

Developing iOS Applications With RubyMotion

Matias Korhonen

 Bachelor’s Thesis

Degree Programme in Business

Information Technology

 2013

 Abstract

 01 December 2013

Degree Programme in Business Information Technology

Author
Matias Korhonen

Year of entry
2008

Title of report
Developing iOS Applications With RubyMotion

Number of report and
attachment pages
50 + 22

Advisor
Juhani Välimäki

Users are spending an ever larger amount of time using smartphones and other mo-

bile devices. Users are more willing than ever to both buy apps for these devices and

more willing to buy other products using these devices.

Until recently, it has not been possible to use the Ruby language to create applica-

tions for any popular smartphone platforms. However, this has relatively recently

changed with the introduction of Ruboto for Android and RubyMotion for iOS de-

velopment.

The purpose of this thesis project was to investigate the development of iOS applica-

tions in RubyMotion. RubyMotion is a toolchain that enables the development of

iOS and OS X applications using the Ruby programming language. RubyMotion ap-

plications can use all the same features that are available to regular, Objective-C

based applications. Developers can also use 3rd party Objective-C libraries in their

RubyMotion applications.

The thesis indicated that RubyMotion is a viable option for developers with prior ex-

perience in either Ruby or with iOS application development (or both). Nevertheless,

at this point, RubyMotion does not seem like a language that should be recom-

mended to novice developers as the mix of Ruby and the iOS SDK can be confusing

at times.

Keywords
RubyMotion, Ruby, iOS, mobile, programming, development

Table of contents

Terms and abbreviations .. 1

1 Introduction .. 3

1.1 Environment and need ... 3

1.1.1 Smartphone market share and consumer behaviour 3

1.1.2 Mobile purchases ... 5

1.1.3 The Ruby programming language ... 6

1.2 Scope ... 7

1.2.1 The scope of this research.. 7

1.2.2 Excluded issues and topics... 8

2 Research plan .. 9

3 Theory background .. 10

3.1 RubyMotion ... 10

3.1.1 Availability of RubyMotion sources.. 10

3.2 MacRuby ... 11

3.3 The official iOS toolchain .. 11

3.4 How does RubyMotion differ from normal iOS development 12

3.5 The benefits of RubyMotion over the official toolchain 13

3.6 Research problem .. 13

4 Preparing for development ... 15

4.1 Typical functionality in mobile applications .. 15

4.2 Requirements for the proof of concept application ... 17

4.3 Installing the tools ... 17

4.3.1 Software and hardware used .. 18

4.3.2 Installing Xcode ... 19

4.3.3 Installing RubyMotion .. 21

4.3.4 RubyMotion and text editors ... 21

4.4 Creating a New RubyMotion Application.. 22

4.5 Running The Application ... 22

4.5.1 In a Simulator... 22

4.5.2 On a Real Device... 23

5 Development .. 24

5.1 Building the application UI .. 24

5.1.1 The MVC pattern .. 24

5.1.2 Defining layouts programatically ... 25

5.1.3 Using Xcode's Interface Builder .. 27

5.2 Storing data locally... 28

5.2.1 Core Data.. 29

5.3 On-board sensors .. 30

5.3.1 Device location and map .. 31

5.3.2 Using the camera ... 33

5.4 Accessing a remote API.. 34

5.5 Using 3rd party Objective-C libraries ... 35

5.5.1 CocoaPods.. 35

5.6 Interactive testing .. 36

6 Results, evaluation, and conclusions.. 38

6.1 Results ... 38

6.2 Evaluation... 38

6.2.1 Building the application user interface.. 39

6.2.2 Storing data locally... 39

6.2.3 On-board sensors .. 39

6.2.4 Accessing a remote API.. 40

6.2.5 Using 3rd party Objective-C libraries (via CocoaPods)............................. 40

6.3 Conclusions .. 40

7 Summary.. 42

7.1 Further research questions ... 43

References .. 44

Attachments ... 48

1

Terms and abbreviations

API Application Programming Interface. An API specifies how
software components can interact with each other.

CLI Command-Line Interface. A textual interface used for interacting
with computer programs.

CocoaPods A dependency manager for Objective-C projects and libraries

GPS Global Positioning System. The primary system used to acquire
the position of mobile devices.

HTTP Hyper Text Transfer Protocol. The application protocol used for
most services on the internet.

JSON JavaScript Object Notation. A common data format derived from
the JavaScript programming language

LLVM Formerly for “Low Level Virtual Machine.” A language agnostic
compiler infrastructure that can be used to create compilers for
programming languages.

MVC Model-View-Controller. A common programming design pattern
for increased code modularity and reusability.

Objective-C An object-oriented programming language based on the C
programming language.

REST Representational State Transfer. An architectural style commonly
used for web services.

2

REPL Read-Eval-Print-Loop. The interactive shell that ships with
RubyMotion for interactive debugging.

Ruby A dynamic, object-oriented programming language.

RubyMotion An implementation of the Ruby programming language that runs
on the iOS and OS X platforms.

Terminal The default terminal emulator application on OS X.

Toolchain A set of programming tools used to create applications

USB Universal Serial Bus. The most common interface used for
connecting external devices to computers.

WYSIWYG What You See Is What You Get. A system in which content
displayed in an editor resembles closely what the finished product
will look like.

Xcode Apple’s IDE for iOS and OS X software development

XML Extensible Markup Language.A data format commonly used for
web services.

3

1 Introduction

RubyMotion is an Toolchain built on top of MacRuby what enabled iOS and OS X

application development using the Ruby programming language. RubyMotion

compiles Ruby to native machine code using LLVM. (HipByte, 2013)

“RubyMotion implements Ruby on top of the Objective-C runtime and Foundation

classes” (HipByte, 2013). This means that RubyMotion applications have access to all

native iOS and OS X APIs and can also use 3rd party Objective-C libraries.

1.1 Environment and need

Both the amount of time and the amount of money spent on mobile devises is on the

rise. This present an opportunity to developers willing to invest time in learning these

platforms.

1.1.1 Smartphone market share and consumer behaviour

Android phones dominate the smartphone market: 81 percent of devices shipped with

Android in the 3rd quarter of 2013. Only 12.9% of devices shipped with Apple's iOS

platform. (Dilger, 2013)

Figure 1: The Android operating system dominates the number of devices shipped. (Dilger, 2013)

4

At first glace those figures sound dismal for Apple and for iOS application developers,

but Apple makes 56% of all profits in the smartphone device market (Bradley, 2013)

and Apple users spend more money on applications than Android users (OPA, 2012,

p. 30).

Apps users who go to the Apple App Store tend to download nearly twice

as many apps as those who go to the Android Market or the BlackBerry

App World Store. They also seem more willing to pay for their apps: Apple

App Store customers report that for every two free apps they download,

they typically pay for one. In contrast, apps users who frequent the Android

Market and Blackberry App World stores report downloading more than

3.5 free apps for every one they buy.

(Nielsen, 2010, p. 5)

As you can see from Figure 2 and from the quote above, iPhone users are more likely

to pay for apps in every price category. For iOS application developers this means that

consumers on the iOS platform are more likely to buy their app.

5

Figure 2. Amount of Money Spent on Smartphone Apps in the Last Year (% of Smartphone
Content Consumers) (OPA, 2012, p. 30)

1.1.2 Mobile purchases

Consumer spending and purchases using mobile phones and tablets is on the increase.

According to eMarketer, 47% of all mobile phone owners in Western Europe will own

a smartphone by the end of 2013. “12.4% of all seasonal online sales in key Western

European markets will be made on mobile devices this year. Mobile sales will be 68%

higher than during the holiday period in 2012.” (eMarketer, 2013)

According to data gathered by comScore, 14.6% of smartphone owners in Europe

make online purchases online. The most commonly purchased items are clothing,

consumer electronics or appliances, and books. (comScore, 2013)

6

1.1.3 The Ruby programming language

Rank RedMonk TIOBE
The Language

Popularity Index

1 JavaScript C C

2 Java Java Java

3 PHP Objective-C Objective-C

4 Python C++ C++

5 Ruby C# Basic

6 C# PHP PHP

7 C++ Visual Basic Python

8 C Python C#

9 Objective-C Transact-SQL Perl

10 Perl JavaScript Ruby

11 Shell Visual Basic .NET Pascal

12 Scala Perl JavaScript

13 ASP Ruby Ada

14 Haskell Pascal R

15 Assembly Lisp Lisp/Scheme

Figure 3: Relative ranking of the top 15 programming languages on the web from three programming
language ranking sources. Ruby is highlighted. (RedMonk, 2013) (The Transparent Language
Popularity Index, 2013) (TIOBE Software, 2013)

Depending on which statistics one looks at, Ruby ranks between the 5th and 13th most

popular (see Figure 3yllä).

In the TIOBE Programming Community Index, which tracks programming language

popularity on the web, Ruby ranked 13th in popularity in November 2013, down from

10th in November 2012 (TIOBE Software, 2013).

The RedMonk Programming Language Rankings, which derives it's rankings from

GitHub and Stack Overflow, places Ruby as high as fifth. (RedMonk, 2013)

7

Despite this relative popularity, historically it has not been possible to develop

smartphone application using Ruby. This changed with the introduction of Ruboto in

2009 (Nutter, 2009) and the release of RubyMotion for iOS in 2012 (Paul, 2012).

1.2 Scope

Overall the purpose of this research is to evaluate the prospect of using the

RubyMotion toolchain for iOS application development. The purpose is not to

produce a genuinely useful application for real users.

1.2.1 The scope of this research

While it is possible to use RubyMotion 2.0 to develop both iOS and OS X applications

(Suri, 2013), it the scope of this research is limited to only iOS applications.

The goal of this research is simply to assess whether the development of iOS

applications using the RubyMotion toolchain is viable. To this end the proof of

concept application will include typical aspects of mobile applications, for example

presenting data from APIs to the user and letting the user query or filter data from

these APIs.

The application itself will only be for technical testing of common mobile application

features and not for a specific need. These features might include some all or all the

following features:

− Remote JSON or XML API access (via HTTP)

− Presenting data from the above APIs to the user in a useable from (for example

tables, charts, or icons)

− Integrating features from 3rd party libraries into the application

8

As the application is only intended to be used for technical testing, there are no precise

requirements. The success of the proof of concept application will be evaluated by

hand and by whether the accomplishes the goals set in the reasearch plan. It is possible

that this application will be slplit into a series of smaller applications if necessary.

1.2.2 Excluded issues and topics

Developing OS X applications with RubyMotion is not within the purview of this

research. At the same time intensive performance benchmarking is also not included at

this time.

While performace testing is out of the scope of this paper, the proofing and evaluation

of RubyMotion will be done by building an application that represents the typical

requirements of an iOS application. The performance of this application will be done

by look and feel, for example:

− Does it feel like a normal iOS application?

− Does it feel responsive or slow?

− Does it start up fast?

− Can you tell that the application wasn't built with the official tools?

9

2 Research plan

A proof of concept or proof of technology application will be developed to evaluate

how effective the RubyMotion toolchain is for typical aspects of mobile applications. A

secondary goal of the development process will be assess how pleasant or easy the

development of iOS applications is with RubyMotion.

These aspects can include features such as presenting data from remote HTTP APIs to

the user and letting the user query or filter data from these APIs. The application will

also be used to test how native 3rd party Objective-C libraries can be used in

conjunction with the RubyMotion application.

The purpose of this application is not to be a useful or viable application on it's own,

but to test how or if RubyMotion can be used to develop the selected features.

Proof-of-Concept Prototype is a term that (I believe) I coined in 1984. It

was used to designate a circuit constructed along lines similar to an

engineering prototype, but one in which the intent was only to demonstrate

the feasibility of a new circuit and/or a fabrication technique, and was not

intended to be an early version of a production design

(Carsten, 1989)

By developing the selected features, we will be able to form a rought picture of how

RubyMotion can be used and whether it fulfils its promise. It will also be possible to

evaluate how difficult it is for a Ruby developer to begin to do iOS development using

the RubyMotion tools.

10

3 Theory background

3.1 RubyMotion

Figure 4: ”RubyMotion is a toolchain that allows developers to develop native iOS applications using
the Ruby programming language. RubyMotion acts as a compiler that interacts with the iOS SDK”
(Nalwaya & Paul, 2013, p. 10)

RubyMotion was created by Laurent Sansonetti, the creator of MacRuby. RubyMotion

itself is based on the open-source MacRuby project, but implements a proprietary

LLVM compiler that converts Ruby code to native machine code. (Nalwaya & Paul,

2013, p. 10)

3.1.1 Availability of RubyMotion sources

RubyMotion is a relatively new toolcahin, having only been introduced in late 2012

(Paul, 2012). This newness translates into a relative lack of reliable independent and

third party sources. In particlular no reliable sources benchmarking RubyMotion

11

performance on iOS were found nor any direct, quantitative performance comparisons

between application built in Objective-C and applications built with RubyMotion.

3.2 MacRuby

RubyMotion was born out of the open source MacRuby project. MacRuby provides a

seemless bridge between Ruby code and the Cocoa eco system on OS X. While

RubyMotion is based on the open source MacRuby project, RubyMotion itself is not

open source and it uses an LLVM-based compiler to convert Ruby code into machine

code. (Paul, 2012)

According to HipByte, the company behind RubyMotion, this means that RubyMotion

applications are as fast (or in some cases faster) than applications written in Objective-

C. (HipByte, 2013)

Laurent Samsonetti announced the first version of MacRuby in 2008 on the Ruby-Talk

mailing list. (Samsonetti, [ANN] MacRuby 0.1, 2008)

MacRuby is an implementation of Ruby 1.9 directly on top of Mac OS X

core technologies such as the Objective-C runtime and garbage collector,

the LLVM compiler infrastructure and the Foundation and ICU

frameworks. It is the goal of MacRuby to enable the creation of full-fledged

Mac OS X applications which do not sacrifice performance in order to

enjoy the benefits of using Ruby.

(The MacRuby Team, 2013)

3.3 The official iOS toolchain

The official tools endorsed and supplied by Apple for iOS application development are

the Xcode IDE and the Objective-C programming language. (Apple Inc., 2013a)

12

3.4 How does RubyMotion differ from normal iOS development

RubyMotion lets the developer use all the normal iOS SDKs just like an Objective-C

developer would, as in the example in Figure 5. (Symonds, 2012)

Objective-C example:

UITableViewCell *cell = [self.tableView dequeueReusableCellWithIdentifier:CellID];

if(cell == nil) {
 cell =

 [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier :MyCellIdentifier];

}

Equivalent in RubyMotion:

cell = tableView.dequeueReusableCellWithIdentifier(CellID) ||
 UITableViewCell.alloc.initWithStyle(UITableViewCellStyleSubtitle, reuseIdentifier:CellID)

Figure 5: Creating a table view cell in Objective-C and its uquivalent with RubyMotion. (Symonds,
2012)

Alternatively, developers can use wrappers written in Ruby in order to provide a more

pleasant coding experience (Figure 6). This means that less code needs to be written

per pplication and the code looks more intuitive. (Allsopp, The RubyMotion Way,

2012b)

Objective-C example:

[button addTarget:self action:@selector(buttonTapped:) forControlEvents: UIControlEventTouchUpInside];

// Elsewhere

- (void)buttonTapped:(id)sender {
 self.view.backgroundColor = [UIColor redColor];
}

Equivalent in RubyMotion (using the BubbleWrap library):

button.when(UIControlEventTouchUpInside) do
 self.view.backgroundColor = UIColor.redColor

end

Figure 6: An example of code in Objective-C and its equivalent in RubyMotion. The RubyMotion
example uses the BubbleWrap library. (Allsopp, The RubyMotion Way, 2012b)

13

3.5 The benefits of RubyMotion over the official toolchain

Developers who are already familiar with the Ruby programming language have the

most to gain from RubyMotion (if it is found to be a viable tool for iOS application

developent) as they won't have to learn a whole new programming language in order to

develop applications for the iOS platform.

Objective-C can also be quite a verbose language, so it is possible that using

RubyMotion for iOS application development could lead to shorter development

times.

RubyMotion also provides access to an interactive debugging shel, called the REPL

(for read-print-evaluate-loop). This allows the developer to modify an application that

is running in the simulator without needing to restart it. The interactive shell lets the

developer quickly and simply debug views or experiment with how they could be

changed. (Samsonetti, RubyMotion Project Management Guide, 2013b)

3.6 Research problem

The goal of this research is to investigate whether building iOS applications using Ruby

and RubyMotion is viable, especially for developers with no previous experience with

either Objective-C or the iOS APIs.

The application or applications developed during the course of this research should

attempt to recreate some of the most common features of typical smartphone

applications.

14

These features should be used to assess whether using RubyMotion for iOS application

development is viable, particularly for existing Ruby developers (rather than, say,

programming novices or Objective-C developers).

15

4 Preparing for development

4.1 Typical functionality in mobile applications

By looking at the tables of contents for fix books on mobile application development

(on iOS, Android, and Windows Phone), the following table of common features was

drawn up based on the chapter titles.

The books used to devise this table (Figure 7) were (or rather their tables of content):

− Hello Android

− Programming Windows Phone 7

− Programming Android

− Learning iOS Programming

− RubyMotion: iOS Development with Ruby

− RubyMotion iOS Development Essentials

These books were selected because they represent a variety of authors and publishers,

and thus are likely to represent the typical needs of typical smartphone applications.

16

 H
e
ll
o

 A
n

d
ro

id

P
ro

g
ra

m
m

in
g

 W
in

d
o

w
s

P
h

o
n

e
 7

P
ro

g
ra

m
m

in
g

 A
n

d
ro

id

L
e
a
rn

in
g

 i
O

S
 P

ro
g

ra
m

m
in

g

R
u

b
y
M

o
ti

o
n

: i
O

S
 D

e
ve

lo
p

m
e
n

t
w

it
h

 R
u

b
y

R
u

b
y
M

o
ti

o
n

 i
O

S
 D

e
ve

lo
p

m
en

t
E

ss
e
n

ti
a
ls

Installing the tools Yes No Yes Yes Yes Yes

Running on an emulator/simulator Yes No Yes Yes Yes Yes

Running on a real device Yes No Yes Yes Yes Yes

Designing and building the UI Yes Yes Yes Yes Yes Yes

2D graphics Yes Yes Yes No Yes Yes

3D graphics Yes Yes Yes No No No

Multimedia (audio and video playback) Yes No Yes No No No

Storing local data Yes Yes Yes Yes Yes Yes

Using webviews Yes No No Yes No Yes

Location and other sensors Yes Yes Yes Yes No Yes

Multi-touch Yes Yes No No No Yes

Application testing Yes No No No Yes Yes

Distributing the application No No Yes Yes Yes Yes

Accessing remotes APIs Yes No Yes Yes Yes Yes

Figure 7: Common smartphone application features based on mobile programming books. (Burnette,
2010, pp. vi-ix) (Petzold, 2010, pp. iv-xii) (Dornin, Mednieks, Meike, & Nakamura, 2012, pp.
iii-xi) (Allan, 2013, pp. iii-viii) (Allsopp, RubyMotion: iOS Development with Ruby, 2012a, pp.
v-vi) (Nalwaya & Paul, 2013, pp. i-v)

17

4.2 Requirements for the proof of concept application

Based on the table of typical mobile application features, the following list of features

was selected for the proof of concept application:

− Installing the tools

− Running the application on a simulator

− Running the application on a real device

− Designing and building a simple UI for the application

− Storing data locally

− Getting the device location from the on-board sensors (GPS)

− Getting data from a remote API

In addition to these topics, the proof of concept application will also test how a 3rd

party Objective-C library can be integrated into the RubyMotion application.

The development of these features will be used to evaluate whether RubyMotion is a

viable toolchain for developing applications for the iOS platform.

4.3 Installing the tools

Using RubyMotion requires the develop to install both Xcode and the RubyMotion

tools. As RubyMotion requires Xcode to be installed RubyMotion applications cannot

be developed on non-Apple hardware or operating systems. (Samsonetti, Welcome to

RubyMotion, 2013a)

18

4.3.1 Software and hardware used

Figure 8: Hardware and operating system details of the development machine. The serial number has
been blurred.

These installation procedures were tested and checked on a mid 2012 Apple MacBook

Air running the latest version of OS X available at the time, OS X 10.9 Mavericks.

RubyMotion v2.16, the latest available version of RubyMotion, was used.

Figure 9: Hardware and iOS version details of the iPhone that was used for testing. The serial
number and other identifiers and been blurred.

19

The apps were tested on iOS 7.0.4, the latest version available, on the iOS Simulator

and on an iPhone 5 running the same version of iOS.

4.3.2 Installing Xcode

Installing Xcode itself is extremely simple, the developer simple needs to open the

“App Store” application on their development machine and search for “Xcode” to

locate the Xcode application in the store. Clicking “Install” will install the Xcode

development environment and the latest iOS SDK (a free Apple ID account is

required for the installation to proceed).

Figure 10: Xcode on the Mac App Store. In this screenshot Xcode has already been installed.

Once Xcode itself has been installed, the developer needs to install the command line

tools. In previous version of Xcode and OS X (prior to Xcode 5.0.1 and OS X 10.9)

the command line tools could be install from within Xcode, but this has now changed

(Zaph, 2013).

20

The oficial RubyMotion “Getting Started” tutorial has not been updated to reflect this

change at the time of writing. (Samsonetti, Welcome to RubyMotion, 2013a)

With the latest versions of OS X and Xcode, the command line tools need to be

installed by executing a single command (xcode-select --install) on the CLI

(Command Line Interface). (Zaph, 2013)

Figure 11: Running the "xcode-select --install" command results in this dialog. After clicking
“Install”, the command line tools will be downloaded and installed.

21

4.3.3 Installing RubyMotion

Figure 12: The RubyMotion installation wizard.

Installing the RubyMotion tools is also very simple (after Xcode and the Xcode

Command Line Tools have been installed). After downloading the RubyMotion

package from the URL given in the RubyMotion license instructions, all that is

required is for the developer to follow the instructions given on screen. After a few

minutes, the motion command will be available for use in Terminal.

4.3.4 RubyMotion and text editors

While normally iOS application code is developed and written within Xcode, this is not

a requirement for iOS application development. A developer using RubyMotion is free

to choose any text editor or IDE they wish. (Nalwaya & Paul, 2013, p. 18)

22

4.4 Creating a New RubyMotion Application

Creatting a new RubyMotion application starts with initializing a new application using

the RubyMotion command line tool, motion:

 motion create my_application

Running this command will generate an application skeleton:

Figure 13: The application initialization command displays what files it created for the developer.

4.5 Running The Application

The RubyMotion command line tool can run the application in the iOS simulator

(which is included with Xcode) or on a real iOS device that is connected to the

development machine, for example an iPhone or iPad.

4.5.1 In a Simulator

The newly created application can be run in the iOS simulator by running the rake

command within the project folder in terminal:

23

Figure 14: *By default the RubyMotion doesn't have any views to display, but it can still be run
within the simulator.

The rake command automatically build the application and launches it within the iOS

simulator.

4.5.2 On a Real Device

The application can be run on a real, physical iOS device (e.g. an iPhone) by running

the rake device command while the device is connected to the development

machine over USB. (Samsonetti, RubyMotion Project Management Guide, 2013b)

Just as with iOS development using apple's official tools, this requires that the device

has been registered on Apple's Development portal (https://developer.apple.com) and

that the developer has a valid iOS Developer Program subscription. An iOS Developer

Program subscription is also required for application distribution via the iOS App

Store. (Nalwaya & Paul, 2013, pp. 19,213)

https://developer.apple.com/

24

5 Development

5.1 Building the application UI

The iOS SDK provides a few different ways in which the application UI can be built

and all of them can be used with RubyMotion.

5.1.1 The MVC pattern

iOS application typically use a design pattern or programming paradigm known as

MVC (Model-View-Controller). Models represent data, views display that data to users,

and controllers handle user input and act as an intermediary between views and

models. (Nalwaya & Paul, 2013, pp. 55-57)

Figure 15: The workings of the MVC model illustrated. (Nalwaya & Paul, 2013, p. 57)

The View and Controller layers interact through User Action and Update

as shown in the diagram. Whenever the View layer creates or modifies data,

it is communicated to Controller through User Action. Similarly,

whenever Model updates any change it will first Notify the Controller and

will then be reflected on the View by an Update

25

(Nalwaya & Paul, 2013, p. 57)

5.1.2 Defining layouts programatically

The normal way of defining views when using RubyMotion is to define them

programatically. Defining views programatically means that Xcode's graphical,

WYSIWYG (What You See Is What You Get) Interface Builder (also referred to as IB)

is not used, instead the views are defined in code.

Hard-coded interface element positions

The simplest (if most verbose) way of positioning user interface elements onto the

view is to add the elements to the view in code and specify their positions at the time

of coding. The downside of this is that the views can become very difficult to visualize

and making changes is labourious. (Allsopp, RubyMotion: iOS Development with

Ruby, 2012a, p. 80)

For the programmatic views the basic “Color” application was implemented from

“RubyMotion: iOS Development with Ruby”, with a few minor changes.

class ColorsController < UIViewController

 def viewDidLoad

 super

 self.view.backgroundColor = UIColor.whiteColor

 @label = UILabel.alloc.initWithFrame(CGRectZero)
 @label.text = "Colors"
 @label.sizeToFit

 @label.center =
 [self.view.frame.size.width / 2,

 self.view.frame.size.height / 2]
 @label.autoresizingMask =

 UIViewAutoresizingFlexibleBottomMargin | UIViewAutoresizingFlexibleTopMargin
 self.view.addSubview(@label)

 end

end

Figure 16: An example of defining a view programatically in a UIViewController. The positions of
view elements are defined in the application code. (Allsopp, RubyMotion: iOS Development with
Ruby, 2012a, p. 28)

26

This method of defining application user interfaces worked just as documented,

without any difficulties. While this method of implementing views worked without a

hitch, it can get laborious and tedious with more complicated layouts, especially if

multiple screen sizes and screen orientations (portrait and landscape) need to be taken

into account.

Auto Layout

Auto Layout is a relatively new approach that can be used to define iOS application

layouts. It has been available for developers since iOS 6. With auto layout the

developer defines layout constraints for the various UI elements. The constraints

define the relationships between different elements in the interface, e.g. “these buttons

should be side-by-side.” (Armando, 2012)

Motion::Layout.new do |layout|

 layout.view self.view
 layout.subviews subviews
 layout.metrics "top" => 150, "margin" => 20, "height" => 40

 layout.vertical(
 "|-top-[label(==height)]-margin-[red_button(==height)]-margin-[green_button(==height)]-margin-[blue_button]|")

 layout.horizontal "|-margin-[label]-margin-|"
 layout.horizontal "|-margin-[red_button]-margin-|"

 layout.horizontal "|-margin-[green_button]-margin-|"
 layout.horizontal "|-margin-[blue_button]-margin-|"

end

Figure 17: An example of defining the positions of interface elements using the Visual Format
Language. In this case the motion-layout library1 is being used to provide a more Ruby-like interface to
the iOS Auto Layout SDK.

For the Auto Layout based experiment, the code from the “Color” app developed

using the “Hard coded” method was taken and an attempt was made to convert it to

use Auto Layout.

1 https://github.com/qrush/motion-layout

https://github.com/qrush/motion-layout

27

Based on the available documentation, at no point did the Auto Layout based interface

work in a satisfactory way. While very basic layouts worked okay, anything with more

than two or three subviews would gave cryptic errors and did not work as it should

have.

The difficulties using autolayout can probably be attributed to the poor level of

documentation available. In theory auto layout should provide a more pleasant user

interface development process, but in practice this was not the case.

5.1.3 Using Xcode's Interface Builder

Figure 18: The Xcode Interface Builder

Xcode Interface Builder is a graphical tool used to create iOS and OS X application

interfaces. Since version 1.3, RubyMotion has had built in support for using `.xib` files

28

from Xcode's Interface Builder to define UIs in applications built with RubyMotion.

(Phillips, 2012)

For the Interface Builder based experiment, the “Color” example application was once

again used. Building the view in Interface Builder was a very pleasant experience and

relatively intuitive due to the tools's WYSIWYG nature. Getting the RubyMotion

application to use the UI elements created in the Interface Builder was a quick and

intuitive experience.

def viewDidLoad

 super

 self.title = "Colors"

 @label = view.viewWithTag 1

 red_button = view.viewWithTag 2
 green_button = view.viewWithTag 3

 blue_button = view.viewWithTag 4

 red_button.addTarget(self,

 action: 'tap_red',
 forControlEvents:UIControlEventTouchUpInside)

 green_button.addTarget(self,
 action: 'tap_green',

 forControlEvents:UIControlEventTouchUpInside)
 blue_button.addTarget(self,
 action: 'tap_blue',

 forControlEvents:UIControlEventTouchUpInside)

end

Figure 19: Wiring up the user interface created in Inter Face builder to actions in a
UIViewController

As Interface builder proviced visual tools for configuring Auto Layout, Auto Layout

was also used for this example. In this case using Auto Layout provided no additional

challenges and the experience stood in stark contrast to the attempt to use Auto

Layout programmatically.

5.2 Storing data locally

iOS provides a few different places where user data can be stored by applications: Core

Data, XML files, SQLite, and the Keychain. All of these data stores can be used by

29

developers, though they are intended for different use cases (Apple Inc., 2013b) (Apple

Inc., 2013c)

The keychain is intended to be used for storing very small amounts of sensistive data,

such as passwords, API tokens, and other secrets. (Apple Inc., 2013c)

XML files can be used to store user settings and prefences in a lightweight format and

the iOS SDK provides an API for serializing objects. (Apple Inc., 2013c)

iOS applications can also use SQLite directly. Unlike with Core Data, using SQLite the

developer can make procedural, SQL-based queries. (Apple Inc., 2013b)

The primary store for user data is Core Data, which is built on top of SQLite but

provides absractions so to make it work seamlessly with iOS's MVC architecture.

(Apple Inc., 2013b)

This section of development focuses on Core Data.

5.2.1 Core Data

The Core Data framework provides comprehensive and automated

solutions related to an object's life cycle and its searching and persistence

features. It can retrieve and manipulate data purely on an object level

without having to worry about the details of storage and retrieval.

(Nalwaya & Paul, 2013, p. 130)

To test storing user specific data locally, the Core Data example application from

“RubyMotion essentials” was implemented with some minor differences.

30

By following the instrictions given, the local data storage was relatively easy to

implement, though rather verbose. The verbosity of the code required is largely due to

the iOS Cocoa SDK API design.

Figure 20: User flow in the example application from left to right: Initial view, adding a new entry,
list view with new entry shown, deleting an entry, and finally the list view after deletion.

5.3 On-board sensors

Modern iPhones have a variety on- board sensors available for use, for example the

GPS, camera, accelerometer, and compass. Developers can use all of these via the iOS

SDKs.

31

5.3.1 Device location and map

Figure 21: The current device location (simulated to be in California in this example)

For the location test, the a simple application was created to fetch the device's current

lopcation and display it on a map. The application used the native iOS SDKs for both

fetching the device location and for displaying the map.

class LocationController < UIViewController
 def viewDidLoad

 view.backgroundColor = UIColor.whiteColor
 self.title = "Location"

 check_location
 show_map

 end

 def check_location

 if (CLLocationManager.locationServicesEnabled)
 @location_manager = CLLocationManager.alloc.init

 @location_manager.desiredAccuracy = KCLLocationAccuracyKilometer
 @location_manager.delegate = self

 @location_manager.purpose = "This app's functionality is based on your location"
 @location_manager.startUpdatingLocation

 else
 show_error_message('Enable the Location Services for this app in Settings.')

 end

32

 end

 def show_map

 map = MKMapView.alloc.initWithFrame([[0, 20], [320, 568]])
 map.mapType = MKMapTypeStandard

 map.showsUserLocation = true

 location = CLLocationCoordinate2D.new(@latitude.to_f, @longitude.to_f)
 map.setRegion(
 MKCoordinateRegionMake(location, MKCoordinateSpanMake(1, 1)),

 animated:true
)

 self.view.addSubview(map)

 end

 def locationManager(manager, didUpdateToLocation:newLocation, fromLocation:oldLocation)

 @latitude = newLocation.coordinate.latitude
 @longitude = newLocation.coordinate.longitude

 @location_manager.stopUpdatingLocation

 show_map

 end

 def locationManager(manager, didFailWithError:error)
 show_error_message('Enable the Location Services for this app in Settings.')

 end

 def show_error_message(message)
 alert = UIAlertView.new

 alert.addButtonWithTitle("OK")
 alert.message = message
 alert.show

 end
end

Figure 22: Code for getting the device location and then displaying the device's current location on a
map

33

5.3.2 Using the camera

Figure 23: Taking a photo and showing that photo in the application

A modified version of the CameraExample application from the Ruby Essential book

was used to initially taking photos using the device camera and picking photos from

the gallery.

@image_picker = UIImagePickerController.alloc.init
@image_picker.delegate = self

@image_picker.sourceType = UIImagePickerControllerSourceTypeCamera
presentModalViewController(@image_picker, animated:true)

Figure 24: Opening the camera interface in a UIViewController only requires four lines of code at its
most basic level. This code snippet leaves out checks to make sure that teh device in use has a camera
present.

34

5.4 Accessing a remote API

Figure 25: From left-to-right: 1. Entering a search value into the app, 2. The search results, 3.
Entering a new tag, 4. After the remote request has completed and the tag has been added

To test creating an app that uses external, HTTP APIs, the “Colr” application from

chapter 7 of “RubyMotion: iOS Development with Ruby” was used.

This example application was not fully ready for iOS 7 and the layout especially had to

be modified a lot to get it to work as intended on iOS 7.

BubbleWrap::HTTP.get("http://www.colr.org/json/color/#{hex}") do |response|
 result_data = BubbleWrap::JSON.parse(response.body.to_str)
 puts color_data.inspect

 block.call(nil)

end

Figure 26: Making a GET request to a remote API over HTTP using the BubbleWrap2
RubyMotion library. In this example the received data is parsed, printed to the debugging console, then
discarded.

2 The BubbleWrap library provides Ruby w rappers for iOS SDKs. https://github.com/rubym otion/BubbleWrap

https://github.com/rubymotion/BubbleWrap

35

The application uses the BubbleWrap Ruby library to interact with a remote HTTP

JSON API. Using this library accessing a remote API proved to be extremely simple to

do.

5.5 Using 3rd party Objective-C libraries

Objective C libraries can be easily included in RubyMotion applications through the

CocoaPods Objective C library dependency manager.

5.5.1 CocoaPods

To test the RubyMotion CocoaPods integration, a new applicacation was created from

scratch. The application directly requires two CocoaPod libraries:

“OpenWeatherMapAPI” and “UIImage+PDF”.

Figure 27: Weather data fetched from OpenWeatherMap and a PDF weather symbol being displayed

36

The first of these, OpenWeatherMapAPI, is an API wrapper for the

OpenWeatherMap API. OpenWeatherMap is a project that provides a free to use

weather data API for developers in a similar way in which OpenStreetMap provides

free mapping data or the way Wikipedia provides a free encyclopedia.

(OpenWeatherMap, 2013)

The UIImage+PDF library allows developers to use PDF images in a similar way as

they would normally use raster or bitmap images in their applications. This allows

developers to easily use resolution independent, scalable, vector assets in their iOS

projects. (Barber, 2011)

Motion::Project::App.setup do |app|
 # Use `rake config' to see complete project settings.

 app.name = '07_cocoa_pods'

 app.pods do
 pod "OpenWeatherMapAPI", "~> 0.0.5"

 pod "UIImage+PDF"

 end
end

Figure 28: Adding CocoaPod dependencies to a RubyMotion project is extremely easy. Only a couple
of lines of code need to be added to the Rakefile

5.6 Interactive testing

RubyMotion ships with an interactive debugger called the REPL (read-eval-print loop).

The REPL provides a way to interact with a RubyMotion application that is currently

running. For example, the develop can change values in the user interface or use the

REPL for debugging an application. (Samsonetti, RubyMotion Project Management

Guide, 2013b)

37

Figure 29: Interactively making changes to an application in the iOS Simulator while it's still
running.

An example of changing the user interface while the pplication is running can be seen

in Figure 29. In this case the alert box’s title and text were changed while the

application was running in the iOS simulator.

The develop can also command (⌘ on a Mac keyboard) click views in the simulator to

change the context of the REPL console. The developer can then use the self object

to interact with the selected view in the REPL console. (Samsonetti, RubyMotion

Project Management Guide, 2013b)

38

6 Results, evaluation, and conclusions

6.1 Results

Overall the development of applications using the RubyMotion toolchain was

surprisingly pleasant. The major issues encountered are more due to a lack of clear or

reliable documentation. Most of the documentation available also hasn't yet been

updated to reflect the changes in iOS 7, which was released to the general public on

September 18, 2013 (iOS 7 arrives on Apple devices September 18th

http://www.engadget.com/2013/09/10/ios-7-arrives-september-18th/), about 2 and

a half months before the proof of concept development began.

The development process was relatively smooth, despite some small problems. All the

areas or features of smartphone application development that were targeted were

covered by a test application.

6.2 Evaluation

The goal of this research was to test how RubyMotion could be used by a developer

with prior experience with the Ruby programming language, but with no experience

developing applications with Objective-C or developing applications for the iOS

platform could use RubyMotion as a way of getting into iOS application development.

This objective was met and RubyMtoion looks like a viable platform for Ruby

developers. There can be a fairly steep learning curve, however, as the iOS SDK can

seem foreign to developers with no prior experience in iOS development. As

RubyMotion merely wraps the iOS APIs, the Objective-C foundation of iOS

application development is never far out of sight.

39

A successful test or proof of concept application was developed for each feature that

was selected to be tested before hand, though problems were encountered in a couple

of areas.

6.2.1 Building the application user interface

Two out of three test applications for this section were successful. Both defining views

fully programatically and using views built with the graphical Xcode Interface Builder

were fully successful.

Though a test case was developed using Auto Layout programatically, this application

never functioned fully as intended. This can largely be pinned down to a lack of

documentation on how user interfaces are supposed to be built with Auto Layout

(when not using Interface Builder).

The Auto Layout features of iOS were successfully used in both the Interface Builder

test case and the CocoaPods test case later on.

6.2.2 Storing data locally

This test case was fully successful and no particular problems were encountered. The

chosen test application worked fully as intended. While iOS devices have a few loca-

tions where data can be stored, this test only tested the most import of these, Core

Data.

6.2.3 On-board sensors

Both of the test cases under this feature were successful. Accessing the device location

via the iOS SDKs worked as intended. In the other test case, accessing the device cam-

era and photo library was also fully successful.

40

6.2.4 Accessing a remote API

In the end this test case performed successfully, though there were some issues as the

instructions for the chosen test application had not yet been updated to reflect the

changes in iOS 7 at the time of the test. In the end the application performed success-

fully after some modifications.

6.2.5 Using 3rd party Objective-C libraries (via CocoaPods)

In this test application the goal was to see how and how easily a developer using Ru-

byMotion to build iOS applications could use third party Objective-C libraries with

their Ruby code.

This test was a success and it proved that using 3rd party libraries through CocoaPods

(a dependency manager for Objective-C libraries) is very easy via RubyMotion’s built-

in CocoaPods integration.

6.3 Conclusions

As a developer who isn't alrady familiar with coding for iOS, there are also challenges

in having to simultaneously learn the internal workings of iOS and the way that

RubyMotion itself works. If one was already familiar with iOS development and

familiar with the Ruby programming language, picking up RubyMotion for iOS

application development would most likely be a lot easier than it is for a developer who

is only familiar wioth one of the two, or none.

As it stands today, based on experience from the proof of concept development,

RubyMotion cannot be recommended to anyone who is just getting started with

programming. Picking up either Objective C or Ruby development for some other

environment (for example web development with the Ruby on Rails framework),

would present a more pleasant and more consistent experience for a novice

programmer. This is largely due to the fact that developing applications RubyMotion

41

necessarily mixes concepts and terms from both the iOS “world” and from the Ruby

world, for a novice programmer this could be very confusing.

For developers who are already familiar with at least iOS developent *or* Ruby

development, the experience is less confusing as they will have a more intuitive sense

about what concepts and tools belong to which part of the underlying system.

As the use of smartphones and other mobile devices increases worldwide and as we

spend more and more time on mobile devices and as we do more things on our mobile

devices, RubyMotion can definitely been seen as a valuable tool especially for Ruby

programmers looking to get into creative native applications for the iOS ecosystem.

Unlike creating applications with Objective C, using RubyMotion doesn't require a

Ruby programmer to learn a whole new language and a whole new set of best

practices.

42

7 Summary

The number of smartphones and mobile devices that we (as consumers) buy is increas-

ing at an ever increasing rate. We are also spending a larger amount of time using these

devices and we are using them to do more things. Particularly of interest is the fact that

more and more money is being spent using these devices. Users are more willing than

ever to both buy apps for these devices and more willing to buy other products using

these devices. Particularly iOS device users are willing to spend money on apps pur-

chases on their devices.

The Ruby programming language has been moderately successful of late (making it

into the top ten or top fifteen languages in terms of popularity). However, until re-

cently it was not possible to use the Ruby language to create applications for any popu-

lar smartphone platform. This has relatively recently changed with the introduction of

Ruboto for Android and RubyMotion for iOS development.

RubyMotion is a toolchain that enables the development of iOS and OS X applications

using the ruby programming language. It is not a bridge, though, rather it is a wrapper

for the native iOS SDKs. This means that RubyMotion applications can use all the

same features that are available to regular, Objective-C based applications. Developers

can also use 3rd party Objective-C libraries in their RubyMotion applications.

While iOS application development with RubyMotion presents its own difficulties over

the development of, say, web applications in Ruby, this does not mean that RubyMo-

tion is not a viable option for developers with prior experience in either Ruby or with

iOS application development (or both). It might even be possible to share code be-

tween, for example, a Ruboto application on Android and an iOS application built with

RubyMotion.

43

At this point RubyMotion does not seem like a platform that should be recommended

to novice developers as the fusion of paradigms and concepts from both the world of

Ruby and from the iOS SDK can be both confusing and daunting at times.

7.1 Further research questions

While researching this topic, no benchmarks of RubyMotion application performance

were found, so this would definitely be an area where more research would be war-

ranted.

Further research could be used to gauge the empirical performance differences be-

tween applications built with RubyMotion and applications built with Objective-C. It

would also be useful to do some profiling of RubyMotion applications to see if they

use more resources (such as CPU or memory) than similar Objective-C applications

would. This would also be useful for gauging whether applications built with RubyMo-

tion are more or less stable than applications built with Objective-C.

Another area that could warrant further research is the possibility of sharing Ruby code

between different platforms. For example, it may or may not be practically viable to

share code between an iOS RubyMotion application, an OS X RubyMotion Applica-

tion, a Ruboto application running on Android, and a web application using, say, Ruby

on Rails.

The test applications were only tested on the latest version of iOS (version 7) and only

on a single device and in the simulator. Further research could be done into how well

RubyMotion applications run in a more diverse range of devices and iOS versions.

44

References

Allan, A. (2013). Learning iOS Programming (3rd ed.). Sebastopol: O’Reilly Media, Inc.

Allsopp, C. (2012a). RubyMotion: iOS Development with Ruby. Dallas: The Pragmatic

Programmers, LLC.

Allsopp, C. (2012b, 07 08). The RubyMotion Way. Retrieved 11 28, 2013, from

clayallsopp.com: http://clayallsopp.com/posts/the-ruby-motion-way/

Apple Inc. (2013a, 10 22). Start Developing iOS Apps Today. Retrieved 11 17, 2013, from

iOS Developer Library:

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/Road

MapiOS/index.html#//apple_ref/doc/uid/TP40011343

Apple Inc. (2013b). Data Management in iOS. Retrieved 11 25, 2013, from Apple

Developer Center: https://developer.apple.com/technologies/ios/data-

management.html

Apple Inc. (2013c, 10 23). The iOS Environment. Retrieved 11 25, 2013, from iOS

Developer Library:

https://developer.apple.com/library/ios/documentation/iphone/conceptual/i

phoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html

Armando, M. (2012, 09 23). MacRuby/Rubymotion Auto Layout Basics. Retrieved 11 24,

2013, from Mateus - Welt:

http://seanlilmateus.github.io/blog/2012/09/23/macruby-slash-rubymotion-

auto-layout-basics/

Barber, N. T. (2011, 10 16). UIImage-PDF / README.md. Retrieved 11 28, 2013,

from GitHub UIImage+PDF project git repository:

https://github.com/mindbrix/UIImage-

PDF/blob/bbe64f75439ce20aabc3a664c4ae506c540bf4b3/README.md

Bradley, T. (2013, 11 15). Android Dominates Market Share, But Apple Makes All The

Money. Retrieved 11 21, 2013, from Forbes:

http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-

market-share-but-apple-makes-all-the-money/

45

Burnette, E. (2010). Hello, Android (3rd ed.). Dallas: Pragmatic Programmers, LLC.

Carsten, B. (1989, 11). Carsten's Corner. Power Conversion and Intelligent Motion, p. 38.

comScore. (2013, 10 21). 1 in 7 European Smartphone Owners Make Online Purchases via their

Device. Retrieved 10 28, 2013, from comScore web site:

http://www.comscore.com/Insights/Press_Releases/2013/10/1_in_7_Europe

an_Smartphone_Owners_Make_Online_Purchases_via_their_Device

Dilger, D. E. (2013, 11 12). IDC data shows 66% of Android's 81% smartphone share are junk

phones selling for $215. Retrieved 11 21, 2012, from AppleInsider:

http://appleinsider.com/articles/13/11/12/idc-data-shows-66-of-androids-81-

smartphone-share-are-junk-phones-selling-for-215

Dornin, L., Mednieks, Z., Meike, G. B., & Nakamura, M. (2012). Programming Android

(2nd ed.). Sebastopol: O’Reilly Media, Inc.

eMarketer. (2013, 11 13). Mobile Set to Take Double-Digit Share of Western Europe's Online

Holiday Sales. Retrieved 11 16, 2013, from eMarketer web site:

http://www.emarketer.com/Article/Mobile-Set-Take-Double-Digit-Share-of-

Western-Europes-Online-Holiday-Sales/1010375

HipByte. (2013, 10 28). RubyMotion Features. Retrieved 10 28, 2013, from Official

Rubymotion web site: http://www.rubymotion.com/features/

Nalwaya, A., & Paul, A. (2013). RubyMotion iOS Development Essentials. Birmingham:

Packt Publishing Ltd.

Nielsen. (2010, 09 14). The state of mobile apps. Retrieved 10 28, 2013, from Nielsen web

site: http://www.nielsen.com/us/en/reports/2010/The-State-Of-Mobile-

Apps.html

Nielsen. (2013, 10 29). Ring the bells: More smartphones in students’ hands ahead of back-to-

school season. Retrieved 11 07, 2013, from Nielsen web site:

http://www.nielsen.com/us/en/newswire/2013/ring-the-bells-more-

smartphones-in-students-hands-ahead-of-back.html

Nutter, C. (2009, 02 25). Ruboto Is Your Friend. Retrieved 11 17, 2013, from Headius

blog: http://blog.headius.com/2009/02/ruboto-is-your-friend.html

46

OPA. (2012, 08 01). A Portrait of Today’s Smartphone User. Retrieved 11 21, 2013, from

Online Publisher's Association:

http://onlinepubs.ehclients.com/images/pdf/MMF-OPA_--

_Portrait_of_Smartphone_User_--_Aug12_(Public).pdf

OpenWeatherMap. (2013). OpenWeatherMap. Retrieved 11 28, 2013, from

OpenWeatherMap web site: http://openweathermap.org/

Paul, R. (2012, 05 03). Exclusive: building native iOS apps with RubyMotion. Retrieved 11 17,

2013, from Ars Technica: Exclusive: building native iOS apps with RubyMotion

Petzold, C. (2010). Programming Windows Phone 7. Redmond: Microsoft Press.

Phillips, I. (2012, 05 07). RubyMotion and Interface Builder…. Retrieved 11 24, 2013, from

Digital Magpie: http://ianp.org/2012/05/07/rubymotion-and-interface-

builder/

RedMonk. (2013, 02 28). The RedMonk Programming Language Rankings: January 2013.

Retrieved 11 17, 2013, from RedMonk web site:

http://redmonk.com/sogrady/2013/02/28/language-rankings-1-13/

Samsonetti, L. (2008, 04 14). [ANN] MacRuby 0.1. Retrieved 10 18, 2013, from Ruby-

Talk mailing list: http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-

talk/294485

Samsonetti, L. (2013a, 05 10). Welcome to RubyMotion. Retrieved 11 23, 2013, from

RubyMotion Developer Center: http://www.rubymotion.com/developer-

center/guides/getting-started/

Samsonetti, L. (2013b, 06 10). RubyMotion Project Management Guide. Retrieved 11 23,

2013, from RubyMotion Developer Center:

http://www.rubymotion.com/developer-center/guides/project-

management/#_install_on_device

Suri, I. (2013, 05 13). RubyMotion 2.0 Arrives with OS X Support, Templates and Plug-ins.

Retrieved 11 17, 2013, from DevOps Anfle:

http://devopsangle.com/2013/05/13/rubymotion-2-0-arrives-with-os-x-

support-templates-and-plug-ins/

47

Symonds, J. (2012, 05 04). Why RubyMotion Is Better Than Objective-C. Retrieved 11 21,

2011, from Hi, I'm Josh Symonds:

http://joshsymonds.com/blog/2012/05/04/why-rubymotion-is-better-than-

objective-c/

The MacRuby Team. (2013, 01 25). MacRuby. Retrieved 10 28, 2013, from MacRuby

web site: http://macruby.org/

The Transparent Language Popularity Index. (2013, 07 01). Results: July 2013 update.

Retrieved 11 17, 2013, from The Transparent Language Popularity Index web

site: http://lang-index.sourceforge.net/#grid

TIOBE Software. (2013, 11 10). TIOBE Programming Community Index for November 2013.

Retrieved 11 17, 2013, from TIOBE web site:

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Zaph. (2013, 10 25). Xcode 4.4 and later install Command Line Tools. Retrieved 11 23, 2013,

from Stack Overflow: http://stackoverflow.com/a/9329325/1439994

48

Attachments

Attachment 1: The directory tree of the proof of concept applications

Note: Only directories are listed, not files.

.
├── 00_programmatic_ui

│ ├── app
│ │ └── controllers

│ ├── resources
│ └── spec

├── 01_auto_layout_ui
│ ├── app
│ │ └── controllers

│ ├── resources
│ └── spec

├── 02_interface_builder_ui
│ ├── app

│ │ └── controllers
│ ├── resources

│ └── spec
├── 03_storing_data_locally

│ ├── app
│ │ ├── controllers
│ │ ├── helpers

│ │ └── models
│ ├── resources

│ └── spec
├── 04_location

│ ├── app
│ │ └── controllers

│ ├── resources
│ └── spec

├── 05_camera
│ ├── app

│ │ └── controllers
│ ├── resources
│ └── spec

├── 06_remote_api
│ ├── app

│ │ ├── controllers
│ │ └── models

│ ├── resources
│ └── spec

└── 07_cocoa_pods
 ├── app

 │ └── controllers
 ├── resources
 │ └── climacons

 ├── spec
 └── vendor

45 directories, 102 files

49

Attachment 2: 00_programmatic_ui/Rakefile

-*- coding: utf-8 -*-

$:.unshift("/Library/RubyMotion/lib")
require 'motion/project/template/ios'

begin
 require 'bundler'

 Bundler.require
rescue LoadError

end

Motion::Project::App.setup do |app|

 # Use `rake config' to see complete project settings.
 app.name = '00_programatic_ui'

end

Attachment 3: 00_programmatic_ui/app/app_delegate.rb

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launchOptions)

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
 @window.makeKeyAndVisible

 controller = ColorsController.alloc.initWithNibName(nil, bundle: nil)
 nav_controller =

UINavigationController.alloc.initWithRootViewController(controller)
 tab_controller = UITabBarController.alloc.initWithNibName(nil, bundle: nil)

 top_controller = ColorDetailController.alloc.initWithColor(UIColor.purpleColor)

 top_controller.title = "Top Color"
 top_nav_controller =
UINavigationController.alloc.initWithRootViewController(top_controller)

 tab_controller.viewControllers = [nav_controller, top_nav_controller]

 @window.rootViewController = tab_controller

 true

 end

end

50

Attachment 4: 00_programmatic_ui/app/controllers/change_color_controller.rb

class ChangeColorController < UIViewController

 attr_accessor :color_detail_controller

 def viewDidLoad

 super

 self.title = "Change Color"
 self.view.backgroundColor = UIColor.whiteColor

 @text_field = UITextField.alloc.initWithFrame(CGRectZero)
 @text_field.borderStyle = UITextBorderStyleRoundedRect

 @text_field.textAlignment = UITextAlignmentCenter
 @text_field.placeholder = "Enter a color"

 @text_field.frame = [CGPointZero, [150, 32]]
 @text_field.center = [self.view.frame.size.width / 2, self.view.frame.size.height

/ 2 - 170]
 self.view.addSubview(@text_field)

 @button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @button.setTitle("Change", forState: UIControlStateNormal)

 @button.frame = [
 [

 @text_field.frame.origin.x,
 @text_field.frame.origin.y + @text_field.frame.size.height + 10

],
 @text_field.frame.size
]

 self.view.addSubview(@button)
 @button.addTarget(self,

 action:"change_color",
 forControlEvents:UIControlEventTouchUpInside)

 end

 def change_color(*args)

 color_text = @text_field.text.downcase
 color_method = "#{color_text}Color"

 if UIColor.respond_to?(color_method)
 color = UIColor.send("#{color_text}Color")

 else
 @text_field.text = "Error!"

 return
 end

 self.color_detail_controller.view.backgroundColor = color
 self.dismissViewControllerAnimated(true, completion:lambda {})

 end
end

51

Attachment 4: 00_programmatic_ui/app/controllers/color_detail_controller.rb

class ColorDetailController < UIViewController

 def initWithColor(color)
 self.initWithNibName(nil, bundle:nil)
 self.tabBarItem = UITabBarItem.alloc.initWithTitle("Color detail", image:

UIImage.imageNamed("12-eye.png"), tag: 1)
 @color = color

 self

 end

 def viewDidLoad

 super
 self.view.backgroundColor = @color
 self.title = "Detail"

 rightButton = UIBarButtonItem.alloc.initWithTitle("Change",
 style: UIBarButtonItemStyleBordered,

 target: self,
 action: "change_color")

 self.navigationItem.rightBarButtonItem = rightButton

 end

 def change_color
 controller = ChangeColorController.alloc.initWithNibName(nil, bundle:nil)

 controller.color_detail_controller = self
 self.presentViewController(

 UINavigationController.alloc.initWithRootViewController(controller),
 animated:true,
 completion: lambda {}

)

 end

end

Attachment 5: 01_auto_layout/app/Rakefile

-*- coding: utf-8 -*-
$:.unshift("/Library/RubyMotion/lib")

require 'motion/project/template/ios'

begin
 require 'bundler'

 Bundler.require
rescue LoadError

end

Motion::Project::App.setup do |app|

 # Use `rake config' to see complete project settings.
 app.name = '01_auto_layout_ui'

end

52

Attachment 6: 01_auto_layout/app/app_delegate.rb

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launchOptions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
 @window.makeKeyAndVisible

 controller = ColorsController.alloc.initWithNibName(nil, bundle: nil)

 nav_controller =
UINavigationController.alloc.initWithRootViewController(controller)
 tab_controller = UITabBarController.alloc.initWithNibName(nil, bundle: nil)

 top_controller = ColorDetailController.alloc.initWithColor(UIColor.purpleColor)

 top_controller.title = "Top Color"
 top_nav_controller =

UINavigationController.alloc.initWithRootViewController(top_controller)

 tab_controller.viewControllers = [nav_controller, top_nav_controller]

 @window.rootViewController = tab_controller

 true

 end

end

53

Attachment 7: 01_auto_layout/app/controllers/colors_controller.rb

class ColorsController < UIViewController

 def viewDidLoad

 super

 self.view.backgroundColor = UIColor.whiteColor
 self.title = "Colors"

 @label = UILabel.new
 @label.text = "Colors"

 @label.textAlignment = UITextAlignmentCenter

 subviews = { "label" => @label }

 %w(red green blue).map do |color_text, index|
 color = UIColor.send("#{color_text}Color")
 button = UIButton.buttonWithType(UIButtonTypeRoundedRect)

 button.setTitle(color_text, forState:UIControlStateNormal)
 button.setTitleColor(color, forState:UIControlStateNormal)

 button.sizeToFit
 button.addTarget(self,
 action:"tap_#{color_text}",

 forControlEvents:UIControlEventTouchUpInside)

 subviews["#{color_text}_button"] = button

 end

 Motion::Layout.new do |layout|
 layout.view self.view

 layout.subviews subviews
 layout.metrics "top" => 150, "margin" => 20, "height" => 40

 layout.vertical "|-top-[label(==height)]-margin-[red_button(==height)]-margin-
[green_button(==height)]-margin-[blue_button]|"
 layout.horizontal "|-margin-[label]-margin-|"

 layout.horizontal "|-margin-[red_button]-margin-|"
 layout.horizontal "|-margin-[green_button]-margin-|"

 layout.horizontal "|-margin-[blue_button]-margin-|"

 end

 end

 def initWithNibName(name, bundle: bundle) super

 self.tabBarItem = UITabBarItem.alloc.initWithTitle("Colors", image:
UIImage.imageNamed("173-eyedropper.png"), tag: 1)

 self

 end

 def tap_red
 controller = ColorDetailController.alloc.initWithColor(UIColor.redColor)

 self.navigationController.pushViewController(controller, animated: true)

 end

 def tap_green
 controller = ColorDetailController.alloc.initWithColor(UIColor.greenColor)

 self.navigationController.pushViewController(controller, animated: true)

 end

 def tap_blue
 controller = ColorDetailController.alloc.initWithColor(UIColor.blueColor)

 self.navigationController.pushViewController(controller, animated: true)

 end

end

54

Attachment 8: 02_interface_builder_ui/app/controllers/colors_controller.rb

class ColorsController < UIViewController

 def loadView
 views = NSBundle.mainBundle.loadNibNamed "colors", owner: self, options: nil
 self.view = views[0]

 @view_handle = self.view

 end

 def viewDidLoad

 super

 self.title = "Colors"

 @label = view.viewWithTag 1

 red_button = view.viewWithTag 2
 green_button = view.viewWithTag 3
 blue_button = view.viewWithTag 4

 red_button.addTarget(self, action: 'tap_red',

forControlEvents:UIControlEventTouchUpInside)
 green_button.addTarget(self, action: 'tap_green',

forControlEvents:UIControlEventTouchUpInside)
 blue_button.addTarget(self, action: 'tap_blue',
forControlEvents:UIControlEventTouchUpInside)

 end

 def initWithNibName(name, bundle: bundle) super
 self.tabBarItem = UITabBarItem.alloc.initWithTitle("Colors", image:
UIImage.imageNamed("173-eyedropper.png"), tag: 1)

 self

 end

 def tap_red

 controller = ColorDetailController.alloc.initWithColor(UIColor.redColor)
 self.navigationController.pushViewController(controller, animated: true)

 end

 def tap_green

 controller = ColorDetailController.alloc.initWithColor(UIColor.greenColor)
 self.navigationController.pushViewController(controller, animated: true)

 end

 def tap_blue

 controller = ColorDetailController.alloc.initWithColor(UIColor.blueColor)
 self.navigationController.pushViewController(controller, animated: true)

 end
end

55

Attachment 9: 02_interface_builder_ui/resources/colors.xib

<?xml version="1.0" encoding="UTF -8" standalone="no"?>
<document type="com.apple.InterfaceBuilder3.CocoaTouch.XIB" version="3.0" toolsVersion="4514"

systemVersion="13A603" targetRuntime="iOS.CocoaTouch" propertyAccessControl="none" useAutolayout="YES">

 <dependencies>
 <plugIn identifier="com.apple.InterfaceBuilder.IBCocoaTouchPlugin" version="3747"/>

 </dependencies>
 <objects>
 <placeholder placeholderIdentifier="IBFilesOwner" id="-1" userLabel="File's Owner"/>

 <placeholder placeholderIdentifier="IBFirstResponder" id="-2" customClass="UIResponder"/>
 <view contentMode="scaleToFill" id="1">
 <rect key="frame" x="0.0" y="0.0" width="320" height="568"/>

 <autoresizingMask key="autoresizingMask" widthSizable="YES" heightSizable="YES"/>

 <subviews>
 <label opaque="NO" clipsSubviews="YES" userInteractionEnabled="NO" tag="1"

contentMode="left" horizontalHuggingPriority="251" verticalHuggingPriority="251" ambiguous="YES"
misplaced="YES" text="Colors" lineBreakMode="tailTruncation" baselineAdjustment="alignBaselines"
adjustsFontSizeToFit="NO" translatesAutoresizingMaskIntoConstraints="NO" id="k4h-Td-2xa">

 <rect key="frame" x="135" y="273" width="51" height="21"/>
 <autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
 <fontDescription key="fontDescription" type="system" pointSize="17"/>

 <color key="textColor" cocoaTouchSystemColor="darkTextColor"/>
 <nil key="highlightedColor"/>

 </label>
 <button opaque="NO" tag="2" contentMode="scaleToFill" ambiguous="YES" misplaced="YES"
contentHorizontalAlignment= "center" contentVerticalAlignment="center" buttonType="roundedRect"
lineBreakMode="middleTruncation" translatesAutoresizingMaskIntoConstraints="NO" id="Saz-aK-zmI">

 <rect key="frame" x="3" y="358" width="80" height="30"/>
 <autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
 <state key="normal" title="Red">

 <color key="titleColor" red="1" green="0.0" blue="0.0" alpha="1"
colorSpace="calibratedRGB"/>
 <color key="titleShadowColor" white="0.5" alpha="1" colorSpace="calibratedWhite"/>

 </state>
 </button>
 <button opaque="NO" tag="3" contentMode="scaleToFill" ambiguous="YES" misplaced="YES"

contentHorizontalAlignment= "center" contentVerticalAlignment="center" buttonType="roundedRect"
lineBreakMode="middleTruncation" translatesAutoresizingMaskIntoConstraints="NO" id="dzW-5f-JgW">
 <rect key="frame" x="120" y="358" width="80" height="30"/>

 <autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
 <state key="normal" title="Green">
 <color key="titleColor" red="0.0" green="1" blue="0.0" alpha="1"

colorSpace="calibratedRGB"/>
 <color key="titleShadowColor" white="0.5" alpha="1" colorSpace="calibratedWhite"/>

 </state>

 </button>
 <button opaque="NO" tag="4" contentMode="scaleToFill" ambiguous="YES" misplaced="YES"
contentHorizontalAlignment= "center" contentVerticalAlignment="center" buttonType="roundedRect"

lineBreakMode="middleTruncation" translatesAutoresizingMaskIntoConstraints="NO" id="mge-Yd-hxJ">
 <rect key="frame" x="237" y="358" width="80" height="30"/>
 <autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>

 <state key="normal" title="Blue">
 <color key="titleColor" red="0.0" green="0.0" blue="1" alpha="1"
colorSpace="calibratedRGB"/>

 <color key="titleShadowColor" white="0.5" alpha="1" colorSpace="calibratedWhite"/>

 </state>
 </button>

 </subviews>
 <color key="backgroundColor" white="1" alpha="1" colorSpace="custom"
customColorSpace="calibratedWhite"/>

 <constraints>
 <constraint firstItem="k4h-Td-2xa" firstAttribute="top" secondItem="1"
secondAttribute="top" constant="80" id="32U-Oi-FUo"/>

 <constraint firstItem="Saz-aK-zmI" firstAttribute="width" secondItem="mge-Yd-hxJ"
secondAttribute="width" id="Mqc-kq-gMl"/>
 <constraint firstItem="Saz-aK-zmI" firstAttribute="top" secondItem="dzW-5f-JgW"

secondAttribute="top" id="Wvs-28-dbv"/>
 <constraint firstItem="Saz-aK-zmI" firstAttribute="top" secondItem="mge-Yd-hxJ"
secondAttribute="top" id="c30-kP-rUa"/>

 <constraint firstItem="dzW-5f-JgW" firstAttribute="top" secondItem="k4h-Td-2xa"
secondAttribute="bottom" constant="80" id="d5L-DG-zcz"/>
 <constraint firstItem="Saz-aK-zmI" firstAttribute="width" secondItem="dzW-5f-JgW"

secondAttribute="width" id="qMV-oZ-sws"/>

 </constraints>
 <simulatedStatusBarMetrics key="simulatedStatusBarMetrics" />

 <simulatedScreenMetrics key="simulatedDestinationMetrics" type="retina4"/>

 </view>
 </objects>

</document>

56

Attachment 10: 03_storing_data_locally/Rakefile

-*- coding: utf-8 -*-

$:.unshift("/Library/RubyMotion/lib")
require 'motion/project/template/ios'

begin
 require 'bundler'

 Bundler.require
rescue LoadError

end

Motion::Project::App.setup do |app|

 # Use `rake config' to see complete project settings.
 app.name = '03_storing_data_locally'

 app.frameworks += %w(CoreData)

end

57

Attachment 11: 03_storing_data_locally/app/app_delegate.rb

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launchOptions)
 setting_core_data

 employee_view_controller = EmployeeViewController.alloc.init

 # We need to pass the Managed Object Context to the next controller so we can use
it later for creating, fetching or deleting objects
 employee_view_controller.managed_object_context = @managed_object_context

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)

 @window.rootViewController =
UINavigationController.alloc.initWithRootViewController(employee_view_controller)

 @window.makeKeyAndVisible

 true

 end

 def setting_core_data
 # First we need to create the NSManagedObjectModel with all the entities and
their relationships.

 managed_object_model = NSManagedObjectModel.alloc.init
 managed_object_model.entities = [Employee.entity]

 # The next object needed is the NSPersistentStoreCoordinator which will allow

Core Data to persist the information.
 persistent_store_coordinator =
NSPersistentStoreCoordinator.alloc.initWithManagedObjectModel(managed_object_model)

 # Now lets get a URL for where we want Core Data to create the persist file, in

this case a SQLite Database File
 persistent_store_file_url = NSURL.fileURLWithPath(File.join(NSHomeDirectory(),
"Documents", "EmployeeStore.sqlite"))

 error_pointer = Pointer.new(:object)

 # Add a new Persistent Store to our Persistent Store Coordinator which means that

we are telling the Persistent Store Coordinator where to perform the save of our
objects.
 # In this case we are stating that our objects must be stored in a SQLite

database in the path we already created previously
 unless persistent_store_coordinator.addPersistentStoreWithType(NSSQLiteStoreType,

configuration: nil, URL: persistent_store_file_url, options: nil, error:
error_pointer)
 # In case we can"t initialize the Persistance Store File

 raise "Cannot initialize Core Data Persistance Store Coordinator:
#{error_pointer[0].description}"

 end

 # Finally our most important object, the Managed Object Context, is responsible
for creating, destroying, and fetching the objects
 @managed_object_context = NSManagedObjectContext.alloc.init

 @managed_object_context.persistentStoreCoordinator = persistent_store_coordinator

 end

end

58

Attachment 12: 03_storing_data_locally/app/controllers/add_employee_view_controller.rb

class AddEmployeeViewController < UIViewController

 attr_accessor :managed_object_context
 def viewDidLoad
 self.view.backgroundColor = UIColor.whiteColor

 self.title = 'Add Employee'
 save_bar_button_item = UIBarButtonItem.alloc.initWithTitle('Save', style:

UIBarButtonItemStyleDone, target: self, action: 'save_employee')
 self.navigationItem.rightBarButtonItem = save_bar_button_item
 load_form

 end

 def save_employee
 # Using Core Data create a new instance of the object employee

 employee = NSEntityDescription.insertNewObjectForEntityForName(Employee.name,
inManagedObjectContext: @managed_object_context)

 # Assign the text of the name text field to the employee
 employee.name = @name.text

 employee.age = @age.text.intValue

 # Create a new pointer for managing the errors

 error_pointer = Pointer.new(:object)

 # Lets persist the new Movie object, saving the managed object context that
contains it

 unless @managed_object_context.save(error_pointer)
 raise "Error saving a new Director: #{error_pointer[0].description}"

 end

 # Pop the Director View Controller

 self.navigationController.popViewControllerAnimated(true)

 end

 def load_form
 @name = UITextField.alloc.initWithFrame([[50,100], [200,30]])

 @name.borderStyle = UITextBorderStyleRoundedRect
 @name.placeholder = "Name"

 self.view.addSubview(@name)

 @age = UITextField.alloc.initWithFrame([[50,150], [200,30]])

 @age.borderStyle = UITextBorderStyleRoundedRect
 @age.keyboardType = UIKeyboardTypeNumberPad

 @age.placeholder = "Age"
 self.view.addSubview(@age)

 end

end

59

Attachment 13: 03_storing_data_locally/ app/controllers/employee_view_controller.rb

class EmployeeViewController < UIViewController

 attr_accessor :managed_object_context

 def loadView

 # Set up the title for the View Controller
 self.title = "Employee"

 # Create a new Table View for showing the Text Fields
 table_view = UITableView.alloc.initWithFrame(UIScreen.mainScreen.bounds, style:
UITableViewStyleGrouped)

 table_view.dataSource = self
 self.view = table_view

 # Create a new Bar Button Item with the Add System Default

 add_new_employee_item =
UIBarButtonItem.alloc.initWithBarButtonSystemItem(UIBarButtonSystemItemAdd, target:
self, action: "add_new_employee")

 # Add the Bar Button Item to the Navigation Bar

 self.navigationItem.rightBarButtonItem = add_new_employee_item

 end

 def viewWillAppear(animated)

 super
 reload_data

 end

 def reload_data
 fetch_request = NSFetchRequest.alloc.init

 entity = NSEntityDescription.entityForName(Employee.name, inManagedObjectContext:
@managed_object_context)

 fetch_request.setEntity(entity)

 # Sort the Employee by employee name

 fetch_sort = NSSortDescriptor.alloc.initWithKey('name', ascending: true)
 fetch_request.setSortDescriptors([fetch_sort])

 # Update the fetch employee array and reload the table view

 update_fetched_employee_with_fetch_request(fetch_request)

 end

 def update_fetched_employee_with_fetch_request(fetch_request)
 # Create a new pointer for managing the errors

 error_pointer = Pointer.new(:object)
 # Using the NSManagedObjectContext execute the fetch request
 @fetched_employee = @managed_object_context.executeFetchRequest(fetch_request,

error: error_pointer)

 # If the returning array of the fetch request is nil
 # means that a problem has occurred

 unless @fetched_employee
 raise "Error fetching employee: #{error_pointer[0].description}"

 end

 # refresh table view to reload its data

 self.view.reloadData

 end

 # UITableView Data Source
 def tableView(tableView, numberOfRowsInSection: section)

 @fetched_employee.count

 end

60

 def tableView(tableView, cellForRowAtIndexPath: indexPath)
 cell_identifier = 'EmployeeCell'
 cell = tableView.dequeueReusableCellWithIdentifier(cell_identifier)

 # If we are not cells to use we need to create one

 if cell == nil
 # Lets create a new UITableViewCell with the identifier

 cell = UITableViewCell.alloc.initWithStyle(UITableViewCellStyleValue1,
reuseIdentifier:cell_identifier)
 cell.selectionStyle = UITableViewCellSelectionStyleNone

 end

 employee = @fetched_employee[indexPath.row]
 cell.textLabel.text = employee.name
 cell.detailTextLabel.text = employee.age.to_s

 cell

 end

 def tableView(tableView, canEditRowAtIndexPath: indexPath)

 true

 end

 def tableView(tableView, commitEditingStyle: editingStyle,forRowAtIndexPath:
indexPath)

 employee = @fetched_employee[indexPath.row]

 # Ask the NSManagedObjectContext to delete the object

 @managed_object_context.deleteObject(employee)

 # Create a new pointer for managing the errors
 error_pointer = Pointer.new(:object)

 # Lets persist the deleted employee object, saving the managed object context
that contains it

 unless @managed_object_context.save(error_pointer)
 raise "Error deleting an Employee: #{error_pointer[0].description}"

 end

 # Create a new mutable copy of the fetched_employee array

 mutable_fetched_employee = @fetched_employee.mutableCopy

 # Remove the employee from the array
 mutable_fetched_employee.delete(employee)

 # Assign the modified array to our fetched_employee property
 @fetched_employee = mutable_fetched_employee

 # Tell the table view to delete the row

 tableView.deleteRowsAtIndexPaths([indexPath],
withRowAnimation:UITableViewRowAnimationFade)

 end

 def add_new_employee

 add_employee_view_controller = AddEmployeeViewController.alloc.init

 # We need to pass the Managed Object Context to the next controller so we can use
it later for creating, fetching or deleting objects
 add_employee_view_controller.managed_object_context = @managed_object_context

 self.navigationController.pushViewController(add_employee_view_controller,
animated:true)

 end
end

Attachment 14: 03_storing_data_locally/app/helpers/ns_entity_description.rb

61

class NSEntityDescription
 def self.newEntityDescriptionWithName(name, attributes:attributes)
 entity = self.alloc.init

 entity.name = name
 entity.managedObjectClassName = name

 attributes = attributes.each.map do |name, type, default, optional, transient,
indexed|

 property = NSAttributeDescription.alloc.init
 property.name = name
 property.attributeType = type

 property.defaultValue = default if default != nil
 property.optional = optional

 property.transient = transient
 property.indexed = indexed
 property

 end
 entity.properties = attributes

 entity

 end

end

Attachment 15: 03_storing_data_locally/app/helpers/ns_managed_object.rb

class NSManagedObject
 def self.entity

 @entity ||= NSEntityDescription.newEntityDescriptionWithName(name, attributes:
@attributes)

 end

 def self.objects

 # Use if you do not want any section in your table view
 @objects ||= NSFetchRequest.fetchObjectsForEntity
 ForName(name, withSortKey: @sortKey, ascending: false, inManagedObjectContext:

Store.shared.context)

 end

end

Attachment 16: 03_storing_data_locally/app/models/employee.rb

class Employee < NSManagedObject
 # Attribute Name, Data Type, Default Value, Is Optional, Is Transient, Is Indexed

 @attributes ||= [
 ["name", NSStringAttributeType, "", false, false, false],

 ["age", NSInteger32AttributeType, 0, false, false, false]
]

end

62

Attachment 17: 04_location/Rakefile

-*- coding: utf-8 -*-

$:.unshift("/Library/RubyMotion/lib")
require 'motion/project/template/ios'

begin
 require 'bundler'

 Bundler.require
rescue LoadError

end

Motion::Project::App.setup do |app|

 # Use `rake config' to see complete project settings.
 app.name = '04_location'

 app.frameworks = ['CoreLocation', 'MapKit']

end

Attachment 18: 04_location/app/app_delegate.rb

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launchOptions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
 @window.rootViewController = LocationController.alloc.init

 @window.makeKeyAndVisible
 true

 end
end

63

Attachment 19: 04_location/app/controllers/location_controller.rb

class LocationController < UIViewController

 def viewDidLoad
 view.backgroundColor = UIColor.whiteColor
 self.title = "Location"

 check_location

 show_map

 end

 def check_location
 if (CLLocationManager.locationServicesEnabled)

 @location_manager = CLLocationManager.alloc.init
 @location_manager.desiredAccuracy = KCLLocationAccuracyKilometer

 @location_manager.delegate = self
 @location_manager.purpose = "This application's functionality is based on your
current location "

 @location_manager.startUpdatingLocation

 else
 show_error_message('Please enable the Location Services for this app in
Settings.')

 end

 end

 def show_map
 map = MKMapView.alloc.initWithFrame([[0, 20], [320, 568]])

 map.mapType = MKMapTypeStandard
 map.showsUserLocation = true

 location = CLLocationCoordinate2D.new(@latitude.to_f, @longitude.to_f)
 map.setRegion(MKCoordinateRegionMake(location, MKCoordinateSpanMake(1, 1)),

animated:true)

 self.view.addSubview(map)

 end

 def locationManager(manager, didUpdateToLocation: newLocation, fromLocation:
oldLocation)

 @latitude = newLocation.coordinate.latitude
 @longitude = newLocation.coordinate.longitude

 @location_manager.stopUpdatingLocation

 show_map

 end

 def locationManager(manager, didFailWithError:error)
 show_error_message('Please enable the Location Services for this app in

Settings.')

 end

 def show_error_message(message)
 alert = UIAlertView.new

 alert.addButtonWithTitle("OK")
 alert.message = message

 alert.show

 end
end

64

Attachment 20: 05_camera/app/controllers/camera_controller.rb

class CameraController < UIViewController

 def viewDidLoad
 view.backgroundColor = UIColor.whiteColor

 load_view

 end

 def load_view
 @camera_button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @camera_button.frame = [[50, 20], [200, 50]]

 @camera_button.setTitle("Click from camera", forState:UIControlStateNormal)
 @camera_button.addTarget(self, action: :start_camera,

forControlEvents:UIControlEventTouchUpInside)
 view.addSubview(@camera_button)

 @gallery_button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @gallery_button.frame = [[50, 100], [200, 50]]
 @gallery_button.setTitle("Choose from Gallery", forState:UIControlStateNormal)

 @gallery_button.addTarget(self, action: :open_gallery,
forControlEvents:UIControlEventTouchUpInside)

 view.addSubview(@gallery_button)

 @image_picker = UIImagePickerController.alloc.init

 @image_picker.delegate = self

 end

 # Tells the delegate that the user picked an image
 def imagePickerController(picker, didFinishPickingImage:image, editingInfo:info)

 self.dismissModalViewControllerAnimated(true)
 @image_view.removeFromSuperview if @image_view

 @image_view = UIImageView.alloc.initWithImage(image)
 @image_view.contentMode = UIViewContentModeScaleAspectFit;

 @image_view.frame = [[50, 200], [200, 180]]
 view.addSubview(@image_view)

 end

 def start_camera

 if camera_present?
 @image_picker.sourceType = UIImagePickerControllerSourceTypeCamera
 presentModalViewController(@image_picker, animated:true)

 else
 show_alert("No camera available")

 end
 end

 def open_gallery
 @image_picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary
 presentModalViewController(@image_picker, animated:true)

 end

 def show_alert(message)
 alert = UIAlertView.new
 alert.message = message

 alert.addButtonWithTitle("OK")
 alert.show

 end

 # Check if the Camera is available or not

 def camera_present?
 UIImagePickerController.isSourceTypeAvailable(UIImagePickerControllerSourceTypeCamera)

 end

end

65

Attachment 21: 06_remote_api/Gemfile

source 'https://rubygems.org'

gem 'rake'
Add your dependencies here:

gem "bubble-wrap"

Attachment 22: 06_remote_api/app/controllers/color_controller.rb

class ColorController < UIViewController
 attr_accessor :color

 def initWithColor(color)
 initWithNibName(nil, bundle:nil)

 self.color = color
 self

 end

 def viewDidLoad

 super

 self.title = "##{self.color.hex}"

 padding = 10

 offset = 64

 @info_container = UIView.alloc.initWithFrame([[0, offset], [self.view.frame.size.width,

60]])
 @info_container.backgroundColor = UIColor.lightGrayColor
 self.view.addSubview(@info_container)

 box_size = @info_container.frame.size.height - (padding * 2)

 # A visual preview of the actual color
 @color_view = UIView.alloc.initWithFrame([[padding, offset + padding], [box_size,

box_size]])
 @color_view.backgroundColor = String.new(self.color.hex).to_color
 self.view.addSubview(@color_view)

 text_field_origin = [

 @color_view.frame.origin.x + @color_view.frame.size.width + padding,
 @color_view.frame.origin.y
]

 @text_field = UITextField.alloc.initWithFrame(CGRectZero)
 @text_field.placeholder = "tag"
 @text_field.autocapitalizationType = UITextAutocapitalizationTypeNone

 @text_field.borderStyle = UITextBorderStyleRoundedRect
 @text_field.contentVerticalAlignment = UIControlContentVerticalAlignmentCenter

 self.view.addSubview(@text_field)

 @add = UIButton.buttonWithType(UIButtonTypeRoundedRect)

 @add.setTitle("Add", forState:UIControlStateNormal)
 @add.setTitle("Adding...", forState:UIControlStateDisabled)
 @add.setTitleColor(UIColor.lightGrayColor, forState:UIControlStateDisabled)

 @add.sizeToFit
 @add.frame = [

 [
 self.view.frame.size.width - @add.frame.size.width - padding,
 @color_view.frame.origin.y

],
 [
 @add.frame.size.width,

 @color_view.frame.size.height
]

]

66

 self.view.addSubview(@add)

 add_button_offset = @add.frame.size.width + (2 * padding)

 @text_field.frame = [
 text_field_origin,

 [
 self.view.frame.size.width - text_field_origin[0] - add_button_offset,
 @color_view.frame.size.height

]
]

 @add.when(UIControlEventTouchUpInside) do
 @add.enabled = false

 @text_field.enabled = false
 self.color.add_tag(@text_field.text) do |tag|
 if tag

 refresh

 else
 @add.enabled = true

 @text_field.enabled = true
 @text_field.text = "Failed :("

 end
 end
 end

 table_height = self.view.bounds.size.height - @info_container.frame.size.height - offset
 table_frame = [

 [0, @info_container.frame.size.height + offset],
 [self.view.bounds.size.width, table_height]

]
 @table_view = UITableView.alloc.initWithFrame(table_frame, style: UITableViewStylePlain)
 @table_view.autoresizingMask = UIViewAutoresizingFlexibleHeight

 self.view.addSubview(@table_view)
 @table_view.dataSource = self

 end

 def refresh

 Color.find(self.color.hex) do |color|
 self.color = color
 @table_view.reloadData

 @add.enabled = true
 @text_field.enabled = true
 @text_field.text = ""

 end
 end

 def tableView(tableView, numberOfRowsInSection:section)
 self.color.tags.count

 end

 def tableView(tableView, cellForRowAtIndexPath:indexPath)

 @reuseIdentifier ||= "CELL_IDENTIFIER"
 cell = tableView.dequeueReusableCellWithIdentifier(@reuseIdentifier)

 cell ||= UITableViewCell.alloc.initWithStyle(UITableViewCellStyleDefault,
reuseIdentifier:@reuseIdentifier)
 cell.textLabel.text = self.color.tags[indexPath.row].name

 cell

 end
end

67

Attachment 23: 06_remote_api/app/controllers/search_controller.rb

class SearchController < UIViewController

 def viewDidLoad

 super
 self.title = "Search"

 self.view.backgroundColor = UIColor.whiteColor

 @text_field = UITextField.alloc.initWithFrame [[0,0], [160, 26]]
 @text_field.placeholder = "#abcabc"
 @text_field.textAlignment = UITextAlignmentCenter

 @text_field.autocapitalizationType = UITextAutocapitalizationTypeNone
 @text_field.borderStyle = UITextBorderStyleRoundedRect

 @text_field.center = [
 self.view.frame.size.width / 2,

 self.view.frame.size.height / 2 - 100
]
 self.view.addSubview(@text_field)

 @search = UIButton.buttonWithType(UIButtonTypeRoundedRect)

 @search.setTitle("Search", forState:UIControlStateNormal)
 @search.setTitle("Loading", forState:UIControlStateDisabled)
 @search.frame = [[0,0], [160, 26]]

 @search.center = [
 self.view.frame.size.width / 2,

 @text_field.center.y + 40
]

 self.view.addSubview(@search)

 @search.when(UIControlEventTouchUpInside) do

 @search.enabled = false
 @text_field.enabled = false

 hex = @text_field.text
 # chop off any leading #s
 hex = hex[1..-1]if hex[0] == "#"

 Color.find(hex) do |color|

 if color.nil?
 @search.setTitle("None :(", forState: UIControlStateNormal)

 else
 @search.setTitle("Search", forState: UIControlStateNormal)
 self.open_color(color)

 end
 @search.enabled = true

 @text_field.enabled = true

 end
 end

 end

 def open_color(color)
 controller = ColorController.alloc.initWithColor(color)

 self.navigationController.pushViewController(controller, animated:true)

 end
end

68

Attachment 24: 06_remote_api/app/models/color.rb

class Color
 PROPERTIES = [:timestamp, :hex, :id, :tags]
 PROPERTIES.each do |prop|
 attr_accessor prop

 end

 def initialize(hash = {})
 hash.each do |key, value|
 if PROPERTIES.member? key.to_sym

 self.send((key.to_s + "=").to_s, value)

 end

 end
 end

 def self.find(hex, &block)

 BubbleWrap::HTTP.get("http://www.colr.org/json/color/#{hex}") do |response|
 result_data = BubbleWrap::JSON.parse(response.body.to_str)

 color_data = result_data["colors"][0]

 # Colr will return a color with id == -1 if no color was found

 color = Color.new(color_data)
 if color.id.to_i == -1

 block.call(nil)

 else
 block.call(color)

 end
 end

 end

 def tags
 @tags ||= []

 end

 def tags=(tags)

 if tags.first.is_a? Hash
 tags = tags.collect { |tag| Tag.new(tag) }

 end

 tags.each do |tag|

 if not tag.is_a? Tag
 raise "Wrong class for attempted tag #{tag.inspect}"

 end
 end

 @tags = tags

 end

 def add_tag(tag, &block)

 BubbleWrap::HTTP.post("http://www.colr.org/js/color/#{self.hex}/addtag/",
payload:{tags: tag}) do |response|
 if response.ok?

 block.call(tag)

 else
 block.call(nil)

 end
 end

 end
end

69

Attachment 25: 06_remote_api/app/models/tag.rb

class Tag
 PROPERTIES = [:timestamp, :id, :name]
 PROPERTIES.each do |prop|
 attr_accessor prop

 end

 def initialize(hash = {})
 hash.each do |key, value|
 if PROPERTIES.member? key.to_sym

 self.send((key.to_s + "=").to_s, value)

 end

 end
 end

end

Attachment 26: 07_cocoa_pods/Rakefile

-*- coding: utf-8 -*-
$:.unshift("/Library/RubyMotion/lib")

require 'motion/project/template/ios'

begin
 require 'bundler'
 Bundler.require

rescue LoadError

end

Motion::Project::App.setup do |app|
 # Use `rake config' to see complete project settings.

 app.name = '07_cocoa_pods'
 app.interface_orientations = [:portrait]

 app.pods do
 pod "OpenWeatherMapAPI", "~> 0.0.5"

 pod "UIImage+PDF"

 end

end

70

Attachment 20: 07_cocoa_pods/controllers/weather_controller.rb

class WeatherController < UIViewController
 def loadView

 views = NSBundle.mainBundle.loadNibNamed "weather", owner: self, options: nil
 self.view = views[0]
 @view_handle = self.view

 end

 def viewDidLoad

 super

 self.title = "Weather"

 title_bar = view.viewWithTag 1
 # puts title_bar.items[0].rightBarButtonItem.inspect

 refresh_button = title_bar.items[0].rightBarButtonItem
 refresh_button.action = :refresh_weather

 @current_temp_label = view.viewWithTag 3
 @max_temp_label = view.viewWithTag 4
 @min_temp_label = view.viewWithTag 5

 @humidity_temp_label = view.viewWithTag 6
 @conditions_temp_label = view.viewWithTag 7
 @weather_icon = view.viewWithTag 8

 refresh_weather

 end

 def refresh_weather
 reset_values

 @weather_api = OWMWeatherAPI.alloc.initWithAPIKey("23138a16039ffef5a231ab39d10307a5")
 @weather_api.currentWeatherByCityName("Helsinki", withCallback: proc {|error, result|
 puts result.inspect

 @current_temp_label.text = format_temp(result["main"]["temp"])
 @max_temp_label.text = format_temp(result["main"]["temp_max"])
 @min_temp_label.text = format_temp(result["main"]["temp_min"])

 @humidity_temp_label.text = "#{result["main"]["humidity"]}%"

 if result["weather"] && result["weather"].any?

 set_weather_icon(result["weather"].first["icon"])
 @conditions_temp_label.text = result["weather"].first["description"]

 end
 })

 end

 def format_temp(temp)
 "#{temp.round(1)}°C"

 end

 def set_weather_icon(code)
 image = if %w(01d 01n 02d 02n 03d 03n 04d 04n 09d 09n 10d 10n 11d 11n 13d 13n 50d 50n).include? code

 UIImage.imageWithPDFNamed "climacons/#{code}.pdf", fitSize: @weather_icon.size

 else
 UIImage.imageWithPDFNamed "climacons/unknown.pdf", fitSize: @weather_icon.size

 end
 @weather_icon.setImage(image)

 end

 def reset_values
 [

 @current_temp_label,
 @max_temp_label,
 @min_temp_label,

 @humidity_temp_label,
 @conditions_temp_label
].each do |label|

 label.text = "…"

 end
 end

end

	Table of contents
	Terms and abbreviations
	1 Introduction
	1.1 Environment and need
	1.1.1 Smartphone market share and consumer behaviour
	1.1.2 Mobile purchases
	1.1.3 The Ruby programming language

	1.2 Scope
	1.2.1 The scope of this research
	1.2.2 Excluded issues and topics

	2 Research plan
	3 Theory background
	3.1 RubyMotion
	3.1.1 Availability of RubyMotion sources

	3.2 MacRuby
	3.3 The official iOS toolchain
	3.4 How does RubyMotion differ from normal iOS development
	3.5 The benefits of RubyMotion over the official toolchain
	3.6 Research problem

	4 Preparing for development
	4.1 Typical functionality in mobile applications
	4.2 Requirements for the proof of concept application
	4.3 Installing the tools
	4.3.1 Software and hardware used
	4.3.2 Installing Xcode
	4.3.3 Installing RubyMotion
	4.3.4 RubyMotion and text editors

	4.4 Creating a New RubyMotion Application
	4.5 Running The Application
	4.5.1 In a Simulator
	4.5.2 On a Real Device

	5 Development
	5.1 Building the application UI
	5.1.1 The MVC pattern
	5.1.2 Defining layouts programatically
	Hard-coded interface element positions
	Auto Layout

	5.1.3 Using Xcode's Interface Builder

	5.2 Storing data locally
	5.2.1 Core Data

	5.3 On-board sensors
	5.3.1 Device location and map
	5.3.2 Using the camera

	5.4 Accessing a remote API
	5.5 Using 3rd party Objective-C libraries
	5.5.1 CocoaPods

	5.6 Interactive testing

	6 Results, evaluation, and conclusions
	6.1 Results
	6.2 Evaluation
	6.2.1 Building the application user interface
	6.2.2 Storing data locally
	6.2.3 On-board sensors
	6.2.4 Accessing a remote API
	6.2.5 Using 3rd party Objective-C libraries (via CocoaPods)

	6.3 Conclusions

	7 Summary
	7.1 Further research questions

	References
	Attachments
	Attachment 1: The directory tree of the proof of concept applications
	Attachment 2: 00_programmatic_ui/Rakefile
	Attachment 3: 00_programmatic_ui/app/app_delegate.rb
	Attachment 4: 00_programmatic_ui/app/controllers/change_color_controller.rb
	Attachment 4: 00_programmatic_ui/app/controllers/color_detail_controller.rb
	Attachment 5: 01_auto_layout/app/Rakefile
	Attachment 6: 01_auto_layout/app/app_delegate.rb
	Attachment 7: 01_auto_layout/app/controllers/colors_controller.rb
	Attachment 8: 02_interface_builder_ui/app/controllers/colors_controller.rb
	Attachment 9: 02_interface_builder_ui/resources/colors.xib
	Attachment 10: 03_storing_data_locally/Rakefile
	Attachment 11: 03_storing_data_locally/app/app_delegate.rb
	Attachment 12: 03_storing_data_locally/app/controllers/add_employee_view_controller.rb
	Attachment 13: 03_storing_data_locally/ app/controllers/employee_view_controller.rb
	Attachment 14: 03_storing_data_locally/app/helpers/ns_entity_description.rb
	Attachment 15: 03_storing_data_locally/app/helpers/ns_managed_object.rb
	Attachment 16: 03_storing_data_locally/app/models/employee.rb
	Attachment 17: 04_location/Rakefile
	Attachment 18: 04_location/app/app_delegate.rb
	Attachment 19: 04_location/app/controllers/location_controller.rb
	Attachment 20: 05_camera/app/controllers/camera_controller.rb
	Attachment 21: 06_remote_api/Gemfile
	Attachment 22: 06_remote_api/app/controllers/color_controller.rb
	Attachment 23: 06_remote_api/app/controllers/search_controller.rb
	Attachment 24: 06_remote_api/app/models/color.rb
	Attachment 25: 06_remote_api/app/models/tag.rb
	Attachment 26: 07_cocoa_pods/Rakefile
	Attachment 20: 07_cocoa_pods/controllers/weather_controller.rb

