

Security Model for Agile Software

Development

Koistinen, Pasi

2013 Laurea Leppävaara

Laurea University of Applied Sciences

Laurea Leppävaara

Security Model for Agile Software Development

 Pasi Koistinen
 Security Management Degree
 Master’s Thesis
 October 2013

 3

Laurea University of Applied Sciences Abstract
Leppävaara
Degree Programme on Security Management

Pasi Koistinen

Security Model for Agile Software Development

Year 2013 Pages 111

Nowadays information systems, applications and architectures are subject to
a rapidly changing environment. Business requirements and cyber threats are
the de facto environment of software development these days. Agile software
development methods have become popular because they promise to be
adaptable to changes in the environment.

Traditional deterministic security management models are applied in water-
fall software development approach. In traditional software development ap-
proaches, security requirements are planned ahead of development work, and
implemented according to the plan. The problem is that static security mod-
els are unable to respond to rapid changes in the requirements and threats
during the development. Furthermore, applying the traditional static security
models to Agile Methods has proven to be difficult since these methods were
not initially designed to be compatible with iterative development process
models. Real-life outcomes of software development security have also prov-
en to be a tragic story since majority of web applications are highly vulnera-
ble to cyber attacks. Software security should be integrated into the devel-
opment process, but this is usually not the case.

This thesis presents an Agile Software Model based on the Agile Manifesto, the
core theory of Agile software development. The model integrates universally
applicable security mechanisms into the Agile development process. The most
important security mechanisms in this model are designed to be as an integral
part of the development process instead of being external to the develop-
ment.

Organizations in Agile software development are able to use the Agile Security
Model for developing secure software for their customers. The model also
provides security assurance for meeting the compliance requirements of the
customers.

Keywords: Agile software development, information security, security model,
Agile software security

 4

Laurea-ammattikorkeakoulu Tiivistelmä

Leppävaara
Turvallisuusosaamisen koulutusohjelma

Pasi Koistinen

Agiilin sovelluskehityksen tietoturvallisuuden hallintamalli

Vuosi 2013 Sivumäärä 111

Tietojärjestelmät, sovellukset ja niiden arkkitehtuurit elävät nykyään muut-
tuvissa ympäristöissä, jossa liiketoimintavaatimukset ja uhkakuvat muuttuvat
nopeasti. Agiilin, eli ketterän sovelluskehityksen menetelmät ovat tulleet suo-
situiksi, koska niiden avulla kyetään vastaamaan muuttuviin vaatimuksiin pe-
rinteisiä staattisia menetelmiä paremmin.

Sovelluskehityksen perinteinen tietoturvallisuuden hallinta ja menetelmät
ovat perustuneet deterministisiin malleihin, kuten vesiputousmalliin, jossa
tietoturvavaatimukset määritellään ennalta ja toteutetaan suunnitelman mu-
kaisesti. Staattiset tietoturvamallit eivät kykene vastaamaan nopeasti muut-
tuviin vaatimuksiin ja uhkakuviin nykyajan muuttuvassa ympäristössä mielek-
käästi. Staattisten tietoturvamallien soveltaminen notkeaan sovelluskehityk-
seen on myös osoittautunut ongelmalliseksi, koska perinteisiä tietoturvamene-
telmiä ei ole kehitetty käytettäväksi sovelluskehitysprosessissa, jossa kehitys
etenee sykleissä kuten agiilissa sovelluskehityksessä. Sovelluskehityksen tieto-
turvamallien tehokkuus on osoittautunut kyseenalaiseksi, koska useimmat
verkkosovellukset ovat myös osoittautuneet erittäin haavoittuviksi. Sovelluksia
ei ole lähtökohtaisesti suunniteltu ja tehty tietoturvallisiksi.

Tässä työssä esitellään notkean sovelluskehityksen tietoturvamalli, joka pe-
rustuu notkean sovelluskehityksen perusteoriaan, Agile Manifesto:on. Tieto-
turvamallissa käytetään menetelmiä, jotka soveltuvat agiiliin sovelluskehityk-
seen ja integroituvat osaksi sovelluskehitysprosessia sen sijaan että tietotur-
vallisuus olisi irrallinen tai ulkoinen osa kehitystyötä. Tietoturvamallin avulla
agiilia sovelluskehitysmenetelmää käyttävät organisaatiot voivat tuottaa asi-
akkailleen turvallisempia sovelluksia sekä osoittaa, että asiakkaiden tietotur-
vavaatimukset on huomioitu ja toteutettu kehityksessä toivotulla tavalla.

Asiasanat: Agiili, notkea sovelluskehitys, tietoturvallisuus, hallintamalli, tieto-
turvallinen sovelluskehitys

 5

Contents

1! Introduction ... 7!

1.1! Reflections on Software Security 8!

1.2! Scope and Limitations ... 9!

1.3! Structure of the Report .. 10!

2! Silverskin Information Security LLC ... 10!

3! Core Concepts .. 11!

4! Security Problems of Agile and Justification of Work 12!

4.1! Failed Software Development Projects 13!

4.2! Lack of Trust in the Software Development and its Outcomes .. 14!

4.2.1!Incompatibility of Traditional Assurance Methods 16!

4.2.2!A Dangerous Outcome: Vulnerable Software 18!

4.3! The Benefits of an Agile Security Model 25!

5! Research Process .. 25!

5.1! Constructive Research Approach 27!

5.1.1!Philosophy and Theory of Constructivism 27!

5.1.2!Constituents of the Constructed Agile Security Model 29!

5.2! Phases of Construction ... 31!

5.3! Research Methods and Data Collection 33!

5.3.1!Review and Analysis of Literature 33!

5.4! Critique of Normative Approaches in Software Security

Development in Literature ... 35!

5.5! Interviews of Leading Agile Security Experts 38!

6! Traditional vs. Agile Software Development Approaches 41!

6.1! Agile Software Development .. 41!

6.2! Comparison of Control Mechanisms in Agile and Traditional

Approaches ... 43!

6.3! Sequence of Software Development Phases 48!

6.4! Short Explanation of Scrum Method 51!

7! Analysis of Security Problems and Applicable Security Mechanisms 52!

7.1! Identification of Applicable Security Mechanisms 55!

 6

7.1.1!Results of Literature Review 56!

7.2! Analysis of Applicable Security Mechanisms 59!

7.3! Detailed Description of Applicable Security Mechanisms 66!

7.3.1!Initial Planning Phase .. 66!

7.3.2!Planning & Requirements Phase 71!

7.3.3!Architecture & Design Phase 80!

7.3.4!Development & Implementation Phase 83!

7.3.5!Testing & Evaluation Phase of the Project 86!

7.3.6!Delivery Phase .. 90!

8! The Agile Security Model ... 92!

9! Conclusions ... 94!

9.1! Reflection About the Success of the Research 95!

Tables ... 104!

 7

1 Introduction

Many organizations develop software using Agile Methods, including very mas-

sive ones like Microsoft, Cisco, Raytheon, General Motors, Merril & Lynch and

numerous others (CIO Magazine, 2004). Historically speaking software security

has not been adequately included in the Agile software security development

methods. Agile Methods place emphasis on customer communications and rap-

id feature development instead of meticulous preliminary planning. On the

other hand, security is a priority for customers and should not be overlooked

because of regulatory and privacy requirements of today’s highly intercon-

nected world.

There is a concern that Agile Methods do not create secure code (Beznosov &

Kruchten, 2004-2006). There is also a concern that Agile development Meth-

ods lack reliable methodologies and explanations for creating secure software

(WASC, 2008 & Silverskin, 2012). This implies that there is a gap between the

customer’s security requirements and the secure end results: The customer is

unable to perceive the causal relations that would explain whether security is

adequately addressed or not (Peeters, 2005).

To aggravate matters, there is little Agile security expertise available on the

market today (Interviews of Agile Experts A & C). The first step of remedia-

tion is the acknowledgement of current state of affairs and then integrating

security into Agile software development Methods. The goal of this research is

to answer that need.

Other Agile secure software development models do exist, some of them uti-

lizing a process-oriented approach (Microsoft, 2009), some with a focused

scope (Peeters, 2005), and some with a control-based approach (OpenSAMM,

2013 & BITS, 2012). Howevern, the most common obstacle against integrating

security into the Agile development process stems from security being exter-

nal, exogenous, to the development process (Sillitti & Succi, 2008). This leads

to the problem that security activities may be easilly skipped, or they make

 8

no sense to the developers. Therefore it was necessary to develop a model

that would be based on Agile Methods, utilize effective security mechanisms

that integrate into the development process, and at the same time not en-

cumber the developers with tasks that make no sense to them.

1.1 Reflections on Software Security

Speaking generally we need to comprehend the concept of emergence before

we can comprehend how the emergence plays a role in software security.

Therefore, an example is in order: in physics, pressure of gas is proportional

to its temperature. Pressure is an emergent phenomenon that can be ex-

plained more precisely on microscopic (atomic or molecular) level as the cu-

mulative mass effect of movement and momentum of many tiny gas particles.

In fact, on the microscopic level, the emergent quality of pressure does not

physically exist! Quite similarly, we can measure emergent feature of security

appear from a seemingly non-deterministic, chaotic Agile software develop-

ment process: it seems chaotic because there is a lack of explanation for the

underlying rules of action between the atomic particles. In other words, we

need to understand which security mechanisms are effective and applicable

to Agile before we can explain how the macroscopic phenomenon of emergent

software security arises. Also in security, as in any subject of real world, some

energy and effort are needed to change the state of the system into some-

thing else, something secure. This first rule of thermodynamics applies to

pressure and security likewise: unless energy, or time and effort, are invested

nothing is bound to change.

Theoretically software security can be perceived as an emergent qualitative

feature of software development processes. Such emergent quality arises as a

result of diligent development work in which each atomic feature of the soft-

ware is carefully conceived, designed, written and perfected in practice keep-

ing in mind the importance of each security aspect to the customer who bears

the cost. Conversely the emergence implies that a priori security of a large

 9

system cannot be precisely defined and proven, and that the level of software

security is always relative to the energy or investment appointed to the secu-

rity portion of the development. The opposite feature of security is insecuri-

ty, which is almost guaranteed to emerge if the aforementioned diligent de-

velopment approach is neglected. Far too many applications seem to contain

serious security weaknesses (Silverskin, 2012 & WASC, 2008).

The metaphor of emergence fits well with Agile software development be-

cause Agile is often perceived as non-deterministic process with hard-to-

predict end results.

1.2 Scope and Limitations

An assessment of Agile security problems was conducted in order to identify

the inherent problems in Agile software development.

Since this research is focused on Agile development security we need to make

clear distinction which development methodologies and approaches are within

this scope and which ones are out of it. For example, traditional waterfall de-

velopment methods should evidently be out of the scope of this work, unless

we need to briefly address them to show their differences in contrast with Ag-

ile approaches. With regards to various different flavors of Agile (different Ag-

ile variations), we do not want to concentrate on any specific one while for-

getting all the rest. All Agile approaches have a lot in common, and therefore

we need to propose solutions that are general enough to work sufficiently in

most, if not all, Agile variants.

Finally, any detailed confidential information related to Silverskin, its cus-

tomers, interviewees or third parties is out of the scope of this report.

 10

1.3 Structure of the Report

This research consists of the following main chapters:

• Description of the organization where this research was conducted and

where the Secure Agile Model was developed.

• Core concepts and the research process. We use Agile manifesto as a

framework to construct an Agile Security Model.

• Traditional software development methods and control mechanisms are

compared against Agile development approaches. Here we learn to un-

derstand the strengths and weaknesses of both approaches.

• Security problems in Agile and justification of the work–chapter explain

several reasons why this research is necessary and beneficial. Software

projects fail all too often, customers do not trust that Agile Methods

could create secure software, traditional assurance methods are not

compatible with Agile, and software is infested with vulnerabilities.

• In the next chapter, an analysis of security problems is performed

against the principles of Agile manifesto. Each identified problem is

broken down into smaller sub-problems. Next, applicable security

mechanisms are proposed for each sub-problem based on interviews

and analysis of literature.

• In the final chapters we construct and present the Agile Security Model.

The model integrates the applicable security mechanisms into a generic

iterative Agile software development framework.

2 Silverskin Information Security LLC

This research has been conducted in the company where I am currently em-

ployed. The company, Silverskin Information Security LLC, focuses on solving

demanding information security assignments for its customers. The customers

are other businesses and organizations (not consumers).

 11

The company has been in the business of security engineering, web applica-

tion security and security management consultancy since 2009. The idea to

write this thesis began from our observations from web application security

auditing. We observed problems in our customer’s software development pro-

jects because we had a view into the whole process of software security pro-

cess from the beginning of the projects until the final end results: often we

started working closely with the customers in order to conceptualize, design

and build a secure system, and in majority of cases we also performed securi-

ty testing and auditing of the resulting software. Our experience from the ap-

plication security auditing has given a reason to understand the root causes

behind the vulnerabilities in software. Furthermore, after having done hun-

dreds of such assignments our insight has covered the area of software securi-

ty from a very wide perspective.

This research was deemed necessary in Silverskin because the company want-

ed to develop their services to customers in the Agile development business.

Many customers seemed to either struggle with creating secure code, or their

software was infested with security vulnerabilities. This led us to inquire

whether lack of security mechanisms in the customer’s software development

process could be the reason for their problems. We decided to research and

develop a secure software development model to improve things. This work

implied that we tested various security mechanisms in customer projects and

to verify if those mechanisms proved to be useful in practice. Because the

scope of the research covered a wide range of software development process

phases, the research took two years to finish.

3 Core Concepts

The following core concepts are used throughout this research. Additional re-

lated concepts are included in attachments. For example, Firesmith (2003)

has also created an information model for security engineering that explains

relations of several related concepts (figure 20 at the end of this report).

 12

Agile: Agile Methods (AM) are a set of software development methods and

techniques. They have been conceived to deliver their results timely, on

budget, and with high customer satisfaction. According to De Lucia & al.

(2008, p. 252) “AMs emphasize the human factor in the development process

and the importance of direct, face-to-face communications among stakehold-

ers, the value of simplicity, perceived as an elimination of waste, and contin-

uous process improvement, as the transposition to the Software Industry of

Total Quality Management.”

Attacker story (synonym for abuser story or misuse case): A description of an

unwanted event that could threaten the confidentiality, integrity or availabi-

lity of customer’s data stored, processed or transmitted by the application.

The story can be initially described as a high level requirement, and is later

broken down into technical development tasks.

Backlog (sprint or product backlog): “The sprint / product backlog (or "back-

log") is the requirements for a system, expressed as a prioritized list of prod-

uct backlog items. These included both functional and non-functional custom-

er requirements, as well as technical team-generated requirements” (Scrum

Alliance)

Software security requirements: a specification of security mechanisms

(controls) that eliminate or reduce the likelihood that the software contains

vulnerabilities.

Security mechanism: mechanism that eliminates or mitigates (reduces) the

impact that exploitation of vulnerabilities may cause. It is a synonym for

software security control. (Firesmith, 2003 p. 33)

4 Security Problems of Agile and Justification of Work

 13

This chapter explains several identified problems in Agile software develop-

ment methods and explains why it was deemed necessary to conduct this re-

search.

4.1 Failed Software Development Projects

According to Beznosov & Kruchten (2004), for decades developers of software

have wanted to use the technical-rational approach to software project man-

agement. This approach implied sequential project lifecycle (waterfall model)

with beforehand planning and design. Constant monitoring was used to force

the project to conform to the plan. They note that this approach has been

successful in certain aspects: for example having designs and plans available

early in the project has enabled the certification of information systems

against external assurance standards: e.g. safety certification in avionics and

medical instrumentation. This has also made acquisitions of information sys-

tems easier for the buyer.

Beznosov & Kruchten (2004) and De Lucia & al. (2008) all note that the tech-

nical-rational approach is flawed because the success rate of software pro-

jects has proven to be low, with less than 50% success (Standish Group, 1994).

Most of the failures are due to management practices in software projects

(table 1). The main reason why Agile Methods were originally invented was

that many of the management paradigms adopted from construction and

manufacturing simply do not work in software development domain.

Study by Standish Group (1994) focused on the reasons for failed software de-

velopment projects (table 1). For example the second largest reason, accord-

ing to the study, is low customer involvement with 12.4% of failed projects.

Choosing an Agile development methodology could mitigate this risk since key

principle of Agile is to maintain high level of customer involvement. Agile ap-

proach could also prove useful which applies to lack of management support

with 9.3% share since Agile principles should also address this project risk.

Furthermore risk of changes in (software) requirements (8,7%) should also be

 14

mitigated by choosing an Agile approach over traditional ones. In fact, a very

large portion of software project failures could have been avoided by devel-

oping the software with Agile approaches. This is good reason to focus this re-

search on secure Agile software development (instead of a generic approach,

including traditional development methods).

Table 1: Main causes of software development project failure (Standish

Group, 1994)

4.2 Lack of Trust in the Software Development and its Outcomes

Not only do software projects often fail but they also produce insecure soft-

ware products. During a period of two years, Silverskin performed security

audits against a sample of 130 web applications. A research was conducted to

make a joint effort regarding the results of the audits. The main finding is

that the tested applications appeared to be infested with severe vulnerabili-

ties. A significant portion of the inspected applications and data within the

systems were poorly protected and could have been compromised because of

the poor level of application and system security (Silverskin, 2012). Luckily in

a few instances the research data also contained cases where the tested ap-

plications seemed to be extremely secure.

 15

Many of the customers of Silverskin have adopted some sort of an Agile meth-

od for developing software. The inherent problem is that the Agile software

development models currently do not holistically and causally explain how

and why security should be addressed in the development process. Hence the

customers who pay for the development work are often unable to understand

how Agile process could produce secure end results that meet the compliance

requirements of the customer. Agile Security Expert A stated in interview

that: ”there are very few experienced people available on the market who

understand secure Agile development”.

The customers may also be unable to verify if the end results of the Agile de-

velopment are secure enough for their business needs and requirements. Ac-

cording to Beznosov & Kruchten (2004) the Agile software development ap-

proach appears totally contrary to traditional assurance practices ”…in system

certification, independent validation and verification, and in software acquisi-

tion practices…”. Consequently the customers may be unable to verify if their

security compliance requirements have been achieved or not.

A new study conducted by Ponemon Institute and Security innovation (2013)

also paints a bleak picture of adoption of secure software development meth-

odologies. The main findings of the study were that:

• Organizations do not have a defined software development process

• Organizations are not testing for security

• Policies and requirements are ad-hoc and not integrated into the SDLC

• Organizations do not have a (security) training program in place

• Organizations do not measure compliance with regulations and stand-

ards

• Organizations do not understand application security risks

• There is a disconnection between the executives and practitioners re-

garding the maturity of the application security and activities

 16

According to Baskerville (2004), there is also a gap between the information

systems and security that creates a flood of vulnerabilities unless new ap-

proaches are developed for rapid and continuous development of security

safeguards.

In conclusion:

1. Traditional software security assurance methods are mostly incompati-

ble and do not work in Agile software development. The information

gathered from Agile Expert interviews, literature and scientific re-

search provides evidence that support this claim.

2. Applications that are the outcome of software development seem to

endure faulty security design and are generally infested with software

vulnerabilities. (This observation pertains to applications developed

with both traditional and Agile Methods.)

4.2.1 Incompatibility of Traditional Assurance Methods

SAFECode (Software Assurance Forum for Excellence in Code) describes Agile

as a development technique that inherently contains a kind of an ”early feed-

back and error correction system”. They claim that Agile can potentially iden-

tify and repair software defects earlier in the development process than tra-

ditional development methods like waterfall. The security mechanisms that

are used in traditional models are recognized to coalesce poorly with Agile

since Agile development cycles (Sprints) are short, typically 2-4 weeks. There-

fore according to SAFECode, software developers find it difficult to comply

with a tedious list of various assurance tasks. It is deemed too burdensome to

perform a long list of security tasks every few weeks. This is considered to be

counter-productive. As a result, the developers often skip security tasks alto-

gether and consequently develop software that contains vulnerabilities. The

problem of security sometimes being a hindrance to software development is

also acknowledged by Siponen, Baskerville and Kuivalainen (2005): Agile secu-

rity Methods should not hinder the development project.

 17

For example, Agile Expert A commented that security tasks should not be

driven in the Agile process by requirements that are added on top of the de-

velopment process (i.e. external, exogenous control). He made an example by

criticizing a practice where security tasks are repeated at the end of every

sprint. He made an example of such an Agile practice called ”Definition of

Done, or DoD”. In his words, ”…if DoD is used to drive security work, there is a

huge risk that the work will not be done because it is solely up to the devel-

opment team whether such work will be done, or if they decide to skip it. If

the development team says that the security activities on DoD have been exe-

cuted, it could be true, or maybe it is not true. It is common in software busi-

ness that there is a lot of business pressure to do things as fast as possible.

Which are the first things that you remove under pressure? It is the items in

the DOD list where developers remove their tasks because no one can tell how

much time finishing those DoD tasks will take.” I believe that this observation

is an indicative of mismatching security assurance methods between Agile and

traditional approaches. This also describes the inherent weakness that exoge-

nous control contains: the control provides low level of assurance because it is

easily circumvented by its subjects.

Adding external controls (exogenous) on top of Agile development process

creates practical problems. How should we approach this problem? Beznosov

(2003) proposes that a number of adjustments and changes are necessary in

software development security methods. The necessary changes are all relat-

ed to the incremental nature of Agile. For example, risk analysis, vulnerability

analysis, security testing and use of test automation suites should be re-

designed in order to work in incremental development processes.

Beznosov & Kruchten (2004) have also analyzed the suitability of security as-

surance methods of traditional software development approaches against Ag-

ile Methods (table 8). They make a cross-reference of assurance methods that

are either compatible, work independently of development approach, can be

semi-automated, or if there is a ”mismatch” (incompatibility) between tradi-

 18

tional and Agile assurance methods. The result of the cross-reference paints

a bleak picture: most of the traditional assurance methods are incompatible

with Agile development approach. Noopur (2005, 19) supports this view by

stating that nearly half of the traditional security assurance activities are not

compatible with Agile Methods.

Table 2: Compatibility analysis of software assurance methods (Beznosov &

Kruchten, 2004).

4.2.2 A Dangerous Outcome: Vulnerable Software

 19

This chapter presents the findings from the perspective of technical software

security outcomes. The bottom line is that we need to understand what the

weaknesses of our software are in different areas, why they manifest them-

selves and what are the real world impacts of those weaknesses. A limitation

needs to be made clear at this point: the studies that are presented in this

chapter have been performed against software that is produced by both Agile

and traditional development methods. Therefore, it cannot be concluded that

inadequate security has resulted because of either of those approaches. (Nor

can we claim that either approach would be any better based on this data!)

Silverskin conducted a quantitative study about web application security in

2012. The study pulled together the results from audits of 130 customer ap-

plications. The tested applications included a wide range of different types:

discussion forums, project management applications, web shops, data ware-

houses, issue tracking systems, healthcare services, sign-up services, web reg-

istration services, web banks, network games, gambling, etc.

According to the study (2012), human errors and development process defi-

ciencies are the most usual causes of security problems. The most common

sources of critical security deficiencies are lack of secure design and errors in

implementation. Also configuration errors were found sometimes to be the

reason causing serious security risks. The following categories of errors pre-

sent the critical findings during different phases of development:

1. Design errors

a. Are the hardest to correct and require a lot of effort to repair.

The security vulnerabilities are a result of missing controls that

would be necessary to prevent misuse of the application. The

most alarming finding in the study was that important controls

were missing entirely from the applications. (Figuratively speak-

ing, they had built a house without remembering to buy lockable

doors on the doorways). Namely, if access control mechanisms

were found to be vulnerable, in more than 90% of those cases

that mechanism was missing from the design altogether!

 20

b. 38 % of critical vulnerabilities were caused by design errors.

2. Programming (implementation) errors

a. Severe risks were often found to be caused by programming er-

rors. Tiny programming errors could be enough to cause a serious

data leakage. Luckily they are easier to correct than design er-

rors.

b. 47% of critical vulnerabilities were caused by implementation

errors.

3. Configuration errors

a. The security of a well designed and implemented application can

be ruined at the time of its installation and configuration. The

platform that provides resources for the application (server

hardware, operating system, application server, networking)

may contain vulnerabilities that allow easy access to the whole

system below the application. Configuration errors are the easi-

est to correct, but also the most prevalent in the study with

more than 50% of findings. Luckily they rarely cause critical se-

curity risks.

b. 16% of critical vulnerabilities were caused by configuration er-

rors.

Another way to categorize the results of the study is to present the critical

security findings per control category failure (figure 8). This categorization

shows that application input validation, session control and system protection

are the most prevalent reasons for critical vulnerabilities.

 21

Figure 1: Critical findings per audit category (Silverskin, 2012)

Further analysis of the study findings shows the distribution of all vulnerabili-

ties in the audit categories per origin (figure 9). It is interesting to notice that

most input validation errors are due to implementation (programming) errors.

Another interesting finding is that almost all access control vulnerabilities

were caused by lack of design. It is worth mentioning as well that configura-

tion–level errors are almost entirely caused by lack of system protection (fig-

ure 9). A question arises: perhaps the system protection and configuration

should be included in test automation? And are the developers always skilled

in system protection area, or do they simply perform the coding work with the

application?

 22

Figure 2: Distribution of findings in audit categories per origin (Silverskin,

2012)

Another source is WASC’s Threat Classification Development View (WASC).

This view presents different software security controls against design, imple-

mentation and deployment phases of development process. WASC explains

that the view was created to illustrate ”… where in the development lifecycle

a particular type of vulnerability is likely to be introduced.” It appears that

WASC’s recommendation is somewhat consistent with the results from Silver-

skin’s study (figures 8 & 9 above).

 23

Table 3: WASC view on development of threat classification.

 24

Yet another interesting source of information is WASC’s Web Hacking Incident

Database (WHID). The database is ” … dedicated to maintaining a list of web

applications related security incidents” (WASC). The figure 10 below illus-

trates the real-world outcomes of insufficient web application security.

I am certain that not many people would be comfortable with the idea of en-

during any of the top 5 impacts: hijacked user accounts, application down-

time, information leakages, and malware being planted on our software or

monetary loss. These top 5 constitute more than 80% of all impacts.

Figure 3: Outcomes of software vulnerabilities (WASC web hacking incident

database).

The security outcomes in the figure 10 may seem alarming enough. Sadly

there is even more reason to be concerned: WASC Web Application Security

Statistics data (2008) also revealed that ”…more than 13% of all reviewed sites

can be compromised completely automatically”.

 25

4.3 The Benefits of an Agile Security Model

It should be evident that security in Agile software development requires a

new, holistic approach to software security that is compatible with Agile

Methods. Baskerville (2004) has also identified the necessity for such rapid

and continuous development models. The goal of such a model could provide

several benefits for many organizations and result in a more secure software.

Benefits include, for example:

• Businesses which use Agile Methods could use the model for improving

their software development processes

• Security service providers could establish new, innovative services for

supporting their customers who are creating software using Agile Meth-

ods

• Software development industries could include effective factors from

the model as a part of their industry standards and best practices

• Enable creating more secure software to the customers.

5 Research Process

The core theoretical framework in this work is based on Agile software devel-

opment core methodology stated in the Agile Manifesto. Theories from tradi-

tional software development (e.g. waterfall) are also considered relevant to

this thesis in the purpose of comparison and juxtaposition of the methods.

A theoretical framework is the generic angle from which the topic of this re-

search has been approached. The framework explains the role of theories in

the work.

The Agile Manifesto summarizes the common philosophy and approach shared

by all Agile development Methods (flavors of Agile). At the highest level, the

core values of Agile methodology are:

 26

“We are uncovering better ways of developing software by doing it and help-

ing others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more” (agilemanifesto.org).

It should be noted that the four values are clearly chosen to display the dis-

tinction against traditional software development methodologies (e.g. juxta-

position of the working software against comprehensive documentation. Com-

prehensive documentation is considered to be a requirement for traditional

software development).

The Manifesto is further broken down into twelve core principles:

• “Our highest priority is to satisfy the customer through early and con-

tinuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile pro-

cesses harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a cou-

ple of months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout

the project.

• Build projects around motivated individuals. Give them the environ-

ment and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

 27

• Agile processes promote sustainable development. The sponsors, devel-

opers, and users should be able to maintain a constant pace indefinite-

ly.

• Continuous attention to technical excellence and good design enhances

agility.

• Simplicity--the art of maximizing the amount of work not done--is es-

sential.

• The best architectures, requirements, and designs emerge from self-

organizing teams.

• At regular intervals, the team reflects on how to become more effec-

tive, then tunes and adjusts its behavior accordingly.” (agilemanifes-

to.org)

In this research, a risk analysis is performed that uses the Agile manifesto’s

principles as a framework. Ensuing, an Agile security model is formulated

based on literature and interviews of Agile security experts. Finally, reflec-

tions on real-life customer cases are used to test the security model’s ap-

plicability.

5.1 Constructive Research Approach

This research uses a constructive research approach. The research is per-

formed with the intention of improving the business processes and services of

Silverskin Information Security LLC, and for the benefit of the security com-

munity and Agile software development organizations. My intention is to

achieve this goal by constructing a novel Agile Security Model that combines

theories and experience from several fields of study such as Agile software

development, security engineering and security management.

5.1.1 Philosophy and Theory of Constructivism

 28

In philosophy, constructivism is a view in which all knowledge is considered to

be a compilation of human-made constructions. The opposing philosophical

view of constructivism is objectivism where objective truth is discovered via

neutral and impartial discovery. In constructive approach the paradigm of

knowledge is shifted from objectivity into inter-subjectivity. This inter-

subjective approach has implications on the definition of truth. Instead of ob-

jective truth the focus is placed on viability of artefacts, or constructs. As Vi-

co said: ”The norm of the truth is to have made it” (Wikipedia). Another sig-

nificant characteristic of constructive research is that constructions are not

discovered. The constructs are invented and developed instead. The devel-

opment of the construct creates something entirely new and profound (Lukka,

2011).

According to Crnkovic, the key idea of constructive research (also known as

constructivist knowledge production) is to create a construction that is based

on some existing knowledge by adding new links and interconnections to the

knowledge. The creation of the construct proceeds by the means of design

thinking: a vision or a projection of future artefact/theory is envisaged which

fills conceptual and knowledge gaps by building purposeful blocks to support

the whole construction (Crnkovic, 2010).

Typical artefacts of constructive research are ” …models, diagrams, plans, or-

ganization charts, system designs, algorithms, artificial languages and soft-

ware development methods are typical constructs used in research and engi-

neering…” (Crnkovic, 2010, p. 2). Constructivist artefacts are usually the re-

sult of design and development instead of discovery (from nature). A con-

struction constitutes a new explanation for reality that can be examined and

understood against the existing ones.

Constructive research approach emphasizes the practical aspects of the re-

search process. The approach requires that experiences are obtained from the

problems and solutions from the interactions of real world. The role of the

researcher in this approach is to participate in the everyday activities, service

 29

development and innovations of the company that supports the research (Vir-

tanen 2006, 47-48). From the perspective of the researcher it is essential, in

the analysis phase of the research, to maintain critical attitude towards the

constructed artefact and the organization (Lukka & Tuomela 1998, 24-25).

In summary, the following are key characteristics of constructive research ap-

proach (Lukka, 2001 & Anttila, 2007):

" Is based on problem of real world.

" There is a clear justification, a need, to solve the problem.

" Creates a novel and innovative construction to solve the problem.

" The developed construct is tested or applied in practice.

" Involves learning from experience in teamwork between the researcher

and the people who perform the work in practice.

" Is based on existing theories.

" Also considers how new empirical findings could be interpreted from

theoretical perspective.

Basically, constructive research is experimental, i.e. the developed construct

is tested in practice. Under ideal conditions a real world problem is solved by

the new construction. At the same time, the research process creates new

theoretical insights. Also failed projects may be beneficial to the research be-

cause the reasons for their failure can be analyzed. It is always also possible

that the failure of projects could have been avoided (Lukka 2001).

5.1.2 Constituents of the Constructed Agile Security Model

The Agile security model in this research was conceived, modified and finally

documented during various customer projects of Silverskin. Agile development

literature and interviews of Agile Experts were used as other sources of in-

formation. Theoretical aspect of the research (literature & interviews) pro-

vided the framework that supports our observations and experiences. The fig-

ure 2 illustrates the constituents of the Agile security model.

 30

Figure 4: Constituents of the constructed Agile security model.

The following table shows the different types of customer projects and the

phases of software development where I have interacted with Silverskin’s cus-

tomers. It should be noted that some customer projects covered various phas-

es of software development although the table 1 only refers to one phase per

project type. The same project therefore may appear under several project

phases. (This does not create a problem because we do not need to analyze

the number of conducted projects in this research.)

Types&of&customer&projects&where&we&tested&parts&of&the&

security&model&in&this&research:&&

Software&de8

velopment&

project&phase&

Conception!of!the!security"centric!system!and!business!case!de"

velopment,!high!level!user!story!development!and!related!pre"

liminary!feasibility!studies!!

Initial!planning!

!

!

Application!and!system!threat!analyses!and!related!user!story!

and!attacker!story!development!(use!cases!and!misuse!cases)!

Requirements!

!

 31

Providing!security!awareness!training!for!developers!and!test"

ers!

Requirements!

Defining!security!requirements!for!software!projects! Requirements!

Design!of!secure!software,!system!and!network!architectures!! Design!

Code!reviews!and!pair!programming! Implementation!

Testing!of!vulnerabilities,!penetration!testing,!ethical!hacking,!

fuzzing,!performance!testing!and!test!automation!

Testing!&!De"

ployment!

Documenting!security!features!and!mechanisms!(security!com"

pliance)!

Design,!imple"

mentation!&!

Deployment!

Performing!various!types!of!acceptance!and!compliance!audits,!

both!technical!and!administrative!

Implementation!

&!deployment!

Table 4: Silverskin's undertakings where the constructed security model was

tested.

The above engagements with Silverskin’s customers are one significant source

that constitutes practically tested key building blocks in the Agile security

model.

5.2 Phases of Construction

Figure 5: Construction phases of the Agile Security Model

Establish!goals!for!the!research!

Model!development!in!customer!projects!

Iterative!testing!and!improvement!

Documenting!the!model!

 32

The first phase of creating the Agile security model was to establish a goal

with Silverskin in order to research the subject. I have been actively involved

in many of the customer cases where Silverskin has provided professional ser-

vices for its Agile customers. My role in most projects has been to work as an

internal advisor or peer reviewer. In those instances I provided new ideas,

feedback and helped others to reflect on our progress. In some projects I have

been the primary security expert who provided the service. Agile Expert C has

been especially active in executing the consultancy services.

In the second phase of this research, a rather large number of different cus-

tomer projects were executed during a 2-year period. The projects consisted

of various assignments types that are enlisted in the figure 3 above. Numerous

parts of the Agile Security Model were tested in practice during these assign-

ments. We executed our projects and simultaneously learned more about

solving their security problems in practice. At the same time, theories about

secure Agile development were used in various phases of the project in order

to reflect on our performance.

Not all of the abovementioned customer projects were strictly related to Ag-

ile (i.e. some customers seemed to use waterfall approaches of software de-

velopment). Nevertheless, the service that we provided was applicable to,

and part of the holistic Agile security model. For instance, a penetration test

against a web application is agnostic to the development methodology per se

because it only measures the behavior of the software.

The development of the model was an iterative process where our best under-

standing of the subject was tried, tested and improved in each phase of the

customer engagements. There simply is not any generic formula or method for

this phase of development where the model was tested, applied and modified

until its constituent components fit well in the model. I was personally active-

ly involved in most of the customer projects where we applied the model, or

parts of it. As the iterative process progressed, we could analyze and reflect

 33

in practice what worked and what did not. Lukka & Tuomela (1998, p. 25)

state that usually constructive research progresses iteratively to practical

testing of the construct. They also state that unless the model is tested in

practice the research process should not be considered successful.

Finally I decided that our experience from testing the model in customer pro-

jects had progressed enough to be documented. The process of testing, trial

and iterative development had taken about two years at this point (from fall

of 2011 to August 2013). It was time to take a step back and pull the pieces

together, analyze the results and document the model.

5.3 Research Methods and Data Collection

Main data collection method in this research is based on Interviews of leading

Agile security Experts. General understanding about the topic of secure Agile

software development was first obtained by reviewing and analyzing litera-

ture such as scholarly articles, books, standards and research papers.

5.3.1 Review and Analysis of Literature

First a review had to be conducted into the available literature in secure Agile

software development. The following sources were used to search for suitable

sources, mostly books in e-format:

• Laurea’s electronic Metalib–library

• Google Scholar

Meta–results (keywords) and tables of content have been inspected in order to

identify those sources that contained relevant information about the subject

of this research. After reviewing the e-books it soon became clear that the

literature contained scattered and apparently incomplete results about the

subject. Not a single source could explain and provide a holistic model about

 34

secure Agile software development. Therefore the search was widened to

cover other relevant sources such as:

• Research papers about security in Agile (mainly Google Scholar)

• Industry best practices from world’s largest IT companies who use Agile

software development approaches (Microsoft, Cisco, etc.)

Sixteen different sources containing e-books, research papers, standards and

company-specific development methods were collected and analyzed. The

analysis consisted of reading the sources and dissecting their contents on a

Microsoft Excel worksheet. Whenever a source suggested that a security

mechanism should be in place, the proposed mechanism was added on the

worksheet (table 2). Result of the literature analysis was a long collection of

Agile security techniques that were proposed by various sources. Some of the

proposed techniques were common across almost all of the sources. There

seemed to be wide agreement about their usefulness. For example, conduct-

ing some sort of an application threat analysis was common to most sources.

At the other end of the spectrum, a large number of proposed techniques

seemed to appear only in a few sources.

Proposal& Source&1&

E8book&
Source&2&
Research&
paper&&

Source&3&
Standard&

…&16&
sources&…&
&

Total&#&of&
proposals&

Formulate!
functional!se"
curity!re"
quirements!

1! ! 1! ! 2!

Conduct!
threat!as"
sessment!

1! 1! 1! 1! 4!

Code!review! ! ! 1! ! 1!
…! …! …! …! …! …!

Table 5: Literature analysis technique.

As some security techniques seemed to appear more often than others, a pre-

sumption was made that popular techniques are generally considered to be

reliable and more effective than those techniques that were mentioned only

 35

in a few or in just one source. This research partly relies on this presumption

in proposing certain security mechanisms while excluding others. Confirmation

of this presumption was obtained in the interviews of Agile security experts.

During the interviews it was important to avoid confirmation bias. Therefore,

structured open interview technique was used.

The above literature analysis method can be criticized by questioning whether

the most common security techniques are always effective in all customer

cases. This critique is valid because based on the used analysis technique it is

not possible to state that a security technique which was mentioned solely

once could not prove to be useful in an arbitrary single case somewhere in the

world.

However, during the interviews, Agile security expert A did comment on this

limitation with a rather humoristic comment: “… but it is (selection of securi-

ty techniques) based on the idea that a million flies cannot be wrong. i.e. if

several large companies who operate in market economy have decided that

these things are necessary and beneficial they probably have sound reasoning

behind it. If you, as an individual, are sure that these security techniques are

not worthwhile in your case then your business might be a little different from

others. But this is rarely the case. It is commonly known that all snowflakes

are individual and different. But if you take a step back and watch them from

the distance they all look the same!”

5.4 Critique of Normative Approaches in Software Security Development in

Literature

A critique towards normative approaches towards security is necessary since

those (prescriptive) approaches to software security are common (for exam-

ple, VAHTI 3/2013, ISO/IEC 27000 series and other standards).

During the literature review it became apparent that certain criticism is ap-

propriate towards certain approaches prevalent in Secure software develop-

 36

ment literature. The approaches in literature can be characterized as either

process-oriented, i.e. they are based on methodological or organizational ap-

proaches like Microsoft’s), or normative-oriented (prescriptive). A couple of

contrasting examples are in order:

1. VAHTI 03/2013 is a recently published Finnish secure software devel-

opment guideline that sets requirements for organizations in the public

sector.

2. Extending XP practices to Support Security Requirements Engineering

(Beznosov, Boden, Boström, Kruchten & Wäyrynen, 2006) is a research

paper that proposes several Agile process–oriented security controls.

The following table 3 compares these two sources against each other:

Source& #&of&proposed&
mechanisms&

Type&of&pro8
posed&cont8
rols&

Approach& Type&of&do8
cument&

VAHTI!03!/!
2013!

82! Exogenous!
(external)!

Prescriptive!! Governmental!
guideline!

Extending!XP!
…!!

12! Endogenous!
(internal)!

Process!/!or"
ganizational!

Research!paper!

Table 6: Comparison of two different software development literature

sources.

Comparison of these two sources juxtaposes the two general approaches that

authors propose for gaining control over software development security.

Critique of prescriptive approaches in literature

The word “prescriptive” is etymologically related to the same word that we

use when a medical doctor prescribes a medicine to a patient. In prescriptive

software development approaches (i.e. VAHTI 03/2013) gaining control over

software security is achieved by proposing a wide number of activities and se-

curity mechanisms. The tone and the level in which such requirements are

written usually state that the requirements should preferably be implemented

in all cases where software is developed without exception. These security

requirements are written on detailed level of single controls rather than on

 37

level of processes or methods. For example, a prescriptive control could state

that: “the organization shall deploy a penetration test against the product,

using OWASP top 10 categorization. The test shall be performed by an inde-

pendent third party.” This prescription of a detailed security task is given

without any knowledge of the product or requirements of the customer case.

Theoretically therefore the prescriptive approach is like a blind and deaf doc-

tor who is unable to perceive and accurately diagnose his patient’s illness.

The patient trusts the good doctor and expects to receive help for his ailment

(so do our customers who place their trust on us, the security practitioners).

The impaired doctor is well educated and licensed to perform his profession

but he is unfortunately unable to directly perceive, analyze or adapt to the

customer’s acute needs since he is deaf and blind. The good doctor, hoping to

cure the customer’s ailment, resorts to prescribing all types of available med-

icines (security controls) that he has observed to be useful in various cases

before he became limited by his deafness and blindness. As a result, the num-

ber of different medicines that the customer needs to ingest is astounding.

Unluckily there is no guarantee that any of the prescribed medicines are ef-

fective against the customer’s illness. To aggravate matters, some of the

medicine may prove to be harmful to the customer’s health. The approach is

irrational because the prescriptions are not viable from economical viewpoint.

There are an infinite number of possible diseases in the world. Eventually this

approach forces the patient to find a doctor with an unimpaired vision and

hearing.

A serious question arises: do the prescriptive approaches suffer from a lack of

holistic framework and adaptation mechanisms that could make them appli-

cable in variable cases of illnesses? It might be that each prescriptive security

requirement may actually have some amount of empirical evidence to support

it in some instances. The medicine may work if there happens to be just the

correct disease at hand. In other words, security practitioners may have really

proven that each prescriptive requirement is good for the patient in some oc-

currences. This is evident and therefore it should not be thought that any sin-

 38

gle requirement in such a prescriptive source (such as VAHTI 3/2013) is uni-

versally flawed.

Any single security control is not criticized per se, and this is not the point of

this critique. The prescriptive approaches emphasize the question of “what

security mechanisms should be implemented?” An entirely different question

should be asked altogether right from the outset. We should ask ourselves:

“how should we integrate security engineering in the Agile methodology, and

in what manner should security mechanisms be applied to it?” Most of the

prescriptive approaches have failed to ask this proper question in the first

place. Diagnosis of the problems must preclude the prescription.

5.5 Interviews of Leading Agile Security Experts

Three interviews were conducted in order to collect expert knowledge about

secure Agile software development. The interviewees are all experts who

have been working in the field of software security and Agile software devel-

opment for several years. All of the interviewees are persons who are well

known and enjoy wide respect of the Agile security community in Finland.

The interviews were conducted on following dates:

• 1st of March 2013 – Agile Security Expert C

• 2nd of July 2013 – Agile Security Experts A and B (separate interviews)

• 14th of October 2013 – Agile Security Expert C

The interviewed Agile experts shall remain anonymous because confidentiality

of their personal information needs to protected. The identity and each inter-

view of the experts is documented in the research documentation and re-

tained by the author.

It was necessary select people in the interview sample who had adequate ex-

perience from Agile software security. Another considered factor in the selec-

 39

tion was that the interviewees shouldn’t work in similar positions and they

shouldn’t work in the same company.

The Agile experts had the following professional qualifications and character-

istics:

Agile Expert A: works in a Finnish security-centric software development en-

terprise. Expert A’s work consists of directing Agile development security in

his company. He has worked in software R&D for 17 years, of which four years

in an Agile environment, and 10 years in software and product security. Ex-

pert A has published and spoken on the topic of agile security both locally and

internationally.

Agile Expert B: works currently as a CEO in a well known Agile software de-

velopment company in Finland. He has a background in security auditing, test-

ing and consulting businesses. His experience covers a wide variety of differ-

ent positions, including sales, marketing, general management and product /

service development in various companies. He has experience in buying, sell-

ing and developing security testing services and Agile software projects. He

has obtained experience from almost all commercial aspects around the sub-

ject of this research. Expert B was selected to be interviewed because:

• he has deep understanding and experience with customers who want to

purchase (secure) software from Agile development companies

• he understands what kinds of commercial security services are current-

ly available in the market in Agile software development markets

• he comprehends the meaning and impact of security to the Agile devel-

opment from the financial viewpoint better than any other interview-

ee. Having this insight in the scope of this research is irreplaceable

since literal sources had almost nonexistent information about the fi-

nancial aspect of Agile security investment.

Agile Expert C: works in Silverskin Information Security as a senior software

security advisor. He has conducted scientific research about security of web

 40

applications and secure Agile development. He has talked in international

conferences about software security (for example SANS institute’s confer-

ences). He also provides training to Agile developers about secure application

and system development, penetration testing and ethical hacking. He also

conducts system and application level penetration testing and audits on a dai-

ly basis in his work. His qualifications also include numerous internationally

accepted technical and administrative security certifications in his field of

expertise. Expert C was selected to be interviewed because:

• he has years of experience from wide variety of security–related spe-

cialist tasks, especially from security testing, penetration testing and

application security domains.

• he has created and published research papers about application securi-

ty and software security

• he has consulted, trained and taught countless Agile software develop-

ers to improve themselves in software security

Finally, after having done three interviews, a decision was made that no more

interviews needed to be conducted because a certain informational saturation

point had been achieved. At the end of each interview, the interviewees

seemed to repeat the same issues that other interviewees had already stated.

It was assumed that not much new insight can be gained from further inter-

views.

The interviews were conducted as open interviews where the Agile Experts

were allowed to talk freely about Agile development security. Interview ques-

tions were not prepared upfront. The interviews were directed by asking open

questions about different phases of Agile development process (inception –

requirements – design – implementation – testing – deployment) and in what

manner security should be optimally handled in each of these phases.

At the time of interviews I had already read many books and articles about

Agile security. Since I no longer had the mentality of a beginner, there was a

slight risk of confirmation bias. The open interview technique was chosen to

 41

specifically counter this bias. Confirmation bias means that personal opinion

or knowledge possessed by the interviewer influences how interviews are con-

ducted and their results are interpreted.

6 Traditional vs. Agile Software Development Approaches

De Lucia & al. (2008, p.249-251) note that traditional software development

methods such as waterfall and spiral methods necessitate a good knowledge

of the specific application and the requirements and needs of the customer.

They also acknowledge that these techniques mitigate the uncertainties of

software development by using very detailed up-front plans. In effect, every

feature and quality of the end result is specified at the beginning in order to

avoid expensive changes late in the project. They also criticize the approach

because “in certain application domains and for certain problems, plans simp-

ly do not work or they are inefficient. This is true regardless of the quality of

the people involved in the project. Even if plans are supposed to help organi-

zations, many project managers acknowledge that in many kinds of projects

they cannot follow them due to market needs…”

According to Boehm (1983), the waterfall method proceeds linearly through

the following phases: feasibility, plans & requirements, design, programming,

integration & test, maintenance and phaseout.

6.1 Agile Software Development

Often Agile is feared to be a sort of an uncontrolled software development

show of autonomous rock stars. This is sometimes called a “cowboy Agile”, or

even “a hippie anarchist plot” (Vähä-Sipilä, 2011). According to Beznosov &

Kruchten (2004) Agile is based on less formalized, often less visible and softer

control mechanisms than traditional software development: “…all agile meth-

ods exhibit a great aversion for software bureaucracy, and favour direct

communication between participants rather than reliance on written arti-

 42

facts.” We need to differentiate our understanding of Agile software devel-

opment from this perception and see what Agile is in reality.

Agile Methods (AM) are a set of software development methods and tech-

niques. They have been conceived to deliver their results timely, on budget,

and with high customer satisfaction. According to Strode (2006), the most

popular Agile Methods are:

• Dynamic Systems Development Method (DSDM)

• The Crystal methods (Crystal)

• RUP (dX)

• eXtreme programming (XP)

• Adaptive Software Development (ASD)

• Scrum (Scrum)

• Pragmatic Programming (PP)

• Internet Speed Development (ISD)

• Feature Driven Development (FDD)

• Open Source Software Development (OSS)

• Lean Development (LD)

The roots of Agile Methods are based on application of principles from lean

production that were developed in 1950s by Toyota, and since then have been

taken into use in most manufacturing processes world-wide. The leading idea

in lean production is that anything that does not add value to the customer is

a waste and should be constantly identified and removed (De Lucia & al.

2008, p.250).

Agile software development Methods have been born out of necessity to an-

swer the problems of deterministic (waterfall) methods, especially projects

going over budget and schedule, or just simply failing to deliver (De Lucia &

al. 2008, p.249 and Beznosov, & Kruchten, 2004). Specifically, Agile Methods

(AM) simply help developers to focus on the objectives of their customers and

help delivering the products without wasting effort on issues that do not gen-

 43

erate value to the customer. As opposed to the traditional software develop-

ment models, AM does not require initially deep knowledge of the require-

ments of the customer or the end users. In AM it is admitted that

• precise understanding of all customer needs is not practical,

• requirements are not stable, the customers may even change their re-

quirements during the development process,

• a priori specification of requirements in a complete way is not possible,

• some software features are irreversible, or hard to change after they

are implemented without seriously impacting the scheduling and the

budget of the project.

• often the customers are not even able to specify all required main

functionalities of the applications. How could security be defined up-

front in such a fuzzy environment?

6.2 Comparison of Control Mechanisms in Agile and Traditional Approaches

According to De Lucia & al. (2008, p. 264) all production processes are regu-

lated by some kinds of control mechanisms. The control mechanisms are a

means to ensure that a common goal has been achieved. This view inter-

depency between the activity and resources has been also noted by Malone &

Crawston (1994). Controlling the resources that actors depend on endogenous

control over the process. There are two types of control mechanisms (table

4):

1. Exogenous (or external control) that adds rules to the process

2. Endogenous (or internal control) that defines the control rules as inte-

grated part of the process

 44

Type&of&cont8

rol&

Use&of&control&

rules&

Separation&of&

control&from&

process&

SW&develop8

ment&

Control&type:&

Detective&

Preventative&

Reactive&

Exogenous! Added!on!top!

of!the!process!

Possible! Traditional!ap"

proaches!

Detective,!

Corrective!

Endogenous! Integrated!into!

the!process!

Not!possible! Agile!ap"

proaches!

Detective,!

Preventative!

Table 7: Analysis of internal and external process controls.

Exogenous control adds rules ’on top of’ the process, which implies that the

rules can be separated from the process without intercepting the process

flow. This is common in traditional software development approaches where

security requirements can be identified and written separately from all other

phases of development. For example, the security requirements could be

identified and documented but not mandatorily included in any subsequent

designs, implementation or testing of the software product. This sort of con-

trol is rather detective or corrective; i.e. the customer is able to detect that

security mechanisms are necessary and should be applied. If he detects they

were not implemented, he may require the observed discrepancy to be cor-

rected. In exogenous control the process does not prevent per se skipping the

implementation of security. Sometimes the skipping of necessary security

mechanisms may go totally undetected. ”We wrote the paper but simply did

not do it in practice”. In such case the customer may have had very detailed

documentation in place but the reality of software development simply did

not agree with the documentation. In such cases the documentation is not in

accordance with the real world status of the software product.

Agile security expert B stated in his interview when asked about the differ-

ences between Agile and traditional development Methods that ”…I think doc-

umentation in Agile is closer to the reality how real software development

works. And waterfall model is some kind of a lady’s ideal state (of documen-

 45

tation).” He also explained that ”… basic idea is that in waterfall model, the

documentation (requirements) is assumed to be universally correct but soft-

ware is considered to be broken if there is a discrepancy between them…”

and contrasted this with Agile: ”…in Agile, the documentation is either up-to-

date or it is not. But if a paper document states something and that some-

thing is not implemented in software, then the documentation should be con-

sidered broken, not the software.” The expert B’s opinion reflects a prefer-

ence towards endogenous (internal) process control instead of exogenous con-

trol through precise documentation.

In contrast to exogenous control, endogenous or internal control includes the

rules as a part of the process itself. The process itself is designed so that con-

trol mechanisms are embedded into it. Separation of the control mechanism

from the process is not possible because removing the control would disrupt

the process itself or render it inoperable. Malone & Crawston (1994) propose

several meachanisms for coordinating and conrolling activities in various cir-

cumstances. They explain the endogenous control mechanisms that are used

in Agile, such as:

• Shared resource management

• Managing (customer) relationships

• Managing simultaneity constraints

• Managing task / subtask relationship

According to De Lucia & al. (2008) also comment on these endogenous mecha-

nisms: ”…Agile Methods are designed to force developers to coordinate with-

out asking them to do it explicitly, limiting the unproductive activities needed

only for coordination.” They also propose that endogenous control yields the

benefit of preventing the skipping of relevant security mechanisms and de-

tects if they are not properly implemented, provided they are detected in the

first place. The endogenous control prevents the process from working if a

problem is not solved. For example, if pre-defined quality criteria are not

met, a task will not proceed. A good example of an endogenous control in Ag-

ile is the following: ”if a software build fails, all other work is stopped until

the problem is solved” (Agile Expert A). Another example would be Malone &

 46

Crowston’s (1994) task / subtask relationship control: A product backlog is de-

composed to smaller doable items and those tasks are added to a sprint back-

log. Explanation of generic backlog management in Agile follows later in this

research.

For the above reasons, endogenous control can be considered ”strong” and

exogenous ”weak”. Malone & Crawston (1994) characterize this difference by

giving the following definition for coordination: “Coordination is managing

dependencies between activities.” We use the word control in the same con-

text and meaning in this research. Coordination of dependencies gives endog-

enous control over activities.

According to Sillitti & Succi (2008) the Agile Manifesto applies the tenet of

endogenous control and uses it all over its principles. Their example of en-

dogenous versus exogenous controls in extreme programming is presented in

the table below:

Table 8: Exogenous and endogenous controls in extreme programming (Sillitti

& Succi, 2008)

 47

According to Malone & Crowston (1990), two resources can be dependent only

via some kind of a shared common resource. They proposed that there are

three types of dependence: sequential, shared and common (table 6).

Sequential&control& Shared&resource& Common&output&

!

! !

Table 9: Sequential, shared resource and common output controls (Malone &

Crawston, 1990)

Malone & Crowston (1990) provide the following explanations for the control

types:

1. Sequential control: is achieved when a task creates a resource or out-

put that another task requires as an input. There is a dependency be-

tween the tasks that requires correct order of execution. According to

Vähä-Sipilä (2011) sequential control mechanisms are not always suita-

ble in Agile because they easily create technical queues which tend to

decrease productivity. One practical example of sequential control in

Agile could be the collection of user stories by the product owner and

importing these stories to product backlog. The sprint backlog can be

formulated based on the most important stories on the product back-

log. This produces a sequential control queue.

2. Shared resource: control is achieved when multiple tasks require a

shared limited resource. A sprint or product level backlog is a good ex-

ample of resource dependency. All developers in the team are depend-

ent on the backlog for prioritization and selection of their work tasks.

For example any task on the sprint backlog has a good chance of being

done.

 48

3. Common output: control is achieved when several tasks contribute to

create the same output. There is an inherent risk of duplicate work or

waste of resources. Ideally, the two tasks should contribute two differ-

ent aspects of a common resource to avoid overlap. This is a common

problem with several actors who collaborate to achieve a common

goal. A good example of common output would be creating a security

architecture design in collaboration with the development team mem-

bers.

6.3 Sequence of Software Development Phases

Sillitti & Succi (2008, p.12) state that traditional software development

methods share common sequential development phases of analysis, design,

coding and testing. This generic process is illustrated in the figure 10 below. It

should be noted that the picture does not take into consideration the initial

planning and deployment phases of software development. Nevertheless, the

linear nature of the development process is apparent.

Figure 6: Traditional waterfall software development model (Sillitti & Succi,

2008)

According to Sillitti & Succi (2008, p.12) in Agile, the development process is

iterative and organized differently. The formal pre-defined phase does not

 49

exist anymore. During every round of the process the developers need to pro-

duce something valuable for the customer. For every user story requirement,

developers do a little bit of analysis, design, testing and coding. Interesting

points in the development arise: tests are sometimes developed prior to code

and analysis and design happen across the entire development process.

The figure 5 illustrates the iterative nature of Agile approach. The phases of

analysis, design, testing and coding overlap with each other and are repeated

many times in consequent iterations.

Figure 7: Iterative Agile software development process model (Sillitti & Succi,

2008)

The iterative development cycles of an Agile development project are man-

aged by using a mechanism called “a backlog”, or often called a “sprint back-

log”. The backlog contains a list of the tasks and requirements to be complet-

ed within one development cycle (sprint). A higher level “product backlog”

usually exists independently of the sprint backlog. The prioritization of items

on the product backlog defines which tasks shall be included in the following

sprints (and sprint backlog). The product backlog is basically a similar perfor-

mance list with slightly superior items on it. The product and sprint backlogs

are one of the core control mechanisms in Agile (especially in Scrum method).

According to Layton (2013), the sprint backlog includes:

 50

1. List of user stories, in order of priority for the current sprint (cycle)

2. The effort estimation per story

3. The task definitions for each story

4. The effort estimation in hours for completion of each task

The development team itself is responsible collectively for creating and main-

taining the sprint backlog. The backlog is in fact, a modern snapshot of the

progress of the current sprint.

One benefit of Agile Methods is their adaptive nature. According to Vähä-

Sipilä (2011), when business targets change radically late in the software de-

velopment, this may force the developers to a ‘pivot’ movement in the devel-

opment. Earlier software development progress may need to be scrapped, or

wasted and new functionalities implemented. By pivoting in Agile you may

save these software increments that can be reused. With the waterfall, one

would probably have to throw all of the earlier progress away. In some cases

this could save the company (figure 6).

Figure 8: Agile pivot when business targets change (Vähä-Sipilä, 2011)

 51

6.4 Short Explanation of Scrum Method

The scrum is a popular flavor of Agile Methods. Vähä-Sipilä (2011) character-

izes the Scrum with the following five features:

• A product owner (PO) is constantly scouting the business environment

and trying to guess where the goals of the development are (the letter

O in Vähä-Sipilä’s picture N)

• The PO constantly maintains a prioritized list of appointments called

the ‘product backlog’. Things up on the list are the most important

ones, and down on the bottom are the ones that may never get execut-

ed. The matter of prioritization is a business decision.

• The increments in the software development process are called

‘sprints’. Each spring lasts for about 2-4 weeks. At the start of the

sprint, the development team takes the most important items from the

top of the product backlog and takes them to a ‘sprint backlog’.

• At the end of each sprint, the development team has implemented,

tested and deployed the items on the current sprint backlog. A sprint

review is then conducted, where the team decides if the work is free

from ‘technical debt’, and whether the work is ‘done’ or not. If every-

thing works smoothly, the items on the product backlog can be accept-

ed to be finished and next sprint may begin. During the sprint, the PO

may have shifted the priority of the items on the product backlog, thus

changing the direction towards the business target.

• The development team’s scrum master is a person who ensures the

team’s well being. His responsibility is to remove any obstacles that

may obstruct the work of the development team.

According to Vähä-Sipilä, Agile product management works by identifying

business-level targets, and then churns them into smaller pieces until the

tasks can be imported and prioritized on the product backlog (figure 7). Busi-

ness-level requirements are sometimes called ‘epics’ that are ‘decomposed’

 52

and prioritized into smaller items on the product backlog. The process of de-

composition is in fact central sequential control mechanism in Agile.

Figure 9: Agile product management funnel (Vähä-Sipilä, 2011)

7 Analysis of Security Problems and Applicable Security Mechanisms

All Agile Methods are based on the core principles stated in the Agile Manifes-

to. The problem is that the Agile software development methods are per-

ceived to lack adequate means for providing security assurance (Beznosov,

2004 & Baskerville, 2002).

Therefore we are going to analyze the Agile core principles by identifying sub-

problems associated with the principles, their causes and their probable im-

pacts. The terms ”perceived problem” and corresponding ”impact” are used

to describe the identified problems of Agile principles that could lead to un-

wanted outcomes. In a sense, this analysis could well be interpreted as a sort

of a qualitative risk assessment.

The term ”perceived problem” is used here in a qualitative manner because

our problem space consists of various interlinked factors that are not easily

 53

transformed into numeric format. For instance, how would one value the se-

curity knowledge of one’s developers, or the risk of not having adequate

knowledge?

The problem-based construction process follows the following steps (Figure

11):

Figure 10: Problem-based construction process for the Agile Security Model.

Analysis of the perceived risks, impacts and Agile core principles is presented

in the following tables.

Assessment!
of!perceived!
problems!in!

Agile!
methods!

Identify!
applicable!
control!

mechanisms!
for!Agile!!

Analyze!and!
propose!
security!

mechanisms!

Construct!an!
Agile!

Security!
Model!

5
4

 T
a
b
le

 1
0
: C

o
r
e
 p

r
in

c
ip

le
s
, p

r
o
b
le

m
s
 a

n
d
 p

o
s
s
ib

le
 im

p
a
c
t
s
 in

 A
g
ile

 s
o
ft

w
a
r
e
 d

e
v
e
lo

p
m

e
n
t
.

Agile&core&principles&&
Perceived&problem

s&
Im
pacts&

O
u
r
$h
ig
h
e
s
t$p
r
io
r
ity
$is
$to
$s
a
tis
fy
$th
e
$c
u
s
to
m
e
r
$th
r
o
u
g
h
$e
a
r
ly
$a
n
d
$c
o
n
tin
u
5

o
u
s
$d
e
liv
e
r
y
$o
f$v
a
lu
a
b
le
$s
o
ftw

a
r
e
.$

B
u
s
in
e
s
s
m
e
n
$a
n
d
$d
e
v
e
lo
p
e
r
s
$m
u
s
t$w

o
r
k
$to
g
e
th
e
r
$d
a
ily
$th
r
o
u
g
h
o
u
t$th

e
$

p
r
o
je
c
t.$

Id
e
n
tify

in
g
$r
e
le
v
a
n
t$s
e
c
u
r
ity
$fe
a
5

tu
r
e
s
$a
n
d
$s
u
ita
b
le
$le
v
e
l$o
f$s
e
c
u
r
ity
$

fo
r
$th
e
$c
u
s
to
m
e
r
$is
$in
s
u
ffic

ie
n
t.$

If$th
e
$s
e
c
u
r
ity
$fe
a
tu
r
e
s
$a
r
e
$n
o
t$id

e
n
tifie

d
$c
o
r
5

r
e
c
tly
$e
a
r
ly
$in
$th
e
$d
e
v
e
lo
p
m
e
n
t$p
r
o
c
e
s
s
,it

m
a
y
$b
e
$to
o
$la
te
$to
$im

p
le
m
e
n
t$th

e
m
$la
te
r
$o
n
.$

C
o
n
v
e
r
s
e
ly
,$to
o
$m
u
c
h
$a
n
d
$to
o
$e
x
p
e
n
s
iv
e
$s
e
5

c
u
r
ity
$m
ig
h
t$b
e
$im

p
le
m
e
n
te
d
.$

W
e
lc
o
m
e
$c
h
a
n
g
in
g
$r
e
q
u
ir
e
m
e
n
ts
,$e
v
e
n
$la
te
$in
$d
e
v
e
lo
p
m
e
n
t.$A

g
ile
$p
r
o
c
e
s
s
5

e
s
$h
a
r
n
e
s
s
$c
h
a
n
g
e
$fo
r
$th
e
$c
u
s
to
m
e
r
's
$c
o
m
p
e
titiv

e
$a
d
v
a
n
ta
g
e
.$

T
h
e
$b
e
s
t$a
r
c
h
ite
c
tu
r
e
s
,$r
e
q
u
ir
e
m
e
n
ts
,$a
n
d
$d
e
s
ig
n
s
$e
m
e
r
g
e
$fr
o
m
$s
e
lf5

o
r
g
a
n
iz
in
g
$te
a
m
s
.$

H
o
w
$to
$d
e
s
ig
n
$s
e
c
u
r
ity
$–
r
e
la
te
d
$

s
o
ftw

a
r
e
$fe
a
tu
r
e
s
$in
$a
$w
a
y
$th
a
t$a
l5

lo
w
s
$fle
x
ib
ility

$e
v
e
n
$in
$th
e
$e
v
e
n
t$o
f$

r
a
d
ic
a
l$r
e
fa
c
to
r
in
g
?
$

H
o
w
$to
$e
s
ta
b
lis
h
$c
h
a
n
g
e
$c
o
n
tr
o
l?
$

R
ig
id
$s
e
c
u
r
ity
$a
r
c
h
ite
c
tu
r
e
$m
a
y
$b
e
$a
$r
e
a
s
o
n
$

w
h
y
$a
p
p
lic
a
tio
n
$c
a
n
n
o
t$b
e
$fle
x
ib
ly
$r
e
fa
c
to
r
e
d
.$

T
h
is
$w
o
u
ld
$le
a
d
$to
$lo
s
s
$o
f$v
a
lu
e
$to
$c
u
s
to
m
e
r
.$

U
n
c
o
n
tr
o
lle
d
$c
h
a
n
g
e
s
$c
a
n
$b
r
e
a
k
$s
e
c
u
r
ity
$a
r
5

c
h
ite
c
tu
r
e
.$

D
e
liv
e
r
$w
o
r
k
in
g
$s
o
ftw

a
r
e
$fr
e
q
u
e
n
tly
,$fr
o
m
$a
$c
o
u
p
le
$o
f$w

e
e
k
s
$to
$a
$c
o
u
p
le
$o
f$

m
o
n
th
s
,$w
ith
$a
$p
r
e
fe
r
e
n
c
e
$to
$th
e
$s
h
o
r
te
r
$tim

e
s
c
a
le
.$

C
o
n
tin
u
o
u
s
$a
tte
n
tio
n
$to
$te
c
h
n
ic
a
l$e
x
c
e
lle
n
c
e
$a
n
d
$g
o
o
d
$d
e
s
ig
n
$e
n
h
a
n
c
e
s
$

a
g
ility

.$

S
im
p
lic
ity
55th

e
$a
r
t$o
f$m

a
x
im
iz
in
g
$th
e
$a
m
o
u
n
t$o
f$w

o
r
k
$n
o
t$d
o
n
e
55is

$e
s
s
e
n
5

tia
l.$

A
g
ile
$p
r
o
c
e
s
s
e
s
$p
r
o
m
o
te
$s
u
s
ta
in
a
b
le
$d
e
v
e
lo
p
m
e
n
t.$T

h
e
$s
p
o
n
s
o
r
s
,$d
e
v
e
lo
p
5

e
r
s
,$a
n
d
$u
s
e
r
s
$s
h
o
u
ld
$b
e
$a
b
le
$to
$m
a
in
ta
in
$a
$c
o
n
s
ta
n
t$p
a
c
e
$in
d
e
fin
ite
ly
.$

H
o
w
$to
$id
e
n
tify

,$d
e
s
ig
n
$a
n
d
$im

p
le
5

m
e
n
t$th

e
$r
ig
h
t$s
e
c
u
r
ity
$fe
a
tu
r
e
s
$a
t$

th
e
$r
ig
h
t$tim

e
$in
$th
e
$d
e
v
e
lo
p
m
e
n
t$

p
r
o
c
e
s
s
$w
h
e
n
$th
e
y
$a
r
e
$n
e
e
d
e
d
?
$

S
e
c
u
r
ity
$fe
a
tu
r
e
s
$a
n
d
$ta
s
k
s
$m
a
y
$r
e
m
a
in
$a
s
$a
$

a
m
o
r
p
h
o
u
s
$c
o
n
g
lo
m
e
r
a
tio
n
$o
f$u
n
m
a
n
a
g
e
d
$

s
to
r
ie
s
$th
a
t$is
$n
e
v
e
r
$p
r
o
p
e
r
ly
$d
e
s
ig
n
e
d
,$im

5

p
le
m
e
n
te
d
$n
o
r
$fin

is
h
e
d
.$T
h
is
$c
r
e
a
te
s
$te
c
h
n
o
5

lo
g
ic
a
l$d
e
b
t.$A

ls
o
,$to
ta
lly
$in
e
ffe
c
tiv
e
$o
r
$in
5

c
o
m
p
a
tib
le
$s
e
c
u
r
ity
$fe
a
tu
r
e
s
$m
a
y
$b
e
$im

p
le
5

m
e
n
te
d
.$

B
u
ild
$p
r
o
je
c
ts
$a
r
o
u
n
d
$m
o
tiv
a
te
d
$in
d
iv
id
u
a
ls
.$G
iv
e
$th
e
m
$th
e
$e
n
v
ir
o
n
m
e
n
t$

a
n
d
$s
u
p
p
o
r
t$th

e
y
$n
e
e
d
,$a
n
d
$tr
u
s
t$th

e
m
$to
$g
e
t$th

e
$jo
b
$d
o
n
e
.$

T
h
e
$m
o
s
t$e
ffic

ie
n
t$a
n
d
$e
ffe
c
tiv
e
$m
e
th
o
d
$o
f$c
o
n
v
e
y
in
g
$in
fo
r
m
a
tio
n
$to
$a
n
d
$

w
ith
in
$a
$d
e
v
e
lo
p
m
e
n
t$te

a
m
$is
$fa
c
e
5to
5fa
c
e
$c
o
n
v
e
r
s
a
tio
n
.$

A
t$r
e
g
u
la
r
$in
te
r
v
a
ls
,$th

e
$te
a
m
$r
e
fle
c
ts
$o
n
$h
o
w
$to
$b
e
c
o
m
e
$m
o
r
e
$e
ffe
c
tiv
e
,$

th
e
n
$tu
n
e
s
$a
n
d
$a
d
ju
s
ts
$its
$b
e
h
a
v
io
r
$a
c
c
o
r
d
in
g
ly
.$

H
o
w
$to
$m
a
n
a
g
e
$th
e
$h
u
m
a
n
$a
s
p
e
c
ts
$

o
f$s
e
c
u
r
e
$A
g
ile
$d
e
v
e
lo
p
m
e
n
t,$th

e
$

s
e
c
u
r
ity
$a
w
a
r
e
n
e
s
s
$a
s
p
e
c
t?
$

L
a
c
k
$o
f$s
e
c
u
r
ity
$a
w
a
r
e
n
e
s
s
$m
a
y
$p
r
e
v
e
n
t$a
n
y
$

s
e
c
u
r
ity
$a
c
tiv
ity
$fr
o
m
$ta
k
in
g
$p
la
c
e
.$A
t$m

in
i5

m
u
m
,itw

ill$s
lo
w
$d
o
w
n
$p
r
o
g
r
e
s
s
.$

W
o
r
k
in
g
$s
o
ftw

a
r
e
$is
$th
e
$p
r
im
a
r
y
$m
e
a
s
u
r
e
$o
f$p
r
o
g
r
e
s
s
.$

H
o
w
$to
$e
n
s
u
r
e
$th
a
t$s
o
ftw

a
r
e
$is
$n
o
t$

in
fe
s
te
d
$w
ith
$s
e
c
u
r
ity
$v
u
ln
e
r
a
b
ili5

tie
s
$a
fte
r
$th
e
$p
o
in
t$w

h
e
r
e
$s
o
ftw

a
r
e
$

is
$d
e
e
m
e
d
$to
$w
o
r
k
?
$$

If$s
o
ftw

a
r
e
$v
u
ln
e
r
a
b
ilitie

s
$a
r
e
$n
o
t$m

a
n
a
g
e
d
$

d
u
r
in
g
$th
e
$d
e
v
e
lo
p
m
e
n
t,$th

e
y
$a
r
e
$b
o
u
n
d
$to
$

e
m
e
r
g
e
$in
$th
e
$s
o
ftw

a
r
e
$p
r
o
d
u
c
t.$

 55

7.1 Identification of Applicable Security Mechanisms

An analysis of relevant literature was necessary to clarify which security

mechanisms (or security recommendations) should an organization include in

its Agile software development model in order to create secure software. We

need to understand from a holistic perspective which security mechanisms

seem to be the most relevant. Also Siponen & al. (2005) have identified the

need to find security approaches that are adaptive to Agile Methods, instead

of imposing external security mechanisms to development.

While analyzing the Agile literature the following observation became appar-

ent: There doesn’t seem to be agreement on which security mechanisms are

critical, or even remotely relevant to Agile, and which have a less observable

impact, or no impact at all. Furthermore, most of the sources did not contain

any kind of references or analysis of sources of information, and did not at-

tempt to clarify which recommendations are the most relevant. Because of

this, it was necessary to conduct a meta-level analysis about the relevance of

various security mechanisms before any further conclusions are drawn. The

question is: ”which recommendations (security mechanisms) are commonly

considered to be necessary in most cases, and which ones are not?”

Since Agile development Methods do not fit well with traditional, normative

security requirement frameworks (Baskerville 2002 p.337-346, Beznosov 2004

and Särs), it is an imperative to identify the factors on which most authors

agree. We should also strive to keep the number of our recommendations on

minimum for the sake of efficiency. Only such security tasks that arguably do

have an impact on the end results of the SW development should be recom-

mended. I strongly believe that cluttering the software development process

with ineffective and incompatible security requirements would only decrease

the motivation of the developers towards security and waste the resources of

the organization into ineffective and irrelevant tasks.

 56

In general, normative sources (for example, VAHTI 1/2013) seem to contain

more recommendations than well analyzed academic papers, or sources that

are based on tried and tested software development work (such as Microsoft

SDL & Cisco CSDL).

7.1.1 Results of Literature Review

A set of selected sources (articles, books and standards) was collected and

analyzed. A table was used to create a cross-reference of sources and their

recommended security mechanisms. The security mechanisms that were ref-

erenced most frequently are likely to be important for successful software se-

curity development. Conversely, the security mechanisms that were refer-

enced only in a few, or just one source, are considered to lack wider ac-

ceptance and can be considered optional or experimental.

The results of the analysis should be interpreted with the following limita-

tions:

• The scope of each source varied greatly. Other authors seem to cover

process phases that are not strictly within software development pro-

cess cycle while others remain within the development process bounda-

ries. Possible out-of-scope recommendations were excluded from this

analysis (for example, recommendation to define a general strategy for

the customer organization, etc).

• The level of detail in each source seemed to vary a lot. Others pre-

scribed controls in great detail (VAHTI 3/2013). Others remain on high

level of meta requirements (Siponen, 2002).

• Most sources do not use equal terminology. A manual process of read-

ing, understanding the meaning of the text and manual filtering was

performed to understand the purpose of each recommendation. The

recommendations were classified accordingly into groups.

• All sources are not peer reviewed publications, i.e. they do not enjoy

the level of validation that scientific publications require. Namely

 57

some are publications of individuals or commercial corporations (e.g.

Microsoft, 2009), or industry best practice standards that do not con-

tain references to sources.

Despite the apparent difficulties mentioned above, some recommendations

clearly seem to enjoy apparent wide acceptance while others do not.

The findings of the analysis are categorized into three categories in the fol-

lowing table. The category names (critical / relevant / optional / unreliable)

are used as descriptive labels. Security mechanisms are grouped into catego-

ries according to their popularity in the literature. The number of references

to the recommended security mechanisms is included inside brackets. The ca-

tegories in this analysis are:

• Critical: mechanisms that almost all authors recommend (mechanisms

very likely to be applicable)

• Relevant: mechanisms that many authors, but not all, recommend (i.e.

likely to be applicable in most cases)

• Optional: recommendations that may prove to be useful in a few cases

(but not always)

• Unreliable: mechanisms that are not likely to work in most cases since

majority of authors do not deem them necessary.

Category)

label)

#)of)ref.)

sources)

Security)mechanisms))

Critical(11*14(• Threat(modeling(/(formulation(of(attacker(stories((Threat(sce*

narios)((13)(

• Application(risk(analysis((11)(

Relevant(5*10(• Functional(security(requirements((7)(

• Attacker(story(and(user(story(negotiation(or(decomposition((7)(

• Identification(of(security(sensitive(assets((6)(

• Establish(security(design(requirements((goals)((8)(

• Attack(surface,(boundary(protection,(firewall(requirements((5)(

• Use(integrated(unit(tests(to(control(the(quality(of(the(security(

features((9)(

 58

• Vulnerability(and(penetration(testing,(fuzzing((8)(

• Use(of(automatic(testing(tools((7)(

• Static(analysis,(code(analysis(tools((5)(

• Security(Coach,(include(a(security(engineer(in(the(development(

/(part(time((5)(

Optional(3*4(• Attacker(story(–(countermeasure(checking((4)(

• Prioritize(security(requirements((4)(

• Definition(of(security(architecture((3)(

• Threat(analysis(of(software(components((3)(

• Review(requirements((3)(

• Recovery(planning((4)(

• Use(of(secure(design(models(or(patterns((3)(

• Defined(access(levels((3)(

• Layered(security(architecure((3)(

• Strong(authentication,(avoidance(of(weak((authentication(meth*

ods((3)(

• Internal(review,(code(review((3)(

• High(level(programming(languages(and(tools((3)(

• Security(auditing((3)(

• User(acceptance(testing(/(final(security(review((3)(

• Security(awareness(training(for(developers((4)(

• Information(security(policy((3)(

• Provide(periodic(security(training(updates((3)(

• Use(of(defined(libraries((3)(

• Use(of(version(control(and(change(tracking((4)(

Unreliable(1*2(• Too(many(different(recommendations((for(analysis((93(differ*

ent)(

Table 11: Critical success factors in secure software development (N=16

sources from literature)

Security mechanisms that are labelled under the ”optional” group in the pre-

vious table could well be effective in some instances but ineffective in others.

For example, conducting recovery planning (4 recommendations) or use of se-

cure design models or patterns (3 recommendations) could be useful in some

 59

cases but we simply cannot draw a conclusion that they could be beneficial

everywhere. Conversely, if we wanted to to perform everything possible in

terms of security we would be in danger of ending up establishing nothing be-

cause of the sheer volume of the work.

In fact, this analysis gives a good reason to doubt the reasons of implementing

all available security mechanisms in general. Our risk assessment about Agile

principles earlier identified a possibility that too much security can be just as

harmful as too little. It could happen that an Agile company loses competi-

tiveness because it creates a too secure code. Agile security expert B com-

mented in his interview that too much security is the reason why an Agile

company could lose the advantage in pricing and suffer the loss of customer

projects. He stated that: ”there simply is not room in the competitive soft-

ware development market for excessive security budgets”.

With this Agile Expert B’s recommendation on economic policy in mind, I be-

lieve that the 121 recommendations on the table 11 above (19 labelled as Op-

tional and 93 Unreliable) can be reasonably excluded from further analysis.

Therefore, we are going to analyze the recommendations from Critical (2) and

Relevant (10) categories from this point forward.

7.2 Analysis of Applicable Security Mechanisms

This analysis chapter binds together the earlier work in this research. This is

where we propose security mechanisms for solving the perceived problems

and try to comprehend the manner in which they portray against software de-

velopment phases.

We compare the inherent risks of Agile Methods (based on our earlier risk as-

sessment in this research) with applicable and corresponding security mecha-

nisms and create a synthesis where a control mechanisms are proposed for

each identified risk (tables 13-18).

 60

Finally, a high-level model is proposed that is based on the previously ana-

lyzed data. This is the Agile Security Model that is the main goal of this re-

search.

61

 Table 12: Analysis #1 of perceived problem
s and proposed control m

echanism
s for Agile.

A
g
ile

 c
o
r
e
 p

r
in

c
ip

le
s

•
O

ur highest priority is to satisfy the custom
er through early and continuous delivery of valuable softw

are.
•

Businessm
en and developers m

ust w
ork together daily throughout the project.

P
e
r
c
e
iv

e
d
 p

r
o
b
le

m
s

Im

p
a
c
t
s

Identifying relevant security features and suitable level of security for the
custom

er is insufficient.
If the security features are not identified correctly early in the developm

ent
process, it m

ay be too late to im
plem

ent them
 subsequently. C

onversely, too
m

uch and too expensive security m
ay be im

plem
ented.

P
r
o
p
o
s
e
d
 c

o
n
t
r
o
l m

e
c
h

a
n
is

m
s
 &

 b
e
n
e
f
it

s

D
e
p
e
n
d
e
n
c
y

C
o
n
t
r
o
l t

y
p
e

R
e
s
o
u
r
c
e

S
o
u
r
c
e
s

Identification of security sensitive assets: understand custom
er’s strategy.

Shared resour-
ce

Endogenous, strong
C

ustom
er

Literature &

Agile expert B
D

iscuss custom
er risk appetite: understand acceptable price tag of security

and how
 m

uch risk the custom
er is com

fortable w
ith.

Shared resour-
ce

Endogenous, strong
C

ustom
er

Agile experts B
and C

Threat m

odelling / form
ulation of attacker stories (threat scenarios) to prod-

uct backlog: analyze and address high-level threats in backlog.
C

om
m

on out-
put

Endogenous, strong
N

egative security
backlog stories

Literature &

Agile expert A
Functional security requirem

ents: include necessary security functionalities
in backlog.

C
om

m
on out-

put
Endogenous, strong

Positive security
backlog stories

Literature &

Agile expert A
C

ustom
er acceptance to the im

plem
ented security features and residual

risks: transfer residual risk to custom
er.

Sequential
Exogenous, w

eak
W

ritten risk accep-
tance

Agile expert B

N
o
t
e
s
:

S
o
f
t
w

a
r
e
 d

e
v
e
lo

p
m

e
n
t
 p

r
o
je

c
t
 p

h
a
s
e
(s

)

D
uring the initiation of the softw

are project, the security–related stories
m

ust be created and im
ported to the product backlog. This is a critical for

security to becom
e successful. Exam

ples: high-level functional security fea-
tures (e.g. access control functionalities), non-functional requirem

ents
(softw

are m
ust not allow

 unauthorized access to data) and attacker stories
(m

isuse cases) need to be specified and w
ritten.

(X) Initial planning / prelim
inary analysis

(X) Planning &
 requirem

ents (iterative)
() Architecture and design (iterative)
() D

evelopm
ent &

 im
plem

entation (iterative)
() Testing and evaluation (iterative)
(X) D

eploym
ent

62

 Table 13: Analysis #2 of perceived problem
s and proposed control m

echanism
s for Agile.

A
g
ile

 c
o
r
e
 p

r
in

c
ip

le
s

•
W

elcom
e changing requirem

ents, even late in developm
ent. Agile processes harness change for the custom

er's com
petitive advantage.

•
The best architectures, requirem

ents and designs em
erge from

 self-organizing team
s.

P
e
r
c
e
iv

e
d
 p

r
o
b
le

m
s

Im
p
a
c
t
s

H
ow

 to design security–related softw
are features in a w

ay that allow
s flexibil-

ity even in the event of radical refactoring? H
ow

 to establish change control?
Rigid security architecture m

ay be a reason w
hy application cannot be flexi-

bly refactored. This w
ould lead to loss of value to custom

er. U
ncontrolled

changes can break the security architecture.
P
r
o
p
o
s
e
d
 c

o
n
t
r
o
l m

e
c
h

a
n
is

m
s
 &

 b
e
n
e
f
it

s

D
e
p
e
n
d
e
n
c
y

C
o
n
t
r
o
l t

y
p
e

R
e
s
o
u
r
c
e

S
o
u
r
c
e
s

Establish security design requirem
ents (goals): set goals to m

anage identified
custom

er’s security requirem
ents and threats to create an application security

architecture that results in a desired level of security. Revise the goals w
ith

the custom
er.

C
om

m
on out-

put
Exogenous, w

eak
Application securi-
ty architecture

Literature

Attack surface, boundary protection, firew
all requirem

ents: num
ber of possi-

ble application, system
 and netw

ork layer threats is m
inim

ized.
C

om
m

on out-
put

Exogenous, w
eak

Application securi-
ty architecture

Literature

N
o
t
e
s
:

S
o
f
t
w

a
r
e
 d

e
v
e
lo

p
m

e
n
t
 p

r
o
je

c
t
 p

h
a
s
e
(s

)

Product ow
ner, architect &

 security coach should collaborate to do the follow
-

ing:
First, a high-level application security architecture should be envisioned as a
collaborative effort (PO

, architect &
 security coach are probably involved).

The creation of architecture should be a product backlog item
 if it needs to be

docum
ented. The architecture should consider all custom

er security require-
m

ents and result in a desired level of security. The com
ponents in the archi-

tecture should be decom
posed to actionable security item

s in the backlog.
Include practicable steps for m

inim
izing attack surface on application, system

and netw

ork layers. Im
port these practicable item

s to the backlog as actiona-
ble item

s (this is part of architecture decom
position).

Ensure that version control system
s are used to control changes in all of the

abovem
entioned system

 and application security features. Ideally the build
scripts (Ant scripts, etc) should include system

 level change and setup func-
tionalities, and not only the application part.

() Initial planning / prelim
inary analysis

() Planning &
 requirem

ents (iterative)
(X) Architecture and design (iterative)
() D

evelopm
ent &

 im
plem

entation (iterative)
(X) Testing and evaluation (iterative)
() D

eploym
ent

63

 Table 14: Analysis #3 of perceived problem
s and proposed control m

echanism
s for Agile

A
g
ile

 c
o
r
e
 p

r
in

c
ip

le
s

•
D

eliver w
orking softw

are frequently, from
 a couple of w

eeks to a couple of m
onths, w

ith a preference to the shorter tim
escale.

•
C

ontinuous attention to technical excellence and good design enhances agility.
•

Sim
plicity--the art of m

axim
izing the am

ount of w
ork not done--is essential.

•
Agile processes prom

ote sustainable developm
ent. The sponsors, developers and users should be able to m

aintain a constant pace indefinitely.
P
e
r
c
e
iv

e
d
 p

r
o
b
le

m
s

Im
p
a
c
t
s

H
ow

 to identify, design and im
plem

ent the right security features at the right
tim

e in the developm
ent process w

hen they are needed?
Security features and tasks m

ay rem
ain as an am

orphous conglom
eration of

unm
anaged stories that is never properly designed, im

plem
ented nor fin-

ished. This creates technological debt. Also, totally ineffective or incom
pati-

ble security features m
ay be im

plem
ented.

P
r
o
p
o
s
e
d
 c

o
n
t
r
o
l m

e
c
h

a
n
is

m
s
 &

 b
e
n
e
f
it

s

D
e
p
e
n
d
e
n
c
y

C
o
n
t
r
o
l t

y
p
e

R
e
s
o
u
r
c
e

S
o
u
r
c
e
s

Application risk analysis: the developm
ent team

 collectively analyzes and un-
derstands the application architecture and the threats that are relevant to it.

C
om

m
on out-

put
Exogenous, w

eak
Application risk
assessm

ent
Agile expert B

Attacker story and user story negotiation or decom
position to (sprint or prod-

uct) backlog: prioritize security item
s on the backlog and turn attacker stories

into positive actionable security tasks on the backlog.

Shared re-
source

Endogenous, strong
Product backlog
security item

s
Literature &

Agile expert A

Perform
 backlog m

aintenance: m
ake security w

ork ”visible” on the backlog by
splitting security tasks into atom

ic and practical level on the backlog. This
enables that reasonable am

ount of security investm
ent and w

ork w
ill be done.

Shared re-
source

Endogenous, strong
Product or sprint
backlog security
item

s

Literature &

Agile expert B

N
o
t
e
s
:

S
o
f
t
w

a
r
e
 d

e
v
e
lo

p
m

e
n
t
 p

r
o
je

c
t
 p

h
a
s
e
(s

)

Arrange at least one short com
m

on session w
here developm

ent team
 m

em
bers

and the security coach can discuss the application architecture and technical-
ly analyze its w

eaknesses and design viable security m
echanism

s.
N

egative security item
s on the backlog (i.e. do not let sensitive data to be

stored in clear text form
at) are turned into positive and practical tasks (i.e.

im
plem

ent SH
A-512 hashing and salt in storing user passw

ords)
Backlog m

aintenance is perform
ed usually by PO

 and architect. They prioritize
item

s that need to be done, and also decom
pose security related stories into

m
ore practical level and discuss the item

s w
ith the custom

er. This m
akes se-

curity w
ork visible to the custom

er and developers.

() Initial planning / prelim
inary analysis

(X) Planning &
 requirem

ents (iterative)
() Architecture and design (iterative)
() D

evelopm
ent &

 im
plem

entation (iterative)
() Testing and evaluation (iterative)
() D

eploym
ent

64

 Table 15: Analysis #4 of perceived problem
s and proposed control m

echanism
s for Agile.

A
g
ile

 c
o
r
e
 p

r
in

c
ip

le
s

•
Build projects around m

otivated individuals. G
ive them

 the environm
ent and support they need, and trust them

 to get the job done.
•

The m
ost efficient and effective m

ethod of conveying inform
ation to and w

ithin a developm
ent team

 is face-to-face conversation.
•

At regular intervals, the team
 reflects on how

 to becom
e m

ore effective, then tunes and adjusts its behavior accordingly.
P
e
r
c
e
iv

e
d
 p

r
o
b
le

m
s

Im
p
a
c
t
s

H
ow

 to m
anage the hum

an aspects of secure Agile developm
ent, the aspect of

security aw
areness?

Lack of security aw
areness m

ay prevent any security activity from
 taking

place. At m
inim

um
, it w

ill slow
 dow

n the progress.
P
r
o
p
o
s
e
d
 c

o
n
t
r
o
l m

e
c
h

a
n
is

m
s
 &

 b
e
n
e
f
it

s

D
e
p
e
n
d
e
n
c
y

C
o
n
t
r
o
l t

y
p
e

R
e
s
o
u
r
c
e

S
o
u
r
c
e
s

Security C
oach, include a security engineer in the developm

ent / part tim
e:

provide specialist advice for the team
.

Shared re-
source

Exogenous, w
eak

Security coach
Literature &

Agile expert C

Establish supportive, collective w

ork environm
ent that enhances security

learning: enable learning security skills on organizational level; build secure
developm

ent capability.

Shared re-
source

Endogenous, strong
Supportive envi-
ronm

ent
Literature &

Agile expert B

Em
pow

er developers to act on security issues: im
proves developer efficiency

in solving security issues.
C

om
m

on out-
put

Endogenous, strong
Secure code

Agile expert A

G
ain understanding of threats and security architecture: the developers share

an identical vision of w
hat and how

 softw
are should be protected.

C
om

m
on out-

put
Endogenous, strong

Secure code
Literature, Agile
expert A

N
o
t
e
s
:

S
o
f
t
w

a
r
e
 d

e
v
e
lo

p
m

e
n
t
 p

r
o
je

c
t
 p

h
a
s
e
(s

)

The project ow
ner should appoint a person for security in the developm

ent
team

, preferably som
eone w

ith personal am
bition tow

ards softw
are security.

The PO
 should ensure that the w

orking environm
ent supports security learn-

ing. D
evelopers should have a perm

ission to acquire literature, study and use
their w

orking tim
e for learning how

 to create secure code. This is an issue of
providing necessary resources. Security courses and training can be used to
supplem

ent the learning. Rotating roles of the developers m
ay also be helpful.

The PO
 should also em

pow
er developers to solve low

-level security issues in-
dependently (at least on code level).
The developers should gain a shared, collaborative understanding of the appli-
cation security threats and the m

anner in w
hich the security architecture

should w
ork. This enables them

 to w
ork as a team

 tow
ards com

m
on security

goals.

() Initial planning / prelim
inary analysis

() Planning &
 requirem

ents (iterative)
(X) Architecture and design (iterative)
(X) D

evelopm
ent &

 im
plem

entation (iterative)
() Testing and evaluation (iterative)
() D

eploym
ent

65

 Table 16: Analysis #5 of perceived problem
s and proposed control m

echanism
s for Agile.

 A
g
ile

 c
o
r
e
 p

r
in

c
ip

le
s

•
W

orking softw
are is the prim

ary m
easure of progress.

P
e
r
c
e
iv

e
d
 p

r
o
b
le

m
s

Im
p
a
c
t
s

H
ow

 to ensure that softw
are is not infested w

ith security vulnerabilities after
the point w

here softw
are is deem

ed to w
ork?

If softw
are vulnerabilities are not m

anaged during the developm
ent, they are

bound to em
erge in the softw

are product.
P
r
o
p
o
s
e
d
 c

o
n
t
r
o
l m

e
c
h

a
n
is

m
s
 &

 b
e
n
e
f
it

s

D
e
p
e
n
d
e
n
c
y

C
o
n
t
r
o
l t

y
p
e

R
e
s
o
u
r
c
e

S
o
u
r
c
e
s

U
se integrated unit tests to control the quality of the security features: ena-

bles change control for m
onitoring that security features do not break w

hen
som

ething changes in the code and ensures that they w
ork as expected.

Sequential
Endogenous, strong

U
nit test autom

ati-
on

Literature &

Agile expert A

Vulnerability and penetration testing, fuzzing: provides feedback about unex-
pected and unw

anted softw
are behaviors. Vulnerabilities in softw

are behavior
and business logic are identified and can be corrected.

Shared input
Exogenous, w

eak
Testing reports

Literature &

Agile expert A

U
se of autom

atic testing tools: can include regression testing, perform
ance

testing &
 c. Their use ensures that the general quality of the softw

are rem
ains

on an adequate level.

Sequential
Endogenous, strong

Test autom
ation

Literature &

Agile expert A

Static analysis, code analysis tools: pinpoint coding errors that can be inspect-
ed and corrected by the developers.

Shared input
Exogenous, w

eak
Testing reports

Agile expert A

N
o
t
e
s
:

S
o
f
t
w

a
r
e
 d

e
v
e
lo

p
m

e
n
t
 p

r
o
je

c
t
 p

h
a
s
e
(s

)

After security features are im
plem

ented, they should be m
onitored by using

autom
ated testing technologies; unit tests, regression tests, perform

ance
tests &

 c. are few
 recom

m
endable techniques. Autom

ation is the key to high
perform

ance because it can give early signals about the m
anner in w

hich the
developm

ent team
 collaborates and ensures that the features do not break

during the developm
ent.

Exploratory (investigative) testing cannot usually be com
pletelly autom

ated.
W

hen such testing is required, vulnerability testing, penetration testing, static
code analysis and fuzzing tools can be used to create an additional feedback
m

echanism
 into the developm

ent process. N
ote! These techniques can be au-

tom
ated at least partially, for exam

ple, fuzz testing can be autom
ated and

resulting error conditions investigated. Also, any signature-based testing
m

ethodology (that uses a black list approach like vulnerability scanning) can
be autom

ated.

() Initial planning / prelim
inary analysis

() Planning &
 requirem

ents (iterative)
() Architecture and design (iterative)
() D

evelopm
ent &

 im
plem

entation (iterative)
(X) Testing and evaluation (iterative)
() D

eploym
ent

 66

7.3 Detailed Description of Applicable Security Mechanisms

This chapter explains in detail the phases of software development process

and the security mechanisms that are critical for creating secure software us-

ing Agile Methods. The concept of ”process phase” is used here to describe

the types of necessary activities during the software project. The phases may

overlap, or their order may be different and they may iterate several times.

7.3.1 Initial Planning Phase

Identification of security sensitive assets

According to the Agile Expert B the main goal in the beginning of the software

project is to understand the customer’s strategy. By strategy he meant that

we should understand the business goals of the customer in the whole soft-

ware project. He explained that ”…if you are trying to produce a new kind of

a dog food recipe, then you better first find a recipe that the dogs like and

the pet owners are likely to buy. Unless that criterion is met, it is irrelevant if

the dog food happens to include a disliked flavor of cross site scripting

(XSS)…”

Thusly the customer is the only source who is able to specify the business con-

text of a specific dog food recipe. The product owner should discuss with the

customer the kind of data the application will store, process and transmit and

if any of that data is critical from business perspective (dog food recipe). The

goal of this identification process is to understand whether some part of that

data is sensitive, or requires more security than the rest. Eventually, this un-

derstanding of high-level requirements should result in creating high-level se-

curity–related product backlog (figure 7). According to the Agile Expert B, this

is critical for defining the desired level of security and the acceptable price

tag for the security expenditure. Without understanding what is essential for

the customer security, investment cannot be focused on important parts of

the application.

 67

Agile Expert C commented that in one case a preliminary study needed to be

conducted to identify legal requirements for transactions and responsibilities

with regards to payments. According to C, in the initial planning phase it is

usual to “…consider what systems are involved and what kind of information is

stored in them, and what protections should be in place to protect the infor-

mation in a client-server architecture. …We have identified what pieces of

information are more critical than others, and what are the most sensitive

pieces of information in the systems.” He described the process of asset iden-

tification: “The customer has described their own view about potential prob-

lems, and which assets they consider to be critical. They (customers) usually

understand better than external consultants how the system is intended to be

used. The usual problem is that the customers don’t always understand the

assets on correct level: They might start with a technical network diagram but

they really should first understand what is the business context and the value

to the business instead of technical approach.” In his opinion the reason for

the usual technical approach was that people consider information security to

be primarily a technological or IT issue, and people who implement these sys-

tems are usually engineers. However, the owner of the assets and their prob-

lems is an entirely different stakeholder from the engineers, it is the business.

This difference in roles was manifested when C told a story about a technical

engineer / architect who later became the product owner. According to him,

the same person used to consider that all technical security solutions should

be developed equally when he was in a technical position. As soon as the per-

son started working as a product manager he suddenly realized that he

couldn’t afford to buy everything. He started to consider business benefits of

each security item that are correlated with security goals.

The point is that without understanding the type of information in the system

it would be pretty much an ad hoc choice to implement any security. For in-

stance, in one case we found that an organization was planning to transmit

confidential data across public internet to mobile handset clients. Their initial

plan was to allow access to the resource by plain username and password au-

thentication without any further protection. This would have allowed them to

 68

access some very sensitive resources. Discussions eventually led to realization

that the mobile device and the client application were not the only assets to

consider, but that they should also assess the value the sensitive resource to

which they were allowing access. Thusly the problem space was extended

from the mobile device and the application to cover the resource and its val-

ue to the customer. This change of view in the asset value completely

changed their mindset towards the level of required security. The end result

was that they decided to implement rather high level of security for the ap-

plication architecture with TLS encryption and mutual certificate-based au-

thentication scheme.

Discuss customer risk appetite

According to the Agile Expert B, the customers have various degrees of risk

appetite. By definition, risk appetite is the level of risk that an organization is

prepared to accept, before action is deemed necessary to reduce it. Under-

standing risk appetite is essential to understanding what is the adequate in-

vestment in security, compared with the amount of risk the customer is com-

fortable. Dhalla’s (2009) analysis of reputational risk describes the relation of

product quality to reputational risk: ”it is likely that failure of … a new prod-

uct offering will send a signal of low quality, creating reputational risk.” In

other words having insecure products can be interpreted as a signal of low

quality.

Agile Expert B said that his customers are roughly divided into three kinds of

attitudes towards risk:

1. Willing to invest in software security (wanting to avoid risk)

2. Cautiously willing to invest in security, often not wanting to pay for ex-

tra security (cautious preference to take some risk)

3. Innovative, seeking high business rewards and reluctant to invest in se-

curity (accepts greater inherent risk)

 69

Also according to Agile Expert C, Agile development companies and customers

who buy their products come with various degrees of risk appetite. He re-

called several projects to a certain large customer where he was involved in

performing security audits to software just prior to deployment to production.

In every case when this customer was involved he had found several serious

security issues from the software and recommended that “… this is not the

recommended way to create secure software – they should start with security

requirements much earlier in the development”. He considered this to reflect

the rather high risk appetite of this customer because the customer “…didn’t

consider the security requirements necessary because developing them would

be an additional cost factor. For the customer, it was cheaper to audit the

products prior to production.”

The worst case scenario was, according to Expert C, when “… an Agile devel-

opment company delivered a solution to a customer. We found a terrible

amount of horrible security issues in the audit prior to deployment. The de-

velopers soon told that they had fixed the issues. We re-audited the software

and found some of the old issues and a handful of new ones that they had

generated when fixing the old ones. This iteration of audit-and-fix continued

until serious issues were fixed.” C also stated that those developers admitted

later that “…they knew that these issues were present in the code, and that

they were aware of the findings of the audit prior to auditing. Despite having

this knowledge they decided to deliver the software to the customer and did

not actively do anything to address the security vulnerabilities.” Finally, they

admitted the existence of the the known problems to the customer only after

the audit had taken place and identified the problems.

Establish security design requirements (goals)

Establishing security design requirements, or goals, is necessary for construct-

ing an application security architecture that results in a desired level of secu-

rity. According to Sindre & Opdahl (2002), security goals should be defined for

 70

each identified asset (such as user database), and threats can be understood

as obstacles that prevent reaching those goals. Mead, Hough & Stehney (2005)

stated the goals should be identified and negotiated with different customer

stakeholders since otherwise it is not possible to know the relevance and pri-

ority of any subsequent security requirements that are generated afterwards.

According to Mead (2010) security goals are determined first, before require-

ments, so that the team will understand what outcome the security require-

ments are to support.” Goals of the security design are closely related and

necessary in formulation of attacker stories. Namely we may have an asset

with a frontend server and a backend user database that should be protected

against threats. Our design goals could be expressed as follows:

• “Prevent unauthorized access to sensitive user data stored and pro-

cessed by the application”

This meta requirement could be further broken down into security design

goals such as:

1. Design the high-level security architecture only to allow direct access

to the frontend application while preventing any unauthorized direct

access to the backend user database.

2. The frontend application should provide session control, user authenti-

cation and data input controls. The underlying application server

should be hardened against attacks on system level.

These goals of the security design could be further broken down into smaller

parts and included in product or sprint backlog.

According to Agile expert C, an example of a security goal in one customer

case was that the system should be able to prevent fraudulent transactions

from taking place. He told that “… this goal was not obtainable just by means

of technical controls. Fraud control would have to be addressed also on design

level when roles in the system are designed, for example by means of segre-

gation of duties”. C also commented that often organizations seem to have

 71

rather general goals like “software must not allow unauthorized access to re-

sources”, or “the services must be available 100% of the time”.

Expert C’s experience was that usable methods for defining security goals are

interviews of customers, or the use of formal checklists. His opinion was that

direct inquiry about security goals would not perhaps work because few cus-

tomers understand what that term means in practice.

The importance of security goals is to explain why all security features of the

software should be implemented.

7.3.2 Planning & Requirements Phase

Functional Security Requirements

Functional security requirements are formulated early in the software devel-

opment. The requirements should be included in the product backlog, either

as separate stories, or as part of other use stories. According to Peeters

(2005), it is common to find security-related details inside user stories that

describe in high level what the user does. Inclusion of the security functionali-

ties in user stories enables integration of security in software development

and possibly prevents security from becoming externalized. Functional securi-

ty requirements are positive, i.e. they describe what kind of features should

be implemented in the software.

The following figure displays an example of functional security requirement

that can be written for a login functionality of an application.

 72

Figure 11: Structure of a user story (De Lucia & al. 2008)

According to Agile Expert C, many customers who acquire software from soft-

ware development companies use some kind of formal requirements as at-

tachments in their agreements. Often those requirements are rather tech-

nical, including protocol specifications, message sequence charts, or input

control requirements. A good requirement is not always enough though. In

some instances, C told that he even encountered contractor employees who

“…did not know the basics of HTTP protocol although they were tasked with

developing a secure web application. They did not know the basics of HTTP

GET, POST or cookies.” He ended up arranging a short training session about

protocol basics to those contractors. Then he asked the contractors to present

their current code and found out that “…it was as it is usually always (horri-

ble). There was no sign of centralized control mechanisms in the code. I was

able to help them to learn how to implement the security requirements

properly.”

The level of detail in which functionalities are described varies greatly. High

level features can be as abstract as implementing a full-blown PKI architec-

 73

ture for a large application. In detailed cases, it has sometimes been neces-

sary to describe in what manner the application should implement one phase

of cryptographic operation in one step of its message sequence flow. This

could be described in a message sequence chart like described above. It

seems to be important that the stories are written in a manner that enables

the product owner and the developers to understand them. Usually it is also

necessary to explain the requirements directly to developers because other-

wise they may have difficulty understanding them.

Threat modelling / formulation of attacker stories

Threat modelling is a top-down activity that results in formulation of high-

level attacker stories. Setting security goals and performing detailed risk

analysis on application–level are related to threat modelling. Threat modelling

should result in security-related items on the product backlog. According to

Binder (2004), lack of perception about security problems can lead to inade-

quate analysis of the problems and communication failures. This could esca-

late further in application, subsystem and class–level problems.

According to Peeters (2005) attacker stories ”identify how attackers may

abuse the system and jeopardize the stakeholder’s assets”. Peeters also pro-

poses that attacker stories should be brief, and they should be ranked and

scored similarly to user stories (use cases). Peeters also proposes that each

attacker story should assess the likelihood and impacts of successful abuse.

Furthermore, the scoring should be commensurate with the user stories. Agile

Expert A commented that ”… threat analysis is the most important phase of

secure software development…”.

Writing attacker stories does not differ considerably from writing user stories.

We can use exactly the same model that is used to describe user stories. This

enables us to create both functional and non-functional security requirements

with similar scoring, priority structure, testability and also to able to com-

 74

municate them to the developers in an easier manner. According to Sindre &

Opdahl (2002), visual diagrams can be used to visualize the relations between

user stories and attacker stories.

It should be noted that attacker stories are usually negative. This means that

they describe something that should not happen, and cannot be implemented

as such. Agile Expert A commented that ”… if the (security) feature is de-

scribed so that something should not happen you cannot simply implement it

because we implement positive features. The code is always doing some-

thing.”

The following is an example of formulating a non-functional security require-

ment:

Table 17: Example of a non-functional security requirement (CAPEC-1000)

The following diagram displays the relations of positive and negative security

features and their relation to software development activities.

Title: Do not allow input attacks against the application
Acceptance criteria:
Implemented input
validation controls

Priority: high Story points: __

Attack origin: internet (WAN)
Attack vector: exploitation of application input vulnerabilities.
An attacker may craft input strings in order that the application constructs
unwanted commands. For instance in SQL injection attack statements are
constructed based on the input, and the resulting SQL statement performs
actions other than those the application intended. (CAPEC-1000)
Impact: Very high. Input attacks are common and basic to exploit. (i.e. simp-
ly inputting ’or 1=1-- string on input field can identify a SQLi vulnerable ap-
plication). Therefore, this should be given high priority.

 75

Figure 12: Relation of positive and negative security features.

Agile Expert C considered the process of threat modeling / attacker story

formulation as a process that identifies points where something could go

wrong. He told that he has experience from software development projects

where they “analyzed various threat scenarious before implementing any-

thing”. He also made a remark that at this time the price of security is usually

not yet a concern. “Anything that could be perceived as a threat should be

analyzed. After that it is possible to do prioritization and think about which

issues are most critical.”

In C’s opinion the usual case with software projects is that they normally

don’t do much in the way of threat assessment or formulating attacker sto-

ries: “…and when they do, it is usually quite minimal. They can simply decide

that using HTTPS is enough, or in best cases they make a reference to OWASP

top 10 vulnerabilities: Those are the threats that we should address.” He

stated similarly to Expert A that the problem with negative requirements is

that they describe something that software should not do. According to him,

 76

this is sometimes very difficult to invert into concrete, positive functionali-

ties.

Expert C also had good experience from doing threat modeling by identifying

roles that are involved in the use of the software. He told that an analysis of

unintentional or intended misuse cases was usually conducted and a model

was developed based on those interactions. This approach is consistent with

Pauli’s & Xu’s (2004) misuse case modeling approch. An example of misuse

case threat modeling is displayed in the figure below. The white bubbles de-

scribe software functionalities and the black ones intentional or unintentional

possible misuse cases.

Figure 13: Misuse based threat modeling (Pauli & Xu, 2004)

Application risk analysis

 77

Some form of threat or risk assessment was recommended by almost every au-

thor in the literature. The same recommendation was also given by all inter-

viewees. It appears that there is a wide consensus that attacker stories (anal-

ogous to abuser stories or misuse cases) should be formulated based on the

perceived application threats (or risks). The most important benefit from the

application risk analysis is that the development team collectively analyzes

and understands the application architecture and the threats that are rele-

vant to it. Agile Expert A commented about the process of application risk

analysis thus: ”… commonly, there is this one guy (with the development

team), a whiteboard, and we draw a diagram, which is the way that most

companies do it in the world, for example this is how Microsoft does. We draw

data flow diagrams that display the interactions between the components of

the system, databases, systems and software components. In very complex

cases, with complex protocols, Message Sequence Charts can be used. Mi-

crosoft does this with STRIDE.” He also had an opinion that it is basically ir-

relevant which application threat modelling method is used as long as it

serves the goal of increasing comprehension of the threats, and enables com-

munication about the threats. According to Expert A, the most important

benefit from application risk analysis is that ”…the developers learn the mind-

set of the attacker by using a structured method. This way the developers can

intuitively avoid design–level security problems in their work even before

those problems end up in these application-level risk analysis diagrams.”

The Microsoft STRIDE is a noteworthy method for performing the application

risk assessment (Hernan & al. 2006).

According to Agile Expert C, application risk analysis is best to perform in

close co-opration with the developers. He told that it has been successfully

performed even as an external consultant –led effort, but considered it better

to involve the developers in the process because they would need to under-

stand the risks anyway. He commented: “…usually the developers have

 78

learned to think about application risks. The increased understanding mani-

fests itself when they learn to ask the correct questions from us.”

Regretfully, Expert C had found that most developers don’t do any kind of ap-

plication risk analysis. In his opinion the problem was that “…people think

that they are not required to do risk analysis because no-one else seems to be

doing it either. And consequentially, no-one usually requires that it would be

done.” His opinion was that the root of the problem was that “…very few de-

velopers have taken the time to learn about application risk analysis. And

there are very little requirements that developers should learn to do this.

Consequentially, they often skip application risk analysis entirely.”

Learning to think like the adversaries is the key to successful application risk

analysis. It is also a key to a successful secure design because unidentified ap-

plication-level risks can’t be mitigated effectively.

Attacker story and user story negotiation or decomposition to backlog and

performing backlog maintenance

The benefits of decomposition and backlog maintenance are to make security

work ”visible” on the backlog by splitting security tasks into atomic and prac-

tical level on the backlog.

Attacker and user story negotiation and decomposition are processes where:

1. negative security stories can be integrated into other user stories or

2. decomposed into smaller parts and turned into doable positive backlog

items

The process of decomposition is usually a dialogue between the product own-

er, a software architect and the development team. The backlog maintenance

should be performed regularly, and time should be allocated for executing it.

According to Agile Expert A the process of decomposition leads to removal of

attacker stories from the backlog and replacing them with doable (positive)

development tasks (Figure 13).

 79

The following table uses our earlier example of an attacker story. In this case,

the attacker story has been decomposed and inverted from negative into a

positive development task that could be implemented in the next sprint.

Table 18: Example of decomposing attacker stories to backlog.

Agile Expert C also had the same view with Expert A that inversion of negative

security stories was crucial. Expert C told: “…you first need to understand the

root cause of the problem. For instance, what is the thing that causes the in-

jection to occur? Only after understanding what is happening you can remedi-

ate the issue. For instance, you may come to realize that injection is only

possible when it is possible to bypass data type validation in the application.

As a result of this understanding the injection becomes really a problem with

data type validation.” Again, he told that inversion of attacker stories usually

necessitated specialist knowledge: An average developer may be unable to

understand how to invert these requirements. What is required is that a per-

son does the inversion who has experience from doing it. C explained that the

most common error is to start creating a blacklist of things that should be de-

nied in the software: “as long as you describe things in negative terms it will

be difficult and ineffective. A whitelist approach is much more effective.” In

his opinion, the negative requirements cause the developers to learn a wrong

mentality of denying, or blacklisting unwanted things instead of developing

more effective whitelisting functions.

Title: Do not allow input attacks against the application
Acceptance criteria:
Implemented input
validation controls

Priority: high Effort: 12 days

Attack origin: internet (WAN)
Attack vector: exploitation of application input vulnerabilities
Tasks:
Implement input validation of user-controlled data before including it in a
SQL query. Use parameterized SQL queries in the application logic (e.g. Pre-
paredStatement in Java, and Command.Parameters.Add() to set query pa-
rameters in .NET).

 80

Expert C told a story from a case where another company had audited a web

application and found a cross site scripting (XSS) vulnerability. The developers

had created a patch that filtered some unwanted characters and strings from

the input that prevented that specific attack. The problem in that instance

was that they did not entirely undestand the real problem and had the men-

tality of blacklisting unwanted behaviors. When the application was audited

by C, he simply double encoded the same input attack messages and bypassed

the blacklist protection. He explained that the problem with blacklist ap-

proach was that it is unable to address any future problems because only

known problems can be listed. A good mitigation to this XSS vulnerability

would have involved inverting the protection requirement around: They

should have defined what kind of input is allowed to the application and allow

only that sort of input.

Expert C made an example of inverted positive input validation control: “If we

expect to receive only text input to the application we should define the ap-

plication only to allow letters in the input. The other, flawed blacklisting ap-

proch is to make a catalogue of all the letters that are denied. This is an in-

sane idea which is implemented only by those who can’t properly invert at-

tacker stories to positive items.”

7.3.3 Architecture & Design Phase

Attack surface, boundary protection, firewall requirements & gaining un-

derstanding of threats and security architecture

The result of successful application security architecture is that the number

of possible application, system and network layer attack vectors is minimized.

The intention is to reduce the overall complexity of the whole architecture

and make it better protected against attacks. The principle of attack surface

minimization should be considered from a holistic perspective in the architec-

ture (examples):

 81

• Application level: minimum number of application functionality is ex-

posed to users. For example, any unnecessary testing & debug func-

tions are removed before deployment. Security validation checks are

performed against all remaining user actions.

• System level: all system services, modules and libraries that are not

necessary for the intended application functionality should be removed

or disabled. Systems should be configured (hardened) against attacks.

• Network level: network access to the systems and applications should

be limited to minimum by network–level filtering, namely access to

administrative application functionality should not be openly exposed

to all users of the application.

Agile Expert C explained that “a (security) architecture is just a figment of

imagination that can be implemented in endless different ways”. Therefore

we should understand that security architecture is a flexible concept that

needs to adjust accordingly to the goals of the customer. According to expert

C different kinds of modeling tools have been used to create security archi-

tectures: Message sequence charts (MSCs), logical diagrams with systems and

their interactions and high-level API descriptions. He explained that architec-

ture usually never goes to level of details. It explains what each software

module does and is responsible for security-wise. He also divides application

security controls into main categories:

1. Controls depending on the case. For example, role-based access con-

trols, fraud control, or a support for legacy protocols. These controls

have to be designed always individually.

2. Generally applicable controls, especially in the world of web applica-

tions. For example, input validation and session management controls.

For the general controls, he suggested that security design patterns

should be used whenever possible.

While the word architecture may sound like a written document, it is also

quite possible that the architecture is a virtual construct of backlog items and

exists only in the minds of the developers. In our experience the level of re-

 82

quired formalism depends on the case. In most cases the organizations have

not deemed it necessary to create dedicated written application security ar-

chitecture. Our view is that the application security architecture is primarily a

means to increase developer’s awareness on the important matters in security

and the reasons behind it. Similarly, according to Pauli & Xu (2004), the archi-

tecture enables the developers to understand the security architecture and

clears up confusion among the developers. They also propose that inclusion of

security in the software architecture makes applications more resistant to

vulnerabilities.

Agile Expert B explained that it can be wise to ask for formal customer ac-

ceptance to the security design (architecture) in the design phase of the pro-

ject: ”…with the most security aware customers, one should have written ac-

ceptance from the customer about the architecture design.” If the security

design contains any known weaknesses, the customer should be aware of

them. For instance, if unencrypted FTP integrations are to be used over public

networks, then the security implications should be accepted by the customer.

Figure 14 displays the relations of security architecture in software develop-

ment. Threats and risks are usually initially unknown until they are analyzed.

There is always some amount of residual risk that needs to be accepted be-

cause of economic constraints. After performing an initial architectural analy-

sis, the most important security features can be implemented. As the custom-

er’s goals can change during the development process, some security features

may need to be redesigned and refactored because the business objectives

may change during the developent. Parts of the security architecture can be

considered to be ”Done” when the residual risks have been mitigated to an

acceptable level by implementing a necessary amount of security features.

 83

Figure 14: A dynamic view of application security architecture.

7.3.4 Development & Implementation Phase

Security Coach, Include a security engineer in the development / part time

BITS (2012) proposes that ”Application security champions / Mavens” should

be nominated. Additionally, they propose that ”Advanced champions” and

”Technical security officers” should play a role in software security too. The

recommendation to have a dedicated or a part-time security specialist in the

development team was also given by the Agile Security Experts A & C. Agile

Expert C explained that he has acted as a security coach and done lecturing,

threat modeling, trained the developers to use security testing tools and per-

formed code reviews to code that concerns critical components of the soft-

ware.

 84

When quesioned about why companies use security coaching Agile expert C

explained: “…companies who develop software products are nowadays quite

interested in security coaching because they have compliance requirements

for security. And their customers want to use software that is secure.”

Expert C explained that therei is usually lack of security skills: “It is common

that customer does not have anyone with real security capability. It is quite

common that developers imagine to be knowledgeable about security mat-

ters. But when we inspect things and dig deeper, we notice that they really

don’t have a deep understanding about the issues. This may cause a false

sense of security because internally developers would trust this person in se-

curity matters because this person has a kind of a security monopoly in the

team. They don’t question him because no-one in the team knows security

any better.” Next, he gave an example of such a case: “… in one instance I

was involved in developing a security protocol with this one security develop-

ment guy. I wondered why he had ended up encrypting data traffic only in one

direction but not the other way. He did not understand how cryptography

works. We demonstrated that encryption can be done bi-directionally.” Thus,

our experience from the field shows that most developers do not have the

necessary specialist knowledge about the matters of technical security for se-

curing the systems and applications they create. It is not uncommon to find

false sense of security among the teams. They often truly believe that their

software and systems are secure while the exact opposite is the truth.

Sometimes developers are aware of their lack of security knowledge. In one

particular instance, the Agile Expert C had been coaching an Agile customer

and remembered that the developers ”said that they understood that they do

not understand all the security issues that they should”. The developers also

had told him that they realized all too well that ”…fixing security issues after

deploying code was a problem that needed to be addressed”. Expert C said

that the dialog with the developers (coaching) led to identification of several

problems in their software and development practices. Next, he simply creat-

ed an inventory of identified problems and presented it to the product owner.

 85

Soon, those problems were included into their product and sprint backlogs,

and they started fixing the problems.

The role of a security coach is both technical and social. According to Agile

expert C, several experienced Agile developers have expressed opinions that

“…software projects should include a person who understands information se-

curity. This person should not just do security testing but also freely com-

municate with people in the team.”

Establish supportive, collective work environment that supports security

learning & Empower developers to act on security issues

Developers face today a vast diversity of various platforms that should be

supported by their software. For example, a java application should often be

portable to several mobile platforms and desktop systems. This puts the de-

velopers in a difficult situation: how should they be able to secure all of those

diverse environments where their software is being deployed? The BITS

framework (2012) proposes that: “integrating IT risk controls within the soft-

ware development process as a part of a software security program requires on-

going education for key stakeholders…” Agile Expert B also explained that his or-

ganization addresses this difficulty by enabling organizational learning on all pos-

sible levels. They build a supportive working environment where developers are

allowed to use their working time for studying security whenever it was deemed

necessary. He mentioned a few useful practices that have proven helpful: they

maintain a library of various books and allow purchases of new ones at work.

They also rotate working roles so that, for example, a skilled software developer

can take a role of an operating system-level designer in the following projects.

This allows the members of the development teams to learn from each other and

improves their ability to work together. According to Agile Expert A, this practice

of ”collective working” also benefits the teams because they become highly

skilled, and therefore the project owners can entrust them with more responsibil-

ity with regard to security decisions (on code level, for example). Also Vähä-

 86

Sipilä (2011) recommends that a practice known as ”empowerment” in Agile is

beneficial for security as long as the limits of the responsibilities are clearly de-

fined.

One motivational factor was observed in a case where Expert C met develop-

ers who had been given the responsibility for securing their product. None of

the developers considered themselves security professionals. They wanted to

seek verification and feedback for their designs from C. According to C, they

were smart people who were unsure about their security capabilities, and had

a very positive attitude towards security. This was positive because they were

quite receptive towards security proposals.

Often organizations have failed to implement security because formally, no-

body has been in charge. Security responsibilities are often informal and lack

the necessary management support. Agile expert C’s observation was that “…

often the problem is that there sometimes is a capable internal individual in

charge of software security. Sooner or latter it happens that this person

changes duties or leaves the company. Thus security is left to nobody because

his position usually wasn’t formal. His absence may not cause any pressure

towards recuiting a replacement.

7.3.5 Testing & Evaluation Phase of the Project

Use integrated unit tests to control the quality of the security features &

Use of automatic testing tools

Agile relies heavily on the idea of minimizing the work of people and automat-

ing tests as far as technically possible (Agile Manifesto principles). Test auto-

mation ensures that whenever a software feature is implemented, a number

of applicable automated test cases are created. Test case automation should

ensure that whenever the software is changed nothing breaks. If the automat-

ed tests pass and the build doesn’t fail, the developers can accept the chang-

 87

es. Some Agile methodologies such as TDD (Test Driven Development) go as

far as proposing that test cases should be created prior to software features.

Test automation also has several benefits security-wise. Security features are

not different from other software features in that their changes need to be

controlled in test automation. For example, new software features may have

impact on the security architecture and functionality in the software. The

software changes may cause functional problems in security features, circum-

vent security controls, or create new software vulnerabilities.

We have observed that customers have variations in how diligently they do

testing and how they set up their testing environments. According to Expert

C, in some instances the companies have created several different layers of

testing environments for each of their products. In a different instance, the

only real testing environment was the customer’s development environment.

In that case, what they called “test systems” were in fact replicas of produc-

tion systems that did not have contain any test automation functionality.

Our experience about test automation is that it is a basic prerequisite for any

effective automated security testing. If the company does not have any kind

of a mature test automation environment, also automation of security tests is

bound to fail because the organization simply does not have tools and test en-

vironments for doing the automated security testing.

Vulnerability testing, penetration testing, fuzzing and static code analysis

The topic of vulnerability testing, penetration testing and fuzzing contains a

wide range of good practices. In this context they shall simply be called ’secu-

rity tests’. Whereas test case automation is primarily used to control changes

in software, security tests are aimed at finding unwanted and unexpected be-

haviors. A brief explanation of each type of security testing activity is in or-

der:

 88

1. Vulnerability testing: is focused on finding known software and system

vulnerabilities. Tests are usually run by using automated scanners that

can run tens of thousands of test cases against the systems and applica-

tions. Vulnerability testing is limited to finding only previously known

software weaknesses. These types of tests can be semi-automated or

fully automated depending on the case.

2. Penetration testing: is performed by highly skilled testing personnel

who use their experience and intellect to detetct flaws in software and

systems. Whereas other test types are unable to find flaws in business

logic or other errors that are difficult to test automatically, penetra-

tion test may expose these weaknesses. Penetration tests are also able

to verify and demonstrate the impacts of software security vulnerabili-

ties. Other test types lack this step of demonstration and impact verifi-

cation.

3. Fuzzing: is a test type where robustness of the application is stressed

by sending ”…loads of crap against the interface – preferably crap gen-

erated by a good fuzzing tool” (Vähä-Sipilä, 2011). The benefit of doing

fuzz testing is that it is the most efficient method for identifying un-

known software vulnerabilities and enables catching regression errors

early (Vähä-Sipilä, 2011 & SANS SEC660, 2013). Fuzzing can be automa-

ted, semi-automated or performed manually.

4. Static code analysis: is the analysis of computer software that is per-

formed without executing programs using automated tools. The analysis

can be performed either against uncompiled code, or by disassembling

the compiled code. The analysis reveals programming errors that are

otherwise difficult to spot, for example, buffer overflow conditions

(Wikipedia).

There is an underlying fundamental difference between security testing and

unit testing. Unit tests typically cover a limited number of test cases and

software functionalities. They are deterministic in nature, in that they focus

on testing the known functionality of the software. Security testing, on the

other hand, focuses on functionality which ”should not be there”, and this is

 89

where the emergent nature of software security appears again: as opposed to

deterministic testing, security testing is stochastic in nature. The problem

space of security testing contains practically infinite number of test cases that

can never be fully explored. According to Siddhu (1989), there are SAES possi-

ble implementations for a machine that has S states, E events, and A actions.

The problem space increases very quickly with the complexity of the machine,

for example: 5 states, 2 events and 2 actions there are over 10 billion differ-

ent implementation possibilities. Therefore security testing is inherently dif-

ferent from unit testing. Only a small subset of all possible implementation

possibilities can be realistically covered by the security test cases. Thusly au-

tomatic security testing approach should be desired over manual testing: the

modern applications contain so much complexity that all possible testing

paths can never be perfectly covered. Automatic and intelligent sampling and

test case generation is required. This also explains why fuzz testing is so ef-

fective in finding vulnerabilities where humans have failed to spot them: ma-

chine-generated ”fuzz”, or ”crap” is able to explore much wider amount of

testing paths than mere manual intervention.

Agile Expert C had experience from being involved in developing automated

security tests for several Agile companies. In one instance the customer had a

mature unit- and systems testing environment. After performing a technical

penetration test C discovered software data input validation vulnerabilitites

that they did not have test cases for. After informing the customer about the

vulnerabilities they soon developed new test cases for those vulnerabilities,

fixed the problems in the code and the new test cases passed after that. In

our experience this is the usual approach to security testing: after finding a

problem, Agile developers retroactively develop a few test cases until the

tests pass. Unit testing is the usual way for implementing the automated

tests.

In another instance, Expert C’s customer who considers security in high regard

was performing automated security tests with several different methodolo-

gies: “They did unit testing of web application functionality via a tool that au-

 90

tomated browser functions. Misuse cases were automated by using python

scripting. And they used some internally developed fuzzers to test the robust-

ness of their code. But they didn’t use automated security scanners in their

testing.” This case is indicative of proactive approach to software security

testing. They did not rely on just fixing the problems but used several differ-

ent approaches to proactively test for security flaws. They could have done

even better by using automated security scanners in their security test auto-

mation.

Our experience from the fields of vulnerability testing, penetration testing,

fuzzing and static code analysis is that most companies are usually unable to

perform these activities on their own. Usually they decide to obtain external

specialist services instead of performing these actions themselves. Expert C

summarized his experiences from several instances: “According to my obser-

vations, most organizations don’t do security testing at the time of software

development. They do it when development has been done. It is too late to

do the testing when the development is finished as in waterfall model.“

In some instances, we have been involved in all stages of the software devel-

opment life cycle with Silverskin’s customers. In those instances our security

testing at the time of deployment has shown that software is designed and

implemented to be much more secure and resilient than in average. (Silver-

skin, 2012)

7.3.6 Delivery Phase

At the delivery phase of the Agile software project, it is important that the

customer comprehends the risks of the current implementation prior to de-

ployment. Therefore a formal acceptance should occur. It is noteworthy that

this acceptance is closely related to formal customer acceptance of the appli-

cation security architecture. Ideally there should not be discrepancies be-

tween the accepted security architecture and its implementation at the time

 91

of delivery. However, the customer may have already made risk decisions at

the time of architecture design that cannot be easily changed at the time of

delivery. Agile Expert B explained that if customers ”…choose to amputate

their own leg they will be angry at the seller of the chainsaw.”

According to Asthana & al. (2012) Agile uses sprint cycles to track progress,

and consequently it is necessary to use the sprint backlog for tracking unim-

plemented security issues at the end of each sprint. Undone security work

should go back to the backlog. This ensures that related risks can be tracked

and communicated to the customer. As each large product release usually

consists of various sprints, a release may include multiple known risks and is-

sues. Any risk that may have impact on business objectives of the product

owner or the customer must be approved prior to release. Asthana & al. also

propose that if remaining residual risks cannot be approved by the PO or the

customer, the code cannot be released. The only viable option in this case

would be to add security related tasks to the backlog to mitigate those risks.

Another benefit from well working sprint / product backlog management is

that all security related features, risks and issues are documented in the

backlog. This enables creation of security related documentation during the

development instead of creating the documentation externally outside of de-

velopment. As opposed to waterfall model, the security documentation in Ag-

ile is usually integrated into the backlog items instead of separate documents.

Hence a security compliance assessment can be performed by comparison of

the application security architecture against the implemented security items

on the backlog. If the customer desires, the product owner could create a

backlog item that requires that such internal review is performed and its re-

sults are documented and handed over to the customer. This would provide

proof that the customer security requirements are included in the security ar-

chitecture and implemented in the software.

Sometimes security risks are not acceptable by the paying customer. Agile ex-

pert C was involved in a project that failed: “The customer had audited their

 92

software at the time of delivery and discovered a load of vulnerabilities. This

happened a week prior to go live -date. In fact, several projects from the

same organization always seem to follow the same formula. Testing too late

has always led to delays in go live -dates. The absolutely worst case was when

the customer had to re-audit the software so many times that they ran out of

budget and had to trash the software project. They never went live with that

one.” This worst-case instance is an example from a case where the residual

risk was not clearly acceptable by the customer. They rather trashed the pro-

ject than accepted bad level of security in their product.

8 The Agile Security Model

This chapter introduces the holistic Agile Security Model (figure 15):

1. The structure of the model is based on generic phases of Agile software

development process. The development cycle describes the iterative

nature of Agile development (iteration in the figure 15).

2. Applicable control mechanisms and their benefits are attached to each

phase for each process. Note: since Agile development often proceeds

in incremental iterations, and its phases are not strictly linear, the se-

curity mechanisms could be implemented similarly as well. For exam-

ple, threat analysis could be initially performed early in the SDLC and

reviewed during each sprint, or when important security-related sprint

backlog items are implemented.

3. The model offers guidance and proposes practicable tools and methods

for all phases of Agile software development from inception to delivery

phase of the project.

4. The model greatly relies on mature level of adoption of endogenous

control mechanisms in Agile Methods. This way security is adaptable to

rapid changes in business environment because it is directed by the in-

cremental Agile development process instead of a rigid pre-determined

set of rules.

 93

Figure 15: The Agile Security Model

 94

9 Conclusions

The main goal of this research was to construct an Agile Security Model that

would be universally applicable in most organizations using Agile Methods.

The construction of the security model was a 2-year effort that involved work-

ing in Silverskin Information Security with several customer projects. We were

able to utilize basic theory of Agile software development in real-life cases

and tested parts of the security model on them. Finally, a holistic security

model was created that addressed the most important security mechanisms

that we believe to be critical for developing secure software. The model’s

closest relative is the Agile SDLC from Microsoft (2009). The difference be-

tween the two is that Microsoft’s model proposes a wide variety of developer

tasks to be finished at the end of each sprint (or bucket, as Microsoft calls

their development cycles). In contrast our model supposes that these tasks

are driven by business demands and they should be taken to backlog as devel-

opment tasks just like all other tasks.

Our observation from the real world is that organizations have implemented

some parts of the mechanisms in the security model while excluding some

others. Failing to implement some of the critical mechanisms has proven to

create software vulnerabilities and security problems. Those problems come

in various degrees. In some instances the problems manifest themselves in the

form of vulnerabilities in the applications, and in other we have observed that

the problems arise from failure in business–level requirements that may ruin

the whole software project. The research by WASC (2008), Silverskin (2012)

and Ponemon Institute (2013) have shown that inadequate development prac-

tices can lead to vulnerable software. Our Agile Security Model has been test-

ed in few real-life cases and resulted to very secure outcomes from software

development. The software projects that performed their development in ac-

cordance with the model did extremely well when final penetration testing

was performed against the applications.

 95

Therefore, the efficient control of software security in Agile requires that all

critical components in the software development process are taken into con-

sideration. Failure to do so will most likely lead to security problems. Our Ag-

ile Security Model approaches the Agile software security from a holistic per-

spective and addresses most of these problems. The model should be applica-

ble to most organizations in Agile software development business, and should

not burden the developers with ineffective security tasks that do not make

sense to them. The model can be applied by applying parts of it to the soft-

ware development lifecycle based on the level of required formalism and

amount of desired security. As opposed to many other models (Microsoft, Cis-

co), the model does not expect the organization to implement every security

mechanism, nor does it skip addressing the process view of the development

(OpenSAMM).

We have also gained business benefits from the development and application

of the model in real world customer interactions at Silverskin. The model has

increased our knowledge about the topic, and provided us with a framework

that we can re-use in the future interactions. We urge the security community

and the organizations in the Agile development business to test the model in

practice and develop it further to more thoroughly serve the goal of creating

secure software.

9.1 Reflection About the Success of the Research

According to YAMK (Method forum of Universities of Applied Sciences), there

are several criteria for assessing successfulness of a research. The three main

factors to be assessed are:

1. Practical usefulness

2. Transferability and applicability of the results under various conditions

3. The novelty of the results

 96

The model has been tested in various customer engagements in Silverskin. Im-

plementation of the security mechanisms in the model has resulted to secure

outcomes from software development. This has resulted to new software se-

curity consultancy services. The CEO of the company commented: “the model

presented by this research enables us to develop new ways of offering the

services to our customers”. The model was tested with several different cus-

tomers and was reviewed by a team of Agile software architects in a software

security seminar on October 8th 2013. When questioned about the transfera-

bility the architects believed that the model could well be implemented on

their own organizations. The model uses a novel approach of using endoge-

nous process controls to include security in development instead of exoge-

nouse controls. This is a novel approach to formulating an entire Agile process

model. A close relative to this model is the Microsoft Agile SDLC.

Successulness of the project can be also assessed based on the following fac-

tors:

Research(goals((Assessment(
Does%the%research%focus%
on%a%problem%of%the%re2
al%world%that%can%be%
solved?%(Anttila,%2007)%

The%problem%of%insecure%software%is%real%as%demonstrat2
ed%by%WASC%(2008)%and%the%study%performed%by%Silver2
skin%(2012).%The%Agile%Methodologies%don’t%include%ade2
quate%security%mechanisms%(Beznosov,%2004).%

Did%the%solution%pro2
vide%a%totally%new%or%
improved%artefact?%
(Anttila,%2007)%

Our%Agile%Security%Model%primarily%uses%endogenous%
process%controls%instead%of%exogenouse%controls.%This%is%a%
novel%approach%to%formulating%an%entire%secure%Agile%
process%model.%A%close%relative%to%this%model%is%the%Mi2
crosoft%Agile%SDLC.%%

Was%the%problem%gen2
erally%deemed%to%be%
necessary%to%be%solved?%
(Anttila,%2007)%

Research%by%several%authors%like%Beznosov%(2004),%
Peeters%(2005),%Siponen,%Baskerville%&%Kuivalainen%
(2005)%has%indicated%that%Agile%Software%Development%
requires%integrating%security%practices%into%the%develop2
ment.%%

Is%the%artefact%useful%
and%can%it%be%reused%in%
other%instances%besides%
the%research%project%
itself?%(Anttila,%2007)%

The%Agile%Security%Model%was%constructed%so%that%it%can%
be%generally%applied%under%various%conditions.%It%is%be2
lieved%that%the%model%could%be%used%by%a%software%devel2
opment%company,%or%by%a%security%consultancy%company%
likewise.%

Is%the%artifact%con2
structed%so%that%it%can%
be%conceptualized%and%

The%Agile%Security%Model%is%an%artifact%based%on%general2
concepts%in%Agile%software%development%and%from%the%
security%industry.%%It%is%likely%that%anyone%with%basic%un2

 97

understood%in%general%
terms?%Is%the%conceptu2
alization%of%the%artefact%
understandable?%
(Anttila,%2007)%

derstanding%from%these%fields%of%business%would%be%able%
to%undestand%and%use%the%model.%

Has%the%artefact%been%
tested%in%practice,%and%
did%the%solution%result%
to%improved%results?%
(Anttila,%2007)%

We%tested%the%model%with%several%organizations%who%use%
Agile%development%methods.%Those%organizations%who%
invested%more%effort%on%security%fared%better%when%their%
software%was%audited%prior%to%deployment%than%those%
who%had%not%integrated%security%activities%into%their%de2
velopment%processes.%

Table 19: Assessment of the successfulness of the research.

In summary, the research project has been a success. We have gained busi-

ness benefit from the research and learned as an organization to improve our

services. The model provides a novel approach for secure software develop-

ment, and can be used generally in many kinds of organizations. However,

more empirical testing work can always be executed for fine-tuning and de-

veloping the model further. In principle, any model can never be quite per-

fect since all models are approximations of the phenomena in the real world.

The following table summarizes the goals and results of the research:

 98

Sources

Agile Manifesto. Available online at http://www.agilemanifesto.org

Anttila, P. 2007. Realistinen evaluaatio ja tuloksellinen kehittämistyö. Hami-
na, Akatiimi

Asthana, V., Tarandach, I., O’Donoghue, N., Sullivan, B., & Saario, M. 2012.
Practical Security Stories and Security Tasks for Agile Development Environ-
ments. SAFECode, Software Assurance Forum for Excellence in Code.
http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pd
f

Baskerville, R. & Siponen, M. 2002. An information security meta-policy for
emergent organizations. Published in Logistics Information Management vol.
15. Available in http://www.emeraldinsight.com/0957-6053.htm

Beznosov, K & Kruchten, P. 2004-2006. Towards Agile Security Assurance
(presentation slides). Laboratory of education and research in secure systems
engineering. University of British Columbia. http://lersse-
dl.ece.ubc.ca/record/117/files/117.pdf

Beznosov, K. & Kruchten, P. 2004. Towards Agile Security Assurance. Proceed-
ings of The New Security Paradigms Workshop, White Point Beach Resort, No-
va Scotia, 20-23 September 2004.
http://www.nspw.org/papers/2004/nspw2004-beznosov.pdf

Beznosov, K. 2003. Extreme security engineering: on employing xp practices
to achieve "good enough security" without defining it. In First ACM Workshop
on Business Driven Security Engineering (BizSec), Faiffax, VA, USA. Electrical
and Computer Engineering University of British Columbia. http://lersse-
dl.ece.ubc.ca/record/43/files/43.pdf

Beznosov, K., Boden, M., Boström, G., Kruchten, P. & Wäyrynen, J. 2006. Ex-
tending XP practices to Support Security Requirements Engineering. SESS’06,
May 20–21, 2006, Shanghai, China. http://www.irisa.fr/lande/lande/icse-
proceedings/sess/p11.pdf

Baskerville, R. 2004. Agile security for information warfare: a call for re-
search. Georgia State University, 35 Broad Street NW, Atlanta, Georgia 30302,
USA

Binder, R. V. 2004. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley publishing. ISBN 0201809389.

Boehm, B.W. 1983. Software Engineering Economics. Software Information
Systems Division, TRW Defense Systems Group, CA, USA. Available online at:

 99

http://csse.usc.edu/csse/TECHRPTS/1984/usccse84-500/usccse84-500.pdf

CIO Magazine. 2004. 100 most agile companies honored. Available online at:
http://www.cio.com/article/368313/100_Most_Agile_Companies_Honored

Crnkovic, G.D. 2010. Constructive Research and Info-Computational
Knowledge Generation. School of Innovation, Design and Engineering, Com-
puter Science Laboratory, Mälardalen University, Sweden. Available online at
http://www.springerlink.com

Cisco Secure Development Lifecycle. Available in:
http://www.cisco.com/web/about/security/cspo/csdl/index.html

Cunningham, W. 1992. The WyCash Portfolio Management System. Available
online at http://c2.com/doc/oopsla92.html

De Lucia, A., Ferrucci, F. & Tortora, G. 2008. Emerging Methods, Technolo-
gies, and Process Management in Software Engineering. Wiley, Hoboken, NJ,
USA. pISBN: 9780470085714

Dhalla, R. 2009. Reputational risk: implications for organizational strategy.
Department of Business, College of Management and Economics. University of
Guelph, Ontario Canada.

École Polytechnique de Montréal. Unified Process for EDUcation Glossary.
http://www.upedu.org/process/glossary.htm

Financial Services Roundtable. 2012. BITS Software Assurance Framework.
Washington DC, USA. www.bits.org

Firesmith, D. G. 2003. Common Concepts Underlying Safety, Security, and
Survivability Engineering (CMU/SEI-2003-TN-033). Software Engineering Insti-
tute, Carnegie Mellon University.
http://www.sei.cmu.edu/library/abstracts/reports/03tn033.cfm

Hernan, S., Lambert S., Ostwald T., & Shostack A. 2006. Uncover Security De-
sign Flaws Using The STRIDE Approach. MSDN Library.
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

Layton, M. C. 2012. Agile Project Management for Dummies: What is an Agile
sprint backlog? Excerpt available from http://www.dummies.com/how-
to/content/what-is-an-agile-sprint-backlog.html

Lukka Kari. 2001. Konstruktiivinen tutkimusote. Luettu 28.1.2011.
www.metodix.com

Malone T.W. & Crowston K., 1990. What is Coordination Theory and How Can
It Help Design Cooperative Work Systems. ACM conference on Computer sup-
ported cooperative work, Los Angeles, CA, USA.

 100

Malone T.W. & Crowston K., 1994. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, Vol. 26, No. 1. Available online at
http://www.cs.unicam.it/merelli/Calcolo/malone.pdf

Mead, N. R., Hough E. D. & Stehney, T. R. II. 2005. Security Quality Require-
ments Engineering (SQUARE) Methodology. CMU/SEI-2005-TR-009. Engineering
Institute, Carnegie Mellon University.

Mead, N.R. 2010. Security Requirements Reusability and the SQUARE Method-
ology. CMU/SEI-2010-TN-027. Engineering Institute, Carnegie Mellon Universi-
ty.

Microsoft. 2005. The STRIDE Threat Model. MSDN Library.
http://msdn.microsoft.com/en-us/library/ee823878(CS.20).aspx (2005).

Microsoft Corporation. 2009. Security Development Lifecycle for Agile Devel-
opment, Version 1.0. Available at
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx and
www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-
2010-Sullivan-SDL-Agile-wp.pdf

MITRE Corporation. Common Attack Pattern Enumeration and Classification
(CAPEC), Community Knowledge Resource for Building Secure Software,
CAPEC-1000: Mechanism of Attack. Available in:
http://capec.mitre.org/data/graphs/1000.html#Definition

Noopur Davis. 2005. Secure Software Development Life Cycle Processes: A
Technology Scouting Report (CMU/SEI-2005-TN-024). Software Engineering In-
stitute, Carnegie Mellon University

OpenSAMM. 2013. Software Assurance Maturity Model. Available online at
http://www.opensamm.org/

Pauli, J. & Xu, D. 2004. Misuse Case-Based Design and Analysis of Secure Soft-
ware Architecture. Department of Computer Science North Dakota State Uni-
versity. Available in electronic format in:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.4188&rep=rep
1&type=pdf

Peeters J. 2005. Agile Security Requirements Engineering. Presented at the
Symposium on Requirements Engineering for Information Security.
http://secappdev.org/handouts/2008/abuser%20stories.pdf

Ponemon Institute & Security Innovation. 2013. The state of application secu-
rity, a research study.
https://www.securityinnovation.com/uploads/ponemon-state-of-application-
security-maturity.pdf

 101

Saleh, K. A. 2009. Software Engineering. J. Ross Publishing Inc. Ft. Lauder-
dale, FL, USA. eISBN: 9781604276749

Scrum Alliance. 2007. Glossary of scrum terms.
http://www.scrumalliance.org/community/articles/2007/march/glossary-of-
scrum-terms#1125

Siddhu, D.P. & Leung, T-K. 1989. Formal methods for protocol testing: a de-
tailed study. IEEE Transactions on Software Engineering (413-426).

Sillitti, A. & Succi, G. 2008. Foundations of Agile Methods. Free University of
Bolzano-Bozen, Italy.

SANS Institute. 2013. Advanced Penetration Testing, Exploits and Ethical
Hacking: Python, Scapy and Fuzzing. Security 660: Course study book 3. SANS
Institute, USA.

Silverskin Information Security LLC. 2012. Causes and effects of web applica-
tion security vulnerabilities. A research paper that combines results of 130
web application security audits.

Sindre, G. & Opdahl A.L. 2002. Eliciting security requirements with misuse
cases. Springer-Verlag London Limited 2004. Available online at
http://perceval.gannon.edu/xu001/teaching/shared/re_eng/termpaper/readi
ngList/ElicitingSecReq_MisuseCases.pdf

Siponen, M., Baskerville, R. & Kuivalainen, T. 2005. Integrating Security into
Agile Development Methods. University of Oulu & Georgia State University.

Strode, D. 2006. Agile methods: a comparative analysis. Faculty of Business
and Information Technology. Whitireia Community Polytechnic. Porirua, New
Zealand

Särs, C. 2010. Agile Security: The Devil’s Advocate. F-secure. Online presenta-
tion, available from
http://confluence.agilefinland.com/download/attachments/6848543/AgileSe
curityDevilsAdvo-
cate_20100406.pdf?version=2&modificationDate=1286273115000

Standish Group. 1994. CHAOS Report. Available online at:
http://www.standishgroup.com/sample_research/chaos_1994_1.php

The Free Dictionary. The definition of Information Security. Available online
at: http://www.thefreedictionary.com/information+security

Threat Classification Development View. 2008.
http://projects.webappsec.org/w/page/13246969/Threat%20Classification%2
0Development%20View

 102

University of Virginia, Center for Risk Management for Engineering Systems.
Web page, ”Risk Defined”. http://www.sys.virginia.edu/risk/riskdefined.html

Valtionhallinnon tietoturvallisuuden johtoryhmä. 2013. VAHTI 1/2013 sovel-
luskehityksen tietoturvaohje. Valtionvarainministeriö. Suomen Yliopistopaino
Oy. ISBN 978-952-251-418-9

Virtanen Aila 2006. Konstruktiivinen tutkimusote. Miten koulutus ja elinkei-
noela ̈ma ̈n odotukset kohtaavat ammattikorkeakoulun opinna ̈ytetyo ̈ssa ̈. Am-
mattikasvatuksen aikakauskirja 1/2006, 46-52.

Vähä-Sipilä, A. 2011. Software security in Agile product management.
http://www.fokkusu.fi/agile-security/

WASC Security Glossary. http://www.webappsec.org/projects/glossary/

WASC Threat Classification v2.0. 2011.
http://projects.webappsec.org/w/page/13246978/Threat%20Classification

WASC Web Application Security Statistics. 2008.
http://projects.webappsec.org/w/page/13246989/Web%20Application%20Sec
urity%20Statistics

WASC Web Hacking Incident Database.
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-
Database

Ylemmän AMK:n metodifoorumi (YAMK). Kehittämishankkeen onnistumisen
kriteerit.
http://www2.amk.fi/digma.fi/www.amk.fi/opintojaksot/0709019/119346389
0749/1193464185783/1194413827887/1194415395853.html

Ylemmän AMK:n metodifoorumi (YAMK). Tulosten ja työn hyödynnettävyys.
http://www2.amk.fi/digma.fi/www.amk.fi/opintojaksot/0709019/119346389
0749/1193464185783/1194413827887/1194415412494.html

 103

Figures..

Figure 1: Critical findings per audit category (Silverskin, 2012) 21%
Figure 2: Distribution of findings in audit categories per origin (Silverskin,
2012) ... 22%
Figure 3: Outcomes of software vulnerabilities (WASC web hacking incident
database). ... 24%
Figure 4: Constituents of the constructed Agile security model. 30%
Figure 5: Construction phases of the Agile Security Model 31%
Figure 6: Traditional waterfall software development model (Sillitti & Succi,
2008) ... 48%
Figure 7: Iterative Agile software development process model (Sillitti & Succi,
2008) ... 49%
Figure 8: Agile pivot when business targets change (Vähä-Sipilä, 2011) 50%
Figure 9: Agile product management funnel (Vähä-Sipilä, 2011) 52%
Figure 10: Problem-based construction process for the Agile Security Model.53%
Figure 11: Structure of a user story (De Lucia & al. 2008) 72%
Figure 12: Relation of positive and negative security features. 75%
Figure 13: Misuse based threat modeling (Pauli & Xu, 2004) 76%
Figure 14: A dynamic view of application security architecture. 83%
Figure 15: The Agile Security Model .. 93%
Figure 16: Cisco SDLC model (Cisco) ... 105%
Figure 17: Microsoft SDLC, linear presentation (Microsoft) 106%
Figure 18: Microsoft Agile SDLC, iterative presentation (Microsoft, 2009) 106%
Figure 19: OpenSAMM Software Assurance Maturity Model (OpenSAMM) ... 106%
Figure 20: Information model for security engineering (Firesmith, 2003, p. 33)
 ... 111%

 104

Tables

Table 1: Main causes of software development project failure (Standish
Group, 1994) .. 14%
Table 2: Compatibility analysis of software assurance methods (Beznosov &
Kruchten, 2004). ... 18%
Table 3: WASC view on development of threat classification. 23%
Table 4: Silverskin's undertakings where the constructed security model was
tested. ... 31%
Table 5: Literature analysis technique. .. 34%
Table 6: Comparison of two different software development literature
sources. ... 36%
Table 7: Analysis of internal and external process controls. 44%
Table 8: Exogenous and endogenous controls in extreme programming (Sillitti
& Succi, 2008) .. 46%
Table 9: Sequential, shared resource and common output controls (Malone &
Crawston, 1990) .. 47%
Table 10: Core principles, problems and possible impacts in Agile software
development. ... 54%
Table 11: Critical success factors in secure software development (N=16
sources from literature) .. 58%
Table 12: Analysis #1 of perceived problems and proposed control mechanisms
for Agile. .. 61%
Table 13: Analysis #2 of perceived problems and proposed control mechanisms
for Agile. .. 62%
Table 14: Analysis #3 of perceived problems and proposed control mechanisms
for Agile ... 63%
Table 15: Analysis #4 of perceived problems and proposed control mechanisms
for Agile. .. 64%
Table 16: Analysis #5 of perceived problems and proposed control mechanisms
for Agile. .. 65%
Table 17: Example of a non-functional security requirement (CAPEC-1000)74%
Table 18: Example of decomposing attacker stories to backlog. 79%
Table 20: Assessment of the successfulness of the research. 97%

 105

Attachment 1. Related Security Models

The following software development security lifecycle (SDLC) models are re-

lated to the Agile Security Model presented in this research. It is noteworthy

that most of the models are linear (Figures 16 & 17) and resemble the water-

fall ideology, although their constituents are similar to the ones in our Agile

Security Model. Microsoft has also created an iterative representation of their

agile development model (figure 18). Microsoft’s model is truly and attempt

to integrate security into the Agile. However, it mostly imposes several exog-

enous controls to the sprints, ’buckets’ and ’one-time activities’ in the devel-

opment process (e.g. each sprint includes mandatory security activities). The

shortcoming is that all of the activities in this model may not be applicable to

all kinds of software development organizations, especially those who have

fewer resources in their use than Microsoft does. OpenSAMM, on the other

hand does not tie it’s SDL model to software development process models at

all, but rather proposes controls independently from the development meth-

odology. Therefore, it is possible that all of the controls proposed in Open-

SAMM may not be compatible with the different development process models,

or they may seem external to the actual development work.

Figure 16: Cisco SDLC model (Cisco)

 106

Figure 17: Microsoft SDLC, linear presentation (Microsoft)

Figure 18: Microsoft Agile SDLC, iterative presentation (Microsoft, 2009)

Figure 19: OpenSAMM Software Assurance Maturity Model (OpenSAMM)

 107

Attachment 2. Other Related Concepts

Agile Manifesto: the Agile Manifesto summarizes the common philosophy and

approach shared by of all the Agile development Methods.

Application Development: software development (also known as application

development, software design, designing software, software application de-

velopment, enterprise application development, or platform development) is

the development of a software product (Wikipedia).

Authentication: the process of verifying the identity or location of a user,

service or application. (WASC Glossary)

Assurance: assurance in software engineering is defined as the level of confi-

dence that software does not contain vulnerabilities and that it functions in

the intended manner.

Brute Force: is an automated iterative process that aims to find the “secret”

protecting a system, for example a password or a secret encryption key.

(WASC Glossary)

Buffer Overflow: is an exploitation technique that alters the flow of an appli-

cation by overwriting parts of memory. Specifically this is accomplished by

first over-filling and overwriting the buffers in memory and then overwriting

the return pointer to the memory stack. This allows running of arbitrary mali-

cious code. (WASC Glossary)

Cookie: small amount of data sent by the web server, to a web client, which

can be stored and retrieved at a later time. Typically cookies are used to

keep track of a user’s state (e.g. web application sessions) as they traverse a

web site. (WASC Glossary)

 108

Control: is, in the context of security engineering, synonymous to Security

Mechanism. In software development context, a control is a means to control

the flow of the development process via some kind of a shared common re-

source (Malone & Crowston, 1990).

Cross-Site Scripting (XSS): an attack technique that forces a web site to echo

client-supplied data, which executes in a user’s web browser. This allows the

attacker to have access to all web browser content of the victim (cookies, his-

tory, application version, etc). In worst scenario, the attacker may be able to

stage further attacks against the victim and elevate his privileges to total sys-

tem-level compromise. (WASC Glossary)

Denial of Service: or Distributed Denial of Service (DoS or DDoS) are attack

techniques that consume the resources (CPU, memory, network bandwidth /

etc) of the target. The intent is to render normal use of the target impossible.

(WASC Glossary)

Fuzzing: is a software testing technique that involves providing invalid, unex-

pected, or random data to the inputs of a computer program. (Wikipedia).

Information security: the protection of information and information systems

against unauthorized access or modification of information, whether in stor-

age, processing, or transit, and against denial of service to authorized users

(The free dictionary).

Risk: generally speaking risk is usually defined as a measure of the probabil-

ity and severity of its adverse effects. Various definitions of risk are in exist-

ence depending on the type of risk. For instance in security engineering, risk

is the result of a threat with adverse effects to a vulnerable system (Universi-

ty of Virginia).

Risk appetite: the level of risk that an organization is prepared to accept, be-

fore action is deemed necessary to reduce it (Wikipedia).

 109

SQL Injection: an attack technique used to exploit web sites by altering

backend SQL statements through manipulating application input. (WASC Glos-

sary)

Technical debt: according to Vähä-Sipilä, “…Not addressing quality issues

right away is known as technical debt. Technical debt borrows time from the

future: some corners can be cut now, but someone should spend time later

making sure those things are mopped up later. There are various forms of

technical debt. Security debt is very close to quality debt, which can be

caused … by lack of testing due to a business owner ordering a premature de-

livery. (Vähä-Sipilä, 2011 and Cunningham, W. 1992)

Security Development Lifecycle (SDL): “…is a software development process

that helps developers build more secure software and address security com-

pliance requirements while reducing development cost” (Microsoft).

Software requirement: a specification of an externally observable behavior

of the system; for example inputs to the system, outputs from the system,

functions of the system, attributes of the system, or attributes of the system

environment. (UPEDU)

Security testing: is a way to identify security–related errors in the software.

Generally speaking there are three security testing approaches: black box,

white box and grey box. In black box approach, nothing is known about the

tested application prior to testing. In white box, all information about the

tested application is made available. The grey box approach is the mixture of

the two where some features of the target are known, but not everything.

(Saleh, 2009).

Security goal: Is a statement that explains the importance of reaching a tar-

get level of security (Firesmith, 2003).

 110

Static code analysis: is the analysis of computer software that is performed

without actually executing programs (Wikipedia).

Threat: is the intent and capability to adversely affect (cause harm or dam-

age to) the system by adversely changing its states (University of Virginia).

User story: (sometimes referred as Use Case) is a short description in common

language that explains what a user needs to do as part of his job. User stories

are used in Agile software development as the basis for defining the function-

alities the developed system needs to provide (Vähä-Sipilä, 2011)

Vulnerability: is the manifestation of the inherent states of the system (e.g.,

physical, technical, organizational, cultural) that can be exploited to adverse-

ly affect (cause harm or damage to) that system (University of Virginia).

Waterfall model: “…is a sequential design process, often used in software de-

velopment processes, in which progress is seen as flowing steadily downwards

(like a waterfall) through the phases of Conception, Initiation, Analysis, De-

sign, Construction, Testing, Production/Implementation, and Maintenance”

(Wikipedia).

Web Application: a software application, executed by a web server, which

responds to dynamic web page requests over HTTP. (WASC Glossary)

Web Application Vulnerability Scanner: An automated security program that

searches for software vulnerabilities within web applications. (WASC Glossary)

 111

Attachment 3. Information Model of Security Engineering

The following conceptual information model for security engineering

(Firestmith, 2003) illustrates the interrelations of several of the security engi-

neering concepts used in this research (Figure 19).

Figure 20: Information model for security engineering (Firesmith, 2003, p. 33)

