.5 Internet Module

4.5.1 Introduction

As introduced in the section of the information flow structure, the internet module

takes care of the communication channel. The main goals of this module are to

establish the stable and fast connection with simulation software, vision software,

Tim
e

sequence
ofactivating

m
ain

m
ethods

in
class

 77(188)

reference box and the monitoring server. In this case, we have to consider both

receiver program and sender program for different connection scheme.

4.5.2 File Structure

The file structure of internet module is as follows:

Figure 52. File Structure of Internet Module

Among all the files and directories, the message_serialization folder contains all

the files which are used to change the information from text format to binary

format. Nevertheless, most of files are automatically generated by Google

protobuf. In the radio_client_out_files folder, we include one specific version of

Google protobuf to build this software and also a bash script which can

automatically install specific version of Google protobuf on a target computer.

The thread_tools folder contains data structures of timer which is critical to the

simulation process of the field. The file field_timer.cpp in this folder defines

several global methods to control the flow of the timer.

The web_data_model folder contains the files contributed to the communication

between web monitoring system and strategy software. For example, in this class,

methods for easier usage of JSON protocol are included.

The rest of files are mainly related to the communication with simulation software,

vision software and reference box. Followed by the standard of establishing a

communication under Qt environment, all of them have similar implementation,

which is making a subclass of QThread. No matter whether it is a receiver

program or a sender program, in the run loop (the main loop of a thread), it tries to

acquire or receive information from the operating system.

4.5.3 Information Process Method

The receiver and sender program for each protocol are both using pulling method

to either receive from or send to a fixed IP address. This method is less efficient,

however the Linux operating system does not provide an efficient callback

method to pass the information to our application. As a consequence, we inherited

the Qt’s thread class to continuously monitor a certain port on computer. In this

way, the information can be also found and transferred.

4.5.4 Logic Structure

The logic structure of internet module is illustrative. Each file in the class

establishes a thread and exchange with the world class.

 79(188)

Figure 53. Logic Structure of Internet Module

4.6 Control Hub Module

4.6.1 Introduction

The control hub module is the most significant module in this strategy software. It

monitors the environment of the field, takes all information to make a logical

deduction, and makes decision for each action of each robot within a very short

time interval. It is also the essential core of making a sequence of actions to

enable the robot to move by itself. Besides controlling a robot automatically, this

module also specifies several ways for human to control the robot.

Technical Introduction:

 Freenect

The freenect is C++ library designed for the free control of Kinect. It has several

APIs to activate the Kinect and adjust the functionality of Kinect.

 TurboC

TurboC is a C library. With the APIs it provides, people can develop graphical

applications quickly. It is developed by Ncurses and Xlibs library under Unix

environment. It is compatible with the GUN gcc project.

4.6.2 File Structure

Figure 54. Folder Structure of Control Hub Module

The first level of control_hub module contains three parts. To begin with, the

most important part in the folder is computer_control. In this folder, we included

all the files which are related to artificial intelligence according to the hierarchical

structure of strategy. The second folder is for debugging process. We make unit

test and implement new algorithms in this folder. The third folder includes the

files for human to control. In a way, we also can say files in this folder

implemented the interface of human-computer interaction.

4.6.2.1 Computer Control

Figure 57. Structure of Computer Control

The structure of computer control is heavily inspired by the functionality of the

brain. There are three parts shown as three folders in the graph. The cerebellum is

 81(188)

the Latin name for small brain which enables people to adjust the balance when

moving around. The second part intelligence and the third part knowledge_base

together represent the cerebrum, which is ‘the big brain’ in English.

1. Cerebellum

In current version, the cerebellum is not implemented fully. Its function was

implemented in the intelligence folder. The future plan, however, is to place the

algorithms related to intelligent avoidance to the cerebellum.

2. Intelligence

Figure 58. File Structure of Intelligence

The intelligence folder contains three folders. They are item_property_executor,

strategy_executor and world_analyzer individually. The item_property_executor

folder is responsible for tracking and analysing the information from the vision

and then assigns all this information to an instance called world. The “world” is a

class which stores all the information. It will be introduced in detail later. The

folder strategy_executor is the most advanced part in this software. It makes the

strategy for the multi-robot system. It is also the main part of the strategy thread.

The world_analyzer is another import part of interacting with the “world” class.

According to our plan, it takes care of the interaction between the strategy

software and human. When human changes the property of the field, not only by

using the control panel but also by editing the configuration file, this part will

automatically assign all the properties to “world” class.

3. Knowledge_base

Figure 59. File Structure of knowledge_base

The knowledge_base folder is a place where we store all the information of field.

The concrete methods are to use a class called world to describe the state of the

field. This class includes the setters and getters of all the parameters, the obstacle

detection algorithm and the timer settings.

The concept of this folder is an abstraction of memory of human, and in the folder,

the strategy software stores the information obtained from the environment.

4.6.2.2 Human Control

Figure 55. File Structure of Human Control

Three kinds of method were implemented in the human control folder. We can use

joystick, keyboard or the kinect to control the individual robot.

 83(188)

4.6.2.3 Knowledge Base

Figure 56. File Structure of knowledge_base

The knowledge base is a place to store all the information. The concept is

inherited from expert system. But this part did not really contain the inference

system or pre-programmed knowledge base structure. It can be an implementation

in the future.

Besides the world class which includes the information of the field, this

knowledge base also contains the basic idea of obstacle. By adopting this concept

of obstacle, the world can treat robots, walls or even ball as obstacles under

different situation.

4.6.3 Logic Structure

4.6.3.1 Glance

The logic structure is more difficult than it seems. The following graphs show the

basic ideas of control hub module.

Figure 57. Logic Structure of Strategy Implementation

The progress is similar to the description in the graph. When the constructor of

main window firstly activated the strategy thread, the strategy thread will begin to

try to detect which play, tactic and skill belong to current settings. After going

through the strategic structure, it will focus on several basic issues.

The first issue is to navigate between several obstacles. The next thing to consider

about is how we can find a valid path to go to our goal, and the last thing to

consider is to control the motion of the robot so that it can move according to the

plan. All these algorithms will be introduced in details later.

Here we will introduce the strategy structure first.

4.6.3.2 First Cluster-Strategy Architecture

The STP (skill, tactic, play) architecture was firstly mentioned by a paper made by

Carnegie Mellon University. The author, James Bruce was the researcher in the

RoboCup team. According to what he described in the paper:

Strategy

Architechture
Path-planning

World
Strategy Thread

Play

Tactic

Skill

Nevigation

go

Motion

Control

AABB tree

RRT
ERRT
BRRT

Bang Bang
Ladder

 85(188)

“The key component of STP is the division between single robot behaviour and

team behaviour. In short, team behaviour results from executing a coordinated

sequence of single robot behaviours for each team member.”

As a consequence, this way of designing strategy would satisfy this complicated,

dynamic and adversarial environment.

Figure 58. Structure of First Cluster [17]

4.6.3.3 Second Cluster-From Skill to Motion

The skill defines sequences of actions to make sure that the robot can move

according to what has been planned. Each skill class contains the necessary

methods including load configuration, navigate, call the planner and control

motion.

In each action, the strategy software would input the information received and

analysed from the vision system and then get the processed information from

different class.

Play

Library

Paly Selection

Play Excution

Play Evaluation

 CM Vision

High-level Vision

Tracking

World Module

Tactics

Skills

Navigation

Motion Control

Radio Server

Serve Loop

Camera

Radio

For now, because the functionalities between skill and tactic are not so clear, the

skill is implemented as a tactic. The structure of calling from skill to robot is as

follows:

Figure 59. Structure of First Cluster

The previous graph illustrates how the strategy threads call from the play to skill

then to the robot. The first element in the graph represents the strategy thread. It

first gets information from the user interface and when the world state has been

set to active, it will try to call the run method in specific tactic class. If this tactic

has overwritten the run method in the base tactic class, then the strategy thread

will call the method directly, otherwise, it will still to call the common method in

the RobotTatic class. After entering the process of dealing with the information,

the RobotTactic will make a selection based on the whether we should warm up or

compete in the field. Then the class which represents the robot in the field will

take the responsibility to make intelligent cooperation, aka navigation. The

5

RobotTactic::Run Various Tatics::Run

Strategy

Run

World:Robot[i]::Run

RobotTactic::MakeCommand

World:Robot[i]::navi_to_point

World.path[i]::Plan

World:Robot[i]::go_to_point

1

7

3

6

2

Tactic

Virtual Run

4

8

9

 87(188)

navigation algorithm will give a trajectory as the feedback and based on this

trajectory and the information about obstacles, the planner will form a sequence of

points to represent the path. Finally, the go_to_point method will send all the

information through the internet.

4.6.4 Problem Definition

This section defines the problems of motion planning and cooperative safety as

addressed in this thesis. The major notation used for planning and safety are

given, along with the definitions of general terms for this whole strategy software

development. It also pointed out the complex factors for the algorithms mentioned

in the following content.

4.6.4.1 Navigation

Nathaniel Bowditsh firstly defines the navigation as a field of study that focuses

on the process of monitoring and controlling the movement of a craft from one

place to another. In order to form a specification for the navigation, a more formal

definition is adopted.

In fact, for any mobile device, or multi-mobile system, the main purpose is to

avoid dangerous situations, for example, the collision, the hot temperature and the

deep hole.

5 VISION SYSTEM AND KALMAN FILTER

5.1 Introduction of SSL Vision System

In Chapter 1.1, we have briefly introduced the background of RoboCup SSL

competition. It can be seen that RoboCup SSL field is supervised by a camera

which is placed on top of the field.

All the in-field soccer robots can be individually distinguished by different colour

patterns present on top of each robot.

Figure 60. The Standard Colour Assignments for RoboCup SSL 2012 [18] [19]

The Figure 10 shows the standard colour assignments for RoboCup SSL 2012.

Among those 12 patterns, ID 0 to ID 7 is advisable to be used due to stability.

Generally speaking, the two adversarial teams are separately named “blue team”

and “yellow team”. It can be observed from these patterns that the colour of the

centre mark of a certain robot can identify itself to its team. The rest of four colour

marks which surround the centre mark are used to identify different robot ids and

orientation in a team.

The SSL Vision System is a powerful shared vision system developed by

volunteers from Carnegie Mellon University. By calibrating the overhead cameras

to supervise the whole field and setting up the right team pattern image marker

and parameters, SSL Vision System is able to transmit frames of robots and the

ball to the vision server on every communication cycle. Then SSL Vision System

 89(188)

will decode the received frame information into standardized parameters like

position, and transmits the decoded information to our strategy server by using

Google Protocol Buffer.

Figure 61. Screenshot of SSL Vision System [19]

5.2 Introduction of Google Protocol Buffers

Google Protocol Buffer provides a flexible and efficient way to serialize

structured data. Compared with an XML file, Google Protocol Buffer is much

simpler, smaller, faster, less ambiguous and more user-friendly.

All data flows related to the SSL - Vision System are encoded with Google

Protocol Buffer. In Google Protocol Buffer, a .proto file needs to be defined for

the data structure and type of message to be transmitted.

There are three .proto files defined in SSL-Vision System.

messages_robocup_ssl_detection.proto: this file includes ball and robot

information, which is the detection result of one camera frame.

The complete code is here: [3]

message SSL_DetectionBall {
 requiredfloat confidence =1;
 optionaluint32 area =2;
 requiredfloat x =3;
 requiredfloat y =4;
 optionalfloat z =5;
 requiredfloat pixel_x =6;
 requiredfloat pixel_y =7;
}

message SSL_DetectionRobot {
 requiredfloat confidence = 1;
 optionaluint32 robot_id = 2;
 requiredfloat x = 3;
 requiredfloat y = 4;
 optionalfloat orientation = 5;
 requiredfloat pixel_x = 6;
 requiredfloat pixel_y = 7;
 optionalfloat height = 8;
}

message SSL_DetectionFrame {
 requireduint32 frame_number =1;
 requireddouble t_capture =2;
 requireddouble t_sent =3;
 requireduint32 camera_id =4;
 repeated SSL_DetectionBall balls =5;
 repeated SSL_DetectionRobot robots_yellow =6;
 repeated SSL_DetectionRobot robots_blue =7;
}

From this file, we could get the ball position and robot position in a raw data

format, which can be used as the input data for the Kalman Filter of our system.

messages_robocup_ssl_geometry.proto: this file includes the field size of SSL and

information related to camera calibration.

messages_robocup_ssl_wrapper.proto: this file includes the previous two .proto

files and creates a wrapper for all the detection results that need to be transmitted.

An example client and an example graphical client are included inside the SSL

Vision System’s directory. These two clients can be used to as a demo client to

receive raw vision data from the SSL Vision System.

 91(188)

Figure 62. Graphical Client

5.3 Introduction of Kalman Filter

Although SSL Vision System have already provided a powerful data processing

and communicating functions, however, the vision system is not inherently

capable of removing interferences and noises which are produced together with

vision information, and it is not able to reduce the inevitable transmission delays

between vision system and strategy server.

Thus, a vision filter that is able to reduce potential erroneous measurement values

and predict the future motion is needed in our strategy software system.

Kalman Filter, which is invented by Rudolf E. Kálmán [20], is an efficient

recursive algorithm that is able to optimally estimate future system states based on

the noisy raw data input. The Kalman Filter algorithm has been widely used in

RoboCup competitions and in other industrial fields like robotics, automation,

aeronautics, etc.

5.4 Principle of Kalman Filter

5.4.1 Principle of Kalman Filter

Usually speaking, there are two main steps in Kalman Filter Algorithm: State

Predict step and Measurement Update step.

Figure 63. Kalman Filter Steps

These two steps are executed in a consecutive cycle. That is to say Kalman Filter

will first execute State Predict Step and then executes Measurement Correct Step

in the first initial round and execute these two steps in the next rounds based on

the calculated value in the previous round.

The merit of the Kalman Filter is that it can calculate a predict/estimate value that

is close to the real value in reality after many rounds of iteration. The directly

measured value from the outside world is believed to be jeopardized by all kinds

of interference and delays, so the measured value cannot be taken directly as an

accurate value for further calculation. Many rounds of iterative calculation are

required for Kalman Filter because in the early stage of iteration the calculated

result by Kalman Filter can be far from the real value, however, Kalman Filter

will use the measured value which is also not accurate to calibrate its estimated

value in the next round. After several rounds of calculation, measurement and

calibration, Kalman Filter will yield a reliable result. The detailed explanation of

how this works is illustrated below.

 93(188)

5.4.2 State Predict Step

This step involves two mathematical equations:

Xƹ ௞|௞ିଵ = ௞Xƹܣ ௞ିଵ|௞ିଵ + (1)																															௞ݑ௞ܤ

௞ܲ|௞ିଵ = ௞ܣ ௞ܲିଵ|௞ିଵܣ௞் +ܳ௞ିଵ																												(2)

In the (1) equation, Xƹ ௞|௞ିଵ is called the “priori” estimated state variable which is

predicted in k round based on k-1 round results. State variable is a set of variables

that are used to describe the system state of a dynamic system. For example, in

RoboCup SSL, we can set the state variable of the ball as a set of variables like x-

velocity, y-velocity, x-coordinate, y-coordinate, rotation angle and etc.

Mathematically, these variables can be grouped into a state variable matrix for

calculation. For the state variable Xƹ ௞|௞ିଵ, the hat on top of the letter X means that

this state variable is not the real value of the state variable X, instead it is an

estimated or predicted value calculated by the equation (1). Besides, the subscript

of Xƹ ௞|௞ିଵ identifies this estimate state variable is in its k round whose calculation

is based on the k-1 round result.

Xƹ ௞ିଵ|௞ିଵis the calibrated state variable in the k-1 round. Together with the state

transition model ܣ௞, it is used to estimate state variable X in k round. Note that we

need to initialize this variable, that is Xƹ ଴|଴, for the first round of process.

௞ܣ is called state transition model, and it is used for calculating the new state

variable X in its k round based on k-1 round result and that is why it is called the

state transition model. Mathematically, ܣ௞ can be expressed as a matrix.

௞ݑ is called system input variable (different from measurement input). For

example, when applying the Kalman Filter to robots, this variable can be set as a

set of values like x-velocity, y-velocity, rotating velocity and etc. based on our

command. For some dynamic systems, there is no system input variable ݑ௞. For

example, when applying the Kalman Filter to the ball, we do not send any

command input to the ball system, thus there is no ݑ௞ in the system as well.

௞ܤ is the control-input model which applied to system input variable ݑ௞ to

calculate the next round system variable X.

By applying equation (1), we can get an estimate of system variable X in k round

purely based on the information in k-1 round and command input information.

However, the estimate X may not be the same as the real value in reality. It may

have some variance compared with the real value. Therefore Kalman Filter needs

to calculate “priori” error covariance in equation (2).

In equation (2), ௞ܲ|௞ିଵ is called the “priori” error covariance matrix in round k,

and it reflects how much two random variables change together. In this case,

௞ܲ|௞ିଵ can be expressed as:

௞ܲ|௞ିଵ = ൫ܺ௞ݒ݋ܿ − X෡௞|௞ିଵ൯ = ܧ ቂ൫ܺ௞ − X෡௞|௞ିଵ൯൫ܺ௞ − X෡௞|௞ିଵ൯
்ቃ 																			(2.1)

௞ܲିଵ|௞ିଵis the “priori” error covariance matrix in round k-1, it is used to calculate

the “priori” error covariance matrix in round k. The update from ௞ܲିଵ|௞ିଵ to

௞ܲ|௞ିଵ reflects the fact that estimate state variable Xƹ ௞|௞ିଵcarries more uncertainty

compared with state variable Xƹ ௞ିଵ|௞ିଵ because process noise ݓ௞ and command

information is brought into the system.

 ௞. This variable is brought into the equationܣ ௞் is the transpose form of matrixܣ

(2) due to the formula of calculating a covariance matrix.

 95(188)

ܳ௞ିଵ is called the process noise covariance matrix and it is one of filter

parameters. Process noise ݓ௞ିଵ is a random variable appeared in State Process

Step of round k and it is distributed under normal probability distribution with a

zero mean and a covariance ܳ௞ିଵ:

,0)ܰ~(௞ିଵݓ)݌ 	ܳ௞ିଵ)																					(2.2)

And process noise ݓ௞ is involved in generating the estimate state variableX̂௞|௞ିଵ:

Xƹ ௞|௞ିଵ = ௞Xƹܣ ௞ିଵ|௞ିଵ + ௞ݑ௞ܤ (2.3)																					௞ିଵݓ+

This equation does not explicitly show in the equations of Kalman Filter, but the

equation (1) and (2) are actually derived from this equation.

Up to now, Kalman Filter has gone through its first step – State Predict Step.

During this step, Kalman Filter calculates a new estimate state variable in k round

and it also calculates the uncertainty of this new generated estimate state variable.

The uncertainty can be alleviated during the next step when measurement values

are brought into the system.

5.4.3 Measurement Update Step

This step involves three mathematical equations:

K௞ = ௞ܲ|௞ିଵܪ௞்(ܪ௞ ௞ܲ|௞ିଵܪ௞் + ܴ௞)ିଵ																											(3)

Xƹ ௞|௞ = Xƹ ௞|௞ିଵ ௞ݖ)௞ܭ+ − ௞Xƹܪ ௞|௞ିଵ)																															(4)

௞ܲ|௞ = ܫ) − K௞ܪ௞) ௞ܲ|௞ିଵ																																																				(5)

These three equations occur in the step of measurement update, which is also

called the “posteriori” correction step. During this step, the dynamic system

receives measurement from the outside world, like sensor. Then the Kalman Filter

uses the received measurement to correct the “priori” estimated state variable

Xƹ ௞|௞ିଵ and error covariance matrix ௞ܲିଵ|௞ିଵ . The word “priori” refers to the

period of time before receiving any measurement in the given round, while

“posteriori” refers to the period of time after receiving measurement. After

correction, the estimated state variable will be more close to the truth.

Equation (3) is an equation to calculate the important factor – Kalman Gain K௞ in

the k round. Kalman Gain is crucial in the whole Kalman Filter because it plays a

balancing role between the model prediction and received measurement. When

Kalman Gain is high, the Kalman Filter will weights more heavily on the

measurements, that is to say Kalman Filter will trust more on the measurement

data. When Kalman Gain is low, the Kalman Filter will put more weight on the

prediction model we built in equation (1), that is to say Kalman Filter will

consider the measurement data to be not reliable enough. In the most extreme

situations, when Kalman Gain is zero, the measurement data are completely

ignored in the following calculations. And when the Kalman Gain is one, the

prediction model is considered to be totally wrong, thus the estimate state variable

in the previous step will be completely ignored.

Actually, Kalman Gain is derived from the minimization of “posteriori” estimate

covariance matrix ௞ܲ|௞:

߲(௞ܲ|௞)
(௞ܭ)߲

= 0																					(6)

More details of deriving the Kalman Gain can be found from References [21],

[22], and [23]

௞ܲ|௞ିଵ is the same “priori” error covariance matrix which appears in the equation

(2).

 97(188)

௞ܪ is called the observation model, which is a matrix that maps the true space

into the measurement space. Obviously, ܪ௞் is the transpose form of ܪ௞ .

ܴ௞ is called the measurement noise covariance matrix. Similar to the process

noise random variable ݓ௞ିଵ, there is a measurement noise random variable ݒ௞ ,

which is assumed to be distributed under normal probability distribution with a

zero mean and a covariance ܴ௞:

,0)ܰ~(௞ݒ)݌ 	ܴ௞)																					(7)

Note that process noise covariance matrix ܳ௞ିଵ can be different from the

measurement noise covariance matrix ܴ௞ . These two matrixes are assumed to be

independent of each other.

Together with the observation model ܪ௞ that we explained above, the

measurement noise ݒ௞ is also considered to be one part of the measurement data

 :௞ݖ

௞ݖ = ௞Xƹܪ ௞|௞ିଵ + (8)																					௞ݒ

This equation is also not explicitly show in the equations of Kalman Filter, but the

equations (3), (4) and (5) are derived from this equation.

After we have calculated Kalman Gain K௞ in the equation (3), we use it as a

balancing weight in the equation (4) to calculate the “posterior” corrected result of

state variable Xƹ ௞|௞ after Kalman Filter received the measurement data in k

round.ݖ௞is the measurement data, which in our case is the measurement of the

position of the ball or robots in the field.

The factor (ݖ௞ ௞Xƹܪ− ௞|௞ିଵ) in the equation (4) is called the “innovation” or

“residue”. It reflects the difference between the measurement data ݖ௞ and

predicted measurement ܪ௞Xƹ ௞|௞ିଵ based on the observation model ܪ௞ and the

“posterior” estimated state variable Xƹ ௞|௞ିଵ. When the innovation is zero, it means

that the actual measurement data are the same as the predicted measurement data.

And the Kalman Gain plays a balancing role between the “posterior” estimated

state variable Xƹ ௞|௞ିଵ and the innovation factor as we explained above.

Similar to equation (2), ௞ܲ|௞ is called the “posterior” error covariance matrix in

round k. In this case, ௞ܲ|௞ can be expressed as:

௞ܲ|௞ = ൫ܺ௞ݒ݋ܿ − X෡௞|௞൯ = ܧ ቂ൫ܺ௞ − X෡௞|௞൯൫ܺ௞ − X෡௞|௞൯
்ቃ																					 (9)

More details of deriving the “posterior” error covariance matrix can be found

from References [21], [22], and [23].

5.4.4 Summary

The following is a figure which nicely combines the five equations used in

Kalman Filter:

Figure 64. Two steps in Kalman Filter [24]

 99(188)

From the two steps we discussed above, these two steps are executed recursively a

number of times to yield an optimal estimate state variable. This feature is

especially beneficial when it is applied to practical implementations, for example

when writing iterative functions code when implementing Kalman Filter.

In fact, there are different kinds of Kalman Filter. The one we discussed above is

the discrete form of Kalman Filter which is suitable to apply to the situation that

the estimate process and measurement process are in a linear relationship.

In a more complex non-linear dynamic system, we may need to apply different

forms of Kalman Filters, mainly including Extended Kalman Filter (EKF),

Unscented Kalman Filter, Kalman-Bucy Filter, Hybrid Kalman Filter, Extended

Kalman-Bucy Filter (EKBF), etc.

In Chapter 3.5, we will have an investigation on the topic of the specific form of

Kalman Filter that is suitable when applied to the RoboCup SSL system.

5.5 Introduction of Extended Kalman-Bucy Filter (EKBF)

Extended Kalman-Bucy Filter (EKBF) is the time-continuous, non-linear system

variation of the Kalman Filter. Thus it suits perfectly into our RoboCup SSL

dynamic system.

5.6 Implementations on Extended Kalman-Bucy Filter (EKBF)

5.6.1 Overview

The paper named Improbability Filtering for Rejecting False Positives [25],

illustrates the detailed methodologies to apply Extended Kalman-Bucy Filter into

RoboCup SSL and it also introduces a novel way of filtering out false positives by

calculating probabilities. The paper also includes some important empirical values

which can be used as a good reference in our implementations.

5.6.2 Preparation Works: Development Environment

Considering the fact that the new Botnia RoboCup SSL software system should be

running on top of a Linux based machine, we choose the following components as

our development environment.

 Ubuntu (10.04 and 10.10 have been both tested) OS

 Qt Framework (version 4.7 or above)

 Qt Creator IDE (version 2.3 or above)

 Subversion (version 1.6 or above)

 G++ Compiler (version 4.4.5 or above)

 CMake build system (version 2.8.2 or above)

 Eigen2 Library

 Google Protocol Buffers (version 2.3 or above)

 OpenGL Library (version 2.1 or above)

 OpenGL Utility Library (version 1.3 or above)

 Libdc1394 Library (version 2.0 or above)

 Libjpeg Library

 Libpng Library

 OpenCV Library (version 2.1 or above)

Ubuntu OS, Qt Framework and Qt Creator IDE can be respectively downloaded

from their official website.

By executing the following command in a terminal window, Ubuntu (10.04 or

10.10) should install all the required libraries:

sudo apt-get install build-essential gcc g++ subversion libqt4-dev libeigen2-dev

protobuf-compiler libprotobuf-dev libdc1394-22 libdc1394-22-dev cmake libjpeg-

dev libpng12-dev libavformat-dev ffmpeg libcv2.1 libcvaux2.1 libhighgui2.1

python-opencv opencv-doc libcv-dev libcvaux-dev libhighgui-dev

 101(188)

After installing the above components successfully, we can start configuring the

projects inside Qt Creator.

SSL Vision System [3]has already integrated a graphical sample client

“graphicalClient” (Figure 13) after we have checkout a copy of source code from

its SVN repository. This graphical sample client is able to use Google Proto

Buffer to receive vision data from the vision server and display the ball and robots

on the field. Thus it serves to be a good base for our further development.

5.6.3 Preparation Works: EKF OpenCV Support

OpenCV is a powerful open-source library mainly aimed at real time computer

vision analysing and processing. OpenCV provides an efficient and user friendly

way to process computer visions and images.

During the process of implementations, OpenCV can handle the raw vision data

and efficiently apply the Kalman Filter Algorithms which require an intensive

manipulation of matrix calculation in C++ language.

Although the OpenCV library has the capability of handling discrete linear system

by employing native inline data structures and functions like CvKalman,

cvCreateKalman, cvKalmanCorrect, cvKalmanPredict, it is not suitable to apply

these functions directly in our continuous non-linear case.

OpenCV Based Extended Kalman Filter Frame [26] is a simple and clear OpenCV

based Extended Kalman Filter (EKF) abstract implementation, which is released

under BSD License. By integrating this code frame into our project, it facilitates

the process of the implementation. We have made some modifications to the

original code to make it even suitable for our needs.

5.6.4 Ball EKBF Implementations Step I: Theory & Configurations

The state variable of ball system is

Xƹ ௞ = ்(௬ݒ௫ݒ	ݕ	ݔ) 																					(10)

Angular velocity and ball orientation are not present in the state variable because

they are not needed. Input command is not given into the system either because

the ball is not driven by itself.

The ball has two distinguished behaviours in the field. One is that the ball moves

freely on the carpeted field. The other is that the ball hits the edge of the field and

moves upwards along the inclined edge. In the previous case, the ball can be

considered to suffer from a constant friction force; in the latter case, the friction is

negligible.

In our case, applying the Kalman Filter to the ball on the carpeted field should be

regarded to have a higher priority.

The kinematic model is governed by the following formulas:

Xƹ ௞|௞ିଵ = Xƹܯ ௞ିଵ|௞ିଵ + ܽܿܿ௞ = ൮

1 0 ݐ∆ 0
0 1 0 ݐ∆
0 0 1 0
0 0 0 1

൲Xƹ ௞ିଵ|௞ିଵ +

⎝

⎜
⎛
ܽ௫∆ݐଶ/2
ܽ௬∆ݐଶ/2
ܽ௫∆ݐ
ܽ௬∆ݐ ⎠

⎟
⎞
(11)

ܽ௫ = ൝
−ܽ௙௥ܿݏ݋Ψ					|ݒ| > ܽ௙௥∆ݐ

−
௫ݒ
ݐ∆ 	݁ݏ݅ݓݎℎ݁ݐ݋														

The parameter Ψ is the angle of travel of the ball, v is the ball speed, and ܽ௙௥ is

the constant friction deceleration value which empirically set as 245mm/s2.

For RoboCup SSL system, the state transition model ܣ௞ can be considered the

same as M which is a 4 by 4 matrix. Control-input model ܤ௞ and system input

variable ݑ௞ are not involved in the ball’s system.The process noise covariance

matrix

ܳ௞ିଵIs set to be a 2 by 2 matrix and its value is ݀݅ܽ݃((ߪ௩ଶ, ௩ଶ). The observationߪ

model ܪ௞ is a 2 by 4 matrix with the value of (ܫଶ, ܱଶ). The measurement noise

covariance matrixܴ௞ is a 2 by 2 matrix with value of ݀݅ܽ݃(ߪ௫௬ଶ , ௫௬ଶߪ) . Two

 103(188)

additional matrix variables W and V need also to be set in this case. Matrix W is a

4 by 2 matrix with the value of (ܱଶ, ଶ)், and matrix V is a 2 by 2 matrix withܫ

value of ܫଶ.

The empirical value of the standard variation ߪ௫௬ given by paper [15] is set to be

25mm, and the velocity standard variation ߪ௩ is governed by the following

formula:

௩ߪ = max ൬
ܴ
݀ ோߪ + ൬1 −

ܴ
݀൰ߪ଴, 																					ோ൰ߪ (12)

And d is the distance between the ball and the nearest robot, R is the maximum

robot width. ߪோ is set to 100mm/s, and ߪ଴ is set to 10mm/s.

All these parameters have been tuned based on the practical field tests to fit better

to our environment.

Overall, applying the Kalman Filter to the system is a process of finding the

optimal performance by tuning the Kalman Filter parameter matrixes. And the

next step would be to code these parameters and the algorithm of the following

five formulas into our project:

Xƹ ௞|௞ିଵ = ௞Xƹܣ ௞ିଵ|௞ିଵ + (13)																																										௞ݑ௞ܤ

௞ܲ|௞ିଵ = ௞ܣ ௞ܲିଵ|௞ିଵܣ௞் +ܳ௞ିଵ																																						(14)

K௞ = ௞ܲ|௞ିଵܪ௞்(ܪ௞ ௞ܲ|௞ିଵܪ௞் + ܴ௞)ିଵ																											(15)

Xƹ ௞|௞ = Xƹ ௞|௞ିଵ + ௞ݖ)௞ܭ ௞Xƹܪ− ௞|௞ିଵ)																														(16)

௞ܲ|௞ = ܫ) − K௞ܪ௞) ௞ܲ|௞ିଵ																																																			(17)

Here is an explanation of GLSoccerView::init_EKF() which is used to initiate

the EKF environment and set up related parameters. All detailed codes can be

found in the appendix.

Initialize settings:

Initialize Kalman Filter

SetDimensions(intx_dimension,intu_dimension,intz_dimension,intw_dimension,i
ntv_dimension)

Set Process noise covariance matrix and measurement noise matrix:

Process noise covariance matrix, this should be very small (meaning very reliable
and accurate)

Measurement noise covariance matrix, this should be big (meaning not reliable
and accurate)

Set “priori” and “posteriori” error covariance matrix:

setkalman_P_predicted
setkalman_P_last
setkalman_P_updated

Set other involved parameters matrixes, like innovation, Kalman Gain, received

measurement matrix:

setkalman_S
SetZero(kalman_S)
setkalman_K
SetZero(kalman_K)
setkalman_z
SetZero(kalman_z);
setkalman_z_predicted
SetZero(kalman_z_predicted)
setkalman_x_last
setkalman_x_predicted
setkalman_x_updated

 105(188)

Set up A, W, H, V these four matrixes in their respective functions, and execute a

check to ensure all settings are correct:

Get_A()
Get_W()
Get_H()
Get_V()

The four overwritten functions are listed and commented as follows:

A:=df/dx
Set Jacobian matrix
OutputMat(kalman_A);

Set kalman_W

Set kalman_H

Set kalman_V

Two functions which are used to get predicted results are also implemented and

commented:

f(x,u,0)

Update "kalman_x_last" to be "kalman_x_updated"
Calculate kalman_x_predicted

zk:=h(xk-,0)
h(xk,0)=H*xk-
Calculate kalman_z_predicted

Up to now, we have set up the initial configurations of the Kalman Filter. Tuning

these parameters to the optimal status is a challenging work which requires a

combination of empirical theory and practical adjusting. For the further

development, the capability of auto-tuning Kalman Filter parameters based on a

given dynamic system would be a desired yet more challenging work which may

require further knowledge on artificial intelligence and machine learning.

5.6.5 Ball EKBF Implementations Step II: Iterative Callings

The gist of the Kalman Filter is to iteratively apply the five formulas to the

system. In each iterative round, state Prediction step and measurement update

step have been repeated. However, each repetition would result in a closer

estimation by combining the latest estimation and new captured measurement

data. In order to balance the filter performance and timing delays, we apply the

Kalman Filter with the number of iterations equalling to 10.

The following code fragment explains how to iteratively make a proper estimation

by employing the Kalman Filter algorithm:

1) Get ball's location
Adjust the looping times based on field testing
Update "kalman_P_last" to be "kalman_P_updated"
2) Get measurement raw data
Apply false positive rejection
Get a copy of old valid data in case of false positive
3) Update
Set "kalman_z_predicted" to be "H*X_predicted"
Set filtered result back to the ball object

By comparing the raw unfiltered data with filtered data, we discovered that when

the ball is in a still condition, the raw coordinate of the ball tends to be varying all

the time, which verifies that raw data contains false data resulting from

interferences and delays. However, the filtered data have a much less variability

tendency, which reflects the reality of the still ball in a better way.

 107(188)

5.6.6 Ball EKBF Implementations Step III: False Positive Rejection

Another novel discovery illustrated in the paper [25] is the way to eliminate false

positives that can appear in the filtering process by employing the method named

Improbability Filtering (ImpF).

False positives occur in the situation that the measurement value during the

Measurement Update Step is significantly different from the estimated value made

during the State Predict Step. If these false positives are not eliminated from

Kalman Filter, they will be brought into calculation and cause an obvious

erroneous estimation in the next iteration.

Figure 65. 1D example of false positive [25]

In Figure 15, we can see clearly the disastrous effect result from the existence of

false positives on a 1 dimensional system. For example, in the first round, the

estimated value made by Kalman Filter is 500. But in the Measurement Update

Step, a measurement value of 2000 is captured, thus cause a new erroneous

estimation of 1000 in the next round.

The novel solution to address this problem raised by paper [25] is to calculate the

conditional probability density function (pdf) for each of measurement values the

system received.

The pdf function is governed by the following formula:

,หX෡௞′ݖൣܲ ௞ܲ൧ =
1

(|௞ܥ|ߨ2)
௡
ଶൗ
݁ି൫௭′ିுೖଡ଼෡ೖ೔൯

೅
஼ೖ
షభ(௭′ିுೖଡ଼෡ೖ೔)/ଶ																					(18)

With ܥ௞ = ௞ܪ ௞ܲܪ௞் + ܴ

 ௞: the state covariance matrix transformed to measurement spaceܥ

n: the number of state variables

 measurement value :′ݖ

Note that the accepted range of probability ܲൣݖ′หX෡௞, ௞ܲ൧ should be determined

based on on-field testing in order to achieve the optimal performance.

The following code fragment gives the implementation of checking whether false

positives exist.

boolGLSoccerView::check_false_positive(floatraw1,floatraw2)

{

boolretVal=false;

CvMat*dummy_z=cvCreateMat(2,1,CV_32F);

cvSetReal2D(dummy_z,0,0,raw1);

cvSetReal2D(dummy_z,1,0,raw2);

CvMat*kalman_C=cvCreateMat(2,2,CV_32F);

CvMat*kalman_Ht=cvCreateMat(kalman_H->cols,kalman_H->rows,CV_32F);

CvMat*kalman_H_x_P=cvCreateMat(kalman_H->rows,kalman_P_predicted->cols,CV_32F);

CvMat*kalman_H_x_P_x_Ht=cvCreateMat(kalman_H->rows,kalman_H->rows,CV_32F);

cvTranspose(kalman_H,kalman_Ht);

cvMatMul(kalman_H,kalman_P_predicted,kalman_H_x_P);

cvMatMul(kalman_H_x_P,kalman_Ht,kalman_H_x_P_x_Ht);

cvAdd(kalman_H_x_P_x_Ht,kalman_R,kalman_C);

doubleKalman_C_det=cvDet(kalman_C);

intn=kalman_x_dimension;

 109(188)

doubledenominator=pow((2*3.1415926*Kalman_C_det),(n/2));

CvMat*kalman_H_x_x=cvCreateMat(2,1,CV_32F);

cvMatMul(kalman_H,kalman_x_updated,kalman_H_x_x);

CvMat*kalman_z_minus_H_x_x=cvCreateMat(2,1,CV_32F);

cvSub(dummy_z,kalman_H_x_x,kalman_z_minus_H_x_x);

CvMat*kalman_z_minus_H_x_xt=cvCreateMat(1,2,CV_32F);

cvTranspose(kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt);

CvMat*kalman_Ct=cvCreateMat(2,2,CV_32F);

cvTranspose(kalman_C,kalman_Ct);

CvMat*kalman_z_minus_H_x_xt_Ct=cvCreateMat(1,2,CV_32F);

cvMatMul(kalman_z_minus_H_x_xt,kalman_Ct,kalman_z_minus_H_x_xt_Ct);

CvMat*kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x=cvCreateMat(1,1,CV_32F);

cvMatMul(kalman_z_minus_H_x_xt_Ct,kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt_Ct

_z_minus_H_x_x);

doublenumerator=pow(2.7183,(-

0.5*cvDet(kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x)));

doubleprobability=numerator/denominator;

qDebug()<<Probability:"<<probability;

//Future adjustment probability range should be based on on-field testing

 //Rather than the “accept-all” policy used in this example

if(probability>1||probability<1.0e-5)

{

retVal=false; //Bad value

}

else

{

retVal=true; //Good value

}

return retVal;

}

And we can call this function in the previous code fragments to ignore all the

measurement values belonging to the false positive category.

5.7 Ball EKBF Testing

I made a YouTube video [27] to show the test results. This video is taken in a real

RoboCup SSL environment, with raw data transmitted by SSL Vision System. In

the video, the orange object represents the ball on the field after filtering and the

blue object represents a soccer robot on the field without filtering. It can be seen

clearly that the position of the soccer robot varies and the image of it also flashes

from time to time. However, the position of ball tends to be quite still and the

image of the ball is also much stable.

5.8 Summary

In this chapter, we introduced a powerful algorithm employed in our system. By

using EKBF filter, we are able to filter out unwanted white noises and minimize

the problems caused by transmission delays. We also implemented the-state-of-

the-art Improbability Filtering technique to reduce false positives appeared.

 111(188)

6 SAFTY NAVIGATION

6.1 Introduction on Safety Navigation

One of the most crucial aspects in maintaining an efficient and collision-free

dynamic soccer robot system is collision detection and prevention mechanism.

This mechanism should be deployed into our strategy software system and it will

guarantee that our own teammates will not collide with each other during the

competition. Note that this mechanism is mainly responsible for maintaining a

collision-free environment within our own teammates rather than preventing the

potential collision against opponent robots. The feature of preventing the potential

collision against opponent robots requires a separate algorithm explained in

Chapter 5.

Figure 66. Demo of Safety Navigation

Figure 16 is a typical case where safety navigation algorithm works. In this

imaginary scenario, R1, R2, R3, R4 and R5 are five soccer robots of our team, and

the orange object is the ball. If in this case where all of the five our team robots

are chasing towards the ball, safety navigation algorithm will coordinate this

system by sending proper commands to each of the five robots to prevent

disastrous collision.

In paper [28], James Robert Bruce explains a novel safety navigation algorithm

and we found it well suitable in our case. This Chapter, we will explore this

algorithm and present a simulation-based implementation of this algorithm. While

the implementation has mostly followed the core algorithm logic, some methods

have been modified to make it more suitable for our needs.

6.2 Introduction of Dynamics Safety Search Algorithm

Dynamics Safety Search (DSS) is a novel algorithm operates for multiple robot

agents to provide an exact guarantee of safety.

This algorithm is originated from the Dynamic Window approach (DW) with

improvements in many aspects. Compared with Dynamic Window approach,

some significant improvements include:

 Provide an exact guarantee of safety.

 Support multiple robot agents at the same time.

 Partial support moving obstacle collision detection and prevention.

 It is an Anytime Algorithm with ܱ(݊ଶ) complexity.

Some other algorithm like Joint Planning algorithm shares some of the listed

features. However, the Joint Planning algorithm has an exponential complexity

which results in a much larger computation delays, so it does not fit into a system

like RoboCup SSL which requires a high timing precision.

Assuming under an ideal environment, meaning there is a perfect communication

between command sender and receiver, a perfect dynamics whose behaviour

 113(188)

satisfies theoretical computation, this algorithm can guarantee a safe navigation

between multiple robot agents.

6.3 Principle and Implementations on Dynamics Safety Search Algorithm

6.3.1 Assumptions and Notations

Some assumptions and constraints need to be applied, and some frequently used

notations need to be formulated before getting a further understanding of the

algorithm.

 Each robot has a safety radius, denoted as ROBOT_RADIUS in the C++

code.

 Each robot has a maximum acceleration value, denoted as MAXACCEL.

 Each robot has a maximum deceleration value, denoted as DECCEL.

 Each robot has a maximum velocity value, denoted as MAXVELOCITY.

 The control period of the system is denoted as FIXTIME.

Some fundamental kinematic equations of classical mechanics are also employed

in the algorithm, for example:

௙ݒ = ௜ݒ + (1)																					ݐܽ

whereݒ௙ is the final velocity, ݒ௜ is the initial velocity, ܽ is the acceleration and ݐ is

the time of duration.

௙ݔ = ௜ݔ + ݐ௜ݒ +
1
ݐ2ܽ

ଶ																					(2)

whereݔ௙ is the final position, ݔ௜ is the initial position, ݒ௜ is the velocity, ݐ is the

time of duration, and ܽ is the acceleration.

6.3.2 Structural Hierarchy of the Algorithm

Following the top-down manner, DSS Algorithm can be divided into three tiers:

top, middle and bottom. Here is an overview of the functions in each of the tiers:

 Top Tier consists of three functions: DynamicsSafetySearch,

ImproveAccel, CheckAccel.

 Middle Tier consists of two functions: CheckRobot, MakeTrajectory.

 Bottom Tier consists of one function: CheckParabolic.

These six functions have been implemented in the C++ code from the pseudo

code in paper [28] by former Botnia team member Xu Zhang and me. Some

functions, like CheckParabolic are totally rewritten by me to satisfy our needs. In

order to test this algorithm more efficiently, we create a Graphical User Interface

(GUI) by using the Qt Framework to make it well-visualized.

In order to make it more easy to understand, I use Doxygen Documentation

System to generate class diagrams, dependency graphs, collaboration diagrams,

inheritance diagrams, call graphs and caller graphs from the source code directly.

Figure 17 is a dependency graph for the main window. It can be seen clearly that

the whole algorithm simulation program is formed by the core DSS Algorithm

and Qt Framework and Qwt Widgets Library.

In the core DSS Algorithm part, relevant header files include: RManage.h,

Robot.h, Rparabolic.h.

The Qt drawing and plotting part include: mainwindow.h, mainpanel.h,

QMainwindow, plot.h, QtGui, qwt_plot_curve.h, qwt_plot_grid.h, QTimer,

qwt_plot.h, dialog.h.

Other helper part include: RComplex.h, RVector.h, defines.h, math.h.

 115(188)

Figure 67. Dependency Graph

We will explore these three algorithm tiers in 4.3.3 to 4.3.6.

6.3.3 Top Tier

The main procedure in the top tier is DynamicsSafetySearch. In the procedure, the

algorithm first checks the velocity of each robot in each control cycle. If the

checked robot has a velocity, we set the maximum deceleration to the robot. Then

we calculate the deviation between the desired acceleration and our set value. We

also calculate the deceleration effective time duration in case the robot may move

in the opposite direction. Finally, we use the ImproveAccel procedure to provide a

new acceleration value for each of the robots.

This procedure is important in the whole algorithm because it can assure every

robot to be safe in the first place by forcing each robot to decelerate in each

control cycle.

The procedure ImproveAccel is called from the procedure DynamicsSafetySearch

and it works by checking the desired acceleration value of robot by using

CheckAccel function. If the desired acceleration is valid, we will set the desired

acceleration value into the robot directly, the deviation to be zero and we finish

this procedure. This “short-circuit” mechanism makes the algorithm really fast for

most of the time. However, if the desired acceleration is not valid, we will select a

random acceleration value from an acceleration set. Then we check the selected

acceleration to see if it satisfies the safety condition defined in CheckAccel

function. We iterate each possible value in the acceleration set to find the one with

lowest deviation from our desired acceleration yet can guarantee safety. Finally,

we set the optimal selected acceleration value into the robot and we finish

ImproveAccel procedure.

In the C++ code implementation, these two functions have been packaged into a

single dss function under RManage class, and it is called in every update interval.

Figure 68. DSS Function Caller Graph

The function CheckAccel is called by ImproveAccel procedure. It works by

checking CheckSafetyObs function to see if the robot may collide with the

boundary of the field. It also examines the collision possibility with each

teammate robot by calling CheckRobot function. If the given acceleration value

survives these two tests, this function will verify the acceleration value to be a

valid one.

This function is implemented as the checkAccel function under RManage class:

 117(188)

Figure 69. checkAccel Function Caller Graph

Up to now, we have finished the explanation for the Top Tier function series.

6.3.4 Middle Tier

Function CheckRobot and MakeTrajectory are defined in the middle tier.

CheckRobot function firstly makes a trajectory for each of the robots to be

checked by using MakeTrajectory function. The trajectory is made of three

segments and we need to check whether these three segments can collide with the

other three segments by using CheckParabolic function defined in the bottom tier.

If no collision happens between any two segments of trajectories, then the

algorithm considers these two checked robot to be safe for each other.

Figure 70. checkRobot Function Caller Graph

MakeTrajectory function constructs a three-segment trajectory for a given robot.

The first segment trajectory is made by the robot’s current position, velocity,

acceleration and control cycle time duration. Thus, the velocity of the robot in the

first segment trajectory is still increasing. The second segment trajectory is made

after the maximum deceleration applies to the robot until a full stop. Thus, the

velocity of the robot in the second segment trajectory is starting to decrease until a

full stop. In the third segment trajectory, since the robot is fully stopped, it has a

zero-value acceleration and velocity value.

Figure 71. makeTrajectory Function Caller Graph

The plotting of velocity-time graph can be seen from the simulation result made

by our program.

6.3.5 Bottom Tier and Parabola Intersection Checking

In the bottom tier, there is only one function CheckParabolic. However, this

function plays the most fundamental role in the whole algorithm. This function is

responsible for checking whether two non-linear trajectories may collide with

each other. In the real implementation, I take a new approach to solve this

problem instead of the original one illustrated on paper [28].

The principle of Parabola Intersection Checking mechanism is explained as

follows.

We assume the robot A has its radius ܴ௔ , initial position ௔ܲ , velocity ௔ܸ ,

acceleration ܣ௔ and time duration t. And robot B has similar parameters:

௔ܲ(ݐ) = ௔ܲ + ݐ ௔ܸ + (3)																					௔ܣଶݐ

௕ܲ(ݐ) = ௕ܲ + ݐ ௕ܸ + (4)																					௕ܣଶݐ

We can calculate the distance between these two trajectories:

(ݐ)݀ = | ௔ܲ(ݐ) − ௕ܲ(ݐ)| − (ܴ௔ + ܴ௕)																					(5)

 119(188)

In order to find the time t, which is the root of the solution:

| ௔ܲ(ݐ) − ௕ܲ(ݐ)| − (ܴ௔ + ܴ௕) = 0																					(6)

We use several shorthand notations to make it easier:

௔ܲ௕ = ௔ܲ − ௕ܲ																					(7)

௔ܸ௕ = ௔ܸ − ௕ܸ 																					(8)

௔௕ܣ = ௔ܣ − (9)																					௕ܣ

ܴ௔௕ = ܴ௔ − ܴ௕																					(10)

(ݐ)݀ = | ௔ܲ௕ + ݐ ௔ܸ௕ + |௔௕ܣଶݐ − ܴ௔௕ = 0																					(11)

Expand this equation by square it:

(௔ܲ௕ ∙ ௔ܲ௕) +)ݐ2 ௔ܲ௕ ∙ ௔ܸ௕) +))ଶݐ2 ௔ܲ௕ ∙ (௔௕ܣ + (௔ܸ௕ ∙ ௔ܸ௕)) +)ଷݐ2 ௔ܸ௕ ∙ (௔௕ܣ

+ ௔௕ܣ)ସݐ ∙ (௔௕ܣ − ܴ௔௕ଶ = 0																					(12)

Then we can collapse the coefficients:

ܽ = ௔௕ܣ ∙ (13)																					௔௕ܣ

ܾ = 2(௔ܸ௕ ∙ (14)																					௔௕)ܣ

ܿ = 2൫(௔ܲ௕ ∙ (௔௕ܣ + (௔ܸ௕ ∙ ௔ܸ௕)൯																					(15)

݀ = 2(௔ܲ௕ ∙ ௔ܸ௕)																					(16)

݁ = (௔ܲ௕ ∙ ௔ܲ௕) − ܴ௔௕ଶ 																					(17)

So we get a simplified quartic equation:

ସܽݐ + ଷܾݐ + ଶܿݐ + ݀ݐ + ݁ = 0																					(18)

Ferrari’s solution is an elegant way to solve quartic equations, we let:

ܣ =
−3ܾଶ

8ܽଶ +
ܿ
ܽ																					(19)

ܤ =
ܾଷ

8ܽଷ −
ܾܿ
2ܽଶ +

݀
ܽ																					(20)

ܥ =
3ܾସ

256ܽସ +
ܾܿଶ

16ܽଷ −
ܾ݀
4ܽଶ +

݁
ܽ 																					(21)

ܲ =
ଶܣ−

12 − (22)																					ܥ

ܳ =
ଷܣ−

108 +
ܥܣ
3 −

ଶܤ

8 																					 (23)

ܴ =
−ܳ
2 +ඨܳ

ଶ

4 +
ܲଷ

27																					(24)

ܷ = √ܴయ 																					(25)

 121(188)

Then we get the value y, which is decided based on the value of U:

ݕ = ൞
−
5
ܣ6 + ܷ −

ܲ
3ܷ 												݂݅	ܷ ≠ 0

−
5
ܣ6 + ܷ − ඥܳయ 												݂݅	ܷ = 0

																					(26)

ܹ = ඥܣ + (27)																					ݕ2

ܺ = −
ܤ
 (28)																					ܣ4

ܻ = ܣ3 + (29)																					ݕ2

ܼ =
ܤ2
ܹ 																					(30)

Finally, we get four roots of quadratic equation:

ଵݐ = ܺ +
+ܹ +ඥ−(ܻ + ܼ)

2 																					(31)

ଶݐ = ܺ +
+ܹ − ඥ−(ܻ + ܼ)

2 																					(32)

ଷݐ = ܺ +
−ܹ + ඥ−(ܻ − ܼ)

2 																					(33)

ସݐ = ܺ +
−ܹ − ඥ−(ܻ − ܼ)

2 																					(34)

And our solution should be the minimum of the four possible roots:

ݐ = min	(ݐଵ, ,ଶݐ	 ,ଷݐ	 (35)																					ସ)ݐ	

The implementation in C++ code is listed as follows:

StatusRParabolic::checkParabolic(RParabolicp1,RParabolicp2,doubler

)

{

double tMin=-1;

RVectorXab=RVector(p2.m_postion.x-p1.m_postion.x,p2.m_postion.y-

p1.m_postion.y);

RVectorVab=RVector(p2.m_velocity.x-

p1.m_velocity.x,p2.m_velocity.y-p1.m_velocity.y);

RVectorAab=RVector(p2.m_acceleration.x-

p1.m_acceleration.x,p2.m_acceleration.y-p1.m_acceleration.y);

double Rab=r;

double XabXab=Xab*Xab;

double XabVab=Xab*Vab;

double XabAab=Xab*Aab;

double VabVab=Vab*Vab;

double VabAab=Vab*Aab;

double AabAab=Aab*Aab;

double A=AabAab;

double B=2*VabAab;

double C=2*(XabAab+VabVab);

double D=2*XabVab;

double E=XabXab-Rab*Rab;

if(fabs(A)<0.1)

if(A==0) A=0.1;

else A=(A>0?1:-1)*0.1;

double a=-(3*B*B)/(8*A*A)+C/A;

double b=(B*B*B)/(8*A*A*A)-(B*C)/(2*A*A)+D/A;

double c=-(3*B*B*B*B)/(256*A*A*A*A)+(C*B*B)/(16*A*A*A)-

(B*D)/(4*A*A)+(E/A);

 123(188)

double P=-(a*a)/12-c;

double Q=-(a*a*a)/108+(a*c)/3-(b*b)/8;

Complex R=Complex::plus((-Q/2),Complex::Sqrt((Q*Q)/4+(P*P*P)/27));

Complex U=Complex::Pow(R,1.0/3.0);

Complexy(0,0);

if(Complex::Abs(U)<0.00001f)

y=Complex::minus(Complex::plus(-

(5.0/6.0)*a,U),Complex::Pow(Q,1.0/3.0));

else

y=Complex::minus(Complex::plus(-

(5.0/6.0)*a,U),Complex::divide(P,Complex::multiple(3,U)));

Complex W=Complex::Sqrt(Complex::plus(a,Complex::multiple(2,y)));

Double X=-B/(4*A);

Complex Y=Complex::plus(3*a,Complex::multiple(2,y));

Complex Z=Complex::divide(2*b,W);

Complex

t1=Complex::plus(X,Complex::divide(Complex::plus(W,Complex::Sqrt(C

omplex::negative(Complex::plus(Y,Z)))),2));

Complex

t2=Complex::plus(X,Complex::divide(Complex::minus(W,Complex::Sqrt(

Complex::negative(Complex::plus(Y,Z)))),2));

Complex

t3=Complex::plus(X,Complex::divide(Complex::plus(Complex::negative

(W),Complex::Sqrt(Complex::negative(Complex::plus(Y,Z)))),2));

Complex

t4=Complex::plus(X,Complex::divide(Complex::minus(Complex::negativ

e(W),Complex::Sqrt(Complex::negative(Complex::plus(Y,Z)))),2));

std::list<double> tList;

std::list<double>::iterator it=tList.begin();

if(Complex::IsNaN(t1)==false && Complex::IsReal(t1)==true &&

t1.Re>=0)tList.push_back(t1.Re);

if(Complex::IsNaN(t2)==false && Complex::IsReal(t2)==true &&

t2.Re>=0)tList.push_back(t2.Re);

if(Complex::IsNaN(t3)==false &&Complex::IsReal(t3)==true &&

t3.Re>=0)tList.push_back(t3.Re);

if(Complex::IsNaN(t4)==false && Complex::IsReal(t4)==true &&

t4.Re>=0)tList.push_back(t4.Re);

if(tList.size()>0)

{

it=tList.begin();

tMin=*it;

for(it=tList.begin();it!=tList.end();it++)

if(*it<tMin)tMin=*it;

}

return(tMin>0)?Unsafe:Safe;

}

Figure 72. Caller Graph of checkParabolic Function

6.3.6 Collaboration Diagrams and Call Diagrams

Up to now, we have explained the three tiers in the algorithm. The followings are

some important Collaboration diagrams and call diagrams of the implementation

work.

 125(188)

Figure 73. Collaboration Diagram for RManage Class

Figure 74. Collaboration Diagram for RParabolic Class

 127(188)

Figure 75. Call Diagram of DSS Function

Figure 76. Call Diagram of checkParabolic Function

6.3.7 Testing

In the simulation program, firstly we simulate a situation where two robots are

moving towards each other with a velocity of 1 m/s and without acceleration.

Figure 77. Two Robots Simulation 1

After we start the simulation:

Figure 78. Two Robots Simulation 2

 129(188)

When the simulation is finished, we can see from Figure 29 that the two robots

stop in a safe distance, which is the diameter of the robot in this case.

Figure 79. Two Robots Simulation 3

And we can also plot a real-time velocity-time chart for the first robot (left one).

The robot decelerates itself to zero velocity after it is applied the maximum

deceleration.

Figure 80. Velocity-Time Chart

Secondly, we can test a simulation when the robot has an acceleration. In this

case, robot1 has a velocity -1 m/s and an acceleration 1 1m/s2. Robot2 has a

velocity -1 m/s.

After starting the simulation:

Figure 81. Two Robots Simulation 4

 131(188)

Figure 82. Two Robots Simulation 5

Figure 83. Two Robots Simulation 6

From Figure 31 to Figure 33 we can see that robot1 first moves to left with the

velocity decelerated to zero, then it moves to right with an acceleration and finally

it decelerates again to zero velocity to avoid collide with robot2. This can also be

seen clearly from the velocity-time chart in Figure 34.

Figure 84. Velocity-Time Chart

This program can also support multiple robot agents as promised in the algorithm.

Here is an example to roughly simulate the situation in Figure 16.

Figure 85. Multiple Robots Simulation 1

 133(188)

Figure 86. Multiple Robots Simulation 2

Figure 87. Multiple Robots Simulation 3

It can be seen that for multiple robot agents moving at the same time, this

algorithm can still handle the system well. Those robots (Robot 1, 3, 4) that may

collide with each other should not interfere the movement of other robots (Robot

2, 5). (Robot ID is made based on Figure 16)

By testing, the algorithm proves itself to be an effective one and the

implementation is also a successful work.

6.4 Summary

In this chapter, we have implemented a crucial algorithm to maintain safety

among multiple robot agents in our team. Collision detection and prevention has

always been a critical topic in the domain of robotics. The application of Dynamic

Safety Search algorithm can also be used in automation and aeronautics, for

example unmanned aerial vehicle.

 135(188)

7 MOTION PLANNING

7.1 Introduction of Motion Planning

In Chapter 6, we mention that in order to prevent the potential collision against

opponent robots, we require to employ a separate algorithm in the RoboCup SSL

software system. The algorithm we used here is named Extended Rapidly-

exploring Random Tree (ERRT) Algorithm.

Motion planning is a field in robotics on the topic of how to produce a valid path

and navigate the robot from the initial position to the goal position without

colliding with obstacles in that domain.

Figure 88. Illustration of Motion Planning [29]

For instance, in Figure [29], there is a domain contains multiple obstacles and an

initial position and a goal position. The robot needs to construct a valid path to

navigate itself to successfully reach the goal position.

Motion planning together with safety navigation we introduced in Chapter 4, we

can construct a complete motion system to apply it in the RoboCup SSL

competition.

7.2 Possible path planning solutions

There are several existing path planning algorithms available, however, they have

their own defects. [30] [31]

1) Geometric Algorithms (e.g., Visibility graph, Cell decomposition)

Algorithms of this category cannot scale well with the number of obstacles.

2) Grid-Based Search Algorithms (e.g., A*, D*, Field D*, Dijkstra’s algorithm)

Algorithms of this category require an explicit representation of the free space,

leading to computational inefficiency. For instance, A* algorithm may try all

edges, while RRT can probabilistically subsample all edges.

3) Potential Fields

Many heuristic parameters must be adjusted for each individual problem.

4) Sampling-Based Algorithms

Ariadne’s Clew algorithm: Difficult to solve optimization problems.

Expansive-space planning: Requires substantial parameter tuning for different

problems.

Random-walk planner: Has trouble to move across long, winding domains.

7.3 Introduction on Rapidly-exploring Random Tree (RRT) Algorithm

Rapidly-exploring Random Tree (RRT) is an efficient algorithm and data

structure to explore and make path planning in a non-convex and high-

dimensional space without colliding with obstacles. RRT algorithm was first

developed by Steven M. Lavalle and James Kuffner.

 137(188)

RRT algorithm has many practical applications in the field of robotics, gaming

and aeronautics. It can be applied to high-dimensional space; however, we only

apply it in a two-dimensional domain in the RoboCup SSL.

The main advantage of RRT algorithm is that it can find a valid path in a complex

domain in most of the times. However, the found path does not guarantee to be

the optimal one.

In order to find a valid path in Figure 38, here is how RRT algorithm does:

1) In a general configuration space C, we first set the root of the tree to be the

initial point ݍ௜௡௜௧.

2) Then we generate a random point ݍ௥௔௡ௗ in the collision-free space ܥ௙௥௘௘ .

3) Then we choose the nearest vertex ݍ௡௘௔௥௘௦௧ to the random pointݍ௥௔௡ௗ in the

tree.

4) Then we expand a certain distance v from ݍ௡௘௔௥௘௦௧ directly to ݍ௥௔௡ௗ, thus we

create the point ݍ௡௘௪.

5) If the ݍ௡௘௪ is not locate in the obstacle space ܥ௢௕௦, we add this point and the

new edge into the tree. Otherwise, we go back to step 2.

6) Keep looping from step 2 to step 5 until ݍ௡௘௪ is close enough goal position

 .௚௢௔௟ݍ

Figure 39 is a graphical illustration of how the RRT algorithm is executed. In the

figure, the four black points in a rectangle box represent an existing RRT tree. The

green point represents the generated random point in the collision-free space and

the yellow point represents a new point generated in the direction from the nearest

point in the RRT tree towards the random green point. Finally, the initial point

and goal point are also represented in the figure.

Figure 89. Illustration of RRT Algorithm

The following figure gives a simulation of the growth of an RRT tree.

Figure 90. Growth of RRT Tree [32]

Starting from a single initial point, the RRT tree will quickly expand the whole

configuration space and find a valid path towards the goal position.

Although the RRT algorithm has been an effective method when we are dealing

with path planning problem, there still many improvements can be made to

optimize the efficiency of algorithm.

 139(188)

7.4 Robot model used in SSL

In the SSL competition, we used a holonomic robot model which has the

following assumptions [22].

1) The robot has a safety radius.

2) The robot has control over its acceleration within some set.

3) The robot has a maximum deceleration for emergency stop.

4) The robot has a maximum allowed velocity.

The 4-omni-wheel holonomic soccer robot we used in the competition is shown in

Figure 2.

Figure 91. Soccer Robot in SSL

7.5 RRT and RRT* features and issues

RRT algorithm has some significant features:

 No need to have an explicit representation of the free space.

 Scale well to changes in the environment, e.g.: obstacles.

 Effectively handle systems with complex constraints.

 State-of-the-art and most widely used robot path planning algorithm today.

Some more work can be done to improve the effect of RRT:

 By using the RRT* algorithm to optimize the path.

 Path smoothing technique.

 Search speed can be improved by constructing two RRT tree in both

initiate position and the goal position.

Here is an implementation of normal RRT and RRT* algorithm.

Figure 92. Multiple Run of RRT

 141(188)

Figure 93. Run of RRT*

Figure 94. Run of RRT*

7.6 Safety-guaranteed RRT

Despite the fact that RRT algorithm has been an effective method when we are

dealing with the path planning problem, it fits not that well when applying into a

real field environment.

It has the following flaws when we apply the baseline RRT algorithm into

RoboCup SSL competition.

1) In RRT, it presumes the moving object to be a particle without considering the

physical feature of the moving object.

2) In RRT, it assumes the moving object is moving at a constant velocity, which is

not feasible for a reality robot agent.

3) In RRT, it does not consider the dynamics feature of robot agent, thus the

generated path cannot guarantee safety in the dynamic domain.

Based on the robot model mentioned in the previous part, the following dynamics

formula can be listed:

v୤ = v୧ + at									(1)

where	v୤ is the final velocity, v୧ is the initial velocity, a is the acceleration and t is

the time of duration.

x୤ = x୧ + v୧t +
1
2 at

ଶ								(2)

where	x୤ is the final position, x୧ is the initial position, v୧ is the velocity, t is the

time of duration, and a is the acceleration.

Obviously, the moving velocity of each robot agent cannot exceed the maximum

allowed value V୫ୟ୶ . Therefore, we have the formula:

‖v୧ + Ca୧‖ ≤ 	V୫ୟ୶								(3)

where	v୧ is the velocity of i-th robot, a୧ is the acceleration, and C is the time for a

fixed control period.

 143(188)

Suppose the emergency stop maximum deceleration is D, then we have:

v୧ + D ∙ t = 	0								(4)

where	t is the time required to guarantee robot come to a stop under maximum

deceleration and current velocity.

So, it is possible to calculate the safety distance S required to guarantee

deceleration without hitting any obstacle.

S = 	ብ
v୧ଶ

2 ∙ D
ብ								 (5)

In order to maintain safety, among moving robot with obstacles, the safety

distance S is needed to be considered in the RRT algorithm.

Therefore, we have an improved version of RRT algorithm named safe rrt which

is described in pseudo-code:

proceduresafe_rrt() : Path

 startNode ← new MyNode

 myTree ← new RRT Tree

 myTree.addNode(startNode, NULL)

 while not found do

 randomNode ← getRandomNode(myTree, env)

 nearestNode ← getNearestNode(myTree, random Node)

 if validSegment(nearestNode, randomNode) do

 newNode ← createNewNode(nearestNode,

 randomNode, maxLen)

 myTree.addNode(newNode, nearestNode)

 nearestNode ← newNode

 if hit Target do

 found ← true

 return path

 end

 end

end

The safe_rrt() procedure includes some sub-routines which we have applied safety

check in it.

In it, getRandomNode() is a function, which returns a random node in the given

environment domain without colliding with any obstacles.

functiongetRandomNode(myTree:Tree, env) : MyNode

while loop do

randomX ← randomized x inside env

randomY ← randomized y inside env

randomNode ← new MyNode(randomX, randomY)

 145(188)

nearestNode ←getNearestNode(myTree, random Node)

nearestX ← nearestNode.x()

nearestY ← nearestNode.y()

rotateAngle ← atan((randomY-nearestY) / (randomX-nearestX))

rect ← create rectangle based on safe distance and rotate angle

foreach obstacle do

 if collide(obs, rect) do

 collide ← true

 end

end

if !collide do

 loop ← false

 return randomNode

end

end

end

In getRandomNode() function, we construct a virtual rotated rectangle boundary

based on the random node and the nearest node, then check it against each

obstacle. If no collision happens, the function returns the random node.

functiongetNearestNode(myTree, randomNode) : MyNode

x ← randomNode.x()

y ← randomNode.y()

min ← max value available

for node in myTree do

d ← distance between randomNode and node

if d< min do

 min ← d

 nearestNode ← node

end

end

return nearest Node

end

IngetNearestNode(), we compare the randomized node against each node from the

tree to calculate the distance between them. Therefore, we get the nearest node

from the existing tree.

function validSegment(nearestNode, randomNode) : bool

randomX ← randomized x inside env

randomY ← randomized y inside env

 147(188)

randomNode ← new MyNode(randomX, randomY)

nearestNode ← getNearestNode(myTree, random Node)

nearestX ← nearestNode.x()

nearestY ← nearestNode.y()

rotateAngle ← atan((randomY-nearestY) / (randomX-nearestX))

sweepRect ← create rectangle based on safe distance and rotate angle

foreach obstacle do

 if collide(obs, sweepRect) do

 return false

 end

end

return true

end

Function validSegment() calculates whether any collision may happen in the way

between the nearest node and randomized node. It works by constructing a virtual

rectangle which sweeps the rectangle area covered from the nearest node to the

randomized node.

7.7 Testing

We have implemented the novel algorithm into a C++ based simulation software

to better illustrate.

Figure 95. Demo 1

Figure 3 demonstrates an example which employed the safety rrt algorithm. The

green circle indicates the start position of the robot and its size. The red circle

indicates the goal position for the robot, while two black circle indicates the

obstacles existing in the field. By running the algorithm, it returns a valid

highlight path for the robot navigation.

Figure 96. Demo 2

In Figure4, it shows how getRandomNode() function works in the algorithm. The

virtual yellow rectangles confined by the safety distance are created to guarantee

no collision happens for the new randomized node.

 149(188)

Figure 97. Demo 3

In Figure5, it shows how validSegment() works in the algorithm. The virtual

yellow rectangles are confined by the area which cover from the nearest node to

the random node. Thus it guarantees no collision may happen in the path.

7.8 Summary

RRT algorithm excels at exploring free space in larger environments and it is

parallelizable.

From the experiments and analysis, it can be verified that the new safety rrt

algorithm is more applicable to the reality field environment such as RoboCup

SSL competition because of the safety mechanism.

The safety distance should be decided based on the physical configurations of the

robot. In this paper, we use a rectangle-bound area to calculate the collision

possibilities. For future work, a partial ellipse bound area can be used to make

comparisons.

8 OVERVIEW OF TO-DO LISTS IN BOTNIA SSL TEAM

8.1 Structure

In order to build a complete new Linux-based strategy software system, many

tasks are required to be done. Since RoboCup is a relatively large project, among

all those tasks, there are some tasks which are especially crucial to the success of

the whole system need to be done in a relatively higher priority. Taking the

bottom-up development approach, here is a graph which briefly describes these

tasks.

Figure 98. the Hierarchy of Priority Tasks

 151(188)

From the bottom to top, there are mainly four major tasks which serve as the

foundation of the whole RoboCup Botnia software system.

8.2 Vision Filter

From Figure 2 we can see that there is a high definition camera that oversees the

whole field in real time, and this camera transmit captured vision frames to the

vision server and the strategy server which runs our strategy software system in

every frame interval. However, the captured vision frame is not noise-free. But

instead, together with valuable vision information, vision frame also includes a

certain level of random Gaussian white noise produced during the capture and

transmission.

In order to remove these unwanted Gaussian white noise to improve the accuracy

of computation, a vision filter needs to be employed in the software system.

In the Chapter 3 of this thesis, Kalman Filter will be introduced in detail.

8.3 Motion Control

8.3.1 Introduction

Motion control has been widely used not only in robotics, but also in the whole

industrial control systems.

Common motion controls used in RoboCup are velocity control, position control,

force control, power control, etc. These controls are vital to the accuracy of

decision making in the upper-layer strategy software system.

For instance, the wheel velocity of soccer robots can be controlled by output

PWM (Pulse Width Modulation) value which is determined by the strategy

software system. If we hope the robot moves in a straight line, then the value of

velocity of all wheels should be set identically by the system. However, it is very

unlikely that all wheels can run at the same velocity for a relatively long distance

because of possible flaws from the inner motors and all kinds of disturbance from

the outside environment.

In order to provide a better motion performance and anti-disturbance capability,

motion control needs to be implemented in the system. More specifically, some

auto-tuning methods need to be integrated.

8.3.2 Bang-bang controller

Bang-bang controller is a three-position (negative, zero, and positive) feedback

controller.

Figure 99. A Bang-bang, Closed-loop Control System [33]

From Figure 6, we can see that in Bang-bang controller, the controller generates

input u (t) for the plant based on a calculated error value e(t) and its algorithm.

The error value e(t) is calculated by the difference of desired output vector yd(t)

and observed output vector y(t)

(ݐ)݁ = (ݐ)ௗݕ − (1)																					(ݐ)ݕ

Base on calculated e(t), bang-bang controller can determine the input value u(t)

for the plant:

 153(188)

(ݐ)ݑ = 		 ൝
௠௔௫ݑ 	, ݁	ℎ݁݊ݓ > ݁ଶ

݁ଵ	ℎ݁݊ݓ																	,0								 < ݁ < ݁ଶ
௠௔௫ݑ− ݁	ℎ݁݊ݓ						, < ݁ଵ

																					(2)

In the formula, umax is a preset maximum value.

Figure 100. Output of Bang-bang Controller (input of plant) [33]

The bang - bang controller can always product the constant maximum positive or

negative value when the error value e (t) is not located in the dead zone. Thus,

bang-bang controller is more reasonable when it is used in the plant environment

that requires a constant and maximum input.

8.3.3 PID Controller

Proportional Integral Derivative (PID) Controller is a widely used loop feedback

controller in robotics and automation.

PID Controller can minimize the difference between the desired set value and

actual measured value by tuning the suitable value for the three controllers (PID)

involved in the control process.

Proportional controller or P controller’s output value is proportional to the

calculated error value through the parameter Kp. Integral controller or I

controller’s output is proportional to the amount of time that errors have been

accumulated. Derivative controller or D controller’s output value is proportional

to the changing rate of error with respect to time.

Figure 101. PID Controller Block Diagram

In the Figure 8, Kp is the proportional gain, Ki is the integral gain, and Kp is the

derivative gain.

)(teKp 


t

i deK
0

)(

dt
tde

dK)(

 155(188)

The formula for PID Controller is:

(ݐ)ݑ = (ݐ)௣݁ܭ + ߬݀(߬)௜න݁ܭ + ௗܭ
(ݐ)݁݀
ݐ݀

௧

଴

																					 (3)

In RoboCup competition, PID controller needs to be integrated in order to achieve

a better performance. By automatically tuning three parameters in PID controller

with the algorithm like genetic algorithm, it can alleviate the interferences caused

by environment.

8.4 Navigation

8.4.1 Introduction

With a robust support from the previous two steps, the major task for this step is

related to the problem on how to direct a robot from one position to another

desired position efficiently and safely.

In the RoboCup Small Size League, there are two adversarial teams with five

soccer robots per team moving at the same time in the field. Because of the fact

that the “world” of the field may keep changing on every control interval, team

robot players need to recalculate to find a suitable path to move without colliding

with any other robots in the field. It requires the strategy software system to

employ some high-efficiency algorithms to achieve this goal. Two well-known

algorithms frequently will be introduced here.

8.4.2 ERRT

Rapidly-exploring Random Tree (RRT) is an algorithm developed by Steven M.

Lavalle and James Kuffner. RRT has been widely used to efficiently solve the

problems about searching non-convex, high-dimensional space.

Extended Rapidly-exploring Random Tree (ERRT) is an improved searching

algorithm based on RRT with optimization on many aspects. By using ERRT

algorithm, it is possible for the robot to build a viable path to the target position

on every control cycle.

Details related to ERRT algorithm will be illustrated in Chapter 4.

8.4.3 Safety Navigation

Safety Navigation Algorithm, which is developed by James Robert Bruce from

Carnegie Mellon University, is a novel algorithm for keeping safety among a set

of cooperating robots. Under conditions of noiseless sensing, perfect dynamics,

and perfect communication, this algorithm can guarantee no collisions will take

place as the robots move about the environment. [28]

This algorithm is crucial for maintaining a non-collision system for our team

robots. It is documented that by employing this algorithm into the strategy

software system, the number of collisions between high-speed SSL soccer robots

is dramatically reduced.

Details related to Safety Navigation algorithm will be illustrated in Chapter 5.

8.5 Skills

Skills are a series of motions to achieve a desired goal. With the support from the

previous three steps, it is possible to make soccer robots accomplish some basic

skills, for example moving in a straight path, or sine path, moving around a circle,

kicking, dribbling, passing balls and simple cooperation between two robots like

“one-touch shot” strategy.

The topic on how to assemble multiple basic skills to build up the effective attack

or defence strategies for soccer robots is beyond the scope of this thesis. Some

effective strategies have already been developed and existed in our code base.

 157(188)

8.6 Summary

This chapter, we describe some of the most important to-dos to build up a sound

and robust system in a bottom-up approach. Many works have already been done

for these four modules in Botnia SSL Team.

Next chapter, we will start describing the principle of Vision Filter module in

detail and how it can be implemented and integrated into the whole system.

9 EXPECTATION OF RESEARCH DIRECTION

9.1 Complex Network Analysis

9.1.1 Theoretical Definition

 Complex graph

Real-world graphs ܩ	(݊,݉)	(n nodes, m edges) are more or less “complex” in the

sense that different topological features deviate from random graphs. [34]

 Betweenness

Figure 102. a Typical Strong Betweenness Connection

Edge betweenness is the total number of shortest paths from any pair of

vertices that cross the edge(Anthonisse, 1971)and it is omputable with algorithms

based on breadth-first-search,with complexity O(m*n) (Brandes, 2001)

 (1)

Whereσୱ୲ is the total number of shortest paths from nodes to nodet and σୱ୲(v) is

the number of those paths that pass through. (Freeman, Linton, 1977)

Figure 103. Formula of Betweenness Connection

 159(188)

9.1.2 Problem and Potential Solution

In the field, there are twelve robots going to compete in two teams. A good

algorithm should not only focuses on the completion of the robot’s movement of

its own team, but also detect the robots in the other team. In doing this, the

algorithm should have the intelligence to make a deduction on the tendency of its

opponent. At first I considered if we have enough resources, we may use the

machining learning algorithm to accomplish this goal, and then the problem is

laying on modelling of classification of different situation. However, according to

the evaluation of the modelling process, it is quite time-consuming. In fact, a

mature and ready-established logic is much easier to adopt and to apply.

A complex network was initially studied by people’s curiosity on social networks.

After researching for years, it was adopted for the analysis of internet social

network. My suggestion is that we also can apply and enhance the algorithms to

this RoboCup game. As we only have six robots in the field, the computation

would not be very complicated. As a consequence, it is reasonable to make a

research on this area.

The communities of robots can be defined through a fitness measure.

For example, in a famous paper wrote by Newman& Girvan in 2004 describes the

steps of the algorithm as following:

Girvan-Newman algorithm

1. Calculate the betweenness of all edges

2. Remove the one with highest betweenness

3. Recalculate the betweenness of the remaining edges

4. Repeat from 2

The complexity of the algorithm is O (m n) O (n3) [on a sparse graph]

9.1.3 Research Perspective

The problems in our case are similar but still different.

1. There are six robots in opposing team and there is not known connection

between any of them. But we can also assume that there exist virtual

connections between each of them. We probably need to do theoretical work

to formulate this kind of analysis.

2. In the RoboCup game, unlike a social network, the more frequent

cooperation is between two robots. The cooperation between several robots

should be considered to give a penalty factor.

Figure 104. Types of Dynamic Community

3. Besides the cooperation detection, we also can have the community detection.

This function is essential for cooperation detection. A good algorithm in the

community detection can improve the accuracy of cooperation detection

dramatically.

 161(188)

Figure 105. Different Algorithms Related to Cooperation Detection. [35]

1. Monitoring the past actions of the opponent robots can be also a contribution

to the analysis. By considering this, the process then will still remain as a

stochastic learning process based on the complex network.

9.2 Expert System and Inference System

9.2.1 Theoretical Definition

 Expert System

The expert system is a computer software that emulates the decision making

process of a human expert. The expert system can normally contribute to the

development of a complex system that needs a large scale of knowledge base.

Auther Label Order

Girven & Neman GN ܱ(݊ ∗ ݉ଶ)

Clauset et al. Clauset et al. ܱ(݊ ∗ log	(݊)ଶ)

Blondel et al. Blondel et al. ܱ(݉)

Guimera et al. Sim. Ann Parameter dependent

Radicchi et al. Radicchi et al. ܱ(݉ସ/݊ଶ)

Palla et al. Cfinder ܱ(exp	(݊))

Van Dongen MCL ܱ(݊ ∗ ݇ଶ),
݇ < ݏݎ݁ݐ݁݉ܽݎܽ݌	݊

Rosvall & Bergstorm Infomod Parameter dependent

Rosvall & Bergstorm Infomap ܱ(݉)

Donetti & Munos DM ܱ(݊ଷ)

Newman & Leicht EM Parameter dependent

Ronhovde & Nussinov RN ܱ൫݊ఉ൯,
 1~ߚ

Figure 106. Components of Expert System [36]

 Inference System

The expert system contains two key concepts. One of them is the knowledge

base and another of them is the inference system. As one key concept in the

expert system, the inference system normally can establish the connection

between the knowledge base and the query. Inside the inference system, the

knowledge is normally listed as a set of rules formalized in a specific

language.

Normally we store several kinds of logic into the system. E.g. propositional

logic, predicates of order 1 or more, epistemic logic, modal logic, temporal

logic and fuzzy logic.

Knowledge
Aquisition
Module

User Inference
Inference
Engine

Knowledge
Base

 163(188)

Figure 107. User's View of Expert System [37]

9.2.2 Problem and Potential Solution

The problem in our project is that our project is huge and complex. But we do not

have enough time to manage the documentation in our daily lives.

The expected solution of this problem is to establish a system that can give

information to the developer and the user by giving a reasonable quarry. We also

can treat this system as an information system framework which we can use to

store and analyse information related to this multi robot system.

9.2.3 Research Perspective

The research perspective can be focused on two points.

1. The first purpose to consider about is how to represent the relationship

between the classes in an expert system.

2. An expert system is depending not only on the inference logics but also on the

algorithms related to data mining and machine learning. The more real model

of developing expert system can be combining inference system and also

deduction

Explanation
System

Inference
Engine

Knowledge
Base Editer

User
Inference

Case-
specific
Data

Knowledge
Base

User

9.3 Heterogeneous Computing For Fast Computation

9.3.1 Theoretical Definition

 Heterogeneous Computing

The heterogeneous computing refers an electronic system which contains different

computational unit. For example, the combination of CPU, GPU and FPGA can

be called as a heterogeneous system.

By giving the tasks to the GPU, the performance can be increased rapidly. The

following graph can show how the speed can be increased by heterogeneous

computing.

Figure 108. Speed-efficiency of Matrix Multiplication Algorithm [38]

The New Landscape of Parallel Computer Architecture.1 Cyclotron Road,

Berkeley California, 94720, USA

9.3.2 Problem and Potential Solution

In the near future, as we add more and more functionalities to the calculating

process, probably, by using traditional methods, we cannot complete 60 times

 165(188)

calculation within one minute, which is the frequency of receiving and analysing

the information from the vision system. Although the RRTs algorithms have

logarithmic complexity, as randomized algorithms, in some real cases, they still

cannot perform very well.

Algorithm Propabilistic
Completeness

Asymptotic
Optimality

Computational
Complexity

RRT Yes No ܱ(log	(݊))
RRT* Yes Yes ܱ(log	(݊))
BRRT N/A N/A ܱ(log	(݉ ∗ 2݊))

Where N and n are the expended node number, m is the number of nodes on the
boundary (details on BRRT algorithm).

Figure 109. the Computational Complexity of Several RRT Algorithms [39]

 State 1 State 2 State 3 State 4 State 5

Success rate 100 100 99 100 16

Time(ms) 1.04 2.83 2.96 1.96 7.74

Length(mm) 3754 4096 4146 4229 4996

Figure 110. Time Expenses of RRT Algorithm Using C++ [1]

 State 1 State 2 State 3 State 4 State 5

Success rate 100 100 100 100 100

Time(ms) 1.04 2.83 2.96 1.96 7.74

Length(mm) 3754 4096 4146 4229 4996

Figure 111. Time Expenses of BRRT Algorithm Using C++ [1]

In this case, we need to focus on the methods which can improve the performance

of calculation. The two obvious ways we have considered about are parallel

computing and heterogeneous computing. The first way, parallel computing is

easier to implement but it is also difficult to make optimization on improving the

speed limit.

Caused by the time consumption of network communication, the heterogeneous

computing, however, may have more possibility to help us to complete the

mission. The combination of CPU and GPU can be a powerful mechanism to

increase the speed as the GPU contains more floating point units.

9.3.3 Research Perspective

1. The heterogeneous computing is efficient in many ways, but it also requires

an efficiently designed pattern for fast communication.

9.4 Conclusion

The previously listed views are only suggestions. If any of the direction turned out

to be unsuitable for the future development of our project, you can drop it.

 167(188)

10 SUMMARY

At this moment, although the system did not really finish all functions that we

intended to make at first place, we still think we have built a foundation for future

development of the system.

We not only managed to build the strategy software, several algorithm simulators

but also implemented the critical algorithms for this project. As a result the other

team members can use what we have done to continue implementing the Strategy-

Tactic-Play (STP) structure of the strategy software. Simultaneously they can also

insert the implemented code to a newer version. The reliability of the strategy

software and the algorithm simulators is relatively robust. There exist some bugs

in the software, but the overall performance is modest.

The research contribution of this thesis lies in following aspects. Firstly we

applied the EKBF to filter the noise of the ball. Secondly we innovatively

simulated several crucial algorithms in the algorithms simulators. Thirdly, we

used a newly designed structure to implement the strategy software. And finally,

we suggested several research directions for the future development of the team.

However, our work also has some limitations. There is some functionality under

development. The robustness and efficiency are not always ensured.

By standing on the ground of innovation, we also would like to encourage other

members in the team to continue thinking about the solutions of the system. No

matter it is related to improving the design or algorithm, we would like to hear

your voice and we can evaluate the plan together.

The best way of thinking a new topic is to absorb the knowledge from a new field.

For example we were taking a summer course called evolution algorithms for

solving complex problems. The professor recommended us to research an uprising

field called morphogenetic robotics. In fact, after considering the relationship

between that topic and our robot project, several ideas showed up in our head.

They actually attracted us a lot and we guess if we have time, we would like to

have a deep dive into it. As a consequence, we also would like to encourage the

people who consider doing research in robotics or finding a job related to robots

to try hard to learn by themselves.

There are several sources of learning from internet. The first one is probably

Coursera and Udacity. You can find a lot of courses related to artificial

intelligence (AI) and robotics. The second way of checking details in your

interesting subject is to do a simple search using Google scholar.

Both ways enable you to enjoy the process of developing concepts by yourselves.

If you have really tasted the feeling of devotion, you know how they can give you

the feeling of happiness.

We are here wishing a good luck to everyone who reads this a bright future.

 169(188)

11 APPENDIX

11.1 Qt Style Sheet for strategy software’s user interface

/* The tab widget frame */
 QTabBar::tab {
background: gray;
border: 10px solid gray;
color: white;
 }
 QTabBar::tab:selected {
background: lightgray;
border-color: #9B9B9B;
border-bottom-color: lightgrey;
border-right-color: lightgrey;
 }
/* make non-selected tabs look smaller */
 QTabBar::tab:!selected {
margin-top: 6px;
 }
QGroupBox::title {
background: gray;
color: white;
padding: 10px;
 }

QGroupBox
{
background-color: gray;
margin-bottom: 2ex; /* leave space at the top for the title */
border: 10px solid lightgray;
}
QPushButton
{
color: white;
background: gray;
border-color: #9B9B9B;
border-top:transparent;
border-bottom: transparent;
border-right: transparent;
border-left: transparent;
padding: 10px;

}

 QPushButton::hover {

background: lightgray;
color: white;
padding: 10px;
 }
QPushButton:focus:active
{
background: lightgray;
color: white;
padding: 10px;
}
QRadioButton {
color: white;
background: gray;
border-top: transparent;
border-bottom: transparent;
border-right: transparent;
border-left: transparent;
padding: 10px;
}
 QRadioButton::hover {
background: lightgray;
color: white;
padding: 10px;
 }

QRadioButton:checked
{
background: lightgray;
color: white;
padding: 10px;
}
QCheckBox
{
color: white;
background: gray;
border-top: transparent;
border-bottom: transparent;
border-right: transparent;
border-left: transparent;
padding: 10px;

}
 QCheckBox::hover {
background: lightgray;
color: white;
padding: 10px;
 }
QTableWidget

 171(188)

{
color: white;
background: lightgray;
padding: 10px;

}
 QTableWidget::hover {
background: lightgray;
color: white;
padding: 10px;
 }
QHeaderView::section {
color: white;
background: grey;
border-top: transparent;
border-bottom: transparent;
border-right: transparent;
border-left: transparent;
}

11.2 DECT Description

Digital Enhanced Cordless Telecommunications (DECT™) is the ETSI standard
for short-range cordless communications, which can be adapted for many
applications and can be used over unlicensed frequency allocations world-wide.

DECT™ is suited to voice (including PSTN and VoIP telephony), data and
networking applications with a range up to 500 metres.

DECT™ dominates the cordless residential market and the enterprise PABX
(Private Automatic Branch eXchange) market. DECT™ is also used in the
Wireless Local Loop to replace copper in the 'last mile' for user premises.

The ETSI Technical Committee DECT (TC DECT) has the overall responsibility
over the technology. [40]

11.3 Complete code for Kalman Filter

11.3.1 Ball EKBF Implementations Step I: Theory & Configurations

Here is some frequently used data structures and functions excerpted from the

EKF code frame.

//Data Structures:

//==============================Dimensions======================//

//Dimension of State Vector

int kalman_x_dimension;

//Dimension of Measuremen tVector

int kalman_z_dimension;

//Dimension of Control Vector

int kalman_u_dimension;

//Dimension of Process Noise Vector

int kalman_w_dimension;

//Dimension of Measurement Noise Vector

int kalman_v_dimension;

//===============================Vectors========================//

//State Vector

CvMat* kalman_x_last;//x_hat_k-1_k-1

CvMat* kalman_x_predicted;//x_hat_k_k-1

CvMat* kalman_x_updated;//x_hat_k_k

//Control Vector

CvMat* kalman_u;//u_k-1

//Measurement Vector

CvMat* kalman_z;//z_k

CvMat* kalman_z_predicted;//z_hat_k

//==============================Matrices=======================//

CvMat* kalman_P_last;//P_k-1_k-1

CvMat* kalman_P_predicted;//P_k_k-1

CvMat* kalman_P_updated;//P_k_k

CvMat* kalman_A;//Jacobian matrix of partial derivatives with respect to x

CvMat* kalman_W;//Jacobian matrix of partial derivatives with

 //respect to w

CvMat* kalman_H;//Jacobian matrix of partial derivatives with

 //respect t ox

CvMat* kalman_V;//Jacobian matrix of partial derivatives with

 //respect to v

CvMat* kalman_Q;//Process noise covariance matrix

CvMat* kalman_R;//Measurement noise covariance matrix

CvMat* kalman_S;//Innovation or residual covariance matrix

CvMat* kalman_K;//Kalman gain

//Functions:

//==========================Auxiliary Functions==========================//

Int CheckDimension(CvMat* M1,CvMat* M2);

Int GetSubMatrix(CvMat* M1,CvMat* M2,int start_row,int start_col);

 173(188)

Int SetSubMatrix(CvMat* M1,CvMat* M2,int start_row,int start_col);

//Combine M1 M2 as [M1 M2]

Int RowCombineSubMatrix(CvMat* M1,CvMat* M2,CvMat* M3);

//Combine M1 M2 as [M1;M2]

Int ColCombineSubMatrix(CvMat* M1,CvMat* M2,CvMat* M3);

//Delete M1(:,col) from M1

Int DelCol(CvMat* M1,CvMat* M2,int col);

//Delete M1(row,:) from M1

Int DelRow(CvMat* M1,CvMat* M2,int row);

//Insert column V before col(0based)

Int InsertCol(CvMat* M1,CvMat* V,CvMat* M2,int col);

//InsertcolumnVtbeforerow(0based)

Int InsertRow(CvMat* M1,CvMat* Vt,CvMat* M2,in trow);

Int OutputMat(CvMat* M,int order=0);

//=======================Output Matrices to Files=======================//

Int OutputMatFile(CvMat* M,char* filename,int num,int order=0);

//======================Initialize Functions=============================//

//Note: start using EKF from here!

int SetDimensions(int x_dimension,

int u_dimension,

int z_dimension,

int w_dimension,

int v_dimension);

int InitMatrices();

int ClearMatrices();

//========================EKF Working Functions=========================//

//=============================Setter===================================//

//Note: We should set this value from the camera raw data

//Se tMeasurement

Int Set_z(CvMat* z);

//Set process noise Q & measurement noise R

Int Set_NoiseCovariance(CvMat* Q,CvMat* R);

//==========================Getter=====================================//

//======The following pure virtual functions need to be rewritten======//

//====================(by calculating Jacobian function)==============//

//f(x,u,0)

virtual int Get_x_predicted()=0;

//A:=df/dx

//Jacobian matrix of partial derivatives off with respect to x

virtual int Get_A()=0;

//W:=df/dw

// Jacobian matrix of partial derivatives off with respect to w

virtual int Get_W()=0;

//H:=dz/dx

// Jacobian matrix of partial derivatives off with respect to x

virtual int Get_H()=0;

//zk:=h(xk-,0)

Virtual int Get_z_predicted()=0;

//V:=dh/dv

// Jacobian matrix of partial derivatives off with respect to v

virtual int Get_V()=0;

//========================Predict Step=============================//

//P-:=A*P*At+W*Q*Wt

int Get_P_predicted();

//========================Update Step==============================//

//S:=H*P-*Ht+V*R*VtV=I

//Innovationorresidualcovariancematrix

int Get_S();

//K:=P*Ht*S_inv

//KalmanGain

int Get_K();

//x_updated:=x_predicted+K(z-z_predicted);

int Get_x_updated();

//P:=(I-K*H)*P_predicted

int Get_P_updated();

Initialize settings:

qDebug()<<"init_EKF() starts:";

temp_mat1=cvCreateMat(4,1,CV_32F);

temp_mat2=cvCreateMat(2,1,CV_32F);

last_raw_x=0.0;

last_raw_y=0.0;

last_raw_vx=0.0;

 175(188)

last_raw_vy=0.0;

//Initialize Kalma nFilter

//SetDimensions(intx_dimension,intu_dimension,intz_dimension,intw_dimension,int

v_dimension)

SetDimensions(4,4,2,4,2);

Set Process noise covariance matrix and measurement noise matrix:

//Process noiseco variance matrix, this should be very small(meaning very

reliable and accurate)

kalman_Q=cvCreateMat(2,2,CV_32F);

cvSetReal2D(kalman_Q,0,0,0.000001);

cvSetReal2D(kalman_Q,0,1,0);

cvSetReal2D(kalman_Q,1,0,0);

cvSetReal2D(kalman_Q,1,1,0.000001);

//Measurement noise covariance matrix, this should be big(meaning not reliable

and accurate)

kalman_R=cvCreateMat(2,2,CV_32F);

cvSetReal2D(kalman_R,0,0,5);

cvSetReal2D(kalman_R,0,1,0);

cvSetReal2D(kalman_R,1,0,0);

cvSetReal2D(kalman_R,1,1,5);

set_NoiseCovariance(kalman_Q,kalman_R);

Set “priori” and “posteriori” error covariance matrix:

kalman_P_predicted=cvCreateMat(4,4,CV_32F);

kalman_P_last=cvCreateMat(4,4,CV_32F);

kalman_P_updated=cvCreateMat(4,4,CV_32F);

cvSetReal2D(kalman_P_predicted,0,0,1000);

cvSetReal2D(kalman_P_predicted,0,1,0);

cvSetReal2D(kalman_P_predicted,0,2,0);

cvSetReal2D(kalman_P_predicted,0,3,0);

cvSetReal2D(kalman_P_predicted,1,0,0);

cvSetReal2D(kalman_P_predicted,1,1,1000);

cvSetReal2D(kalman_P_predicted,1,2,0);

cvSetReal2D(kalman_P_predicted,1,3,0);

cvSetReal2D(kalman_P_predicted,2,0,0);

cvSetReal2D(kalman_P_predicted,2,1,0);

cvSetReal2D(kalman_P_predicted,2,2,1000);

cvSetReal2D(kalman_P_predicted,2,3,0);

cvSetReal2D(kalman_P_predicted,3,0,0);

cvSetReal2D(kalman_P_predicted,3,1,0);

cvSetReal2D(kalman_P_predicted,3,2,0);

cvSetReal2D(kalman_P_predicted,3,3,1000);

cvSetReal2D(kalman_P_last,0,0,1000);

cvSetReal2D(kalman_P_last,0,1,0);

cvSetReal2D(kalman_P_last,0,2,0);

cvSetReal2D(kalman_P_last,0,3,0);

cvSetReal2D(kalman_P_last,1,0,0);

cvSetReal2D(kalman_P_last,1,1,1000);

cvSetReal2D(kalman_P_last,1,2,0);

cvSetReal2D(kalman_P_last,1,3,0);

cvSetReal2D(kalman_P_last,2,0,0);

cvSetReal2D(kalman_P_last,2,1,0);

cvSetReal2D(kalman_P_last,2,2,1000);

cvSetReal2D(kalman_P_last,2,3,0);

cvSetReal2D(kalman_P_last,3,0,0);

cvSetReal2D(kalman_P_last,3,1,0);

cvSetReal2D(kalman_P_last,3,2,0);

cvSetReal2D(kalman_P_last,3,3,1000);

cvSetReal2D(kalman_P_updated,0,0,1000);

cvSetReal2D(kalman_P_updated,0,1,0);

cvSetReal2D(kalman_P_updated,0,2,0);

cvSetReal2D(kalman_P_updated,0,3,0);

cvSetReal2D(kalman_P_updated,1,0,0);

cvSetReal2D(kalman_P_updated,1,1,1000);

cvSetReal2D(kalman_P_updated,1,2,0);

cvSetReal2D(kalman_P_updated,1,3,0);

cvSetReal2D(kalman_P_updated,2,0,0);

cvSetReal2D(kalman_P_updated,2,1,0);

cvSetReal2D(kalman_P_updated,2,2,1000);

cvSetReal2D(kalman_P_updated,2,3,0);

cvSetReal2D(kalman_P_updated,3,0,0);

cvSetReal2D(kalman_P_updated,3,1,0);

cvSetReal2D(kalman_P_updated,3,2,0);

cvSetReal2D(kalman_P_updated,3,3,1000);

 177(188)

Set other involved parameters matrixes, like innovation, Kalman Gain, received

measurement matrix:

kalman_S=cvCreateMat(2,2,CV_32F);

cvSetZero(kalman_S);

kalman_K=cvCreateMat(4,2,CV_32F);

cvSetZero(kalman_K);

kalman_z=cvCreateMat(2,1,CV_32F);

cvSetZero(kalman_z);

kalman_z_predicted=cvCreateMat(2,1,CV_32F);

cvSetZero(kalman_z_predicted);

kalman_x_last=cvCreateMat(4,1,CV_32F);

kalman_x_predicted=cvCreateMat(4,1,CV_32F);

kalman_x_updated=cvCreateMat(4,1,CV_32F);

Set up A, W, H, V these four matrixes in their respective functions, and execute a

check to ensure all settings are correct:

Get_A();
Get_W();
Get_H();
Get_V();

#if0

qDebug()<<"A:";OutputMat(kalman_A);

qDebug()<<"W:";OutputMat(kalman_W);

qDebug()<<"H:";OutputMat(kalman_H);

qDebug()<<"V:";OutputMat(kalman_V);

qDebug()<<"Q:";OutputMat(kalman_Q);

qDebug()<<"R:";OutputMat(kalman_R);

#endif

The four overwritten functions are listed and commented as follows:

//A:=df/dx

// Jacobian matrix of partial derivatives off with respect to x

int GLSoccerView::Get_A()
{

kalman_A=cvCreateMat(4,4,CV_32F);

cvSetReal2D(kalman_A,0,0,1);

cvSetReal2D(kalman_A,0,1,0);

cvSetReal2D(kalman_A,0,2,delta_t);

cvSetReal2D(kalman_A,0,3,0);

cvSetReal2D(kalman_A,1,0,0);

cvSetReal2D(kalman_A,1,1,1);

cvSetReal2D(kalman_A,1,2,0);

cvSetReal2D(kalman_A,1,3,delta_t);

cvSetReal2D(kalman_A,2,0,0);

cvSetReal2D(kalman_A,2,1,0);

cvSetReal2D(kalman_A,2,2,1);

cvSetReal2D(kalman_A,2,3,0);

cvSetReal2D(kalman_A,3,0,0);

cvSetReal2D(kalman_A,3,1,0);

cvSetReal2D(kalman_A,3,2,0);

cvSetReal2D(kalman_A,3,3,1);

//OutputMat(kalman_A);

return0;

}

int GLSoccerView::Get_W()
{

kalman_W=cvCreateMat(4,2,CV_32F);

cvSetReal2D(kalman_W,0,0,0);

cvSetReal2D(kalman_W,0,1,0);

cvSetReal2D(kalman_W,1,0,0);

cvSetReal2D(kalman_W,1,1,0);

cvSetReal2D(kalman_W,2,0,1);

cvSetReal2D(kalman_W,2,1,0);

cvSetReal2D(kalman_W,3,0,0);

cvSetReal2D(kalman_W,3,1,1);

return0;

}

int GLSoccerView::Get_H()
{

kalman_H=cvCreateMat(2,4,CV_32F);

cvSetReal2D(kalman_H,0,0,1);

cvSetReal2D(kalman_H,0,1,0);

cvSetReal2D(kalman_H,0,2,0);

 179(188)

cvSetReal2D(kalman_H,0,3,0);

cvSetReal2D(kalman_H,1,0,0);

cvSetReal2D(kalman_H,1,1,1);

cvSetReal2D(kalman_H,1,2,0);

cvSetReal2D(kalman_H,1,3,0);

return0;

}

int GLSoccerView::Get_V()

{

kalman_V=cvCreateMat(2,2,CV_32F);

cvSetReal2D(kalman_V,0,0,1);

cvSetReal2D(kalman_V,0,1,0);

cvSetReal2D(kalman_V,1,0,0);

cvSetReal2D(kalman_V,1,1,1);

return0;

}

Two functions which are used to get predicted values are also implemented and

commented:

//f(x,u,0)

int GLSoccerView::Get_x_predicted()
{

CvMat* temp1=cvCreateMat(4,1,CV_32F);

//Update"kalman_x_last"tobe"kalman_x_updated"

kalman_x_last=cvCloneMat(kalman_x_updated);

cvMatMul(kalman_A,kalman_x_last,temp1);

float ax=-1.0*(cvmGet(kalman_x_last,2,0))/delta_t;

float ay=-1.0*(cvmGet(kalman_x_last,3,0))/delta_t;

float

float_temp2[]={0.5*ax*delta_t*delta_t,0.5*ay*delta_t*delta_t,ax*delta_t,ay*delt

a_t};

CvMat* temp2=&cvMat(4,1,CV_32F,float_temp2);

cvAdd(temp1,temp2,kalman_x_predicted);

//Output Mat(kalman_x_last);

Return 0;

}

//zk:=h(xk-,0)

int GLSoccerView::Get_z_predicted()
{

//h(xk,0)=H*xk-

cvMul(kalman_H,kalman_x_predicted,kalman_z_predicted);

return 0;

}

11.3.2 Ball EKBF Implementations Step II: Iterative Callings

The following code fragment explains how to iteratively make a proper estimation

by employing the Kalman Filter algorithm:

for(inti=0;i<numBalls;i++){

sslBall=detection.balls(i);

//Get ball'slocation

float raw_x=sslBall.x();

float raw_y=sslBall.y();

int loop=0;

float filtered_x;

float filtered_y;

boolflag=true;

float raw_z1[]={0.0,0.0,0.0,0.0};

float raw_z2[]={0.0,0.0};

//Adjust the looping times based on field testing

while(loop<10)

{

//1)Predict

Get_x_predicted();

//Update "kalman_P_last" to be "kalman_P_updated"

kalman_P_last=cvCloneMat(kalman_P_updated);

Get_P_predicted();

 181(188)

//2)Get measurement raw data

raw_x=sslBall.x();

raw_y=sslBall.y();

//Apply false positive rejection

flag=check_false_positive(raw_x,raw_y);

qDebug()<<"checkfalse_positive:"<<flag;

#if1

//timeline<3 is the initiating time

if(flag||timeline<1)

{

raw_z1[0]=raw_x;

raw_z1[1]=raw_y;

raw_z1[2]=cvmGet(kalman_x_last,2,0);

raw_z1[3]=cvmGet(kalman_x_last,3,0);

raw_z2[0]=raw_x;

raw_z2[1]=raw_y;

cvSetReal2D(temp_mat1,0,0,raw_z1[0]);

cvSetReal2D(temp_mat1,1,0,raw_z1[1]);

cvSetReal2D(temp_mat1,2,0,raw_z1[2]);

cvSetReal2D(temp_mat1,3,0,raw_z1[3]);

cvSetReal2D(temp_mat2,0,0,raw_z2[0]);

cvSetReal2D(temp_mat2,1,0,raw_z2[1]);

kalman_x_last=cvCloneMat(temp_mat1);

Set_z(temp_mat2);

//Get a copy of old valid data in case of false positive

last_raw_x=raw_x;

last_raw_y=raw_y;

last_raw_vx=cvmGet(kalman_x_last,2,0);

last_raw_vy=cvmGet(kalman_x_last,3,0);

}

else

{

raw_z1[0]=last_raw_x;

raw_z1[1]=last_raw_y;

raw_z1[2]=cvmGet(kalman_x_last,2,0);

raw_z1[3]=cvmGet(kalman_x_last,3,0);

raw_z2[0]=last_raw_x;

raw_z2[1]=last_raw_y;

cvSetReal2D(temp_mat1,0,0,raw_z1[0]);

cvSetReal2D(temp_mat1,1,0,raw_z1[1]);

cvSetReal2D(temp_mat1,2,0,raw_z1[2]);

cvSetReal2D(temp_mat1,3,0,raw_z1[3]);

cvSetReal2D(temp_mat2,0,0,raw_z2[0]);

cvSetReal2D(temp_mat2,1,0,raw_z2[1]);

kalman_x_last=cvCloneMat(temp_mat1);

Set_z(temp_mat2);

}

#endif

//3)Update

Get_S();

Get_K();

//Set "kalman_z_predicted" to be "H*X_predicted"

cvMatMul(kalman_H,kalman_x_predicted,kalman_z_predicted);

Get_x_updated();

Get_P_updated();

filtered_x=cvmGet(kalman_x_updated,0,0);

filtered_y=cvmGet(kalman_x_updated,1,0);

loop++;

}

#if1

qDebug()<<"raw_x="<<raw_x;

qDebug()<<"last_raw_x="<<last_raw_x;

qDebug()<<"Filteredx="<<filtered_x;

qDebug();

#endif

//Set filtered result back to the ball object

ball.set(filtered_x,filtered_y);

balls[cam].append(ball);

}

11.3.3 Ball EKBF Implementations Step III: False Positive Rejection

The following code fragment gives the implementation of checking whether false

positives exist.

 183(188)

bool GLSoccerView::check_false_positive(float raw1,float raw2)

{

Bool retVal=false;

CvMat* dummy_z=cvCreateMat(2,1,CV_32F);

cvSetReal2D(dummy_z,0,0,raw1);

cvSetReal2D(dummy_z,1,0,raw2);

CvMat* kalman_C=cvCreateMat(2,2,CV_32F);

CvMat* kalman_Ht=cvCreateMat(kalman_H->cols,kalman_H->rows,CV_32F);

CvMat* kalman_H_x_P=cvCreateMat(kalman_H->rows,kalman_P_predicted-

>cols,CV_32F);

CvMat* kalman_H_x_P_x_Ht=cvCreateMat(kalman_H->rows,kalman_H->rows,CV_32F);

cvTranspose(kalman_H,kalman_Ht);

cvMatMul(kalman_H,kalman_P_predicted,kalman_H_x_P);

cvMatMul(kalman_H_x_P,kalman_Ht,kalman_H_x_P_x_Ht);

cvAdd(kalman_H_x_P_x_Ht,kalman_R,kalman_C);

double Kalman_C_det=cvDet(kalman_C);

int n=kalman_x_dimension;

double denominator=pow((2*3.1415926*Kalman_C_det),(n/2));

CvMat* kalman_H_x_x=cvCreateMat(2,1,CV_32F);

cvMatMul(kalman_H,kalman_x_updated,kalman_H_x_x);

CvMat* kalman_z_minus_H_x_x=cvCreateMat(2,1,CV_32F);

cvSub(dummy_z,kalman_H_x_x,kalman_z_minus_H_x_x);

CvMat* kalman_z_minus_H_x_xt=cvCreateMat(1,2,CV_32F);

cvTranspose(kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt);

CvMat* kalman_Ct=cvCreateMat(2,2,CV_32F);

cvTranspose(kalman_C,kalman_Ct);

CvMat* kalman_z_minus_H_x_xt_Ct=cvCreateMat(1,2,CV_32F);

cvMatMul(kalman_z_minus_H_x_xt,kalman_Ct,kalman_z_minus_H_x_xt_Ct);

CvMat*kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x=cvCreateMat(1,1,CV_32F);

cvMatMul(kalman_z_minus_H_x_xt_Ct,kalman_z_minus_H_x_x,kalman_z_minus_H_x_xt_Ct

_z_minus_H_x_x);

double numerator=pow(2.7183,

(-0.5*cvDet(kalman_z_minus_H_x_xt_Ct_z_minus_H_x_x)));

double probability=numerator/denominator;

qDebug()<<Probability:"<<probability;

//Future adjustment probability range should be basedonon-field testing

 //rather than the “accept-all” policy used in this example

if(probability>1||probability<1.0e-5)

{

retVal=false;//Bad value

}

else

{

retVal=true;//Good value

}

Return retVal;

}

 185(188)

12 BIBLIOGRAPHY

1. Yang, Li. Research on Key Technologies of Path Planning for RoboCup Small

Size Robot League. Wuhan : Wuhan University of Technology, 2012.

2. Anik, Hasan Iqbal. AI, Study. <URL:

http://anikstech.blogspot.fi/2011/03/different-types-of-task-environments-

in.html>.

3. SSL-Vision. <URL: http://code.google.com/p/ssl-vision/>.

4. Sertac Karaman, Emilio Frazzoli. Sampling-based Algorithms for Optimal

Motion Planning. s.l. : International Journal of Robotics Research, 2011.

5. Lavalle, S.M. Rapidly-exploring random trees: A new tool for path planning.

Iowa State University : s.n., 1998.

6. Python Introduction. <URL: http://www.pygame.org/wiki/about>.

7. Numpy Tutorial. <URL: http://www.numpy.org/>.

8. SciPy. <URL:http://www.scipy.org/>.

9. Qt Toturial. <URL: http://qt.digia.com/Product/Developer-Tools/>.

10. Kafura. Object-Oriented Programming and Software Engineering <URL:

http://people.cs.vt.edu/~kafura/cs2704/oop.swe.html>.

11. Innovative Enterprise Solutions (IES). Custom Software Development

<URL: http://www.ies.co.ls/?page_id=13>.

12. IEEE. JSON: The Fat-Free Alternative to XML<URL:json.org>. 2011.

13. QJson. <URL: http://qjson.sourceforge.net/docs/>.

14. google-gson. google-gson docs <URL: https://code.google.com/p/google-

gson/>.

15. J.Romkey. A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS

OVER SERIAL LINES: SLIP. 1988.

16. Charles M. Kozierok. Serial Line Internet Protocol (SLIP) . s.l. : <URL:

http://www.tcpipguide.com/free/t_SerialLineInternetProtocolSLIP-2.htm>.

17. STP Structure.

<URL:http://repository.cmu.edu/cgi/viewcontent.cgi?article=1002&context=rob

otics>.

18. RoboCup Community. Laws of the RoboCup Small Size League 2012

<URL: http://small-size.informatik.uni-bremen.de/_media/rules:ssl-rules-

2012.pdf>.

19. Stefan Zickler, Tim Laue, Oliver Birbach, Mahisorn Wongphati,

Manuela Veloso. SSL-Vision: The Shared Vision System for the RoboCup Small

Size League. s.l. : Carnegie Mellon University, Computer Science Depart-ment.

20. IEEE. Biography of Kalman. IEEE <URL:

http://www.ieeeghn.org/wiki/index.php/Rudolf_E._Kalman>.

21. Maybeck, Peter S. Stochastic Models, Estimation and Control. s.l. :

Academic Press Inc, 1979. Vol. Volume 1.

22. Brown, R.G., P.Y.C.Hwang. Introduction to Random Signals and Ap-plied

Kalman Filtering, 2nd Edition. s.l. : ohn Wiley & Sons, Inc, 1992.

23. Jacobs, O.L.R. Introduction to Control Theory, 2nd Edition. s.l. : Oxford

Uni-versity Press.

24. Greg Welch, Gary Bishop. An Introduction to the Kalman Filter. s.l. : Uni-

versity of North Carolina at Chapel Hill,Department of Computer Science, 2006.

25. Brett Browning, Michael Bowling, Manuela Veloso. mprobability Fil-tering

for Rejecting False Positives. s.l. : School of Computer Science, Carnegie Mellon

University.

 187(188)

26. Zhaopeng, Gu. OpenCV Based Extended Kalman Filter Frame 1.0.0. 2011.

<URL: http://mloss.org/software/view/350/>.

27. Feng, Bin. Extended Kalman Bucy Filter demo on RoboCup <URL:

http://www.youtube.com/watch?v=MBO39XHcwpc>. 2011.

28. Bruce, James Robert. Real-Time Motion Planning and Safe Navigation in

Dynamic Multi-Robot Environments. s.l. : Carnegie Mellon University, School of

Computer Science, 2006.

29. Latombe, Jean-Claude. Robot Motion Planning. s.l. : Stanford University.

Kluwer Academic Publishers, 1991.

30. Lau, George Tin Lam. Path Planning Algorithms for Autonomous Border

Patrol Vehicles. s.l. : University of Toronto, 2012.

31. Frazzoli, Emilio. Principles of Autonomy and Decision Making. s.l. :

Massachusetts Institute of Technology, 2010.

32. LaValle, Steve. The RRT Page. About RRTs. <URL:

http://msl.cs.uiuc.edu/rrt/about.html>.

33. Tewari, Ashish. Atmospheric and Space Flight Dynamics: Modeling and

Simulation with MATLAB and Simulink (Modeling and Simulation in Science,

Engineering and Technology). 2007.

34. Jongkwang Kima, Thomas Wilhelmb. a Theoretical Systems Biology.

Germany : s.n.

35. Fortunato, Santo. s.l. : Aalto University, 2012.

36. Choi, Jinmu. s.l. : University of Geogia

<URL:http://www.amzi.com/ExpertSystemsInProlog/01introduction.php>, 2002.

37. Alison. Intro to Logic Reasoning . s.l. :

<URL:http://cinuresearch.tripod.com/ai/www-cee-hw-ac-

uk/_alison/ai3notes/subsection2_5_2_1.html>.

38. Chen Yong, Xian-He Sun, Ming Wu. Algorithm-system scalability of

heterogeneous computing. s.l. : Illinois Institute of Technology, 2008.

39. Filipe Militao, etc. s.l. : Carnegie Mellon University, 2010.

40. Description, DECT. <URL:http://www.etsi.org/index.php/technologies-

clusters/technologies/dect>.

