

Jussi Salminen

APPLYING PKI TO DEVICES IN A NETWORK

Information Technology

Software Engineering

2013

APPLYING PKI TO DEVICES IN A NETWORK

Salminen, Jussi

Satakunta University of Applied Sciences

Degree Programme in Information Technology

July 2013

Supervisor: Trast, Ismo

Number of pages: 29

Appendices: 2

Keywords: secure communication, cryptography, public key infrastructure

__

The purpose of this thesis was to develop an application for secure communication in

a public network. The goal was to have a certification authority (CA) –based imple-

mentation so that each device using the application is identified.

This was achieved by exploring the most recent cryptographic algorithms, public key

infrastructure, hardware security modules (HSM) and third party libraries. The appli-

cation was developed in Java, which natively supports useful cryptographic function-

ality.

The application has been tested using a HSM/PKCS#11 device simulator (openCryp-

toki), showing positive results. Due to development conditions, the application could

not be tested using real hardware, but the simulator complies with standards, thus it

is expected to work with any HSM/PKCS#11 device.

APPLYING PKI TO DEVICES IN A NETWORK

Salminen, Jussi

Satakunnan ammattikorkeakoulu

Tietotekniikan koulutusohjelma

Heinäkuu 2013

Ohjaaja: Trast, Ismo

Sivumäärä: 29

Liitteitä: 2

Asiasanat: turvallinen viestintä, salaustekniikat, julkisten avainten hallintajärjestelmä

__

Tämän opinnäytetyön tarkoituksena oli toteuttaa sovellus, joka mahdollistaa

turvallisen viestinnän avoimessa verkossa. Tavoitteena oli varmentaja (certificate

authority) -pohjainen implementaatio, jotta jokainen sovellusta käyttävä laite on

identifioitu.

Tavoite saavutettiin tutkimalla nykyisiä salausmenetelmiä, julkisen avaimen

hallintajärjestelmää (PKI), HSM:ja (hardware security module) ja kolmannen

osapuolen kirjastoja. Sovellus toteutettiin Java -ohjelmointikielellä, joka tukee

natiivisti hyodyllisiä salausmenetelmiä.

Sovellus on testattu HSM/PKCS#11 simulaattorilla (openCryptoki) positiivisin

tuloksin. Sovelluksen kehitysolosuhteista johtuen sovellusta ei voitu testata oikealla

laitteella, mutta simulaattori noudattaa standardeja, joten sen pitäisi myös toimia

millä tahansa HSM/PKCS#11 laitteella.

CONTENTS

1 INTRODUCTION .. 6

2 CRYPTOGRAPHY .. 6

2.1 Context .. 6

2.2 Cryptographic algorithms ... 7

2.3 Digital signatures .. 7

2.4 Applications .. 8

3 RSA .. 9

3.1 Definition .. 9

3.2 Key Generation ... 9

3.3 Digital signatures with RSA ... 10

3.4 Padding schemes ... 10

4 AES .. 10

5 CRYPTOGRAPHIC HASH FUNCTIONS ... 11

6 PUBLIC KEY INFRASTRUCTURE .. 12

6.1 Introduction ... 12

6.2 Certificates .. 13

6.3 Registration Authority .. 14

7 HARDWARE SECURITY MODULES .. 14

8 PKCS#11 .. 15

9 APPLIED PKI APPLICATION ... 16

9.1 Context .. 16

9.2 Architecture .. 18

9.3 Security ... 19

9.3.1 General ... 20

9.3.2 CA Secure System ... 21

9.3.3 PKI objects ... 22

9.4 Use cases and procedures ... 22

9.5 Implementation ... 23

9.5.1 User interface ... 24

9.5.2 Connectivity ... 24

9.5.3 Dependencies ... 25

9.5.4 Recovery measures .. 26

10 CONCLUSION .. 27

REFERENCES ... 29

5

ABBREVIATIONS

AES Advanced Encryption Standard

API Application Programming Interface

CA Certification Authority

HSM Hardware Security Module

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NSA National Security Agency

OAEP Optimal Asymmetric Encryption Padding

PIN Personal Identification Number

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

RA Registration Authority

RSA Cryptographic public-key algorithm invented by Ron Rivest, Adi Sha-

mir and Leonard Adleman

6

1 INTRODUCTION

Security and privacy is a major concern when it comes to today’s communication in

an open network. When two or more parties communicate in public domain in confi-

dence, the communication must be secured. To achieve secure communication, cryp-

tographic mechanisms are applied for the messages between the parties. Crypto-

graphic mechanisms and a properly implemented secure system enable confidentiali-

ty, integrity and authenticity for the communication. In other words, they provide

ways and means to avoid eavesdropping and data tampering.

The goal of this thesis was to explore cryptography to an extent that an application

demonstrating secure communication could be developed. This was achieved by be-

ing involved in the development of software focused on security and studying exist-

ing literature about the topic. The implementation of the application can be used as a

reference or base for those who intend to develop such application for secure com-

munication.

2 CRYPTOGRAPHY

2.1 Context

Cryptography is a practice to secure communication from adversaries. This is

achieved by means of applying an encryption mechanism on a message (also known

as plaintext or cleartext). When a message is encrypted, it can be securely transferred

to its intended receiver in a public network. The receiver decrypts the encrypted mes-

sage (also known as ciphertext) to retrieve the original message. Cryptography has

enabled some real-life applications such as internet banking and on-demand stream-

ing for their intended customers, which is a great feat for today’s businesses.

Although cryptography provides security, the system to which it is applied must be

well designed. Adversaries may have various ways to attack a system, such as trying

7

to compute the secrets by themselves, attempting to track a flaw in the implementa-

tion or simply by bribing the people using the system. Therefore the implementation

has to be robust, even at the cost of performance. It is also safer to have a system re-

quiring multiple people to access rather than just one person.

2.2 Cryptographic algorithms

The most common and widely used cryptographic mechanisms are asymmetric and

symmetric algorithms. When encryption or decryption is performed on a given mes-

sage using one of these algorithms, a key is always involved in the operation. Thus,

the key is used to protect the message. In symmetric-key algorithms, a single key is

shared between the sender and the receiver. This denotes that the key is used for both

encryption and decryption. In asymmetric-key algorithms (often mentioned as public

key algorithms), the sender and receiver hold key pairs. One of the keys is public and

one is private (or secret). These keys are mathematically related such that the public

key is used to encrypt a message and the private key is used to decrypt a message

(Figure 1). As the words imply, public keys are shared between the sender and re-

ceiver and private keys are kept secret by the key owner. (Wikipedia: Cryptography

2013)

2.3 Digital signatures

Digital signatures are used to verify that a message was sent by a certain party. In

addition to the encryption, the digital signature is calculated on the plaintext and sent

Figure 1. Public-key algorithm in practice.

8

together with the message. The receiving party decrypts the ciphertext, calculates and

verifies the digital signature from the plaintext. In asymmetric-key algorithms, the

digital signature is calculated with the private key and verified with the public key.

For symmetric-key algorithms, another key is shared between the sender and the re-

ceiver. This key is used for the digital signature calculation which is also known as

message authentication code (MAC). Despite it is possible to sign a message using

symmetric keys, in practice this method is not common because the MAC does not

prove that the message has been sent by the expected sender. Digital signatures are

extremely useful and good way to provide for authenticity. (Wikipedia: Message au-

thentication code 2013)

2.4 Applications

Both asymmetric and symmetric-key algorithms have their own applications. For in-

stance, symmetric-key algorithms are useful when you want to protect your own da-

ta. In this case, there would be no need to create a public/private key pair for such

activity, since you alone would be the only person carrying the secret key. Albeit

symmetric-key algorithms are computationally fast and simple, they are unusual in

secure communication since the initial key exchange becomes a problem. The re-

ceiver and sender have to find a way to share the secret key before the communica-

tion. Sharing a secret key via a public channel should never be considered, as there is

always the chance of being eavesdropped. Also, it would be inconvenient to establish

communication between many parties; each party would have to agree on a secret

key with the receiving party. If there were 30 parties, each party would have to per-

form 29 key exchanges, which is undoubtedly a bad practice. Asymmetric-key algo-

rithms solve this problem, since the public key can be shared with every party. The

key exchange is therefore not an issue either, as the private key is kept secret. This

way, a symmetric key can be shared by encrypting it with the private key, should

there be such requirement for an application. However, asymmetric-key algorithms

are computationally slow and decrypting a large amount of data within a limited time

frame could be an issue, so the method of exchanging a symmetric key via asymmet-

ric-key mechanism is a good way to provide performance. (Wikipedia: Asymmetric

key cryptography 2013)

9

3 RSA

3.1 Definition

One of the most widely used public-key algorithms is the RSA algorithm. It was in-

vented by Ronald L. Rivest, Adi Shamir and Leonard Adleman in 1977. Its security

is based on factoring of large prime numbers. The encryption is based on publicly

known values n (as modulus) and e (as public exponent) such that the message is

computed to the power of e modulo n. This is a quick operation, but computing the

plaintext from a ciphertext with the given public values n and e is extremely difficult

and time-consuming. The decryption operation involves a secret value d (as private

exponent) and is used exactly the same way as in the encryption operation; the ci-

phertext is computed to the power of d modulo n. From here it is clear that the (e, n)

values form the public key and the (d, n) values form the private key.

Practically, it is impossible to derive a private key from the given public key. Mes-

sages are encrypted with the public key and only the corresponding private key is

able to decrypt the encrypted message. Therefore a party may share their public key

with anyone and keeps the private key secret. Then anyone can send encrypted mes-

sages to this party, which only the receiver can decrypt. (Wikipedia: RSA algorithm

2013)

3.2 Key Generation

An RSA key pair is generated in the following way:

1. Two large prime numbers, commonly called p and q are randomly chosen.

They should be never equal.

2. The modulus is calculated so that n = pq.

3. The public exponent e is chosen so that 1 < e < n for which (p-1)(q-1) is

coprime.

4. The private exponent d is chosen so that de = 1 (mod (p-1)(q-1)).

5. The RSA key now consists of the public key (e, n) and the private key (d, n).

10

The prime numbers p and q are sensitive values that must be kept secret because they

are used to calculate the private and public exponents. In real-life applications, those

values should form at least a modulus of 2048-bit size so that the security is at a rea-

sonable level. (Wikipedia: RSA – Key generation 2013)

3.3 Digital signatures with RSA

One great advantage of RSA is that it can be used to sign messages. The computation

is the same as with the encryption, but the private key is used instead. The result of

this operation is the signature of the plaintext, which can be verified with the public

key by performing the decryption operation on the signature value. (Wikipedia: RSA

- Signing messages 2013)

3.4 Padding schemes

RSA by itself is a great algorithm, but it has a disadvantage; the outcome of the en-

cryption is deterministic. It means that there is no randomness involved, so an attack-

er could attempt to encrypt some plaintext to check if the ciphertext equals another

ciphertext of interest. Padding schemes were introduced to avoid this problem. They

are used to add some random data into the message so that the encryption results in a

reasonable amount of different ciphertexts, even if the input plaintext was the same

for each operation. Currently, it is recommended to use the Optimal Asymmetric En-

cryption Padding (OAEP), since it is proved to be secure against these attacks. (Wi-

kipedia: RSA – Padding schemes 2013)

4 AES

AES is a popular symmetric-key algorithm that is standardized by the U.S. National

Institute of Standards and Technology (NIST). It is a block cipher, which means that

the encryption and decryption are performed on fixed-size blocks. Common block

11

sizes are 128, 192 and 256 bits. Certain defined transformation and substitution steps

to perform the encryption or decryption are repeated multiple times, which are also

called rounds. The number of rounds depends on the key size; 128-bit keys repeat

10, 192-bit keys repeat 12 and 256-bit keys repeat 14 rounds. AES operations are

performed on a 4x4 matrix of bytes, also called the state. (Wikipedia: Advanced En-

cryption Standard 2013)

To set up the encryption or decryption, the secret key is expanded into round keys so

that each round will have its own key (also known as KeyExpansion). For each

state, the input plaintext or ciphertext is XORed with the round key (also known as

AddRoundKey).

For each round, the following operations are done;

1. Each byte is replaced according to a certain entry in a lookup table (SubBytes)

2. Bytes in the second row of the state are shifted one to the left, in the third row

two to the left and in the fourth row three to the left (ShiftRows)

3. Each column of bytes in the state is multiplied with a certain fixed polynomial

(MixColumns)

The last round does not include the MixColumns step. (Wikipedia: Advanced En-

cryption Standard – High level description of the algorithm 2013)

5 CRYPTOGRAPHIC HASH FUNCTIONS

A cryptographic hash function is a one-way function that takes data of arbitrary

length as input and produces a fixed-size result (usually of 128 to 512 bits length).

Typically they are used together with RSA signatures or as check values. This pro-

vides for data integrity, since if an adversary attempts to modify the data which the

hash result was calculated on, the following hash calculation will result in a different

12

value. Commonly used cryptographic hash functions are SHA-256 (256-bit result)

and SHA-1 (160-bit result). (Wikipedia: Cryptographic hash function 2013)

As the results are fixed-size, there are a finite number of results that a cryptographic

hash function can provide. Consequently, with an infinite amount of possible input

values to the function, certain inputs will produce the same result. These are called

collisions, which are required not to be found. Depending on the security level of an

application, a function with a larger output size should be considered (at the cost of

performance). (Wikipedia: Collision 2013)

6 PUBLIC KEY INFRASTRUCTURE

6.1 Introduction

In terms of key exchanges between communicating parties, public-key cryptography

simplifies the key management, but one party still has to find the receivers’ public

key. If the public keys are shared in an open network, there would be no way to tell

that a key belongs to a certain party. The solution for this issue is to use a PKI (Pub-

lic Key Infrastructure). The solution is to have an authority called certificate authori-

ty (CA). Each party takes their public key to the CA and identifies themselves. The

CA then signs the party’s public key using a digital signature scheme. As result, the

party will acquire a certificate. This certificate states that the public key belongs to a

certain party. With the CA’s public key, it can be then verified that a public key be-

longs to a certain party. (Wikipedia: Public key infrastructure 2013)

PKI still has some drawbacks; the CA has to be trusted by every party. In certain sit-

uations, that is easy. But if the CAs’ private key is compromised by an adversary, he

or she could issue false certificates and cause major harm to a business. Therefore the

implementation of the PKI has to be robust and the CA key has to be managed se-

curely.

13

6.2 Certificates

Certificates comprise the party’s public key and the signature calculated by the CA.

Additionally, some general contents they include are a validity period, name of the

certificate issuer and name of the key owner that is also known as subject field. A

validity period is used since a same public key should not be used forever. There is

always the risk that a key is compromised. A new certificate is to be issued when the

current certificate expires. Certificate issuer name is a text field describing the certif-

icate issuer. This field does not guarantee that the issuer is actually the CA – it is the

digital signature that is used to verify the identity. There also is a field called Signa-

ture Algorithm, which defines the type of algorithm used to calculate the certificate

signature. The subject field includes the name of the certificate owner. Although

most certificate formats include an identifier field such as a serial number, this field

should also be unique within a PKI. The following text is a simple example of a cer-

tificate. (Wikipedia: Public key certificate 2013)

Certificate:

 Data:

 Version: 1 (0x0)

 Serial Number:

 cf:5b:b2:3a:01:8c:e9:d9

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=FI, ST=Satakunta, L=Rauma, O=Test Company Ltd, OU=R&D,

 CN=Jussi

 Validity

 Not Before: Jul 10 20:37:42 2013 GMT

 Not After : Jul 10 20:37:42 2014 GMT

 Subject: C=FI, ST=Satakunta, L=Rauma, O=Test Company Ltd, OU=R&D,

 CN=Jussi

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (2048 bit)

 Modulus (2048 bit):

 00:b5:3b:3c:3b:3c:27:29:7d:42:11:f0:ba:de:07:

 ... [truncated remaining bytes]

 Exponent: 65537 (0x10001)

 Signature Algorithm: sha1WithRSAEncryption

 a1:71:f4:d5:87:d2:c7:ef:d3:b4:1b:81:08:b1:08:c1:90:4f:

 ... [truncated remaining bytes]

14

6.3 Registration Authority

There are various ways of enrolling certificates to parties. One way is to generate the

private key/certificate pair at the CA and securely transmit it to the intended receiver.

For instance, temporary RSA keys may be generated and used to encrypt the data

before sending. Another, more common way is to have a registration authority (RA)

which is an authority that receives certificate requests from parties with the intent to

be part of the PKI. A certificate request contains the public key of the requesting par-

ty, a digital signature and a subject field which is intended to be in the enrolled certif-

icate. Depending on the certificate enrollment criteria, the request may be approved

if the RA decides so. If the RA accepts the request, it tells the CA to issue the certifi-

cate. (Wikipedia: Public key infrastructure 2013)

7 HARDWARE SECURITY MODULES

A hardware security module (HSM) is a physical device that is used to manage and

protect cryptographic keys and accelerate cryptographic processes such as encryp-

tion, decryption, signing and calculating hashes. They are also used as random num-

ber generators for key generation purposes. Generally, an HSM comes in the form of

a plug-in card (PCI/PCI-Express) or as an external USB or TCP/IP device. HSMs

provide both logical and physical protection of sensitive data from adversaries. In

other words, they protect cryptographic keys. Most notable applications using HSMs

are CA-based PKI and card payment systems.

From a security perspective, the most valuable attributes of an HSM are the secure

cryptographic operations, key protection and random number generation. All of this

should occur “inside the device”, which means that no plaintext private or secret key

is allowed to be transferred or stored outside the device. Keys stored in the HSM are

accessed with “handles”, which can be stored on an operating system in encrypted

format or on a security token, such as smart card. An HSM should be also tamper-

proof; it should reset itself (erase all sensitive data) if it detects physical tampering,

15

irregular electrical activity or irregular temperature. (Wikipedia: Hardware security

module 2013)

8 PKCS#11

PKCS #11 is one of the group of standards called Public Key Cryptography Stand-

ards (PKCS) produced by RSA Laboratories. It specifies an application programming

interface (API), also known as “Cryptoki”, to devices such as HSMs and smart cards

which hold cryptographic information and perform cryptographic operations. Cryp-

toki defines the most common object types used in cryptography, such as asymmetric

(RSA) and symmetric (AES) keys and certificates. Generation, modification and de-

letion of these objects are fully supported by devices that follow the standard. Cryp-

toki also defines digital signature calculation and commonly used hash functions.

The main benefit of Cryptoki is that it enables for application portability. Applica-

tions developed with the API do not have to change to interface different types of

devices. (Wikipedia: PKCS#11 2013)

For application development, RSA Laboratories provides C header files that define

the API. The cryptographic device that supports PKCS #11 API comes with a library

which holds the implementation of the functionality defined in the API. Although the

header files are defined in C programming language, wrappers have been developed

for many other languages. Java includes a native PKCS #11 implementation, so it

can be used directly with a library provided with a cryptographic device. (RSA La-

boratories - PKCS #11 2013)

16

9 APPLIED PKI APPLICATION

9.1 Context

The Applied PKI Application is an application that implements a CA-based PKI. Its

main components are the CA itself and PKI objects, which can be any devices that

can store identity data on a PKCS#11 device issued by the CA. In the context of this

application, the PKCS#11 device is the HSM. The main idea is to enable secure

communication between the devices and allow the CA to manage them. In addition,

the CA system is used to keep track of the devices and to revoke their identities (e.g.

in case private key is compromised).

A server application is included in the CA component, which handles the communi-

cation between the PKI objects. In practice, the communication between the PKI ob-

jects is about sending and receiving files. Files are encrypted and signed with the PKI

object’s private key as they are sent to the CA server. Upon request, the CA server

informs the receiving PKI object about files to be received. The following sequence

diagram (Figure 2) describes the communication process between two PKI objects.

Figure 2. The communication process between two PKI Objects.

17

A network device may request an identity from the CA by sending a certificate re-

quest to the CA. If the CA approves the request, the network device becomes a PKI

object. The CA creates a certificate based on the request that the network device

originally sent, signs it with the CA private key and sends it to the PKI object. A ran-

domly generated checksum value (by the CA) is used in order to reference the certif-

icate request. CA sends this checksum value to the network device when it has re-

quested the certificate. The certificate requester uses this reference to check if the

request has been approved. (Figure 3)

Figure 3. A network device requesting an identity from the CA.

18

9.2 Architecture

The Applied PKI Application is designed to be as portable as possible, so that it may

be used in different environments. The following diagram (Figure 4) represents the

application deployed for a server machine and two PKI objects;

In this diagram (Figure 4), the CA component contains the server which is used as a

gateway between the PKI objects’ communication. It is designed so that one server

handles all the communication – meaning, that all the files are stored in the CA serv-

er machine, in encrypted format. PKI objects look up these files and may either

download or discard them. Therefore, the larger network this application is deployed

on, the more powerful the server has to be. There should be also a reasonable amount

of storage capacity, depending on the kind of data to be transmitted. Concurrent

communication between multiple PKI objects may consume a lot of capacity and re-

quire a lot of system resources. Hence it is better to invest in the server machine

hardware, should the application be deployed for a large network.

Figure 4. Applied PKI Application deployed on a server

machine and two network devices.

19

The following diagram (Figure 5) represents the CA component. The database con-

tains data for the certificate requests, PKI objects and the files transmitted between

the PKI objects. The server runs the CA server application to which the PKI objects

connect to. Also, the actual certificate request is stored in the file system of the serv-

er, so the database only contains a reference to the corresponding request file. Same

principle applies for the files that are sent between the PKI objects. The reasoning

behind this design is to have less load on the database. If all the files were stored on

the database as blobs, the network traffic between the database would increase heavi-

ly, resulting in longer response time for each query.

The operator workstation is used to manage the CA. It contains an application which

may view and respond to certificate requests, revoke PKI objects, look up / search

PKI objects, stop the server or tear down the system. These operations require a con-

nection to both database and server components.

9.3 Security

To achieve security to a reasonable extent, some of the most recent cryptographic

mechanisms and system design have to be taken into account when developing the

application. This chapter describes the used cryptographic mechanisms, application

design and key management for both CA and PKI object.

Figure 5. The CA component including an operator workstation, server

and database.

20

9.3.1 General

For sake of confidentiality and data integrity, the RSA algorithm is used with a key

size of 2048 bits to perform the cryptographic operations on the data transmitted

within the application. RSA is implemented in many different programming lan-

guages, libraries and applications; hence it was easy to choose this algorithm. OAEP

is used as padding scheme, since it is considered secure and supported by PKCS #11

devices as well.

To improve the performance on the cryptographic operations, the AES algorithm is

used to encrypt the files that are sent between PKI objects, and the AES key is en-

crypted with the receiving PKI object’s RSA public key (Figure 6). The AES key is

randomly generated by the PKCS#11 device of the sender. The encrypted AES key

and file are then sent to the CA server, in which they are stored. The PKI object re-

ceiving this file decrypts the AES key with his/her private key, uses the AES key to

decrypt the file and verifies the signature with the sender’s public key. If the signa-

ture verification fails, the object automatically refuses to receive this file.

Digital signatures are calculated so that the SHA-1 hash function is applied on the

given data, and its output is signed with the private key. This signing operation is al-

so known as “SHA-1 with RSA”. This is done for several reasons; the signature will

Figure 6. Preparing a file to be sent for another PKI object.

21

be shorter because the SHA-1 function returns a 160-bit result – it is more efficient to

calculate the signature on a shorter message than possibly on a longer one. The result

of a hash function is also safer to use as input for the RSA signing operation – sign-

ing just the plaintext is vulnerable to attacks that may result in some mes-

sage/signature pairs which an adversary could understand. (Wikipedia: Digital signa-

ture – how they work 2013)

Private and secret keys are managed by means of PKCS#11 devices. Both CA and

PKI objects have PKCS#11 devices in which their private or secret key is stored.

This key is accessed by providing a PIN for the application. The private key values

cannot be extracted from the PKCS#11 devices – instead, the key is accessed by a

handle so that they can be used with the cryptographic operations. In general, PKI

objects and CA are allowed to use any PKCS #11 device, as long as they support the

algorithms mentioned in this specification.

9.3.2 CA Secure System

The CA Secure System is designed so that the machine running the CA application is

placed in a reasonably secure location. Therefore only trusted people with privileges

can physically access the machine. This frees some time and cost (in terms of im-

plementation) since data tampering and eavesdropping is more difficult to avoid, if

the machine was placed in a more public place. After all, the main point is that the

communication in the public channel is secured.

When the CA application is set up, an RSA key pair is generated with the PKCS #11

device. The public half of the key pair is stored into a public location so that the PKI

objects and network devices can verify the CA signature, and the private half of the

key is kept inside the PKCS #11 device. This private key is accessed only when new

certificates are enrolled, as a new certificate is signed.

Additionally, the CA database data is encrypted by means of the AES algorithm.

This is directly supported by the third party database application - it just has to be

22

enabled in the database creation. Although the database is in a secure location, it is

better to encrypt the values in order to provide for extra security.

9.3.3 PKI objects

PKI objects can be any network devices that support PKCS #11 devices. Within the

context of this application, PKI objects are the communicating parties and therefore

they require an identity. Without an identity, a network device is not considered as a

PKI object and therefore it cannot communicate with the enrolled PKI objects in the

Applied PKI Application network.

The PKI objects encrypt/decrypt, sign and verify this data that is being transmitted.

The PKI objects are not allowed to send any data that is in the clear or not signed. As

an exception, the certificate request is sent in clear so that the CA can respond with a

generated certificate.

9.4 Use cases and procedures

This chapter describes the use cases for the application. This list can be definitely

extended, should the application be developed further.

CA –specific use cases

 Initialization

1. Initialize PKCS#11 device

2. Create an RSA key pair (on the PKCS#11 device)

3. Create database tables

4. Start the server application

 Initialized/running

1. List certificate requests

2. Respond to certificate requests

3. Lookup/search for PKI objects

4. Revoke PKI object’s identities

5. Tear down the system

23

PKI object –specific use cases

 Initialization

1. Initialize PKCS#11 device

2. Create an RSA key pair (on the PKCS#11 device)

3. Create a certificate request

4. Send the certificate request to the CA

5. Obtain the certificate from the CA, if the request is approved

 Initialized

1. Send files to another PKI object

2. List files to be received

3. Download a file

4. Discard a file

5. Reset the device

9.5 Implementation

The Applied PKI Application is developed in Java on Linux platform. It consists of

three software components; AppliedPkiCA, AppliedPkiObject and AppliedPkiCom-

mon. The class diagrams of the application can be found in Appendix 1 and the user

guide in Appendix 2.

AppliedPkiCA -component includes the relevant CA implementation, which com-

prises database access, certificate creation, file server and certificate revocation.

AppliedPkiObject includes the relevant PKI object implementation, which includes

the sending of the certificate requests and listing, sending, receiving and discarding

of the files that are transmitted with other PKI objects.

AppliedPkiCommon includes functionality shared by both AppliedPkiCA and Ap-

pliedPkiObject components. This includes:

 The PKCS#11 functionality (key store and generation)

24

 Interface class for the AppliedPkiCA –server, which the PKI object uses and

CA implements

 Implementation for the files sent between PKI objects – CA needs this im-

plementation as well in order to save the data into the file system

 Authentication class to authenticate the PKI object before performing any of

its use cases

 General utility classes for file operations, reading password input, cryptog-

raphy and handling of certificates/RSA keys

9.5.1 User interface

To provide for best portability, the application uses a command line interface for all

the operations. The command line interface can be also used with UNIX shell scripts

in order to reduce the amount of parameters, for instance.

9.5.2 Connectivity

The connectivity between the PKI objects and the CA is implemented with Java RMI

(remote method invocation). A server class is used as an interface; CA implements

the functions defined in this interface and the PKI objects call these functions. It was

easy to decide to use RMI, since it takes care of concurrency (a thread is created per

PKI object) and the only requirement is to provide the IP address of the CA when

retrieving the server object from an “RMI” registry. The CA initializes the RMI reg-

istry and binds the server object implementation to it, enabling the PKI object to use

this functionality.

25

9.5.3 Dependencies

In this chapter, the application dependencies and their purposes are explained. The

application has been developed and tested on a Ubuntu 13.04 for desktops and tested

on a Ubuntu Server 12.04 LTS.

The following table describes the dependencies for the application environment;

Name Purpose

openCryptoki (Linux only) PKCS#11 device simulator

NetBeans IDE Java development environment

pkcs11-tool (OpenSC) Tool to initialize the PKCS#11 device

OpenSSL Converting certificate formats

Apache Derby Relational database

BouncyCastle API Certificate generation/parsing

Apache Commons CLI Command line parsing classes

VirtualBox Virtual machines

Table 1. Applied PKI Application environment dependencies.

Due to the development conditions, there was no real PKCS#11 device available, so

the development was done with a simulator called openCryptoki. It implements all

the functionality to be PKCS#11 standards compliant (Website of openCryptoki

2013), but as it is a software simulator, it should not be used in a real environment.

The use of openCryptoki limited the testing to Linux platform, but the application

should work in other platforms as well, as long as an appropriate PKCS#11 device is

used.

NetBeans IDE was preferred over other IDE’s, since it has a built-in support for

Apache Derby and an excellent GUI for managing the databases during the devel-

opment. (Website of NetBeans 2013)

pkcs11-tool is a command line tool to manage PKCS#11 devices. The functionality

that is utilized from this tool is the PKCS#11 device initialization. It is executed by

means of a UNIX shell script. (Website of OpenSC 2013)

26

OpenSSL is an open source implementation for general-purpose cryptographic op-

erations. The functionality that is utilized from this tool is converting of the certifi-

cate requests to a format that Java supports. The tool is used from the command line,

so the conversion is done by executing a command line command in Java. (Website

of OpenSSL 2013)

Apache Derby is a lightweight database implemented in Java. It is based on Java and

SQL standards, supports database encryption and is easy to use and deploy. (Website

of Apache Derby 2013)

BouncyCastle API extends the Java cryptography, implementing many useful fea-

tures like certificate revocation, generation and many algorithms that are not sup-

ported by the cryptographic libraries of Java. The certificate generation is the most

useful part utilized from the BouncyCastle API. (Website of BouncyCastle 2013)

Apache Commons CLI facilitates the command line parsing development, freeing the

developer from a lot of low level coding. Command line options may be added and

configured according to the purpose of the option; it may have an argument or might

not be required, for instance. All the main classes of Applied PKI Application use

Commons CLI for command line parsing. (Website of Apache Commons CLI 2013)

VirtualBox was used to create two virtual machines to act as PKI objects during the

development process. (Website of VirtualBox 2013)

9.5.4 Recovery measures

If the CA private key or the database password is compromised, the solution is to

reset the whole system and deploy the application again. Even if there were files to

be sent to other PKI objects. The server is not supposed to be a permanent storage for

the files and the sender of the file must have a local backup of this file, in order to

send the file again to the intended receiver. Once the system has been re-established,

new certificates must be requested by the PKI objects.

27

10 CONCLUSION

This thesis contains two parts; first, an introduction to cryptography, security and

public key infrastructure and secondly, an application to implement a CA-based PKI

with a client application. Every entity within the application protects their own iden-

tity with a PKCS#11 device. The goal was to enable secure communication, which is

now done by means of encrypting and sending files.

After testing the application with different combinations of inputs, it feels very usa-

ble utility. The passphrase writing seems definitely tedious, as it is done for almost

every operation, but in the end, a cached passphrase would be a security risk.

In the beginning I had a much larger scope for the application – I wanted to stream

media, use more properties for the certificates and implement a graphical user inter-

face for both CA and PKI object. When I started to design the classes and look at the

implementation from more detailed point of view, I realized I have to leave some-

thing out.

So how is the application different from the others? I could indeed find many tools

on the internet which deal with similar scope, but everything is CA focused. CA has

the PKCS#11 device, database, revocation list etc. But Applied PKI Application in-

cludes the clients (or PKI objects) also. The PKI objects are strongly connected to the

CA, and are the only entities communicating with the CA and other clients. The key

management is implemented for the PKI objects too, which is forced so that the pri-

vate key has to be stored inside the PKCS#11 device. The PKI object identity securi-

ty is at a reasonable level.

Unfortunately, I never got to test the application with a real PKCS#11 device. As

sometimes the real PKCS#11 devices include some additional setup steps, it could

have been good to have one example in this project. But there are so many of them

that choosing one would have been difficult.

28

In future, I plan to extend and maintain the application, as new cryptographic mecha-

nisms are introduced and more ideas of functionality come into my mind. It has been

definitely a great learning experience in terms of designing, developing, document-

ing and gathering information. My English skills in terms of writing have also im-

proved very well.

29

REFERENCES

Wikipedia: Cryptography 2013. Referred 13.3.2013.

http://en.wikipedia.org/wiki/Cryptography

Wikipedia: Message authentication code 2013. Referred 13.3.2013.

https://en.wikipedia.org/wiki/Message_authentication_code

Wikipedia: Asymmetric key cryptography 2013. Referred 13.3.2013.

http://en.wikipedia.org/wiki/Asymmetric_key_cryptography

Wikipedia: RSA algorithm 2013. Referred 15.3.2013.

http://en.wikipedia.org/wiki/RSA_(algorithm)

Wikipedia: RSA – Key generation 2013. Referred 8.12.2013.

http://en.wikipedia.org/wiki/RSA_(algorithm)#Key_generation

Wikipedia: RSA - Signing messages 2013. Referred 20.3.2013.

http://en.wikipedia.org/wiki/RSA_(algorithm)#Signing_messages

Wikipedia: RSA – Padding schemes 2013. Referred 22.3.2013.

http://en.wikipedia.org/wiki/RSA_(algorithm)#Padding_schemes

Wikipedia: Advanced Encryption Standard 2013. Referred 22.3.2013.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Wikipedia: Advanced Encryption Standard – High-level description of the algorithm

2013. Referred 25.3.2013.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard#High-

level_description_of_the_algorithm

Wikipedia: Cryptographic hash function 2013. Referred 31.3.2013.

http://en.wikipedia.org/wiki/Cryptographic_hash_function

Wikipedia: Collision 2013. Referred 4.5.2013.

http://en.wikipedia.org/wiki/Hash_collision

Wikipedia: Public key infrastructure 2013. Referred 2.4.2013

http://en.wikipedia.org/wiki/Public_key_infrastructure

Wikipedia: Public key certificate 2013. Referred 2.4.2013

http://en.wikipedia.org/wiki/Digital_certificate

Wikipedia: Public key infrastructure 2013. Referred 2.4.2013

http://en.wikipedia.org/wiki/Public-key_infrastructure

Wikipedia: Hardware security module 2013. Referred 6.4.2013

http://en.wikipedia.org/wiki/Hardware_security_module

30

Wikipedia: PKCS#11 2013. Referred 7.4.2013.

http://en.wikipedia.org/wiki/PKCS11

RSA Laboratories - PKCS #11 2013. Referred 14.4.2013.

http://www.rsa.com/rsalabs/node.asp?id=2133

Wikipedia: Digital signature – how they work 2013. Referred 14.4.2013.

http://en.wikipedia.org/wiki/Digital_signature#How_they_work

Website of openCryptoki 2013. Referred 15.6.2013.

http://sourceforge.net/projects/opencryptoki/

Website of NetBeans 2013. Referred 15.6.2013.

https://netbeans.org/features/index.html

Website of OpenSC 2013. Referred 15.6.2013.

https://www.opensc-project.org/opensc/wiki/Tools

Website of OpenSSL 2013. Referred 15.6.2013.

http://www.openssl.org/

Website of Apache Derby 2013. Referred 15.6.2013.

http://db.apache.org/derby/

Website of BouncyCastle 2013. Referred 15.6.2013

http://www.bouncycastle.org/

Website of Apache Commons CLI 2013. Referred 15.6.2013.

http://commons.apache.org/proper/commons-cli/

Website of VirtualBox 2013. Referred 15.6.2013.

https://www.virtualbox.org/

APPENDIX 1

CA Server classes

CAServerMain

(RMI) Server

CAServerOptions

BaseOptions

AppliedPkiFiles

AppliedPkiObjects

Data Access Object

CertRequests

CertGenerator

Utils

Pkcs11

AppliedPkiFile

Figure 7. CA Server application class structure

The above diagram represents the CA Server class hierarchy. The CAServerMain

functions as the main class.

CAAdmin classes

CAAdminApp CAAdminOptions

BaseOptions

AppliedPkiObjects

Data Access Object

CertRequests

CAAdministration

Figure 8. CAAdmin application class structure.

The above diagram represents the CA Administration class hierarchy. The

CAAdminApp functions as the main class.

CAInit classes

CAInitApp

AppliedPkiObjects

Data Access Object

CertRequests

CAInitializer

CertGenerator

Pkcs11

UtilsDBInitializer

Figure 9. CAInit application class structure.

The above diagram represents the CA Initialization application class hierarchy. The

CAInitApp functions as the main class.

PkiObjectInit classes

PkiObjectInitApp PkiObjectInitOptions

BaseOptions

PkiObjectInitializer

(RMI) Server

Pkcs11

Utils

Figure 10. PkiObjectInit application class structure.

The above diagram represents the Pki Object Initialization application class hierar-

chy. The PkiObjectInitApp functions as the main class.

PkiObjectClient classes

PkiObjectClient PkiObjectClientOptions

BaseOptions

PkiObjectOperations

(RMI) Server

Pkcs11

UtilsAppliedPkiAuth

AppliedPkiFile

Figure 11. PkiObjectClient application class structure.

The above diagram represents the Pki Object Client application class hierarchy. The

PkiObjectClient functions as the main class.

APPENDIX 2

User Guide

APPLIED PKI APPLICATION

Jussi Salminen

July, 2013

CONTENTS

1 INTRODUCTION .. 3

2 APPLICATION PACKAGE CONTENTS .. 3

2.1 AppliedPkiCA ... 3

2.2 AppliedPkiObject.. 4

3 PKCS#11 DEVICE PIN INITIALIZATION ... 4

4 SETUP .. 5

4.1 CA ... 5

4.1.1 Server Initialization ... 5

4.1.2 Start the Server .. 7

4.2 PKI Object .. 8

5 OPERATIONS ... 10

5.1 CA ... 10

5.1.1 List Certificate Requests ... 10

5.1.2 Issue a Certificate .. 11

5.1.3 Discard a Certificate Request .. 11

5.1.4 List PKI Objects .. 12

5.1.5 Revoke PKI Object .. 13

5.2 PKI Object .. 14

5.2.1 Send File ... 14

5.2.2 List Files ... 15

5.2.3 Download/Get File .. 15

5.2.4 Discard File ... 16

1 INTRODUCTION

This user guide describes the usage of the Applied PKI Application, which is docu-

mented in the thesis APPLYING PKI TO DEVICES IN A NETWORK.

2 APPLICATION PACKAGE CONTENTS

This chapter lists the files and folders provided with the Applied PKI Application.

2.1 AppliedPkiCA

 dist (directory) – Contains the Java classes for this application, should be on-

ly accessed with the launch scripts (see scripts folder).

 etc (directory) – Contains example configuration files

o cacert.properties – Example CA certificate configuration file

o database.properties – Example CA database configuration file

o pkcs11.cfg – Example PKCS#11 configuration file

o server.policy – Policy settings file for RMI, must not be edited. Must

be kept in this directory

 scripts (directory) – Contains the application launch scripts

o admin.sh – Used for administrative operations like revoking certifi-

cates or issuing new certificates. The CA must be set up in order to

use this script

o init.sh – Initializes the PKCS#11 device for the and the CA server

o opencryptoki-reset.sh – Reset/initialize the PKCS#11 device PIN

codes

o run-server.sh – Starts the CA server process

2.2 AppliedPkiObject

 dist (directory) – Contains the Java classes for this application, should be on-

ly accessed with the launch scripts (see scripts folder).

 etc (directory) – Contains example configuration files

o pkcs11.cfg – Example PKCS#11 configuration file

o req.properties – Example certificate request file

 scripts (directory) – Contains the application launch scripts

o init.sh – Initializes the PKCS#11 device, prepares the certificate re-

quest and sends it to the CA

o object.sh – Used for the PKI object operations like send-

ing/receiving/discarding files. Can be used when the PKI object has a

certificate issued by the CA

o opencryptoki-reset.sh – Reset/initialize the PKCS#11 device PIN

codes

3 PKCS#11 DEVICE PIN INITIALIZATION

Common to both CA and PKI object is the PKCS#11 device PIN initialization. It is

the first step that is done during the application setup. The script opencryptoki-

reset.sh is used to perform this operation.

The following command starts the PKCS#11 device PIN initialization process:

/opencryptoki-reset.sh

Expected output:

Using slot 0 with a present token (0x0)

Please enter the new SO PIN:

Please enter the new SO PIN (again):

Token successfully initialized

Using slot 0 with a present token (0x0)

Logging in to "test".

Please enter SO PIN:

Please enter the new PIN:

Please enter the new PIN again:

User PIN successfully initialized

As seen above, the script executes pkcs11-tool and prompts for the SO (also known

as Security Officer) code and PIN code a few times. These codes enable the usage of

the secret data (keys) in the PKCS#11 device. This operation erases all data on the

PKCS#11 device which makes it ready to use with this application. The PINs must

be kept secret by the user, since it will be prompted every time when performing an

operation (e.g. issue certificate, list files, get file, send file) within the Applied PKI

Application.

4 SETUP

4.1 CA

4.1.1 Server Initialization

First step is the initialization of the server, a script called init.sh is provided to

facilitate this process. This script starts the Java RMI registry, initializes the database

and executes a Java application that creates the CA RSA key pair and certificate.

Command line parameters:

1. pkcs11-config-file – (Required) A PKCS#11 configuration file, specifying

the device provider PKCS#11 library file, name and slot to use. An example

is included for openCryptoki in the etc folder

2. ca-cert-properties – (Required) Configuration for the CA certificate, the

Subject field of the certificate, validity period and signature algorithm are

specified in this file. An example configuration is included in the etc folder

The parameters are positional, so the -pkcs11-config-file is the first parameter and

-ca-cert-properties is the second.

Example command:

./init.sh ../etc/pkcs11.cfg ../etc/cacert.properties

Expected output:

Applied PKI CA Initializer

==========================

Generating RSA key...

Generating CA certificate...

Enter CA passphrase:

Storing keys...

Creating database...

Applied PKI CA initialized - ready to run server

==

As seen in the output, the server application is now ready to be executed. The server

is run with a script called run-server.sh, which is provided with the CA source code.

4.1.2 Start the Server

When the server is initialized as described in the previous chapter, it can be started

with the script run-server.sh. This will start the server process which runs until it

is terminated.

Command line parameters:

 -reqfolder <cert-req-folder> - (Required) Location in the file system in

which the certificate requests are stored

 -repo <file-repository-folder> - (Required) Location in the file system in

which all the files transmitted between the PKI objects are stored

 -pkcs11 <pkcs11-config-file> - (Required) PKCS#11 configuration file, the

same as specified for the init.sh script

 -ipadd <host-ip-address> - (Required) IP address of the host machine. There

may be multiple network interfaces in the host and the server needs to know

which one to use

 -dbconfig <database-config> - (Required) Database configuration file includ-

ing DB address and username. An example file is included in the etc folder

Example command:

./run-server.sh -reqfolder ../reqfolder/ -repo ../repo/

-pkcs11 ../etc/pkcs11.cfg -ipadd 192.168.56.1 -dbconfig

../etc/database.properties

Expected output:

Configuration file: ../etc/database.properties

Repository: ../repo/

Certificate request directory: ../reqfolder/

PKCS#11 config file: ../etc/pkcs11.cfg

IP Address to use: 192.168.56.1

Applied PKI CA Server initialized!

After this output is printed, the command line window should be reserved for this

process. It can be also run in background. Tearing down the system is simply done

by stopping the run-server.sh script manually. After this, the init.sh and

opencryptoki-reset.sh scripts can be called again - this will reset the system.

4.2 PKI Object

The first step for initializing a PKI object is the same as for the CA – initialization of

the PKCS#11 device PIN. This is done with the opencryptoki-reset.sh script.

After this, the script init.sh is used to perform the rest of the initialization process.

The next step is to create an RSA key pair and certificate request and send it to the

CA.

Command line parameters:

 -cahost <ip-address> - (Required) The CA server IP address to connect to

 -pkcs11 <pkcs11-config-file> - (Required) The PKCS#11 configuration file

 -reqsettings <request-settings> - (Required) The settings of the certificate

request. Includes only one field which is the requested subject for the certifi-

cate

 -checksum <checksum-value> - (Optional) Checksum of a previously sent

certificate request. Used to query for certificate request status – if the certifi-

cate is signed by the CA, it is automatically downloaded and installed

Example command:

./init.sh -cahost 192.168.56.1 -pkcs11 ../etc/pkcs11.cfg

-reqsettings ../etc/req.properties

Expected output:

Enter PKI object passphrase:

Cert Request Checksum:

e6eb3462f141c0ba5d594caff5a3ef70ab4c6eb46dfcd7100a5f22cf191604f6

The passphrase (PKCS#11 device PIN) is prompted and the server returns the check-

sum that can be also seen in the certificate requests listing on the CA server side.

This checksum is used to refer to the certificate request when querying the CA if the

certificate has been signed. This checksum value is in the clear and does not need to

be encrypted, since it returns a public certificate that is meant to be public for other

PKI objects. A digital signature is calculated using the checksum to verify the identi-

ty of the certificate requester. This way, the CA can be sure that it is the intended re-

ceiver.

Next step is to query the CA with the checksum from the previous command for the

certificate. If the certificate is signed, it will be stored into the PKCS#11 device.

Example command:

./init.sh -cahost 192.168.56.1 -pkcs11 ../etc/pkcs11.cfg

-reqsettings ../etc/req.properties -checksum

e6eb3462f141c0ba5d594caff5a3ef70ab4c6eb46dfcd7100a5f22cf191604f6

So the command remains the same as in the previous one, except that the -checksum

parameter is added.

Expected output:

Enter PKI object passphrase:

Certificate is signed, preparing a signature of the check-

sum...

PKI object initialized!

5 OPERATIONS

5.1 CA

When the CA is set up as described in the previous chapter, the CA operations can be

performed as described in the initialized/running use cases of the CA. This chapter

describes those operations and how they are used in practice. The script admin.sh is

used to execute the operations. As a common parameter, there is a database configu-

ration file for each operation. This could be also hard-coded into the admin.sh, but it

is described here for clarity.

5.1.1 List Certificate Requests

Listing the certificate requests is executed with the following command:

./admin.sh -dbconfig ../etc/database.properties –listreq

Where -listreq tells the application to list the certificate requests.

Expected output:

Applied PKI CA Administration Tool

==================================

Cert Requests (tab-delimited):

139666 e6eb3462f141c0ba5d594caff5a3ef70 REQ_139666.req 0

The first column in the result indicates the certificate request id, which can be used to

approve or discard the request. The second column is a checksum of the request,

which the certificate requester gets and refers to this request when checking if the

certificate request has been approved. The third column is the certificate request file-

name. It is stored in the folder that was specified with the -reqfolder parameter in

the run-server.sh script. The last column tells if the request has been approved. 0

means that it has not been approved, 1 means that it is.

5.1.2 Issue a Certificate

Responding to a certificate request is done with the following command:

./admin.sh -dbconfig ../etc/database.properties -respondreq

139666

Where the –respondreq and its argument 139666 tell that the certificate request

with this id is approved. It is up to the CA users to determine if the certificate should

be approved – there are no criteria in the application that would affect the certificate

enrollment.

Expected output:

Applied PKI CA Administration Tool

==================================

Cert request 139666 ready for signing.

From the output it is now obvious that this certificate will be now signed.

5.1.3 Discard a Certificate Request

Discarding a certificate request is done with the following command:

./admin.sh -dbconfig ../etc/database.properties -discardreq

139666

Where the –discardreq 139666 tells that the certificate request 139666 will be

discarded. This command can be called even if the request was approved, but for any

reason it is decided that this certificate request should not be approved after all.

Expected output:

Applied PKI CA Administration Tool

==================================

Cert request 139666 deleted.

This means that the whole certificate request has been deleted and the PKI object has

to create a new request in order to have a pending request.

5.1.4 List PKI Objects

Listing of PKI objects is done with the following command:

./admin.sh -dbconfig ../etc/database.properties -listobj

Where the –listobj parameter indicates to list the PKI objects.

Expected output:

Applied PKI CA Administration Tool

==================================

PKI Objects:

TestCn 0

TestCn2 0

Where the first column is the CN (Common Name) field of the certificate subject, or

PKI object name and second column tells if the PKI object has been revoked. 1

means that it is revoked and 0 the opposite.

5.1.5 Revoke PKI Object

Revoking of a PKI object is done with the following command:

./admin.sh -dbconfig ../etc/database.properties -revokeobj

TestCn

Where the –revokeobj testCn indicates that the PKI object with a name testCn

should be revoked.

Expected output:

Applied PKI CA Administration Tool

==================================

Object TestCn revoked!

The PKI object will no longer be part of the Applied PKI Application network once

it is revoked. Revoked objects cannot be brought back to the network – the network

device has to request a new certificate from the CA in order to be part of the network

again.

5.2 PKI Object

When the PKI object is initialized, it may perform the operations as described in the

use cases. For these operations, the script object.sh is used.

Parameters –pkcs11 and –ipadd are common for all the operations, so they could

be also added in the object.sh script. The parameters are included in this guide for

clarity.

5.2.1 Send File

This chapter describes the procedure to send files to another PKI object. As a re-

quirement, the receiver CN (Common Name), or the PKI object name must be

known prior to sending the file. It is specified with the -receiver parameter. The

way to exchange the CN’s between PKI objects is up to the users.

Command line parameters:

 -pkcs11 <pkcs11-config-file> - (Required) The PKCS#11 configuration file

 -ipadd <ip-address> - (Required) The IP address of the CA server

 -sendfile <file-path> - (Required) Path of the file to be sent

 -receiver <receiver> - (Required) Name of the recipient PKI object

Example command:

./object.sh -pkcs11 ../etc/pkcs11.cfg -ipadd 192.168.56.1

-sendfile testFile.txt -receiver PkiObj1

If the file sending is successful, the command does not produce any output.

5.2.2 List Files

Files to be received can be listed with the following command:

./object.sh -list -pkcs11 ../etc/pkcs11.cfg -ipadd 192.168.56.1

The -list tells the application to query for file to be received.

Expected output:

List files (format: id <tab> filename <tab> sender)

565973 testFile.txt VirtualMachineTester

5.2.3 Download/Get File

When files to be received are downloaded, they are decrypted by the receiving PKI

object’s private key and the signature is verified with the sender’s public key.

Command line parameters:

 -pkcs11 <pkcs11-config-file> - (Required) The PKCS#11 configuration file

 -ipadd <ip-address> - (Required) The IP address of the CA server

 -get <file-id> - (Required) ID of the file to be downloaded (seen in the file

listing)

 -getfilepath <file-path> - (Required) Path in which the file is stored in the lo-

cal machine

Example command:

./object.sh -get 565973 -getfilepath /home/jussi/testFile.txt

-pkcs11 ../etc/pkcs11.cfg -ipadd 192.168.56.1

The –get parameter takes the file id as input. This id can be seen in the file list as

shown in the previous command. The –getfilepath is the file path in which the

file is stored in the local machine. This command produces no output if it executes

successfully.

5.2.4 Discard File

Discarding a file is done with the following command:

./object.sh -discard 565973 -pkcs11 ../etc/pkcs11.cfg -ipadd 192.168.56.1

Where –discard 565973 means that the file with id 565973 is discarded and thus

does not show up in the file listing anymore.

