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This thesis includes some technical terminology. The meaning of each term is de-

scribed in the list below. 

 
Bug When something in the game is not working as designed or intended. 
 
Feature A gameplay element, enabling some in-game functionality for the player. 
 
Fix The reparation of a bug is called a fix. 
 
Green light Project passes a certain test-plan or quality check. 
 
Hack A temporary fix or feature on code that is usually made in a rush because  

a long term solution would take too long to implement at that moment. 
 
Hotfix A very quick fix that is a must-do, this term is usually referred to when 

deploying a quick fix to live environment that is already used by a client. 
 
No-go No-go is a project, which is not seen as worthwhile and will be dropped. 
 
Red light Project does not pass a certain test-plan or quality check. 
 
 
These terms are used throughout the thesis as they represent some of the core termi-
nology in the software development field of study.
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1 Introduction 

 

Developing a game differs a lot from developing other information technology software. 

While the gaming industry has roughly the same production stages as other software: 

concept, prototyping, preproduction, production and maintenance, the iteration of these 

stages functions a bit differently for gaming. The main reason for this is because the 

game has to feel fun, addictive, visually appealing, rewarding and challenging in the 

right scale. While keeping these goals in mind the game also has to fill the same re-

quirements as any software, it must run stable and bug free. While the concept of run-

ning stable is relatively straightforward, it is hard to measure factors such as fun. This 

is why the prototyping stage is such a crucial part of game development.  

 

The game development usually starts from an idea, a concept that somebody thought 

might make a fun game. During the prototyping stage, this concept will be made into a 

game with most of the core functionality present, to test and see if it actually is fun in 

reality. The common verdict is that something feels a bit off, the fun is not there, the 

goal of the game is not clear and a lot of other details just do not work. This is when the 

development team starts to think how to improve, or even completely change these 

parts of the game and create a new iteration of the game. This iteration process is re-

cursively completed until the development team feels comfortable that the game is fun, 

the game works and the core gameplay is good.  

 

Rovio Entertainment Ltd produced a game prototype for a project called Breaker. The 

development of the Breaker is followed and referenced in the confidential appendices 

of the thesis.  

 

The purpose of the thesis is to find the essence of game prototyping, analyse different 

project management methods, programming methods and design decisions that can be 

used and also the ones that should be avoided. The Breaker will be a real life example 

that will showcase many of these topics in action. After reading the thesis, the reader 

should have comprehensive understanding of game prototype development. 

 

The study is structured so that first it goes through the general production flow of the 

game. After that the project management of the game product is opened in detail. Fol-

lowed by an explanation of designer work and how a designer works specifically in a 
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prototype stage game. The last topic is the vastest, explaining programming work and 

necessary tools required for it and discovering the choice between a hack and quality 

code. The study finishes up in discussion and conclusions, which highlight some of the 

author’s opinions on these topics and sum up, what has been learned throughout the 

study. The thesis also contains confidential appendices, which go through and analyse 

the development cycle of the Breaker prototype.  

 

2 Game Development 

 

The purpose of this section is to give a general idea of how each production stage of 

game development cycle works. Something to keep in mind while reading this is that 

these production stages are somewhat loosely defined and some people would argue 

differently where to draw a line between preproduction and production, or whether pro-

totyping is part of the preproduction, or if release candidate is the same thing as code 

release or not. 

2.1 Concept 

 

Concept is the basic idea for the game. A good concept creates a good base for a 

good game. The concept stage is very loosely defined as sometimes the concept can 

only be a single picture or a phrase. Usually however the concept will already include 

some design, some pictures and description of the game as the creator of the concept 

visualizes it. It is very important that the concept is intriguing, but it is rarely the concept 

that is faulty if the game does not succeed.  See the Breaker project concept in Appen-

dix 1 (confidential). 

2.2 Prototyping 

 

The prototyping phase is all about taking the concept and making a game around it. 

This phase of the game development is absolutely crucial for the success of the game. 

The game does not need to be completed, but the main features should have been 

founded. After the prototype the goal is not to have a final game, but the player should 

easily be able to identify what is fun in this game and what is the goal of the game. The 

decision between proceeding with the project or a no-go has to be made at the end of 

the prototype phase. See what kind of prototype goals were set for Breaker in Appen-

dix 2 (confidential). 
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2.3 Preproduction 

 

This is the phase where the team is supposed to clean up after the prototype. Not only 

the code but also some parts of the design are usually in a very chaotic state after pro-

totyping. Preproduction should be the time to clean things up and prepare for the pro-

duction phase. 

2.4 Production 

 

In the production phase it is still possible to add minor features to the game, as well as 

polishing the major ones. Game polish will take most of the time along with bug fixing. 

There are several important milestones in the production phase: alpha, beta, code re-

lease / release candidate, gold master. When the project is approved to move to alpha, 

it is assumed that all the features are there in the game already, it is still acceptable to 

do minor polish on those but even the minor features should already exist at this point. 

Assets on the other hand do not need to be finished for alpha. Beta is the next mile-

stone after alpha, in beta the game should be completely ready except for bugs. After 

entering beta, it is assumed that the only thing left to do is to fix the bugs, that means 

all the logic, features, assets and polishing should have been done by now. Code re-

lease or a release candidate is a build of the game where the team feels that the game 

is ready to be released. The quality assurance team tests the release candidate ac-

cording to a test-plan and either green lights or red lights it. Usually it takes several 

candidate builds before it gets green lighted. Gold master is the final milestone, this is 

the final build where everything is done, tested and accepted. Accepted gold master is 

basically the final game. 

2.5 Maintenance 

 

After the game is live and masses of people start to play it, new bugs are usually found. 

Part of the maintenance job is to hot-fix the most critical bugs, the minor ones are more 

likely to be addressed in the next update. There are basically two kinds of games that 

have long lifetime: the type that gets frequently updated with new features to keep 

players interested and the type which has an endless game cycle. Obviously the latter 

requires less maintenance work and is usually preferred for a lot of games. However, 

most games just do not work with this kind of design and that is why the development 

team will usually start to make an update for the game after gold master has been 
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achieved. Updating of the game usually is continued for as long as the company man-

agement sees it profitable. 

 

Game development consists of the five main phases described above. The first phase 

is the concept which is the basic idea for the game. The second phase is prototyping 

where the development team tries to find the fun part of game. The third phase is pre-

production where the code and design are cleaned from prototype phase hacks. The 

fourth phase is production, which has four important milestones: alpha, beta, release 

candidate and gold master. In the production phase the game will be added with re-

maining features, polished and finished. The final phase is the maintenance where the 

development team will continue to make more content to the game as well as fix exist-

ing bugs. 

3 Prototype Project Management 

 

This chapter goes through the management part of the project. Paragraph 3.1 over-

sees what kind of a role is responsible for the task. After that, the study proceeds to 

see what kind of tools can be used and finally discusses the different management 

methods. 

3.1 General Role 

 

There is usually one person designated for project management. This position can 

have different names depending on the managing methods and company terminology. 

Some of the more known titles for this position are project manager, scrum master and 

most commonly in game industry, a producer. This position usually comes also with 

other responsibilities as well. The producer is not only the person who is in charge of 

the organization of the project, but also is responsible for the project. This means that 

the producer has the power and the responsibility to have the last say in every deci-

sion. The producer also takes care of the team, gets rid of other hindering problems 

and allows the development team focus completely on the project itself. Sometimes if 

the project is large the responsibility is split between the team management and the 

product responsibility. These positions in game development are each respectively 

called producer/project manager/scrum master and executive producer/product owner. 

During the prototype phase there will usually be times when uncertainty of suitable so-

lutions is in the air and the designer and programmer might turn to the producer for the 



5 

 

 

final word. For these cases it is vital that the producer knows just a little bit of both of 

these areas. 

3.2 Methods 

 

There are several popular project management methods, but the ones that have land-

ed most successfully for software development are scrum and waterfall. Scrum is ar-

guably the most common software development method. The idea in this method is 

simple, in a simplified example there are three kinds of people: product owner, scrum 

master and developers. Product owner is the customer who needs a certain kind of 

software or an executive producer who has responsibility of the product. Product owner 

will specify the requirements for the software and can also affect the decisions regard-

ing the order of developed features. The scrum master is the person who organizes the 

project for developers. The Scrum master works as a buffer between the team and 

everything else. Together with developers the scrum master will split the software to 

different features. This list of features is called the backlog. Implementation of the back-

log features will be split to smaller tasks, but usually at a later stage. In an optimal situ-

ation developers only need to worry about completing the tasks. One of the most im-

portant characteristic of the scrum development is that the tasks should not be de-

pendant of each other. This may be impossible to achieve at times but it is the ideal 

that should be chased. The work is done in sprints, where a sprint represents a short 

timeline usually between one week and one month. After each sprint the product 

should be in usable state. The sprint starts by deciding on sprint goals, what are the 

things the team wants to implement during this sprint. These will be divided to tasks if 

not done so yet and assigned to appropriate developers, who estimate the length of the 

tasks. The workload of the task is estimated in man-days of effort, for example 5 man-

days of effort can be 5 days of a single person working or 1 day of 5 people working. 

After the sprint plan has been made and the goals have been agreed on the team 

starts to work on the sprint. During the sprint no contact is usually kept with the product 

owner but the team will arrange frequent meetings to check each ones progress on 

their tasks. At the end of scrum sprints there is often a retrospective, where the team 

discuss what went well and what could have been improved, how to have better tack-

led problems they had hard time with and how can they avoid these problems in future. 

After several sprints by the team it is possible to estimate the team’s progress velocity 

which is basically the relation between the time estimated by the team for the tasks, 

and the time that it actually took them to complete the tasks. The velocity is a very use-
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ful piece of information for the scrum master as well as the company management. See 

Figure 1 below for a graphical presentation of the scrum system.  

 

Figure 1: Scrum model [Reference 2] 

 

As seen in Figure 1 the blue blocks compose the sprint backlog of which team will then 

take sprint tasks. The sprint duration in this figure is 30 days and a daily meeting is 

held every 24 hours. A functional product is always the end result of the sprint. 

 

The waterfall model implies that the tasks of the project are to be completed in certain 

order. Starting with specifying the requirements and followed by design, implementa-

tion, integration, testing, installation and ending with maintenance. The waterfall model 

works well in micro-cycles of game development. Micro-cycle in this case means indi-

vidual features instead of the overall process. A lot of software companies have given 

up totally on waterfall and moved to the scrum or other agile development system, but 

in games development waterfall still holds some ground.  
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See Figure 2, for a graphical presentation of a simplified waterfall model. 

 

 

 

Figure 2: Waterfall model [Reference 3] 

 

This figure is a slightly simplified version of the waterfall model discussed earlier, but 

the idea is the same. First the requirements are defined and after that design, followed 

by implementation, verification and maintenance. The important thing in the waterfall 

model is that the previous section is completed before moving to the next one. 

 

3.3 Tools 

 

There are a lot of tools available for all the different phases of development as well as 

different tools for different project parts. It is best to use as few tools as possible. This 
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does not mean one should avoid using project tools, it just means that one should try to 

centralize the project tools as much as possible. One of the reasons being, that it re-

duces error proneness. Also it makes the life of the developer a lot easier if one only 

needs to check one place for tasks or bugs. There are several tools for the job. The 

simplest one consists of a whiteboard and some post-it notes. One simply writes a task 

on a post-it, write each team members name on the whiteboard and assign the notes to 

the people designated to the task. There can also be a completed section where the 

notes will be moved after the developer feels that the task is done. This can be a quite 

effective tool in a small group and is usually associated to the scrum-management 

method. This classic scrum way of handling things comes with a lot of limitations, e.g. if 

the team consists of more than ten people, the whiteboard will run very rapidly out of 

space. See Appendix 3 (confidential) for project management tools and methods that 

were used in the Breaker. 

4 Game Design 

 

This section covers the role of the game designer and more specifically the designer’s 

work for the prototype stage. See the design flow and analysis on it for Breaker in Ap-

pendix 4 (confidential). 

4.1 General Role 

 

To put it briefly, the role of the game designer is to design the content and rules of the 

game. This is a very vast definition and divides into several major design roles such as 

content designer, mechanics designer, economy designer, monetization designer, 

storyline designer, user-interface designer and control designer to name a few. De-

pending on the size of the project these can be all done by one person, or be split into 

even smaller categories for several people per each design job. The position of the 

designer is very difficult in the way that designer position requires understanding of 

programming, producing, modelling, animating, arts and pretty much every area of the 

project. The designer should also be able to fluently communicate the features to the 

other developers, usually the best way is some kind of mock-up as otherwise the 

thought relies on the fact if the other person understood the description in the same 

way as the designer.  For example, trying to describe a graphical user-interface without 

drawing a mock-up will one hundred per cent be different from the original thought. The 

tools of the designer should be those that the designer feels fitting, usually including 
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drawing tools e.g. Adobe Photoshop. The design work requires a creative mind to think 

of intriguing ideas and a solid understanding of implementation mechanics to know, 

which features consume a lot of time to implement. The designer must also think about 

the player experience and keep the different features closely tied together. There have 

been a countless number of games where designers were too eager to put in too many 

different features, not polishing any of them or not tying any of them together. The fea-

tures not tied together often feel unrelated and might break the game into too many 

different directions. 

4.2 Prototype Design 

 

In the prototype phase the designer is usually already aware of the concept. This 

means spending some time to discuss with the concept creator and brainstorm with the 

development team for good ideas. The most important goal for the designer in the pro-

totype phase is to find the core gameplay. This is difficult even if the concept is good, 

because the core mechanic should be the thing that feels fun and brings the player 

back to game. A good way to start a research is by looking up some similarly themed 

games for references. Playing these games usually brings out a lot of new ideas as 

well as opinions on what feels bad or good in each of these games. It is very likely that 

the designer will come up with several ideas which one has to weight and think 

through. After one is set to an idea one has to clean into an understandable and clear 

version. With this being done the backlog should be created together with the devel-

opment team, producer and the product owner. After the core idea is waiting for imple-

mentation by other developers there is a lot of design still to be done regarding the us-

er-interface, balance and all the other issues, as well as polishing the core concept.  

 

5 Programming Game Prototype 

 

This section covers the role of the programmer, tools that can be considered for pro-

gramming prototypes and some decisions that the programmer needs to make. 

5.1 General Role 

 

Programmer is the muscle of the group, the person who brings the art and design to-

gether into a game. Besides from stating the obvious which is that the programmer 

writes all the game code, it is also the programmer’s responsibility to bring technical 
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perspective and limitations to the design discussions. For example a designer wants a 

cool new animation feature for a creature in the game. The programmer knows that it is 

not possible to put it in with the currently integrated animation system. It is the pro-

grammer’s duty to bring this point out and make an estimate on how long it would take 

to modify the animation system so that it could be used for the new animations. A pro-

grammer is also responsible for the quality of the code. The code should be solid, flexi-

ble and informative. Solid means that it is not easily broken in corner cases or at inte-

gration of other systems. Flexible means that the code is structured smartly in a way 

where it is easy to modify any of the implementation layers without having to rewrite the 

whole thing. Informative means that the code is very clear and packs the necessary 

information for other programmers to pick it up from where it is been left. This can be 

accomplished by writing comments but even more important than comments are smart-

ly named variables and smartly picked variable types. See Figure 3 for a bad example 

of naming and typing.  

 

 

Figure 3: Bad naming and types 

 

As we can see in the figure, due to bad naming and type of p the comments are used 

to fill in the missing information. 
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 See Figure 4 below for a better example in naming and types.  

 

 

Figure 4: Good naming and types 

 

Figure 4 explains all the same things without any comments using a type that tells that 

the variable is always positive and a variable name that already tells one what infor-

mation this variable contains. Writing the code as in Figure 4 can be called as self-

documenting code. One should write comments anytime the code is not understanda-

ble for someone else without them, but that just means that the code was not very 

clear. Comments are usually required mainly for complicated operations which may 

exceed normal coding expertise. Another quality code aspect is consistency. This is 

perhaps the most overlooked quality factor in the code. Consistent code is easy to 

read, easy to understand. See an example of no consistency in Figure 5 below. 

 

 

Figure 5: No consistency 

 

It can be seen in Figure 5 that the second assignation of variable s does not contain 

the space before the assignation, which it does in the first one. This is inconsistent. 
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See Figure 6 below for consistency. 

 

 

Figure 6: Consistent code 

 

Figure 6 has same number of spaces used and it is consistent. This may seem like a 

very minor detail to many but it is actually a rather big deal. For example imagine hav-

ing a global variable called g_worldScale which represents the scale of the world. The 

project at hand is big and has several hundred code files. It is known that in some cor-

ner case scenario a wrong value will slip into this variable. To find out what is wrong 

one wants to debug all the places where this variable is being changed. With consistent 

code one can count on the fact that these places can be found by searching for 

“g_worldScale =”. However if the code is not consistent and there is a different number 

of empty spaces or different kind of value passing methods to this variable, one will be 

in trouble trying to find all the places. 

 

There is usually a project lead programmer and in bigger companies even a company 

or a studio lead programmer. The project lead programmer is in charge of overall quali-

ty of the code in the project. Project lead programmer will review code from other pro-

grammers by request and is the first person to ask for advice when one is unsure of 

how to implement something. If there are disagreements on tech choices of the project, 

the lead programmer has a more powerful say in it than the other coders. The studio 

and company leads are respectively responsible of the code quality on studio and 

company level. See Appendix 5 (confidential), for a code analysis in project Breaker. 

5.2 Differences of Scripting and Programming 

 

Technically the difference is that scripts are interpreted and programs are executed. 

What this means in practical terms is that a program is compiled (or otherwise derived) 

and then run. The compiled program is in executable form which is considered not hu-

man readable. An actual program does not need another program to execute it. Scripts 

however are only interpreted from the actual programs and they need another program 
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to execute them. A script works independently or externally and can be disabled with-

out aborting the actual program. 

 

5.3 Programming Languages 

 

There is a countless number of different programming languages, yet only few of them 

are used for developing games. This chapter discusses introduces some of the gener-

ally more popular languages and group them up by categories. 

5.3.1 Easy and Effective 

 

This section concentrates on two languages: Java and C#. Both of these languages 

offer powerful tools to create content fast and relatively safe from human-errors. There 

are a lot of powerful functions and libraries existing and reduced accessibility to lower 

level functions. This makes it fast and less error-prone but also limits one to using the 

available features. While the functionalities are made by some real code wizards and 

are of highest quality, the more the features do and the less error risk they provide 

means that the more general they are. The more general something is the less feature 

specific optimization can be done. A good rule of thumb is that general functionality 

comes at the cost of performance. Same goes for eliminating programmer errors, if one 

makes automated garbage collection and limited pointer functionality, it comes at a 

cost as well. Programming a game is very performance driven so if one is afraid of 

making mistakes by playing with pointers and memory management, one should prob-

ably consider honing one’s programming skills on these areas over picking an easy 

language. The platform one is programming to weaves a great impact to the program-

ming language choice. Thus, when programming for an Android device, a Java driven 

platform, it does make some sense to pick Java as the programming language as well. 

This stands true only as long as the Android is the only target device. C# is often false-

ly thought of as a good performance language but it has actually only slightly better 

performance than Java. The good thing about C# is that there is a very powerful tool 

that utilizes it well called Unity, more about this tool will be discussed in Chapter 6.4.  
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5.3.2 Hard and Arduous 

 

As explained in the previous chapter, generality and already implemented functions 

reduce the chances to do specific optimizations. Does that mean that writing pure ma-

chine code would be the most effective? Yes, in theory. Writing only pure machine 

code would limit the people who can make a modern game that way to only a handful 

of programmers and even they might do some errors that could lead in worse perfor-

mance than by using existing functionalities that have been developed over time by the 

top programmers. Writing a game purely on machine code is possible, but very painful, 

very time consuming and very error prone.  

5.3.3 Happy Medium 

 

There exists a programming language that has very good performance, a lot of power-

ful functionalities and tolerable amount of error-proneness and that is C/C++. These 

are two different languages but often coupled together because C++ is according to the 

developer of the language Barne Stroustrup “a better version of C”. C++ is absolutely 

overwhelming in the game development industry and if one wants to find a game de-

velopment company that does not use it, one would probably have best luck looking for 

small start-up companies who only develop games for single mobile platform or web-

based technologies. If one looks purely at the language then C++ is the top contender.  

5.3.4 Scripting Languages 

 

There are several scripting languages to go by Python, Lua, JavaScript and Ruby just 

to name a few popular ones. They all are good in their purpose and one should choose 

the scripting language by deciding which one is easiest to integrate to the project and 

easiest for designers to write.  

5.4 Tools 

 

This is the area where a storm is emerging right now. A new tool called Unity is gaining 

more and more ground on the game development industry. This chapter breaks down 

the pros and cons of Unity development as well as go through other vital for program-

mer tools.  
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5.4.1 Unity 

 

Unity is not a typical programmer tool. It is closer to a designer tool. It breaks the way 

programmers usually do things as one is no longer a master of everything but rather 

use the super powerful Unity editor to create a scene and simply add scripts to the ob-

jects if one wants to provide them with special functionalities. Unity supports program-

ming in three languages C#, JavaScript and Boo. Once a programmer is familiar with 

Unity he can create a solid prototype even in a single day. The value in the develop-

ment speed is easy to see, not only that, but the graphics one can do with Unity are 

fairly impressive as well. See Figure 7 below for the graphical visualization of the scene 

in Unity. 

 

 

Figure 7: Unity scene 

 

 Figure 7 demonstrates translating a sphere inside the Unity scene. Adding geometrical 

objects or importing 3D models to a game is as easy as drag and drop, adding gravita-

tions is a check-box, script values can be modified from editor side and many others 

things are unbelievably easy to do.  
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See Figure 8 below on how easy it is to change object values in Unity inspector. 

 

 

Figure 8: Unity inspector 

 

Figure 8 displays some of the attributes of the sphere in the inspector view. One can 

see that for example shadows could be removed from this object by simply tapping a 

check box.  

 

It is easy to see why many people are falling in love with this editor. It also supports 

multiple platforms which is very handy from the developer’s point of view. What is the 

catch then? As noted already earlier, great power comes with great restrictions. While 

most of the things are easy to do, there are a lot of things that the programmer cannot 

change. These things might impact the performance heavily or slightly, depending on 

the game.  Something so general and so powerful cannot simply be as effective as a 

specifically written code for that game. There is also an issue that one cannot clear the 

Z-buffer during frame, this could complicate things a bit when creating a split screen 

game. Also from the programmer perspective it is very annoying that at least for now, 

one is unable to access stencil buffer in Unity. There are also some issues with version 

control of Unity projects. Also the 2D-asset pipeline is still under construction for Unity. 
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The biggest issue still remains in the performance though. Unity is extremely fast for 

prototyping, but a new problem may occur if used solely for that purpose. Following is a 

practical example of the issue: Imagine that one is creating a very demanding game 

performance vice. There are a lot of iterations to go through and developers decide to 

use Unity during prototyping. The team ends up finding a feasible design and the man-

agement wants to put the project into the preproduction phase. There will be perfor-

mance issues if the team keeps developing it with Unity, but the other option is to build 

the now already running game from the scratch with a completely different technology. 

That is not only work one does not want, but most likely a lot of time that was not 

budgeted for the project. It is important to remember that game development is an en-

tertainment business, a really hard one to succeed at that and time frames are usually 

extremely tight. This is why it is essential that an experienced programmer makes a 

judgement call before starting programming the project if it should be developed with 

Unity or other tools. 
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5.4.2 Visual Studio, XCode and Eclipse 

 

As stated in chapter 5.3, C++ is often the language of choice when developing games. 

In the author’s experience the best tool to develop C++ with in Windows is Microsoft’s 

Visual Studio. It has very good and flexible tools and a very nice compiler. It is easy to 

control error levels so one can easily find all the warnings and errors through it. De-

bugging is easy and smooth and one can even try to debug crashed exes that were not 

run in the Visual Studio originally. It is also easy to find plug-ins to Visual Studio to cus-

tomise it even better for personal likings. See Figure 9 below as to the basic layout of 

Visual Studio. 

 

Figure 9: Visual Studio 

 

Figure 9 demonstrates an unconfigured layout of Visual Studio Express 2012, which 

contains a project view on the right, code window in the top middle and output in the 

bottom. These can be easily changed if the user wants that. 
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If one works on OSX, XCode is the top candidate. Just like Visual Studio, XCode has 

nice basic features and for example debugging from IOS mobile device is extremely 

easy with XCode. The downsides would be the lack of third party plug-ins, several 

known bugs and fairly slow. Figure 10 below shows XCode. 

 

 

Figure 10: XCode [Reference 5] 

 

Figure 10 displays XCode and it can be seen that the layout is fairly similar, this time 

the project view is on the left and the code in the middle.  

 

If one really wants to develop on Java, which would most likely mean working on an 

Android platform (with no plans for multiplatform) then Eclipse is the best tool for the 

job. Though the debugging is clumsy compared to Visual Studio and XCode, the previ-

ous two are not Java development tools and out of Java tools Eclipse has the best 

synergy with Android by far.  



20 

 

 

The Eclipse editor can be seen in Figure 11 below. 

 

 

Figure 11: Eclipse [Reference 6] 

 

Figure 11 displays Eclipse, which is very similar to the previous two from layout per-

spective. The biggest difference between the three comes from functionalities, operat-

ing system and the programming language they are best associated with. 

5.4.3 Scripting Tools 

 

There are some excellent tools available: Sublime, Notepad++ and Editpad Pro just to 

name some of the most popular ones. All of these editors provide great tools for 

searching elements, highlighting language reserved names and functions that make a 

programmer’s life a lot easier.  

5.4.4 Version Control 

 

To manage changes in the project in a sensible way one needs version control. It 

would be very painful to send modifications over mail to each other and manually try to 

figure out if one is about to destroy somebody else’s work. The version control will en-

able easy revision based project management where it is easy to make changes and 

notice conflicts when two people are editing the same files. One will be able to merge 

the conflicts and keep the overall version intact. It is also very easy to pull back and go 
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to a previous revision. It is easy to create branches and tags which are used to develop 

a program to certain direction or to hold the repository of the project that was at certain 

stage (for example 1.0 release for public). The two most popular version control sys-

tems are Subversion and Git. Besides slightly different syntax, the main difference be-

tween the two is that the Subversion has one central repository where each member of 

the project will commit to. See Figure 12 below for the basic functionality of Subversion. 

 

 

Figure 12: Subversion usage [Reference 8] 

 

Figure 12 displays an example where two different clients are modifying the same code 

base. The update function will update the local repository of the user to the newest 

version and commit will push the local modifications to the server so that the other cli-

ents can have them with update. 
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Meanwhile Git has both a local repository and central repository so the user can track 

local changes as well. See the basic usage flow of Git repository in Figure 13 below. 

 

 

Figure 13: Git usage [Reference 9] 

 

Figure 13 displays how Git has more layers. First the changes made in the working 

directory are added to the staging area. After that the changes are committed to the 

local repository. From the local repository the changes are pushed to the server. 

Changes made by others can be fetched from the server to the local repository. 

 

Many people claim that Subversion is much simpler to understand and use, which can 

be a benefit if the team has a lot of non-IT proficient members, artists for example. On 

the other hand Git is a lot faster than Subversion, which can be a considerable benefit 

when working on huge projects. Both systems are widely used and accepted. There 

are several tools to make the usage easier, the most widely approved probably being 

Tortoise, which adds a graphical UI to use both of these tools. Tortoise is also really 

easy to understand and has great merging tools.  
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See Figure 14 below for how Tortoise adds options when right clicking on folder in 

Windows.  

 

 

 

Figure 14: Tortoise 

 

Tortoise adds many options to the right click menu on Windows, which can be found 

under the TortoiseSVN and TortoiseGit labels. 

5.5 Build Automation 

 

To put it simply, building is about compiling the source code, linking the object files, 

running tests, copying assets and depending on the specific project doing other neces-

sary steps to create a runnable game or installable package from the repository. 

Though the build system may not seem that necessary in very small project, when one 

starts to work it can be very shortly seen how it becomes a core part of the loop. Auto-

mated building is very useful for example in Scrum system where a solid state of build 

is required every end of sprint. With integrated testing one can also eliminate a lot of 

error factors. Moreover, as a project grows bigger and one starts to add third party li-

braries, external modules and other components together the building process can 

become rather complex. In those cases one would appreciate the already once set-up 
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automated building that takes care of everything, instead of spending hours trying to 

figure out the correct building order oneself. One of the most popular tools to use for 

build automation is Jenkins.  

 

5.6 To Hack or Not to Hack 

 

While prototyping under a tight timetable, one can expect to face the decision of hack-

ing daily. A hack is generally speaking a bad thing, temporary solution that often has no 

solidity and no flexibility. Why would one make a hack in the first place? It all comes 

down to time and quality ratio. Sometimes hacks can save incredible amounts of time. 

Consider the following simplified example scenario: the team wants to try if the game 

becomes more fun by adding some real-life like physics. One can either start to imple-

ment a very arduous and time consuming physics engine or one can create fake phys-

ics by translating objects in a similar way. A good physics engine implementation might 

take months, while faking them might be done within a day. For example, the develop-

ment team has been budgeted for three months to make something good out of the 

proto concept. Making the physics engine seems hardly a solution for only testing it 

out. A hack may indeed be the best solution to the problem. Then again, hacking it now 

might bite back later if it was decided that this feature is fun and will be part of the 

gameplay. It is smart to create the system as flexible as possible so that one part of the 

game can be changed without major code rework. There is often a straight correlation 

between non-flexibility and the number of hacks. Hacks should be avoided at all costs if 

the schedule allows it. One could say they are a tool against deadlines. Tight sched-

ules will most of the time result in a drop of quality.  

6 Discussion and Conclusions 

 

There are five development phases to a game. The prototype development phase of is 

the most rapid one, constantly making changes to all parts of the game. The goal of the 

prototype phase is to find the fun inside the game. Finding the fun usually takes several 

tries and tends to leave lots of mess behind from the changes. The preproduction 

phase is used to clean the mess left by the prototyping phase. The production phase 

will add the minor gameplay features not yet implemented, polish the existing features 

and fix all bugs. During the maintenance phase the game is updated. The prototype 
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phase is the most crucial, but a good development team can bring a lot of life to even a 

badly prototyped game with good polish and meaningful meta-game. 

 

The producer, or in some cases the executive producer, is responsible for the product 

quality and meeting the deadlines. Producer will handle the project management and 

tries to help the development team with any problems hindering their work. To handle 

the project a project management method needs to be used. This is most commonly 

the modern and very agile Scrum. The other good option is the very strict waterfall 

method, which suits game development rather well too. The author’s preference is 

practical project management. Scrum has a lot of good sides to it, but sometimes it is a 

bit too optimistic and naive. A system where the overall process is being handled via 

the scrum approach, but the actual tasks are tackled using the waterfall model can be 

extremely efficient. A tool is also required to handle the project management efficiently. 

Some might use only whiteboard, but the use of one of the digital tools is strongly rec-

ommended. There are quite a few good ones available. 

 

The designer’s main job is to design the gameplay and balance it out. The designer is 

mainly responsible for making the concept into an intriguing gameplay.  

 

The programmer’s job is to implement the designer’s vision as faithfully as possible, 

trying to keep the code quality as high as possible. Some people might also consider 

getting things done in a certain time a quality, even though the actual code might be 

very hacky. It would be recommended to keep things simple and call flexible and con-

sistent code as quality. If the timeframe is short it just means that the code quality will 

drop.  

 

During the prototype phase there are often difficult decisions to be made which can 

cost dearly at the later stages. These decisions are usually about choosing the right 

tool or making a choice between time and flexibility. Flexible solutions are necessary to 

be able to quickly change the game without redoing everything, but usually the time is 

also heavily limited. These decisions should be thought over together with the design-

er, programmer and the producer attending. Many of the decisions are greatly influ-

enced by experience. If lacking experience, it is a very good idea to consult a senior 

employee of same field. 
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The project lead programmer needs to choose the technical tools and programming 

languages for the project. C++ is the cookie-cutter language for game programming 

and for scripting Lua is good as it is easy to integrate with C++ code and is also fa-

voured by most game development companies. Visual Studio is the program one would 

recommend for C++ and for scripting there are a lot of efficient software available. The 

author has found Notepad++ to fulfil all requirements. Unity is also a really good tool for 

prototyping, but comes at a performance cost. Unity has three languages available: 

JavaScript, Boo and C#. C# is recommended as it is the only true programming lan-

guage out of the three, the other two are scripting languages. 

 

Build automation makes life easier for quick building, testing, keeping track of the prod-

uct integrity and distributing the builds to the right people. The most commonly used 

build automation tool is Jenkins, if Ant and CMake are not considered tools at their own 

right. 

 

 See the Breaker project conclusion in Appendix 6: Breaker project conclusion (confi-

dential). 
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