

Kimmo Karppinen

AUTOMATED GENERATION FOR TEST INTERFACE

AUTOMATED GENERATION FOR TEST INTERFACE

 Kimmo Karppinen
 Bachelor's Thesis
 Autumn 2013

Degree Programme in Information Technolo-
gy and Telecommunications

 Oulun University of Applied Sciences

1

TIIVISTELMÄ

Oulun seudun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Langattomat laitteet

Tekijä(t): Kimmo Karppinen
Opinnäytetyön nimi: Automated Generation for Test Interface
Työn ohjaaja(t): Ensio Sieppi
Työn valmistumislukukausi ja -vuosi: Syksy 2013 Sivumäärä: 40 + 1
liitettä

Opinnäytetyön aiheena oli toteuttaa Nokia Siemens Networks:lle sovellus, joka
päivittää rajapintaviestit, kun niihin tulee muutoksia. Lisäksi työn tavoitteena oli
nopeuttaa testiympäristön päivitystä, koska päivitys pysäyttää testaamisen siksi
aikaa, kunnes päivitys on tehty.

Työssä käytettiin mallina sovellusta, joka luo automaattisesti rajapintaviestejä,
vaikkakin viestien muoto on vääränlainen tähän työhön liittyen. Kaikki tarvittava
tieto ja tavoitteet sovellukselle tulivat ryhmältä, joka ottaa tämän uuden sovel-
luksen käyttöön. Viestien rakenne sovittiin tarkoituksenmukaiseksi, sovellus an-
taa viesteille oletusarvot ja tallentaa viestit tietokantaan.

Työn tuloksena on sovellus, joka luo sovitulla rakenteella rajapintaviestejä. Li-
säksi sovellus päivittää automaattisesti viestejä, jos niihin tulee muutoksia tieto-
kannassa. Sovellus korvaa osan manuaalisesta päivitystyöstä, joten sovellusta
tullaan kehittämään lisää, jotta loputkin manuaalisen osan työt saataisiin auto-
maattisen päivityksen piiriin.

Asiasanat:
Automaattinen, rajapinta viesti, luominen, testaus

2

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology and Telecommunications, Wire-
less devices

Author(s): Kimmo Karppinen
Title of thesis: Automated Generation for Test Interface
Supervisor(s): Ensio Sieppi
Term and year when the thesis was submitted: Fall 2013 Pages: 40 + 1
appendices

The objective of this thesis was implement application for Nokia Siemens Net-
works which would update the interface messages when they are changed in-
side the repository. One of the objectives was also to speed up the update pro-
cedure because testing cannot take place while changes in the repository are
being made.

As a basis for this new application an existing application was used even
though its message structure is different compared to what is needed by this
new application.
All the needed information and objectives came from the team who will use the
application. The objectives for this new application are that it should generate
the messages in a specific format and give the messages default values and
store them to the repository.

As a result of this work a new application is implemented, which generates
messages in a specific format, updates the messages when change happen
them inside of the repository. The application replaces the part of manual up-
date procedures which take place when the repository is changed. In the future
this new application will be improved so that the rest of the manual updates will
happen automatically.

Keywords:
Automated, interface message, generation, testing

3

ACKNOWLEDGEMENTS

I want to thank my school supervisor Mr. Ensio Sieppi for the advice he offered

during this work.

In addition, I want to thank the company of the thesis, Nokia Siemens Networks,

for this opportunity. Special thanks go to my supervisor Mrs. Kirsti Simula from

Nokia Siemens Networks who provided me great support during this work. I al-

so want to thank the two teams who helped me with this work.

2013, Oulu.

Kimmo Karppinen

4

TABLE OF CONTENTS

TIIVISTELMÄ 1

ABSTRACT 2

ACKNOWLEDGEMENTS 3

TABLE OF CONTENTS 4

1 INTRODUCTION 6

2 DIFFERENT TESTING TECHNIQUES 7

2.1 Black-box testing 7

2.2 White-box testing 7

2.3 Gray-box testing 8

2.4 Unit-test 8

3 TESTING INFRASTRUCTURE 9

3.1 DSPi 9

3.2 Test environment and testing work flow 9

3.3 Jenkins 11

4 GOALS FOR AUTOMATED TEST INTERFACE GENERATION 12

5 CURRENT TEST INTERFACE GENERATION 13

6 IMPLEMENTATION OF AUTOMATED TEST INTERFACE GENERATION 15

7 CHALLENGES DURING IMPLEMENTATION 18

7.1 CU format 18

7.2 Open structured field 19

7.3 Open array fields 21

7.3.1 Simple array field 21

7.3.2 Dynamic size array field 23

7.3.3 Fixed size array field 24

7.4 Creating file for message 25

7.5 Ability to print messages correctly 25

7.6 Message generation takes too much time 28

7.7 Default values 29

7.8 Unit-test and test messages in test environment 29

7.9 Automation procedures 29

8 IMPLEMENTATION RESULTS 30

5

8.1 CU format 30

8.2 Open structured field and array field 30

8.3 Creating file for message 32

8.4 Improving printing capabilities of application 32

8.5 Generating all messages is too time consuming 33

8.6 Transfer default values 35

8.7 Unit-test 36

8.8 Test messages in test environment 36

8.9 Automation procedures 37

9 CONCLUSIONS 38

LIST OF REFERENCES 40

APPENDIX 1 41

6

1 INTRODUCTION

The goal for this thesis was to create an automated interface generation appli-

cation for the Nokia Siemens Network testing environment. Interface generation

is a procedure where the application creates interface messages between dif-

ferent systems. The messages are generated from the source repository, where

all messages are defined including their properties. The messages are required

be the in CU (Control Unit) format, which controls the test environment.

The existing message generation solution includes manual procedures which

are time consuming and error prone. The messages are manually updated and

if there is need for new message, then the testing team creates new message

and gives the default values for messages and finally stores the messages in

the repository. With the new application all those manual procedures will be au-

tomated.

One of the biggest challenges was to generate the interface messages structure

into the CU format, because the application uses another already existing au-

tomated interface generation as a starting point and therefore the interface

messages are different format. The new application should work together with

other tools in the system and the generated messages be used by those tools.

The possible incompatibilities of the message structures require adaptation.

7

2 DIFFERENT TESTING TECHNIQUES

Testing techniques are used to verify the system functionality, protocol, etc. The

test environment where this work is done, uses these testing techniques to veri-

fy the system functionality.

2.1 Black-box testing

Black-box can also be called functional testing. Tester only knows what are the

system's input and output. The tester does not know how the system works.

The tester views the system as black-box and is unconcerned of the internal

structure of the system. The tester tests the system functionality against the

specification.

The advantage in black-box testing is that it tests if the system works like it is

supposed to.

The disadvantage is that exhaustive input testing is not possible because it

would require every input condition or combination to be tested. In addition, be-

cause there is no knowledge of the internal structure, there could be errors or

mischief. Those cannot be detected with black-box testing. (1, p.29)

2.2 White-box testing

White-box testing is also called structure testing. Test is designed by examining

the internal structure. Test data is driven by examining the logic of the system,

without concern of the system requirements. The tester must have knowledge

of the internal system structure and logic either by studying it or asking from

maker of the system.

The advantage is that it tests the produced code. The errors or deliberate mis-

chief are more likely detected because internal structure and logic is known.

8

The disadvantage is that it does not verify if the specifications are correct. Miss-

ing paths and data-sensitive errors are not detected. (1, p.30)

2.3 Gray-box testing

Gray-box testing is a combination of black- and white-box testing. The tester

must study and understand both the requirements and internal structure and if

necessary contact the developer of the system. An example of gray-box testing

is that the tester notices that one certain functionality is reused in an application.

The tester contacts developer to understand the internal structure then the test-

er can remove the unnecessary test because it may be possible to test the func-

tionality in one test. (1, p.30)

2.4 Unit-test

Unit-test tests particular functions or modules. A programmer typically does the

unit-test not a tester as it requires detailed knowledge of the internal program

design and code. Unit-tests are not usually done unless the application is well

designed with tight code. (1, p.32)

9

3 TESTING INFRASTRUCTURE

The environment, where test persons test and verify the functionality of the sys-

tems, is introduced in next chapters. The new implemented application is used

in this the environment.

3.1 DSPi

DSP (Digital Signal Processing) integration is system level testing, where this

test environment is and all tests also are run.

The DSP integration system is to test and verify the functionality of the interac-

tion between different system components in eNodeB. Example of one test is

peer-to-peer communication with UE (User Equipment). All those tested com-

ponents are in OSI (Open System Interconnection) layer 1 and 2. (3, s.24).

3.2 Test environment and testing work flow

In this chapter it is described how the test person performs the tests currently

without the automated interface generation application.

The main control point of the testing environment is the CU (Control Unit). The

CU controls the eNodeB and the control unit for users. The eNodeB is a base

station and the control unit for users controls UE Simulator. The UE Simulator

controls the each user that is created in the cell and the cell is created by the

eNodeB (picture 1.).

10

PICTURE 1. DSPi general test line schema (2, s.28)

The tests are created by the test person. The test person reads the specification

that defines the requirements of the feature and how that feature is made. The

test for the feature is created when the test person understands how to create

the test that confirms the feature is really working. Those tests are usually

black-box testing.

The test person uses the CU to start the test and the result of the tests are

shown in the CU. When the test starts, first the CU sends command to other

parts of the testing system to start. When the systems are ready, CU start test-

ing of all parts of the systems and confirms that all tests fulfill the requirements

to pass the tests. If test fails, the CU informs the test person that the specific

test fails and gives an error message.

The tests are automated using application that allows to runs test repeatedly

and monitors the running test and inform the test person when the test is ready.

11

When the test person gets information that the test fails, the test person first

checks what was the error message. There can be error messages that can be

ignored because the automated verifying process is not perfect. If the error is

real, then test person must do detailed investigation to find out what really

caused the error. After that the test person informs the development teams

about this error with the investigation results.

The commands that the CU sends and receives are created manually by the

test persons.

The application will automatically create the CU command messages that are

used to control the environment in different systems. (6.)

3.3 Jenkins

Jenkins is an application that is used to run those automated executions of re-

peated jobs as described earlier. Jenkins also monitors the jobs and will give

the report of whether the execution succeeded or failed. Jenkins focuses on two

jobs:

• Building/testing software projects continuously.

• Monitoring executions of externally-run jobs. Jenkins makes it easy for

testing personal to notice when something is wrong.

Jenkins runs the test automatically and triggers the job when something hap-

pens in the followed target. Jenkins' features and capacity to modify the report

of job were the reason why it is used to make the application automated. (4.)

12

4 GOALS FOR AUTOMATED TEST INTERFACE GENERATION

As described earlier, there are still parts of the testing system that are operated

manually and those need to be automated.

The requirements for this work came from the testing team and they gave

guidelines for how the application should generate messages in the CU format.

In addition, when messages are generated, default values for the messages

should be given. Finally, the messages with their default values are stored to

the repository. All above should happen automatically.

13

5 CURRENT TEST INTERFACE GENERATION

In this chapter the current test interface generation is introduced.

The present test interface generation (picture 2.) is only partially automated.

PICTURE 2. Present test interface generation

14

Automated procedures

The current test interface generation system includes automated procedures as

described in picture 2. Those are procedures such as:

• When there are changes in source repository the system informs the

testing team about those changes, additions or removals

• System shows which messages have changed and what is the change

Manual procedures

The current test interface generation system includes manual procedures as

described in picture 2.Those are procedures such as:

• The testing team must check if they use the changed message

• Update the change in the they own message or create a new message

• Give the message default values if the message is new

• Update the libraries which hold all the default parameters for the tests

• Update the sub-modules which hold the parameters for the test

• Update test cases

• Store the change in the repository

15

6 IMPLEMENTATION OF AUTOMATED TEST INTERFACE GEN-

ERATION

In this chapter it is described how the automated test interface generation is

implemented.

The new test interface generation (picture 3) automates some of the manual

message generation.

PICTURE 3. New test interface generation

16

Automated procedures

The new interface generation system includes automated procedures as de-

scribed in picture 3. Those are procedures such as:

• When there are changes in the source repository the system starts the

application

• The application generates the selected messages

• The application will put default values for the messages

• The generated messages are stored in the repository

Manual procedures

The new interface generation system includes manual procedures as described

in picture 3. Those are procedures such as:

• Update the test cases

• Update the libraries

• Update the sub-modules

• Store the updates into the repository

Jenkins is used as it is able to monitor the changes happened in the source re-

positories. When some changes happens it stores the source repository infor-

mation to the temporal repository where the automated test interface generation

application can read that information and starts the application.

After the application is started it fetches all the data that is needed to the mes-

sage generation from the temporal repository. In addition, the application reads

two files that contain messages to be generated. The application start to gener-

ate the messages, when all above is done. The application generates the mes-

sages in the CU format (picture 5.).

17

When the selected messages are created, the application gives default values

to the messages from the messages default value files. The default value files

are created manually by the test person. Parameters without special need will

have zero as their default value.

When all the selected messages are created and they have their default values,

the application stores all the messages files to the repository. Finally the appli-

cation informs the testing team that the messages have been generated.

Before the generated messages of the application are used in the test environ-

ment, the required test cases, libraries and sub-modules are need to be updat-

ed first to be compatible with the messages. The update is needed because of

the name difference of the parameters.

18

7 CHALLENGES DURING IMPLEMENTATION

The biggest challenge was to automate the manual parts of the existing system

so that the new application receives indication when something is changed in

the source repository and the application will start. An other challenge was to

modify the already existing automated interface messages generation, so that it

generates the selected messages in the CU format, without interfering it. Below

is a detailed list of the issues that required special attention during implementa-

tion.

• CU format

• Open structured field

• Open array field

• Creating file for a message

• Ability to print messages correctly

• The messages generation takes too much time

• Default values

• Unit-test

• Test the messages in the test environment

• Automation procedures

7.1 CU format

As stated earlier, it was required that this new application should be able to

generate messages in a way that also other systems understand those correctly

and can use those in their operation.

The OMG (Other Message Generation) creates messages in different format

than what CU requires (pictures 4. and 5.). Every structure in the OMG was

useless in CU. Header was totally different and could not be used and even pa-

rameters were differently defined.

19

PICTURE 4. Simple message in the OMG format

PICTURE 5. Simple message in the CU format

7.2 Open structured field

Structured field is like a function call. The structured field tells all the needed

information so that the application can fetch all data that is inside the structured

field.

First the structured field was printed wrongly, (picture 6) because the application

did not know how to open the structured field, but it showed information of the

structured field. OMG opens the structured field in a totally different way, it

opens the structured field in own message, after the original message is printed

20

(picture 8). CU requires the structured field to open immediately and print where

structured field was called (picture 7).

Opening structured field in a middle of the message had a side effect, which

caused the execution time of the message generation raise exponentially.

PICTURE 6. Not opened structured field.

PICTURE 7. Opened structured field

21

PICTURE 8. Opened structure field in the OMG format

7.3 Open array fields

Array field is a group of parameters that are printed only once or multiple times.

Array fields were a one of biggest challenges of the automated message gener-

ation, because there are three different kinds of array fields and array field in-

formation can be given in two ways.

• All information is in one line

• All information resides in two lines

7.3.1 Simple array field

In the simple array field one line is repeated n. times.

22

At first the application could not print array field correctly (picture 9). The array

field should have looked as show in picture 10.

PICTURE 9. Wrongly printed simple array field message.

PICTURE 10. Rightly printed simple array field message.

23

7.3.2 Dynamic size array field

Dynamic size array field is almost the same as the simple array field and struc-

tured field, with the difference that the repetition time is told before the dynamic

size array field.

The dynamic size array field information is printed differently than with other

array field or structured field. Firstly dynamic size array field data is printed to

the end of the message and the call is left where it is needed (picture 11). At

first the application printed the dynamic size array field wrongly (picture 12).

PICTURE 11. Right way printed dynamic size array field.

24

PICTURE 12. Wrong way printed dynamic size array field.

7.3.3 Fixed size array field

Fixed size array field is almost the same as the dynamic size array field, but the

difference is that the lines tell how many times the fixed size array field is print-

ed. Furthermore the fixed size array field is printed immediately inside the mes-

sage (picture 13).

25

PICTURE 13. Fixed size array field in CU format.

7.4 Creating file for message

The CU required the message to be in its own file and the file name must be the

message name. The file must be saved to the right folder and which folder it

belongs to is told in the beginning of the message name. The message name

included unnecessary information that must be left out.

7.5 Ability to print messages correctly

When the messages had their own file, it was easier to compare them to the

original files. Simple messages were almost the same, but complex messages

were not even close the same.

26

The differences in simple messages were the parameter's name, which did not

need to be fixed, because the testing team wanted parameter's name to be the

same as in the source repository. In the complex messages the difference was

much more than the parameter's name difference. When compared the created

messages to the original messages, they missed additional parameter name

information, index number, and repetition number. The complex messages were

printed wrongly because they contained multiple field types and the ability of the

application to print was not sophisticated enough. The application also needs to

open union field and be able to name each parameter individually.

Union field is almost the same as the structured field but the difference is that it

contains two structured fields and only one is printed. The difference between

structured fields inside the union is the parameters for different HW (Hardware)

platforms and they are named differently Platform_1 and Platform_2. Some un-

ion contains both parameters and structured fields, and sometimes each can be

printed and other times only the other could be printed.

An individual name for parameter was needed because the CU needed to be

able to select any parameter and there could not be a parameter with the same

name (picture 14). Without the individual name there could be many parameters

with the same name (picture 15).

27

PICTURE 14. Rightly placed index and repetition numbers.

28

PICTURE 15. Before index and repetition numbers.

7.6 Message generation takes too much time

The generation of all the selected messages took from five to ten minutes and

naturally that is too long. The real cause for this was the difference between

how the OMG and the application open the structured field. OMG opens struc-

tured fields after the message is printed and it does not need to search struc-

tured fields again. The application opens the structured field when it is needed

and it searches the structured field again and prints it there. The search was the

reason way it takes so long.

29

7.7 Default values

The messages need default values because other systems will not start if the

messages do not have some specific default values. There was not file nor files

were the generated messages could get the default values. Now the default

value files were forced to be created for each message otherwise messages

could not get their default values.

7.8 Unit-test and test messages in test environment

At the beginning the unit-test was made at the same time as the application, but

when application functions were more complex, the unit-test stopped. All func-

tions need they own unit-tests.

When the application could create the messages correctly and give them de-

fault values, then it was time to test the messages. The messages must work in

the real test environment before they can be used by all the test persons.

7.9 Automation procedures

The application starts automatically when it notices changes in the source re-

pository or a person adds a new or removes an old message from messages to

generate the list. All people in testing team should be able to use the application

and it should be easy to use. The application should report to the testing team

when messages are changed and tell what the changes are.

30

8 IMPLEMENTATION RESULTS

In the next chapters it is described how the implementation challenges, which

are explained earlier, are solved.

8.1 CU format

In the beginning it was difficult to start without knowledge on how to use OMG

to generate the messages in CU format. The testing team gave guidelines how

to use OMG and how to generate the messages so that they can be used in

CU. Below is the function that prints simple messages in CU format.

def _primitive_field(self, field):
 return '%s (%s) = %s\n' % (field.field_name, field.size, self._zero_content_of_bytes(field.size))

The example above can only print simple lines; it cannot print anything more

complex but that is the base for printing all field types.

8.2 Open structured field and array field

The application could not open the structured field inside the message, because

OMG cannot open the structured field inside a message.

Application has to search the structured field from the source repositories so

that the structured field can be printed inside a message (picture 16). Repeated

search of the structured field does have small effect to the generation time

when generating the simple structured field.

31

PICTURE 16. How the application opens structured fields and array fields.

Array field is the same as the structured field but array field needs a function

that prints array field data multiple times. Simple array fields do have small ef-

fect to the generation time of the messages.

32

8.3 Creating file for message

The CU needs the messages to be generated inside its own file. A function was

created that recognizes the message types at the beginning of the message

name and uses that type information to save the message to the correct folder.

In addition, the function removes unnecessary information from the message

name. Below is an example of how the application will create file in right folder.

For message:
 If type_1 at beginning of message name:
 Print message in file and save the file folder_1
 If type_2 at beginning of message name:
 Print message in file and save the file folder_2
 If type_3 at beginning of message name:
 Print message in file and save the file folder_3

8.4 Improving printing capabilities of application

The parameters inside the messages cannot be named as same, because the

CU wants to be able to select each parameter.

If there are parameters with the same name, then the CU does not know which

one to select. This means that all parameters must have an individual name

inside a message. All functions that print need to be able to add to the parame-

ter name either an index number or repetition number or both. Array field is the

most difficult one, because some array fields are too big for the print ability, for

example a one is structured array field can contain over two hundred repeated

parameters and that structured field can be repeated over ten times. This

makes the automated printing functions very difficult. These kind of structured

messages raised the execution time exponentially.

Some messages required more information to be added to the parameter name

because it did not tell enough about what the parameter does. Example of this

is the address parameter. The address parameters did not tell where the ad-

dress pointed. So more information was needed to be added at the address

name.

33

First it was unclear how to tell to the application which union must be printed.

Then it was found out that the OMG has a way to tell in its own message gen-

eration that this one message needs the special function. That method was

used as an example on how to tell to the application which HW platform param-

eters should be printed if union is chosen. When the platform was chosen and it

was noticed that the structured field was smaller than the other platform struc-

tured field. That required a padding which is an empty parameter that will in-

crease the structured field size so that its size is the same as the other platform

structured field. The padding must be placed after the printed structured field of

the platform.

The application code became hard to read after the application could open the

union, print the content of the union correctly and name the parameters individ-

ually inside the message and other functions that increased the application

printing abilities.

8.5 Generating all messages is too time consuming

The main reason why the message generation with the new application took

such a long time was the way how the application opens the structured field.

Application reads and searches each structured field again even though that

information is already read in the previous round (picture 17). This problem was

solved with the solution that saves the source repository information which is

searched and read. That saved information is made available directly when it is

needed again (picture 18).

34

PICTURE 17. Slow way to open structured field.

35

PICTURE 18. Fast way to open structured fields

8.6 Transfer default values

There was no place or method for how to find and set the default values to the

message parameters. This problem was solved by creating a default value file

for each message. In addition, a function was created that compares the creat-

ed message parameters with the default file parameters. If the parameter name

36

is the same and the parameter size is also same, then the default value can be

transferred to the created message. The application searches the parameter

name from the default file so the parameter order can be different than the cre-

ated message or the parameter count can be different than the created mes-

sage. The transfer of the default value is slower when the order of parameters is

different than created message or parameters count is different.

There is a parameter that tells how many times the dynamic size array field

should be printed. A function was created that prints the dynamic size array field

data as many times as the parameter information tells. When the data is printed

as many times as it was needed then function confirms that the message size is

divisible by four. Based on that result padding parameters are needed to added

or removed or nothing.

8.7 Unit-test

Making unit test for software under development is one of the essential parts of

the software programming. A unit test framework was available and unit tests

were made, but during the implementation the complexity of the application in-

creased a lot making the creation of new unit test cases difficult. After getting

better understanding of the whole system, it was easier to create and perform

the unit test cases.

8.8 Test messages in test environment

During the testing it was noticed that the test cases used the old parameter

name. Those cases were modified and tests passed. The application creates a

file that contains all messages in alphabetical order in that folder. It was created

because the CU needs it. The file tells the CU which messages it can use.

37

8.9 Automation procedures

To be able use this new application for automated message generation, it

needs to be checked that testing person access rights to the repositories and

have privileges for applications usage that are part of the whole system where

this new application resides.

The first intention was to create automation for the application that offers local

message generation without storing the messages inside the repository. This

failed because of the permission problems.

The second try was so that the testing team does not see the application. The

testing team sees only the generated messages, default value files and files

that contain the information which messages are to be generated. The applica-

tion was only visible for the job inside the Jenkins. The job starts the application.

The local message generation without storing them to the repository is possible

but it requires previous knowledge and manual commands.

38

9 CONCLUSIONS

The main goal of this thesis’ was to create automated test interface generation.

Other requirements were that the generated messages should be in the CU

format. Default values are given to the messages and messages with default

values are stored to the repository.

All the goals for this work have been reached. The application starts automati-

cally when it notices changes in the source repository or the messages to gen-

erate files are changed. Application generates the selected messages in the CU

format, sets default values for them and finally stores them in the repository.

Before the application generated messages can be used in the test environment

the test cases, libraries and sub-modules need to be updated first to be compat-

ible with the messages.

The biggest problem in this work was the OMG because using it as a basis for

this new application proved to be not the best idea. Lot of new code required

enabling the application to generate messages in the CU format. A better idea

would have been to create this new application from scratch, but after these

difficulties with the OMG noticed it was too late to be able do it from the very

beginning because I could not have finished this work in time. Now, when this

application has been created using OMG the code is not the easiest to under-

stand.

One improvement is still required and that is to improve the Jenkins report that

is not currently informative enough. The report should show clearly which mes-

sages are changed and what the changes are.

In addition, end users manual “HOW TO GENERATE CU INTERFACE MES-

SAGES IN THE AUTOMATED GENERATION” is written, which tells how to add

or remove messages for generation and how to use it manually. (Appendix 1)

The work went smoothly except for couple of small problems. Help from NSN

side was available when needed. The company provided me with the workplace

and all the needed tools to do this work.

39

Mostly this work was coding, which is not my primary training but was familiar

already in some level anyway. Studies required getting familiar with the test en-

vironment and how the testing team automates their tests. For the application i

had to inquire a lot of things from the testing team because the testing team had

the answer and they knew what they wanted for the application. An example of

these inquires was the individual naming for the parameters name. In the origi-

nal messages some parameters were individual named while some were not.

40

LIST OF REFERENCES

1. Lewis, William E. 2009. Software Testing and Continuous Quality Improve-

ment, Third Edition. Auerbach Publications

2. Łyko, Marcin 2011. LTE Introduction & DSP Integration Wroclaw Team

Presentation. NSN intra-net

3. Päätalo, Päivi. 2010. LTE base station DSP software pre-integration test

environment and testing. Oulu: University of Oulu, Department of electrical

and information engineering. Master’s thesis

4. Kohsuke, Kawaguchi – Carr, Paul 2013. Meet Jenkins. Retrieval day:

24.6.2013. http://jenkins-ci.org/.

5. Aslmadi, Izzat. 2012. Advanced Automated Software Testing: Frameworks

for Refined Practice. IGI Global

6. NSN internal discussions 15.2.13 – 14.6.13.

41

Appendix 1.

Only for internal use of the Nokia Siemens Network.

