Jouni Laakso

Learning environment of Exertus control systems

Bachelor’s Thesis
Spring 2013
School of Technology

Automation Engineering

7

Seindjoen ammattikorkeakoulu
SEINAJOKI UNIVERSITY OF APPLIED SCIENCES

SEINAJOKI UNIVERSITY OF APPLIED SCIENCES

Thesis abstract

Faculty: School of Technology

Degree programme: Automation Engineering

Specialisation: Machine Automation

Author: Jouni Laakso

Title of thesis: Learning environment of Exertus control systems
Supervisor: Niko Ristimaki

Year: 2013 Number of pages: 49 Number of appendices: 1

The purpose of this thesis was to develop and implement a learning environment
for Exertus QY at Seinajoki University of Applied Sciences. The development of
the learning environment included the selection of Exertus’ products that the
learning environment will contain and the aggregation of useful and sufficient
instructions for the use of Exertus PC software. The development of the learning
environment included also the designing and programming of the simulation
software that can be used in the testing of control systems made with Exertus’
products.

This report consists of a theory part, development of the learning environment and
implementation of the simulation software. The subjects of the theory part are CAN
bus, CANopen protocol and TCP/IP protocol suite.

As a result of this Bachelor’s thesis, a learning environment was designed. The
thesis work proceeded in schedule and the goals of the thesis were achieved.

Keywords: CAN bus, CANopen, control systems, distributed systems

SEINAJOEN AMMATTIKORKEAKOULU
Opinnaytetyon tiivistelma

Koulutusyksikko: Tekniikan yksikko

Koulutusohjelma: Automaatiotekniikka
Suuntautumisvaihtoehto: Koneautomaatio

Tekija: Jouni Laakso

Tyon nimi: Exertus control systems -koulutusympaéristo
Ohjaaja: Niko Ristimaki

Vuosi: 2013 Sivumaara: 49 Liitteiden lukumaara: 1

Taman opinnaytetyon tavoitteena oli suunnitella ja toteuttaa koulutusymparisto
Exertus OY:n tuotteilla Seindjoen ammattikorkeakoululle. Koulutusympariston
kehitys sisélsi laitteiston ja ohjelmiston valinnan sekd hyodyllisten ja riittavien
kayttdohjeiden laatimisen ohjelmistolle. Koulutusympariston kehitys sisalsi myos
simulaatiosovelluksen suunnittelun ja ohjelmoinnin. Sovelluksen avulla voidaan
testata Exertuksen tuotteille ohjelmoituja ohjaus toimintoja.

Tama opinnaytetyon raportissa on kolme osiota: teoriaosio, koulutusymparistén
kehitys seka simulaatiosovelluksen toteutus. Teoriaosiossa esitelladn CAN-vaylaa
ja CANopen-protokollaa, jotka liittyvat vahvasti Exertuksen toimialaan. Lisaksi
teoriaosiossa kasitelladn TCP/IP-protokollaperhe, joka liittyy Exertuksen PC-
sovelluksiin.

Opinnaytetyon tuloksena saatiin suunniteltua koulutusymparistdé. Tyo eteni
aikataulussa ja sen tavoitteet saavutettiin.

Avainsanat: CAN-vayla, CANopen, hajautetut jarjestelmat, ohjausjarjestelmét

TABLE OF CONTENTS

ThESIS ADSIrACT......euieiiii e e 2
OpinnaytetyOn tHVISTEIMEii i 3
TABLE OF CONTENTS ..o 4
List of figures and tables. ... 6
Terms and abbreviationS ... 7
1 INTRODUCTION ...oeiii et 9
3 I = 7= T o 11] o PSS 9
1.2 Objectives Of the StUAYccoiiiiiiiiiie e e 9
1.3 Structure of the repOrtcooiiiii e 9
1.4 EXEITUS O ..ttt ettt e et e e et e e e e e e e e e eaa e aee 10
I O 1011V T 1P 10

1.4.2 PrOQUCES...ccoi i e 10

2 CANDBUS ..o 11
2.1 PRYSICAl [AYEN ... 11
A D T L= W {1 0] G = 1= U 13
2.2.1 Data Frame ... oo 13

2.2.2 REMOLE FramMe ...couiiiiiiiiii e eeaens 15

2.2.3 EITOT FIam@... . ittt e e e 15

2.2.4 Overload Frame ... 15

P2 I 11 =Y LU 1111 o [N 15
P = 1§ L= 1 o1 = L1 (0] o U 16

3 CANOP BN e 18
3.1 CAN in Automation (CiA) and CANOPENuuuurriimiiiiiiiiiiiiiiiieiiiiiiiieiiaeees 18
3.2 Protocols Of the CANOPEN.......uuuiiiiiiiiiiiibee bbbt 18
3.3 Network management StAteSccuiviiiiiiiii i 20
3.4 Controlled start of the NEWOrKcoooiiiiiiiiiii e 21

4 TCP/IP ProtoCOl SUITEcccvveieiiiieiie e 23
I | o] £0] (0 Tox o | ISP 23
A W O = o] o] (0o | SRS 23

I © 151 I 1 ¢ To Yo [IR 24

v IO | o oo = S 26
IS Yo od 1= T 27

5 DEVELOPMENT OF THE LEARNING ENVIRONMENT 29
ST] (<] o PRSPPI 29
SIS0 1 1T R 30
5.2.1 EXMEBUSSEIVEN ...t 30

5.2.2 CANIO 2 ... e 30

5.2.3 GUITU cevttiiiie ettt e e e e e e e e e e e e aeaae 31

5.2.4 HCM2000PCSimulation and HCM2000VirtuallOBOXcccce.... 32

5.2.5 The software and the EXMeBUSSEIVErccccccvvvviiiiiiiiiiiiiiinnnnnn 33

S IRC T o V1]] 41T o | 33
5.3.1 Compact Display Controller CDC1700Scccceeeveveeiieiiiiieeeereeeennns 34

5.3.2 Hybrid Controller Module HCM2000S.........cccooeieiiiiieiiiiiieeee e 35

5.3.3 Other eqUIPMENTiii e e e e e e eeeens 36

I I T IS V] (=] o PO 37
SR 1151 0 T4 1 0] U 38
5.5.1 Instructions for the use of Canto 2 and GUItU............ccceevvvvireeeennnnnn. 39

5.5.2 Instructions for the installation of the softwarecccccccvvvvvvennnnn. 39

B SIMULATOR ... e 40
6.1 Starting POINT.......ooeiiiii e 40
6.2 Programming language and programming toolccccceeeeeeeieiieeinnnnnnnn. 41
6.3 DesSign Of the [aYOULuuiiiiiiiiiiiiiiiiiii e 41
B.4 FRALUINES ...ttt et e e e e e e e et e e aaaans 41
G R (@ =) - o 42

6.4.2 HINt TeXtS Tab......oooooiiiiie 45

6.4.3 Settings and Log TabsScccooviiiiiiiiiiie e 45

ORI el (oo | £= 10 0] 0 011 0o 45
8.6 USAgE .. ettt 46

T SUMMARY ..o 47
BIBLIOGRAPHY ... 48

APPENDIXES ..o 50

List of f

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

igures and tables

The principle of the CAN bus with three nodes...........ccccccccciiiiiiiiininnnn, 12
Voltage levels of the recessive and dominant states (Alanen 2000, 10).13
Original format of the data frame (CAN in Automation (CiA) 2013). 14

Extended format of the data frame (Alanen 2000, 6).cccevvrrvrrnnnnn. 14
Bus arbitration method (Alanen 2000, 7).coooeeeeieeeeeiiiiiieie e, 17
The states of a CANopen node (Saha 2006, 8)..........ccccevvvvciiiieeeeeeenenns 21
The controlled start of the CANopen network (Saha 2006, 8)................ 22
Connection between two computers with sockets (Kaario 2002, 194)...28
Canto 2 software (Exertus. 2013a.)cccceevrieieiiiiiiiiee e e e 31
: Guitu software. (Exertus. 2013a.)coovvvviiiiiieeeeeeeeeen e 32
: The software and the EXMeBUSSEIVET.ccoovvveiiiiiiiiieeeeeeeeeiiiinnn 33
Compact Controller Module CDC1700S. (Exertus. 2013a.)................. 35
Hybrid Controller Module HCM2000S. (Exertus. 2013a.)ccccvuue.... 36
Can Hub CHS8S. (EXertus. 2013a.).....cccceeeeeiiiiiiiiiiiiiieee e 37
PEAK PCAN-USB adapter (PEAK-System. 2013.).......cccoevvveveieeeeennnn. 37
The planned system for the learning environment................ccoeeevveeeene 38
SWitches 0N the 1O BOX......uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieeeeeeeeeeneeeeennnees 42
OUtpULS 0N the TO BOX. wuvvuiiieieiiiieeeee e 43
Analog channel adjustment..........coooooiii 44
The panel for controlling the pulse inputs of the virtual module. 44

Hint texts written to the grid and shown on the 1/0O box..........cccc.......... 45

Terms and abbreviations

ACK

CAN_H

CAN_L

CAN

CAN bus

CiA

CRC

DLC

EMCY

EOF

FBD

GUI

I/O

IDE

IFS

ISO

LED

LSS

Acknowledge
CAN-high cable

CAN-low cable

Control Area Network

A vehicle bus

standard

that

can

be

used

in

communication between different devices within a vehicle

or machine

CAN in Automation, an automation field standardization

organization

Cyclic Redundant Check

Data Length Code
Emergency

End of Frame

Function Block Diagram

Graphical User Interface

Input / Output

Identifier Extension

Intermission Frame Space

International Standards Organization

Light-Emitting Diode

Layer Settings Services

NMT

Node

NRZ

oSl

PDO

RTR

SDO

SYNC

TCP/IP

UDP

USB

Network Management

A device connected to a CAN bus
No Return to Zero

Open Standards Interconnection
Process Data Object

Reserved bit

Remote Transmission Request
Service Data Object
Synchronization

Transmission Control Protocol / Internet Protocol
User Datagram Protocol

Universal Serial Bus

1 INTRODUCTION

1.1 Backround

Exertus OY is still a rather small but growing company and it wants to increase
people’s knowledge of the company. A good way to do this is to get students to
learn to know the company and its products. Exertus decided to develop a learning
environment in cooperation with Seindjoki University of Applied Sciences at the

School of Technology.

1.2 Objectives of the study

The objective of this Bachelor's thesis is to develop and engineer a learning
environment for Exertus OY at Seinajoki University of Applied Sciences. The goal
is that with the learning environment it is possible to practice the programming of
Exertus I/O controllers, the development of graphical user interfaces (GUI) and the
configuration and diagnostics of a CAN bus.

The thesis consists of the development and implementation of the equipment that
the learning environment will contain and the aggregation of useful and sufficient
instructions for the use of the Exertus PC software that will also be included in the
learning environment. The idea is that one is able to learn to create his or her first,

working control system with the help of the learning environment.

1.3 Structure of the report

This report consists of a theoretical part, the development of the learning
environment and of the evaluation of the study. In the theoretical part the CAN bus
and CANopen protocol are discussed. These two subjects are relevant when using
the learning environment and Exertus products. Also the TCP/IP protocol suite is

presented in the theory part. It is a relevant subject in the Exertus software.

10

1.4 Exertus OY

Exertus OY was founded in the year 2003 and it is located in Seingjoki Finland.
Exertus develops advanced and comprehensive mobile control systems for
machine manufacturers. The main goal of Exertus is to help its customers to make
their products smarter and to help them succeed in the global markets where
competition is hard.

1.4.1 Know-how

The core competence of the company is in the application of the CAN bus based
distributed control systems that are used widely in different kinds of machines, for
example, forest harvesters and earthmovers. The customer can be offered a
comprehensive control system or a part of it. The service concept of the company
includes predesign, consulting, defining, design, implementation, training and

maintenance of the control system.

1.4.2 Products

The electronic products developed by Exertus are based on optimal components,
the existing standards and many years of experience in electronics design. The
products are designed for generic use or they can be also designed for a specified
use. Competitive prices are also possible due to the innovative solutions in design.

Specified uses are, for example, some machines that have small manufacturing
guantities but need a smart control system or the control system requires some
special feature. Generic uses are, for example, machines with either big or small
manufacturing quantities but the control systems of the machines do not require

any special features that the existing products do not already have.

11

2 CAN bus

The serial bus system CAN (Controller Area Network) was developed by Robert
Bosch GmbH in the mid 1980s. It was created to respond to the requirements of
the developing electronics of vehicles. The CAN bus was originally developed to
be used in real-time data transmission in distributed control systems. Today the
CAN bus is also used in the controlling of different actuators and in the
transmission of information from sensors in vehicles and also in industry. Now
many electronics and machine manufacturers have joined to the bus technology.
(Juhala, Lehtinen, Suominen and Tammi 2005, 129.)

CAN bus is by its structure a multi-master bus. That means that every node on the
bus has an equal authorization to send its messages to the bus. The messages
are not addressed to a certain node but every node determines by itself what kind
of information it needs. Therefore no addresses are bind to the nodes and this is a
great advantage because new nodes can be added or old ones can be removed
flexibly and easily. (Juhala etc. 2005, 129.)

2.1 Physical layer

The CAN bus is built of two conductors that are named CAN_H (CAN High) and
CAN_L (CAN Low). The data transmission on the CAN bus is based on the
voltage difference of these two conductors. Generally a protected twisted pair wire
is used to form the CAN bus. The bus has typically 120 Q terminators at both ends
that prevent the sent signals from being reflected back to the bus as echoes from
the ends. These echoes would disturb the traffic on the bus. The impedance of the
bus should also be nominally 120 Q. (Juhala etc. 2005, 134-135.) The principle of
the CAN bus is presented in Figure 1.

12

Node 1 Node 2 Node 3
CAN_H
I |
2 2
= =
I I
Terminator CAN L Terminator

Figure 1: The principle of the CAN bus with three nodes.

There is no logical limit for how many nodes there can be on a CAN bus.
Effectively the number of the nodes is limited by the used transceiver of the node.
The number of the nodes on the bus varies in area of 100-200 depending on the
used transceiver. The number can be increased by using reproducers but they
also increase the lag of the transmission path and therefore they also decrease

the maximum length of the bus. (Alanen 2000, 5.)

The maximum speed of the CAN bus is 1 Mbit/s. The maximum length of the bus
with this speed is 40 m. With the speed of 50 kbit/s the length can be
approximately 1 km. The lag of the transmitting path defines the maximum length
of the bus. So, the maximum length depends on the travelling speed of the
electromagnetic waves. The only way to increase the maximum length of the bus
is to reduce the transmitting speed. This feature comes from the bus arbitration
principle of the CAN protocol. The nodes have to take a sample of a single bit at
the same time with certain accuracy and it requires that the lag is not too great.

(Alanen 2000, 5.) The bus arbitration is presented in chapter 2.4.

The voltage difference between the CAN_H and CAN_L conductors define the
state of the bus. The bus can be in two different logical states: dominant or
recessive. Dominant state is the logical O and recessive the logical 1. ISO CAN
standard defines that at the recessive state, the voltage value of both conductors

is 2,5 volts and at the dominant state, the voltage value of the CAN_H is 3,5 volts

13

and CAN_L 1,5 volts. Therefore, the voltage difference at the recessive state is 0
volts and at the dominant state 2 volts. (Juhala etc. 2005, 133-135.)

35\ CAN_H
95\ resess. domin. resess.
15V — — —

CAN_L

Figure 2: Voltage levels of the recessive and dominant states (Alanen 2000, 10).

2.2 Data link layer

The CAN specification includes the data link layer in both the original format and in
the extended format. The data link layer is also standardized in 1ISO 11898
standard. (Juhala etc. 2005, 130.)

The CAN protocol defines four different types of message frames:
— Data Frame
— Remote Frame
— Error Frame
— Overload Frame. (Alanen 2000, 6.)

2.2.1 Data Frame

The total length of the original format data frame is at maximum 111 bits plus stuff
bits and the extended format data frame is 131 bits plus stuff bits. The stuff bits
are explained in chapter 2.3. (Juhala etc. 2005, 130-131.)

The data frame includes the following parts:

14

SOF (Start of Frame): SOF is the start bit of the message. It is always of
dominant state.

Arbitration field: Arbitration field consists of the message identifier and the
Remote Transmission Request (RTR) bit which is used to determine
whether the frame is a data frame or a data request frame. In the original
format the identifier is 11 bits and in the extended format 29 bits (Figure
4).

Control field: Control field contains the Identifier Extension (IDE) bit, which
determines whether the data frame is in the original format or in the
extended format, and the Data Length Code (DLC), which is used to tell
the number of bytes in the Data field. Between the IDE and DLC there is
also a reserved bit which is not used, so it should be O.

Data field: Data field is at most 8 bytes, 0-64 bits.

CRC (Cyclic Redundant Check): The integrity of the frame is checked
with the CRC.

ACK (Acknowledge): The ACK is formed of two bits, ACK slot and ACK
delimiter. The sender of the message sends the ACK slot bit as a
recessive bit and the receiver overwrites it as a dominant bit if it has
received the data correctly at this time.

EOF (End of Frame): EOF indicates the end of the message.

IFS (Intermission Frame Space): IFS separates the consecutive
messages. If there is no consecutive message, the bus remains idle after
the IFS. (CAN in Automation (CiA) 2013a.)

S H A
ide Olidentifier| T|D (0| DLC Data CRC | C EOF |FS]| Ide
F R|E K

Figure 3: Original format of the data frame (CAN in Automation (CiA) 2013).

S
O
F

Tunniste 18 bittia

mo —

rMr0] DLC

-3

S
Tunniste 11 bittia i

Figure 4: Extended format of the data frame (Alanen 2000, 6).

15

2.2.2 Remote Frame

The remote frame has almost the same structure as the data frame but the RTR
bit is recessive and there is no data field. With the remote frame, desired

information can be requested to the bus. (Alanen 2000, 6-7.)

2.2.3 Error Frame

The error frame is sent if an error is detected within the message. In the error
frame there are six dominant bits and eight recessive bits. Therefore it violates the
CAN protocols bit stuffing rule. This affects that every node on the bus states that
the message is faulty and discards it. It is also possible that the node goes into a
passive error state in which the structure of the error frame changes. In this state,
instead of sending six dominant bits, six recessive bits are sent. This way the node

will not mess up the traffic of other nodes. (Alanen 2000, 7.)

2.2.4 Overload Frame

The overload frame can be sent between messages when the bus is in an idle
state. By doing this, the receiving node can get extra time to process the data
message which it has received. When the overload frame is on the bus, no
messages can be sent. This gives extra time. The overload frames are rarely used
in practical systems, though, because the circuits today do not need extra time to

process a single data message. (Alanen 2000, 7.)

2.3 Bit stuffing

The CAN protocol has a method called NRZ (No Return to Zero) bit stuffing. If
there are five bits of the same kind in a row in the bit string that the sender is
sending, the sender adds a bit with a complementary value after them. This bit is

called a stuff bit. The receiver of the data message removes the stuff bit from the

16

message. The stuff bit makes it easier to detect errors and it helps the
synchronization between the nodes. (Juhala etc. 2005, 131.)

2.4 Bus arbitration

Any of the nodes on the CAN bus can try sending a message, if the bus is free. If
several nodes are trying data transmission at the same time, the transmitting turn
is solved with the bus arbitration. This means that the identifiers of the data
messages are inspected bit by bit and the turn is solved according to them.
Because the zero bit is the dominant bit on the CAN bus, the data message with
the smallest identifier has the biggest priority and it will be sent first to the bus.
(Alanen 2000, 7.)

The bus arbitration can be seen in work in Figure 5. In the figure there is three
nodes connected to the bus and they are sending a data message at the same
time. Each data message has different identifier. The bit strings of the identifiers
are inspected bit by bit. While inspecting the second bit, the node 2 notices that it
has lost the authority to use the bus so it stops transmitting and continues as a
receiver. Same thing happens to node 3 while inspecting the fifth bit. Node 1 gets
the authority to send the data message first to the bus because it has the smallest
identifier.

Three nodes are trying to send a message at the same time
NODE1 NODE2 NODE3

N\ AN N

NODE1:00010110001=177 (e.g. engine rpm.)
NODE 2: 01100101101 =813 (e.g. coolant water temp.)
NODE 3:0001*1011010=218 (e.g. vehicle speed)

MESSAGE ONBUS: 00010110001 =177 (engine rpm.)

*Node notices that it has lost the authority to use the bus, stops transmitting and
continues as a receiver. "Engine rpm." wins the authority

Figure 5: Bus arbitration method (Alanen 2000, 7).

18

3 CANopen

3.1 CAN in Automation (CiA) and CANopen

CiA is a nonprofit organization founded in the year 1992 by several international
users and manufacturers. The idea of the CiA was to provide technical, product
and marketing information and to promote the CAN’s image and to develop and
support CAN-based higher-layer protocols. The CiA group has today
approximately 560 company members. (CAN in Automation (CiA) 2013b.)

CANopen protocol is standardized by the CiA. The CANopen protocol is one of the
most widely used protocols of the CAN bus application layer. At first, it was
defined to work only in the CAN networks but because of its popularity and

flexibility, it has been taken into use also in other buses. (Saha 2006, 6.)

The most important thing that the CANopen protocol defines is the Object
Dictionary, which separates the software and the bus transmission in every node.
With the Object Dictionary it is possible to identify the node on the bus and to
master all operations of the node via the bus. In addition to the node and data
transmission models and the services of the application layer, CANopen defines
also other useful things, like connector types with their pin orders to ensure the
compatibility of the nodes. (Saha 2006, 6.)

There are two kinds of nodes in the CANopen protocol: CANopen-device and
CANopen-manager. CANopen-device is a node that can contain any kind of
software functionality. CANopen-manager is a CANopen-device that also includes
the following properties: NMT-master, SDO-manager and Configuration manager.
It also includes one of the following properties: SYNC-producer, TIME producer or

LSS-master. (Saha 2006, 6.) The properties are explained in chapter 3.2.

3.2 Protocols of the CANopen

CANopen provides every bus system many protocols for the required services.

Some functions, like starting of the network or updating of the signals between the

19

nodes, may use several protocols to accomplish the function. (Saha 2006, 8.) The
different protocols are explained below.

Layer Settings Services (LSS). LSS provides the services for setting the data
transmission speed and the node identifier in a controlled way. It is typically used
in editing the settings of the nodes before they are installed to the target system.
The LSS-master does this. (Saha 2006, 8.)

Boot (Bootsrap). With the Boot protocol, the CANopen node informs the other
nodes on the bus that it has started. This information is mostly used by the NMT-
master functionality of the CANopen-manager when it is starting the bus. (Saha
2006, 8.)

Heartbeat. With the Heartbeat protocol, the node can produce information on its
function state to the other nodes that are connected to the same bus. This

information can be used by any node on the bus. (Saha 2006, 8.)

Service Data Object (SDO). By the SDO protocol it is possible to read values
from the Object Dictionary of a CANopen node and to write values there. SDO-
manager property uses this protocol in the connection management. (Saha 2006,
8.)

Network Management (NMT). By the NMT protocol, the NMT-master can start
the nodes connected to the CANopen network. NMT-master is the property for
starting the network. (Saha 2006, 8.)

TIME. With the TIME protocol it is possible to provide global time information to
the CANopen network. TIME producer uses this protocol. On every network there
can be only one TIME producer. (Saha 2006, 8.)

SYNC (Synchronization). SYNC protocol is used to synchronize the transmitting
of the PDO frames. This is done by the SYNC producer property. (Saha 2006, 8.)

Process Data Object (PDO). With the PDO protocol, the process signals’ states
between the node Object Dictionaries are updated. A PDO can be sent both

synchronously and asynchronously. (Saha 2006, 8.)

20

EMCY (Emergency). By the EMCY protocol, information on operations is
transmitted in the CANopen network. This information typically consists of error
notifications. (Saha 2006, 8.)

3.3 Network management states

Every CANopen node has three different constant network management states -
pre-operational, operational and stopped - and two momentary network
management states — reset node and reset communication. With a NMT
command, the constant state of a CANopen node can be changed to any other

state. (Saha 2006, 9.) The different states are explained below.

Reset node. Reset node state includes all initializations related to the node,
except the initialization and starting of the CANopen protocol stack. (Saha 2006,
9)

Reset communication. Reset communication state includes the initialization and
starting of the CANopen protocol stack. A boot message should be sent in this

state right before the node turns into the pre-operational state. (Saha 2006, 9.)

Pre-operational. Pre-operational state is a safe state into which the node turns
after it has started. The node waits in the pre-operational state that the NMT-
master will complete the controlled start of the bus and the possible inspections

and parameter changes according to it. (Saha 2006, 9.)

Operational. In the operational state, the CANopen network is fully working. In
this state, also the PDO transmitting is allowed like the SDO transmitting and
notifications with the EMCY frames. (Saha 2006, 9.)

Stopped. Node is led to the stopped state typically if a serious error has occurred.
In the stopped state, the node is only allowed to consume NMT commands and to

produce information on its state with the heartbeat protocol. (Saha 2006, 9.)

The network management states of the CANopen node can be seen in Figure 6.
The right moment for transmitting the boot message is marked into the figure with

the *-mark.

21

POWER-UP

.

RESET NODE

.

RESET COMMUNICATION

OPERATIONAL

PRE-OPERATIONAL [* » STOPPED

Figure 6: The states of a CANopen node (Saha 2006, 8).

3.4 Controlled start of the network

The system can work safely only if every node in the bus has the right firmware
and if its parameters are correct. Because of this, a method to make a controlled
start to the network is defined. (Saha 2006, 9.)

When the NMT-master starts, it restarts all other nodes CANopen protocol stacks
to get a boot message from every node connected to the bus. After the NMT-
master has received the boot messages, it runs a starting sequence to every node
that is defined into the node list in the Object Dictionary. (Saha 2006, 9.)

The starting sequence includes the following functions
1. The existence and the correctness of the node are checked with the help
of the device type, manufacturer code, product code and the version and
serial number.
2. CANopen protocol stack of the node is not restarted if there is a safety
risk in it. This is a so called keep-alive property.
3. The firmware version correctness is checked.

4. If the node has a wrong firmware version, the firmware will be updated.

22

5. The time when the parameters have been changed the last time, is
checked.

6. The parameters of the node are updated if a wrong time is noticed.

7. If all the selected inspection functions have been completed without
errors, the heartbeat of the node is started and the node is led to the
operational state. (Saha 2006, 9-10.)

After the starting sequence has been completed, the state information on the
starting sequence is sent to the application by the NMT-master's CANopen
protocol stack. The application then decides if the NMT-master node may be led to
the operational state. (Saha 2006, 10.) The controlled start of the CANopen

network is presented in Figure 7.

BEGIN — IDENTIFY NODE

NMT RESET OPTIONAL KEEP-ALIVE
COMMUNICATION I A ‘

OPTIONAL SW VERSION CHECK

v

OPTIONAL SW UPDATE

v

OPTIONAL VERIFY
CONFIGURATION

v

START LOCAL OPTIONAL CONFIGURATION
UPDATE
END START NODE

Figure 7: The controlled start of the CANopen network (Saha 2006, 8).

23

4 TCP/IP protocol suite

TCP/IP (Transmission Control Protocol / Internet Protocol) is commonly spoken as
the TCP/IP protocol but it is not an actual protocol but it is a protocol suite
consisting of protocols developed for different purposes. The TCP/IP protocol suite
is originally designed for Internet use. Its function is to provide useful message
transmission rules for networks that are built up of smaller networks. In a TCP/IP
network, the basis of operations is the communication between the networks.
(Vainio & Hakala 2005, 178-179.)

The services of modern data networks are usually based on the different software
protocols of the TCP/IP protocol suite. The reasons of the popularity of the TCP/IP
protocol suite are its openness and the commonly approved standards. (Vainio &
Hakala 2005, 178.)

4.1 IP protocol

The IP (Internet Protocol) is the first of the most important protocols of the TCP/IP
protocol suite and because of that its name is taken to the name of the protocol
suite. The IP defines the packet transmission service, which is the most relevant
service of the protocol suite. The service is technically defined as an unreliable,
connectionless and best-effort packet transmission service. The service is called
unreliable because the arrival of the packets is not ensured. Connectionless
means that every packet is handled independently regardless of the others. The
programs of the network try their best to transmit the packets, and this is where
the word best-effort comes from. The connectionless packet transmission service
of the IP protocol builds up the base for the service provided by the TCP protocol.
(Comer 2002, 97.)

4.2 TCP protocol

The TCP (Transmission Control Protocol) is the second of the protocols of the

TCP/IP protocol suite that has given its name to the suite. The TCP provides

24

software a reliable message transmission service. The reliability means that the
TCP can ensure the arrival of data and correct transmission failures so that the
software don’t need to mind of these things. The transmission service provided by
the TCP is always point-to-point style service. This means that the connection is
always created between two programs and it is not possible to create broadcast or
multicast connections. (Kaario 2002, 166.)

4.3 OSI| model

The ISO (International Standards Organization) OSI model (Open Systems
Interconnection) has had an important role in the communications protocols. The
idea of the OSI model was to provide device manufacturers and network users an
environment in which the systems based on the environment would be able to
communicate effortlessly with each other. It would not be, therefore, needed to fit
various networks created for different uses to work together. The target of the OSI
model has not been reached, but the layer model has been a base for the

communications. (Kaario 2002, 18.)

The OSI model has seven different layers. The layers are explained below and

they can also be seen in Table 1.

Physical layer. The physical layer takes care of the physical transmission of the
bit stream. Amongst other things, the physical layer must take care of the
connectors, the physical properties of the transmission path and the voltage levels
of the signals. (Kaario 2002, 19.)

Link layer. The task of the link layer is to reliably transmit the bit stream along the
transmission path. The layer is carried out with a transfer protocol that can
examine data of the signal for transmission errors and send the data in a specified
packet. With the link layer it is also possible to control the flow or limit the amount

of data coming to the physical layer when needed. (Kaario 2002, 20.)

Network layer. The most important task of the network layer is to route the data

packets to the receiver through the network. Additionally the flow control and

25

keeping watch of quality requirements can be done with this layer. (Kaario 2002,
20.)

Transport layer. The transport layer takes care of creating a direct connection
between the transmitting systems. In other words, it provides transparent transfer
of data in the network between the transmitter and the receiver. TCP protocol for
example can be located on this layer. (Kaario 2002, 21.)

Session layer. The session layer creates connections between the transmitting
systems and also removes them. It also superintends and supports the

communication needs of the upper layers. (Kaario 2002, 21.)

Presentation layer. The task of the presentation layer is to take care of the
manner of representation during the transfer and to arrange the used manner of

representation. (Kaario 2002, 21.)

Application layer. The application layer defines an equal communication interface
to the network for all communications software. The software can be, for example,
terminal operations, email, a file transfer or a directory service. The software is
outside the protocol stack. The application layer is only the interface for the
software. (Kaario 2002, 21.)

Table 1: Layers of the OSI model in Finnish and in English (Kaario 2002, 18).

Sovelluskerros

Esitystapakerros

Application layer

Istuntokerros

Presentation

layer

Kuljetuskerros

Session layer

Verkkokerros

Transport layer

Siirtokerros

Network layer

Fyysinen kerros

Link layer

4.4 TCP/IP model

Physical layer

26

The TCP/IP protocol suite is linked in some way to every OSI model layers

mentioned before. It basically has five layers: a physical layer, a link layer, a

network layer, a transport layer and an application layer. The physical layer's and

link layer’s functions are not directly defined but they can consist of many various

protocol layers. Actually the TCP/IP protocols work on the network and the upper

layers. This is why the physical layer and the link layer are put into the same box

on Table 2, in which the relationship of the TCP/IP model and the OSI model can

be seen. (Kaario 2002, 22.)

27

Table 2: The relationship of the TCP/IP and the OSI model (Kaario 2002, 22).
osl TCP/IP

Application layer

. Application layer
Presentation layer

Session layer

Transport layer
Transport layer

Network layer Network layer

Link layer
Link and physical

_ layer
Physical layer

For the transport layer, the TCP protocol can be used. Also the UDP (User
Datagram protocol) could be used, which is similar to TCP but simpler. However,
the UDP will not be discussed in this report. The software that uses the TCP
protocol sees the network as logical connections. To create this type of logical
connections, sockets are needed. Sockets are presented in chapter 4.5. (Kaario
2002, 22.)

45 Sockets

Socket is a pair formed by an IP address and a TCP port number. For example,
the IP number could be 160.221.224.74 and the port number 23. With these two
numbers, the software that uses the network can be recognized. Without the port
number, only the computer that uses the network would be known and the TCP/IP

stack could not transmit the data to the right software. The port numbers are 16-bit

28

integer numbers, so possible port numbers are 0-65535. Some of the numbers are
reserved for specific protocols. (Kaario 2002, 194.)

In order that the communication between two computers or programs would be
possible, a socket pair is needed. This means IP addresses and port numbers of
both ends. (Kaario 2002, 194.) The connection between two computers using
sockets is expressed in Figure 8.

Source: IP 10.11.12.13, port 56789
Destination: IP 10.11.12.18, port 23

o > D 10.11.12.18

Source: IP 10.11.12.18, port 23
Destination: IP 10.11.12.13, port 56789

Figure 8: Connection between two computers with sockets (Kaario 2002, 194).

10.11.12.13

29

5 DEVELOPMENT OF THE LEARNING ENVIRONMENT

The objective of the Bachelor’'s thesis was to develop and engineer a learning
environment for Exertus OY at Seingjoki University of Applied Sciences. The tasks
in the thesis were the development and implementation of the equipment that the
learning environment will contain and the creation of instructions for the Exertus
PC software in the learning environment. In this chapter the development of the

learning environment is discussed.

5.1 Steps

In the beginning it was necessary to get acquainted with the Exertus software and
hardware. Getting familiarized with Guitu software was the first task. After a while
of studying the Guitu, it was time to take a look into the Exertus products and the

Canto 2 software. The software and the hardware are presented later in chapter 5.

A simple system was built up with a CDC1700S display module, a module testing
device, a HCM4000 Hybrid Sensor and a CH8S Hub module. The other devices
were connected to the CAN hub and the hub was connected to a PC with a USB
CAN adapter. With this system it was possible to learn how to create control
functions to the Exertus modules and graphical user interfaces to the Exertus
display modules. It was also possible to study the configuration and diagnostics of

a CAN bus with the system and the Canto 2 software.

After being familiarized with the Exertus control systems, it was time to think of the
products and software that would be included to the learning environment. At this

point also some instructions for the use of Canto 2 and Guitu were made.

There was also a PC simulation of the HCM2000 module under programming
during the development of the learning environment. It was thought that some kind
of a virtual version of the module testing device for the HCM2000PCSimulation
would be useful. Designing of the HCM2000VirtuallOBox was started and it
eventually became a big part of the development of the learning environment and
this Bachelor’s thesis, for it was decided that it and the HCM2000PCSimulation

30

would be also added to the learning environment. The implementation of the
HCM2000VirtuallOBox is discussed in chapter 6.

5.2 Software

The software choices were simple. The two main programs of the software on the
learning environment are the Canto 2 and Guitu software. ExMeBus Server has
also an important role on the learning environment. HCM2000 PC Simulation and
HCM2000VirtuallOBox were finished during the development of the learning
environment and they were also included to it. In chapters 5.2.1-5.2.4 the software
are briefly presented and also their functions on the learning environment are

discussed.

5.2.1 ExMeBusServer

ExMeBusServer (Exertus Message Bus Server) has an important role on the
learning environment. All communication between the Exertus client programs is
transmitted through ExMeBusServer. The ExMeBusServer works like a hub for the
messages between Exertus software. The programs send their messages to the
ExMeBusServer and it distributes the messages to all programs on the server. The

traffic sent via the ExMeBus is normal TCP/IP packet traffic.

5.2.2 Canto 2

Canto 2 (Controller Area Network Tool version 2) software is a CAN bus
configuration and maintenance tool developed and owned by Exertus OY. Canto 2
can be used to control, analyze and record traffic on a CAN bus, configure system
parameters and load programs to the Exertus modules. With Canto 2 software it is
possible to monitor traffic on any CAN bus based on CAN 2.0A / 2.0B standard.

By Canto 2 it is possible to learn how to configure and analyze a CAN bus. CAN

messages are led from the CAN bus to Canto 2 by connecting the CAN bus with a

31

USB CAN adapter to the PC, wherein the ExMeBusServer transmits the message
forward to the Canto 2.

I, Canto 2.4 registered to Exertus Canto

File Edit Conmection ‘Windows Tools Window management Help
Y 4 P (cp) E]
v Q@ A) S =
Disconnect Conn, options Init CAM Open .par Save .par Load program Console Abort S00s Clear all

CAN Messages |System PDO Values | SDO Parameters || Watches | Recording | Log

All CAN messages Show all buses v [show only selected {filkered) messages [Filters...] [Clear messages]

Bus |CAN-ID Description Length Data (hex) Period Shortest Longest | Average Bus load (bps) Count 2

III:-:lEii; ‘D01, node 10 |:||:| 00 00 00 00 00 Q0 00 m 2360 510

1 0x1G6E TFDO1, node 11 5] 00 00 00 00 00 00 00 oo 340 339 341 340.0 347 75

L 0x147 TFDO1, node 39 g o0 00 00 00 o0 00 00 o0 340 339 341 340.0 347 75

1 0x148 TPDO1, node 40 g 00 00 00 00 00 00 00 oo 340 339 341 340.0 347 75

1 0xZ84 TPDOZ, node 10 g 00 00 00 00 00 00 00 oo 47 46 54 50.0 2380 510

L 0x25E TFDOZ, node 11 g o0 00 00 00 o0 00 00 o0 341 339 341 340.0 347 75

1 0x247 TPDOZ, node 39 g 00 00 00 00 05 00 07 o0 &0 58 5l &0.0 1966 425

L 0354 TFDO3, node 10 g o0 10 00 00 o0 00 03 o0 344 336 344 340.0 347 75

1 0x38E TPDO3, node 11 g 00 00 00 00 00 00 0o oo 340 339 341 340.0 347 75

1 0= 347 TPD03, node 39 g 3F 00 00 OF 00 00 00 oo 340 339 341 340.0 347 75

L Ox 484 TFD04, node 10 g o0 00 00 00 o0 00 00 o0 340 340 340 340.0 347 75

1 0x48E TPDO4, node 11 g 00 00 0L 00 00 00 00 oo 340 339 341 340.0 347 75

L 0x 447 TPDO4, node 39 g oo 00 00 0O 00 00 00 oo 341 339 341 340.0 347 75

L O0x704 Heartbeat, node 10 1 as 200 199 201 Z00.0 Z85 127

1 0x727 Heartbeat, node 39 2 05 oo 200 1599 201 200.0 329 128
3

< >

Transmit CAN messages

Periodical sending Period Bus CAN-ID Description Length Data (hex) Count G
v

< »

@ Connected ko localhost: 2043 Latest errar: SO0 error: Object does not exist in the object dictionary. Bus: 1, node: 39, index: 0x0, subindex: 0

Figure 9: Canto 2 software (Exertus. 2013a.)

5.2.3 Guitu

Guitu software is a Graphical User Interface tool implemented and owned by
Exertus OY. With Guitu, user can create GUIs for the Exertus display devices.
Besides GUIs, the user can also create control functions to the Exertus modules
with a programming language that is very similar to IEC 61131-3 Function Block

Diagram (FBD) language.

Learning to design and produce graphical user interfaces and control functions to
the Exertus modules is the main idea on the learning environment. The Guitu
software is easy to learn to use. The I/O modules contain ready programmed
functions. With them and the FBD programming, many kinds of control functions

can be made with little coding.

32

Lana_CDC1700S - Guitu 2.1 registered to Exertus Guitu user.

Fle Edt Windows Window management Help/Tools

Current module | Display ~ | Currentlanguage | Finnish v
! = ~ T
e 2 T O O o &
| = I A == < ¥ Lo rN € Q
Make config Text Editor Image conwerker Font conwerter Global Options History Clipboard Debugger Hotkeys Search

System Configurator | Window design | Scripts | Yariables

Object Properties
Create newobject: Type | oldLabel v [Flrocusimods b Exentilianders

General | Yalue | Images | Stvle | Advanced

Window Tree | Layers || 4 *

Search
Font v
00.00.0000 00:00 |-
- SetupdndDiag A A A el et .
Module: HCMZ000 Sivuttaiskallistus Pitkittaiskallistus Dlron)
Module: Sensor [Cieft [Jright
Dleattam Disable Frames

0
|

Foreground color

o | Il] ()
< >

#lpha ransparency 0

Background color

S

Alphatransparency 100 | < >
[Transparent

Forused style
Foreground colar

[s)
0.0%
Background calor

Trip stop 0 h 00 min o0

[CJ1nwert colors when Focused

Coordinates: 666, 105 Colar: Resolution: 640x460 Window: Main

Figure 10: Guitu software. (Exertus. 2013a.)

5.2.4 HCM2000PCSimulation and HCM2000VirtuallOBox

HCM2000PCSimulation. HCM2000PCSimulation is the virtual version of the
HCM2000 I/O module. It has the same functionalities as the physical module. On
the GUI of the program, user can set the values for the inputs of the virtual
module. The virtual module is very useful for the user who is creating a control
system with Guitu. With the HCM2000PCSimulation and the
HCM2000VirtuallOBox, the program that the user has made, can be tested

virtually.

HCM2000VirtuallOBox. HCM2000VirtuallOBox is made to be used with the
HCM2000 virtual module. With HCM2000VirtuallOBox, the user can control the
analog, digital and pulse inputs of the virtual module and it also simulates the
outputs of the virtual module. The designing process and functionality of the

program is told more precisely in chapter 6.

33

5.25 The software and the ExMeBusServer

The programs are connected to the ExMeBusServer using the socket technique
presented in the theory part of this report. A program sends its messages to the
ExMeBus in TCP/IP packet traffic. The ExMeBusServer then forwards the

messages to all other programs on the server. This is expressed in Figure 11.

“
Canto 2

N

ExMeBusServer

Virtual HCMZ2000
HCM2000 Virtual 10 Box

Figure 11: The software and the ExMeBusServer.

An example of the messaging on the ExMeBusServer: an input is enabled in the
HCM2000VirtuallOBox. The HCM2000VirtuallOBox sends a message to the
ExMeBus when the input is enabled. The ExMeBusServer receives the message
and forwards it to the HCM2000 virtual module which sets the controlled input
enabled. The virtual module then starts transmitting a CAN message of the state
of the input to the ExMeBus. The Canto 2 receives the CAN message and the user

can see that the input is enabled.

5.3 Equipment

The hardware is relevant in the learning environment. Choosing the equipment
required some deliberation. There were few possibilities in products that were

considered when the choices were done. It was sure that there would be a display

34

module on the learning environment and there were two options for it. In addition
an 1/0 module was added even though it was at first thought that it is not

necessary. In chapters 5.3.1-5.3.3 the selected equipment are presented.

5.3.1 Compact Display Controller CDC1700S

CDC1700S is the display module that was selected to be used on the learning
environment. It is a combined display and 1/O controller module. It can, therefore,
be used also alone or it can be connected to a bigger control system via a CAN

interface.

Features of the CDC1700S module
— USB host port
— 5,7" VGA color display, resolution 640 x 480
— 11 Digital inputs
— 8 Analog inputs (control with either voltage or current)
— 4 Digital outputs
— 8 Proportional PWM outputs
— Every output and analog input can also be used as a digital input meaning
there are total of 31 PNP inputs (Exertus. 2013b).

There was another option for the display device with a smaller display and other
different features. CDC1700S was selected because the bigger display was
considered better when thinking of educational possibilities. More complex GUIs
can be made for it. Also the USB host port is very useful in the learning
environment because the program made by the user can be uploaded to the
module by using an USB stick. It is not, therefore, necessary that the module is

connected to a PC if the user wants to test his program.

The model of CDC1700S that is used has a control knob that can be used to
navigate in the user interface. GUIs and control functions to the module can be

created with the Guitu software.

35

Figure 12: Compact Controller Module CDC1700S. (Exertus. 2013a.)

5.3.2 Hybrid Controller Module HCM2000S

HCM2000S is the 1/O module that was chosen to be added to the learning
environment. HCM2000S has water- and dustproof housing (IP67). The module
has two separate 1ISO 11898 CAN interfaces and it is CANopen compatible. It can

work as stand-alone or it can be connected to a larger CAN based control system.

Inputs and outputs of the HCM2000S module
— 8 Digital / frequency inputs
— 8 Analog inputs
— 12 Bit A/D converter
— 8 Digital outputs
— 24 Digital / proportional PWM outputs
— Every output and analog input can also be used as a digital input meaning
there are total of 48 PNP inputs (Exertus. 2013c).

36

Figure 13: Hybrid Controller Module HCM2000S. (Exertus. 2013a.)

5.3.3 Other equipment

CAN hub. In order that all the devices can be connected to the system, a CAN
hub is needed. Exertus CAN Hub CHS8S is used as the hub. The CAN bus and
power can be distributed up to 8 modules. The CH8S has eight M12 connectors

and a power connector and 11 LEDs for diagnostic information.

Technical information of the CH8S module

Dust and water proof IP67 housing

Four M5 screw holes for mounting

Eight M12/5 CAN connectors and one M12/4 connector for supply
One LED for every CAN connector for module power indication
Three LEDs for CAN bus traffic diagnostics (Exertus. 2013d).

37

Figure 14: Can Hub CHS8S. (Exertus. 2013a.)

USB CAN adapter. The system is to be connected to a PC with a USB CAN
adapter. The manufacturer of the adapter that will be used is the German PEAK.
The CAN bus is connected to the PC with the adapter from one of the M12
connectors of the CAN hub to the USB port in PC. The PEAK USB CAN adapter

drivers must also be installed to the PC, to which the system is connected.

2

S

Figure 15: PEAK PCAN-USB adapter (PEAK-System. 2013.)

5.4 The system

The hardware that builds up the physical part of the system on the learning
environment are the CDC1700S, HCM2000S and CAN Hub CH8S modules and
the PEAK USB CAN adapter. The CAN bus, to which the modules are connected
to, is connected to a PC with the USB CAN adapter. In the PC, the software that

38

form the virtual part of the system, are the Canto 2, Guitu, ExMeBusServer,
HCM2000PCSimulation and HCM2000VirtuallOBox software. The structure of the

system is illustrated in Figure 16.

PC

\ | Guitu CAN USB

Canto 2

Virtual HCM2000 2 Adapter
HCM2000 Virtual 10 Box :

ExMeBus

HCM2000

1,’ & 6
CDC1700S .\- QT

‘) (“d(}(‘)

CAN Hub

Figure 16: The planned system for the learning environment

5.5 Instructions

To create and aggregate instructions for the installation and use of the Exertus
software was also part of the bachelor thesis. In this chapter it is briefly told of the

making of the instructions and what kind of things they contain.

39

5.5.1 Instructions for the use of Canto 2 and Guitu

After some time of studying the Canto 2 and Guitu software, instructions for the
use of them was made. At first, two PowerPoint presentations were made of the
basic things of both Canto 2 and Guitu software, and they became more like
introductions to the programs. In those two presentations it was told what kind of

features the software has and how to get started with them.

After the introduction presentations were ready, a presentation with step by step
instructions for creating simple GUIs and control scripts with Guitu was made. Also
in the manual of Guitu, there are useful step by step instructions for different
situations. The manuals for both Canto 2 and Guitu are available for the user.

They are included in the installation packet of the programs.

5.5.2 Instructions for the installation of the software

The installations of the Exertus software to computers in Seingjoki UAS will be
done by the IT support of the university. The software is easy to install but it was
considered that simple installation instructions would be a good thing. There are
also instructions for the installation in Canto 2’s and Guitu’s manuals but it's easier

to read all instructions from the same document.

A test installation for the software was done for one computer in the university in
the end of the development of the learning environment. The installations
succeeded without any problems. After the installations, the software was tested
and also they worked as they should. After the tests were done, the instructions for

the installations were written.

40

6 SIMULATOR

A big part of the development of the learning environment was the programming of
the simulation software. With the software, the inputs of a HCM2000 module can
be controlled and also the outputs of the module are simulated. In this chapter the

process of designing and programming of the simulation software is discussed.

6.1 Starting point

Exertus has produced also 1/0 module testing devices for different kind of module
types. They have been used by the programmers for testing the modules and
control systems. Now the intention is that the testing for a control system during
programming could be made, more or less, only by PC. This way of testing would
be faster and there would be no need for building the system with physical

modules.

There had already been designed and implemented PC simulations of the
HCM2000 and CDC1700 —modules. There was, therefore, also a need for some
kind of virtual version for the I/0O module testing device. It was decided to start
designing a virtual 1/O testing device for the HCM2000 module. With the help of
the PC simulations of HCM2000 and CDC1700 —modules and the virtual 1/0
testing device, programmers could test their creations also on the learning

environment.

There had been made a simple example program that had functions for
connecting to the ExMeBusServer and for initialization of a CAN adapter. It was
decided to use this program as a base for the new program. The new program
was named HCM2000VirtuallOBox. In this report HCM2000VirtuallOBox is

referred to also with the name “simulator”.

41

6.2 Programming language and programming tool

The example program that was used as a base for the simulator was programmed
in C++ programming language as many other Exertus software. It was, therefore,
logical to use C++ as a programming language in the simulator as well. It could
have also been possible to use some other programming language but it was
reasonable to use C++ because of the possibility to re-use already existing codes
which provided easier and faster programming. The programming tool used for
programming the simulator was Embarcadero C++ Builder XE3. This tool had

been already in use in the company.

6.3 Design of the layout

Few possibilities were considered while designing the appearance of the
simulator. The layout of the physical I/O module testing device was assessed good
and clear. The users of the simulator would also be already familiar with the layout
if it was the same. It was, therefore, decided to design the appearance of the
simulator using the testing device as a model. The finished simulator looks almost
the same as the physical version. See the appendix 1 for the layout of the

simulator.

The switches, LEDs, potentiometers, labels and the black background are
designed using the Inkscape software which is an open-source vector graphics
editor. The sketching was quite simple using that editor and also the use of the

models was a big advantage.

6.4 Features

The simulator was intended to be easy to use. That was paid attention to while
designing the simulator. In this chapter the features of the simulator are shortly

presented.

42

6.4.1 10 Box tab

There are four different tabs on the simulator. The virtual 1/0 box is on the first tab
which is named IO Box. The objects and features of the 1/O box are presented

below.

Inputs. The switches on the 1/O box can be switched simply by clicking them with
a mouse. Every switch works as an input for the virtual module. The visual layout

of the switches can be seen in Figure 17.

10000 12000

X179 X110 X111 X112 X113 X115 X116 X117

0 0 O @ @ @ @ @
0 8
§ ¢ 3

X111 X2 X1/3 X144 X156 X1e X177 X1/8

Figure 17: Switches on the 10 Box.

Outputs. The outputs of the virtual module are also simulated on the simulator.
Above in the X2-connector’s switches there are LEDs that work as outputs. The
outputs are enabled when the switches are in the lower position as they are also in
the physical testing device. The percent values below the LEDs tell the PWM
ratios of the outputs. Over the LEDs there are shown the pair pin current
measurement values that come from the virtual module. In Figure 18, there are a

few outputs enabled.

43

65% 48% 0% 0% 46% 47% 0% 0%

5 ~ ~ ~ " 5 ™]

¢ & 9 9 & 9 9 @

Figure 18: Outputs on the 10 Box.

Analog channels. The screw-looking round objects up on the box image
potentiometers. Clicking them opens a small panel with a slide bar. This slide bar
can be used to set the value for an analog channel of the virtual module. A
Different analog channel can be adjusted with each potentiometer. If the value of
the channel is not zero, the value is shown over the potentiometers. For core
temperature and the supply voltage of the virtual module there are separate
buttons on the box. Clicking them opens a small panel with an edit box to which
the user can input a value for the analog channel. The analog channel adjustment

slide bar is shown in Figure 19.

44

| Disconnect || Tnit CAN | (& Connected to 127.0.0.1:2043

bngs | Log

M_X]__g 12000 Set 18 9%
[

"

. - A A A s
. 9 & & 9 9 & 9
(rl Il Il [l Il [Irl

| Disconnect || mitcan | @ Comnected to 127.0.0.1:2048

ttings | Log
12000 30000

~ ™~ ™~

A " A A
S 9 & & 9 9 8 &
o I I I I B I I o

Figure 19: Analog channel adjustment.

Pulse inputs. The pulse inputs of the virtual module can be controlled from the
panel which is opened when the pulse buttons on the 1/0O box are pressed. The

panel is shown in Figure 20.

X1_1 pylse Counter
Pulse Freq 1 /10 Hz 20

X111 X122 X133 X144 X5 X1e X177 X1/8

Figure 20: The panel for controlling the pulse inputs of the virtual module.

45

6.4.2 Hint Texts Tab

On the second tab there is a grid to which the user can write hint texts for the
switches on the I/O box. Once the hint texts are enabled by a checkbox and the
mouse cursor is moved on a switch, the hint text is shown. This is a useful feature
for the user for it may be hard to remember what functions each input has. The
hint texts can also be saved into a text file and loaded from there. The structure is
clear in the text file. On each row there is one pin name and hint text. This allows
the user to write and edit the hint texts also from the text file. The hint text feature

can be seen in use in Figure 21.

0 Box | HintTexts | Settings | Log

X198 X110 X111 X112 X113 X1

?EEEE

| Enable Hint Texts

Button Name Hirtt Text

X111 Input 1 P oy . -~

X1 2 Input 2 o

X133 Input 3

e vy & 9 &
X1_5

X168 X111 X112 X113 X144 X158 X
X117

W1 @

Figure 21: Hint texts written to the grid and shown on the 1/0O box.

6.4.3 Settings and Log Tabs

On the third tab there are a few settings concerning the simulator. On the last tab
there is a log. Information on the events that occur in the simulator is printed to the

log. The log can also be disabled.

6.5 Programming

The programming language was already familiar from a previous project done in
the company so it did not cause so many difficulties anymore. Some functions
required some searching for information on how they should be used. Some new
features came also up on the programming tool during programming but they were
cleared with the help of Embarcadero online Documentation Wiki.

46

Some ideas were taken from the previous project and they were refined. Like in
the previous project, the programming in this project was also done in the way that
the code could be efficiently re-used and this was shown in many versatile and
efficient functions. Another version of the simulator has actually already been

made for other virtual module type.

6.6 Usage

The HCM2000VirtuallOBox can be used by the user to test the control functions
he has done with Guitu software. Using the virtual 1/0O box speeds up the testing
because there is no more need to build up the system with physical devices.
Everything cannot yet be tested virtually but during the programming process the
HCM2000VirtuallOBox is a great aid for the programmer. The
HCM2000VirtuallOBox may be developed further in the future to provide more
features to the user.

47

7 SUMMARY

The goal of this thesis was to develop and implement a learning environment for
Exertus OY at Seinajoki University of Applied Sciences. The idea of the learning
environment was that within it, the user can practice the programming of Exertus
I/O controllers, the development of graphical user interfaces (GUI) and the
configuration and diagnostics of a CAN bus. The learning environment was
supposed to include Exertus I/O controller modules as hardware and Exertus

software.

This goal was achieved quite well. The hardware was selected and it will be
brought to Seindjoki UAS during the summer 2013. The software selections were
also clear and they will be installed to the computers at the university also during
the summer 2013, because the university will get some new computers during the

summer.

During the development of the learning environment an idea of a new simulator
software came up. This software was intended to help the programmer at the
testing of made control systems. It was decided that the simulator will also be part
of the learning environment and eventually it became a big part of the
development of the learning environment. The simulator was finished in time. A
test installation for the software was made to one computer at the university and

the functionality was tested. The software was working properly.

One task was also to gather useful and sufficient instructions for the use of the
Exertus PC software. The instructions for the use of the software were created in
an early stage. They could be better but there was not enough time to improve
them during the thesis work. Instructions to the installation of the software were
made after the test installation. They are simple step-by-step instructions and easy

to follow.

48

BIBLIOGRAPHY

Alanen, J. 2000. CAN — ajoneuvojen ja koneiden sisainen paikallivayla. [PDF file].
Tampere: VTT Automaatio. [Ref. 24 April 2013]. Available at:
http://www.oamk.fi/~eeroko/Opetus/Ohjausjarjestelmat/ CAN/CAN-
perusteet AlasenMateriaalia.pdf

CAN in Automation (CiA). 2013a. CAN protocol. [Web page]. CAN in Automation
(CiA). [Ref. 25 April 2013]. Available at: http://www.can-
cia.org/index.php?id=systemdesign-can-protocol

CAN in Automation (CiA). 2013b. About CAN in Automation (CiA). [Web page].
CAN in Automation (CiA). [Ref. 25 April 2013]. Available at: http://www.can-
cia.org/index.php?id=aboutcia

Comer, D. E. 2002. TCP/IP. Translator Erkki Suominen. Jyvaskyla: IT Press.

Exertus OY. 2013a. Company official homepage. [Website]. Exertus OY. [Ref. 9
April 2013]. Available at: http://www.exertus.fi/

Exertus OY. 2013b. CDC1700S datasheet. [Online publication]. Exertus OY. [Ref.
21 April 2013]. Available at:
http://www.exertus.fi/files/Tiedostot/CDC1700S _flyer.pdf

Exertus OY. 2013c. HCM2000S datasheet. [Online publication]. Exertus OY. [Ref.
21 April 2013]. Available at:
http://www.exertus.fi/files/Tiedostot/HCM2000S _flyer.pdf

Exertus OY. 2013d. CH8S datasheet. [Online publication]. Exertus OY. [Ref. 23
April 2013]. Available at:
http://www.exertus.fi/files/Tiedostot/CH8S DataSheet.pdf

Juhala, M., Lehtinen, A., Suominen, M. & Tammi, K. 2005. Moottorialan sdhk&oppi
(8th renewed edition). Jyvaskyla: Autoalan koulutuskeskus OY.

Kaario, K. 2002. TCP/IP-verkot. Porvoo: Docendo Finland Oy.

PEAK-System. 2013. Products, PCAN-USB. [Web page]. PEAK-System. [Ref. 22
April 2013]. Available at: http://www.peak-system.com/PCAN-
USB.199.0.html?&L=1

Saha, H. 2006. CANopen perusteet. [Online publication]. FLUID Finland 1 - 2006.
[Ref. 25 April 2013]. Available at: http://www.canopen.fi/artikkelit/ CANopen.pdf

http://www.oamk.fi/~eeroko/Opetus/Ohjausjarjestelmat/CAN/CAN-perusteet_AlasenMateriaalia.pdf
http://www.oamk.fi/~eeroko/Opetus/Ohjausjarjestelmat/CAN/CAN-perusteet_AlasenMateriaalia.pdf
http://www.can-cia.org/index.php?id=systemdesign-can-protocol
http://www.can-cia.org/index.php?id=systemdesign-can-protocol
http://www.can-cia.org/index.php?id=aboutcia
http://www.can-cia.org/index.php?id=aboutcia
http://www.exertus.fi/
http://www.exertus.fi/files/Tiedostot/CDC1700S_flyer.pdf
http://www.exertus.fi/files/Tiedostot/HCM2000S_flyer.pdf
http://www.exertus.fi/files/Tiedostot/CH8S_DataSheet.pdf
http://www.peak-system.com/PCAN-USB.199.0.html?&L=1
http://www.peak-system.com/PCAN-USB.199.0.html?&L=1
http://www.canopen.fi/artikkelit/CANopen.pdf

Vainio, M. & Hakala, M. 2005. Tietoverkon rakentaminen. Porvoo: Docendo
Finland Oy.

49

APPENDIXES

APPENDIX 1. The layout of the HCM2000VirtuallOBox

50

APPENDIX 1

- =

I@ HCM2000VirtuallOBox, Module ID: 9

| Disconnect | | mitcan | @ connectsd to 127.0.0. 112048

I0Box | Hint Texts | Settings | Log

| core Temperatre |

~ ~ ~ ~ ~ ~ ~ ~

0 O O @O @ O O @

~ ~ ~ ~ ~ ~ ~ ~

X1/5

X1 Xu2 X113 X1/4 X1e XU7 X118

0 % 0% 0% 0 % 0% 0% 0 % 0% 0 % 0% 0% 0 % 0%

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

X2/ X212 X2/3 X2/4

X2/5

X286 X2I7 X2/8

0 % 0 % 0% 0%

~ ~ ~ ~ ~ ~ ~ ~

¢ o 9 ¢ ©® 9§ 9 ¢ 9 9 8 0

0%

~

0%

~

Supply Voltage

0 % 0 %

~ ~

X2/10 X211 X212 X2/13 X2/14 X2/15 X2/16 X2N17

0 %

~

X2/22 X223 X2/24 X225 X2/30 X2/31 X2/32 X2/33

1(4)

2(4)

['& Hemo00virtua

| comectmexichussever | [Disconnect | [mitcan | @ comnected to 127.0.0.1:204%

Enabie Hint Texts [s J[wed][ceara

Button Name. Hint Text e
X1_1 Input 1
Xi_2 Input 2
X3 Input 3
X4
X5
3
7
B

X1

3(4)

© HCM2000VirtuallOB [

Connect to ExMeBus server
10 Box | Hint Texts | Settings |Log

@ Connected to 127.0.0.1:2048

I
Module 1D
Give the module ID of the module for exmebus which you want to simulate
into the editbex below and dlick "Set™
Module ID Set
Hint Texts
il If you want the program to save the hint texts that are on the hint text
i list when the programis closed and to load them when the program is

opened, check the checkbox below. A text file "Autosave™ will be created

[] save and load the last hint texts automatically

Timer Interval
You can set the interval of how often the program asks analog channe!
and output values from the virtusl module by giving the interval in
millseconds to the editbox below and didking "Set”, You can save CPU
oad by setting longer interval.

Timer Interval 100 ms

& nemzooovirtualn

10 Box | Hint Texts | Settings | Log

@ Connected to 127.0.0.1:2048

4(4)

jsable Logging Enable CAN message logging

Timestamp Message

20130426 17:33.05998 Recsived |0 packet: Output PWM Ratios of module 1D 9
20130426 17:33.05998 Recsived |0 packet: Analog Channel Values of module 1D 9
20130426 17:3305998 Recsived 10 packet: Output cuments of moduls 10 9
20130426 17:3306.018 1: 1170: 0c432: 8: 0: 0: 0:0: 0:0: 0: 0: 0

20130426 17:3306.048 1: 1810 B712:2:5: 0 0:0:0:0

20130426 17:3306.088 1: 974: (x392: 8: 0: 0: 0: 0: 0: 17, 0: 255. 0

20130426 17:3306.108 1: 0: 0<00C: 2: 1: 18: 0 0:0: 1183063051
20130426 17:33.06.108 Recsived I0 packet: Output PWM Ratios of module 1D 9
20130426 17:33.06.108 Received I0 packet: Analog Channel Values of module 1D 9
20130426 17:33.06.108 Received |0 packet: Output cuments of module 1D 9
20130426 17:33.06.156 1; 787: Be313: 8: 0: 0: 0: 0: 1: 0: 0: 0; 1183063101
20130426 173306178 1402 (192 8 0:0: 0: 0: 0: 0: 0: 0: 0

20130426 17:33.06.178 1: 658; (292 8: 0 0: 0: 0: 0: 0: 0: 0: 0

20130426 17:33.06.178 1 403; (x193: 8: 0 0: 0: 0: 0: 0: 0: 0

20130426 17:33.06.178 1; 659; (c293; 8: 0: 0: 52: 100; 0; 0: G: 0; 0

20130426 17:33.06178 1 915 (393 8 1:0: 0: 0: 0: 0: 0: 0: 0

20130426 17:33.06.178 11171 B :0:0:0:0

20130426 17:33.06.229 Received |0 packet: Output PWM Ratios of madule 1D 9
20130426 17:33.06229 Received |0 packet: Anslog Channel Values of module 1D 9
20130426 17:33.06.229 Received |0 packet: Output cuments of module 1D 9
20130426 17:33.06.248 11810 071225, 128: 0: 0 0 0: G: 00

20120426 17:33.06.328 Received |0 packet: Output PWM Ratios of madule 1D 9
20130426 17:33.06.328 Received 10 packet: Analog Channel Values of module 1D 9
2012042617:33.06.328 Received 10 packet: Output cuments of module 1D 9
20130426 17:33.06.348 1 1170; Ged32: & 10 0:0:0

20130426 17:33.06408 1006000 21 18: 0 0: C:
20120426 17:33.06412
20120426 17:33.06444 Received 10 packet: Output PWM Ratios of madule 1D 9
20130426 17:33.06444 Received 10 packet: Analog Channel Values of module 1D 9
20120426 17:33.06444 Received 10 packet: Output cuments of module 1D 9

2013-04-26 17:33:06.457 101810 &e712: 00 0:0: 7
2013-04-26 17:33:06.458 1:787: (x312: 8: 0: 0: 0: 0: 1: 0: 0: 0: 1183063401
2013-04-26 17:33:06.508 1:402: (x192; 8;

2013-04-26 17:33:06.508 1:658; (x292; 8; ;0 ;0
2013-04-26 17:33:06.508 1:403; (193: 8: 0:0: 0: 0: 0: 0: 0: 0: 0
2013-04-26 17:33:06.008 1:659; (293; 8; 0: 0: 52: 100: 0: 0: 0: 0: 0
2013-04-26 17:33:06.508 10915 (3938 1:0: 0: 0: 0: 0: 0: 0: ©

2013-04-26 17:33:.06.008 1:1171; (ed93; 8 00 0:0:0:0:0

2013-04-26 17:33:06.553 Received 10 packet: Output WM Ratios of module ID 9
2013-04-26 17:33:06.553 Received |0 packet: Analog Channel Values of module 1D 9
2013-04-26 17:33:06.553 Received |0 packet: Output curents of module 1D 9

Clear

I

m

