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Abstract

The goal of the project was to develop a prototype of a system that could be used for practicing the 
playing of breath instruments, such as flutes or saxophones. However, during the development 
process, the emphasis shifted from a breath instrument specific design towards a more generic 
design that could be used with any monophonic instrument. The development of the prototype 
included studying existing solutions, specifying the functional requirements and finally 
implementing the prototype. The idea was that the system could play and visualize the contents of 
Standard MIDI Files, the user would play along using some monophonic instrument and the system 
would tell in real time whether the user was playing correctly.

After the initial requirement analysis phase, roughly half of the time was spent on MIDI playback and
visualization and the other half on pitch detection. A significant portion of the time was spent on 
studying these subjects, and as it turned out, implementing the planned features was far from 
trivial. The seemingly simple MIDI playback and visualization functionality required precise 
synchronization between multiple threads and introduced some unexpected problems, for example, 
the official Standard MIDI File specification was not freely available. The pitch detection functionality
relied on somewhat complicated mathematics, suffered from latency and accuracy issues and some 
of the related algorithms were computationally very expensive. The real-time nature of the system 
required accurate audio and visualization synchronization and minimal pitch detection latency.

The thesis explains the theory and technical details of the implemented functionality and the 
problems that were encountered during the development. It also describes the shortcomings of the 
implementation and suggests some possible solutions for them.
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1 Overview

The goal of the project was to implement a prototype of a system that could be used 

as an aid for practicing monophonic breath instrument playing. Originally the system 

was intended especially for practicing the breath and mouth control techniques 

required for playing a saxophone. The original requirements were not fixed but 

included breath and mouth control practice feedback, recording the user input for 

further analysis and providing the user at least some form of rhythm practice 

functionality.

The first phase was finding out whether any existing systems implemented identical 

or similar functionality. No existing systems were found that were meant specifically 

for breath instruments or for practicing the breath and mouth control techniques. 

Some existing systems, e.g., SingStar game series for PlayStation consoles, did 

implement rhythm and pitch detection functionality but these systems were either 

not compatible with breath instruments or were too game oriented to be suitable for 

serious practicing.

The second phase was comparing the pros and cons of different input devices that 

could be used for translating user actions, such as breath, to a software friendly 

format. Using spirometers, MIDI breath controllers, MIDI saxophones, microphones 

and combinations of these were considered. During this process the emphasis shifted

from hardware centric breath and mouth control analysis to more general and 

software centric rhythm and pitch detection. In the end, specialized hardware 

solutions were abandoned in favor of a microphone based solution. This was due to 

the wide availability and cheap price of microphones compared to the other options 

and due to the fact that mobile devices have built-in microphones.

The third phase was refining the application requirements. We decided on 

implementing two major features. The first was that the application should be able to

play and visualize the contents of Standard MIDI Files. The second was that the 

microphone signal should be analyzed and compared in real-time to the MIDI data 
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being played. Implementing some type of a scoring system as in SingStar or Guitar 

Hero game series was discussed but was not implemented in the prototype.

The fourth phase was developing the prototype. The prototype was implemented 

using the C++ programming language and Qt and Win32 software libraries. The Qt 

library was used for implementing the user interface and some of its functionality 

was also used in the back-end implementation. The Win32 library was used for MIDI 

playback and for recording microphone input. The Standard MIDI File parser, MIDI 

data visualization and pitch detection functionality was implemented from scratch.

The technical details of the Standard MIDI File format are described in detail in 

chapter 2. Signal processing algorithms for pitch detection and their practical 

limitations are described in chapter 3. The problems encountered in implementing 

the prototype and some implementation details are discussed in chapter 4. Chapter 5

discusses missing features and shortcomings of the prototype and possible solutions 

to some of these problems.
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2 Standard MIDI File Format

2.1 Introduction

MIDI stands for Musical Instrument Digital Interface and was originally developed as 

a communication protocol for controlling various electronic instruments. The MIDI 

protocol was standardized in 1982 when the MIDI 1.0 specification was released. The 

MIDI specification is maintained by MIDI Manufacturers Association (MMA) which 

has made many enhancements and updates to the specification since its initial 

release. Even though the specification has changed over the years, it is still called 

"MIDI 1.0". (MIDI 2013.)

Despite common belief, MIDI is not an audio format. Even though the MIDI protocol 

was originally developed specifically for musical instruments, it can also be used for 

controlling other types of devices such as stage lighting and firework launchers, or a 

combination of these. A single MIDI stream can contain up to sixteen event channels 

that can be routed to the same or different devices. The MIDI protocol is a way for 

communicating timed events and is suitable for controlling and synchronizing the use 

of almost all types of digital devices, including computer software. (MIDI 2013.)

The Standard MIDI File (SMF) format is a binary file format that provides a 

standardized way of storing MIDI event sequences. The MIDI format is widely 

supported by musical arrangement software. On platforms that use file 

extensions, .mid is commonly used as the extension for these files. (MIDI 2013.)

The official Standard MIDI File specification was available only as a printed copy that 

could be ordered from the MIDI Manufacturers Association (MMA) website for a fee. 

Because the official specification was not freely available, the presented information 

is based on unofficial documentation. The presented information may be inaccurate 

or incomplete and use terms that differ from the terms used in the official 

specification. However, the presented information was used for implementing a 

working Standard MIDI File parser so it should be mostly correct and complete.
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The Standard MIDI File format was originally designed to be used with very limited 

hardware. On early MIDI hardware, storage capacity and especially MIDI bandwidth 

was very limited. The file format uses various techniques such as variable-length 

values and running status for MIDI events and divided system exclusive events for 

reducing storage space and MIDI bandwidth requirements at the expense of added 

complexity. (MIDI 2013.)

It seems that some Standard MIDI File features, such as divided controller change 

MIDI events, were added as hacks into an existing specification that was not originally

designed to support them. Most features that complicate the Standard MIDI File 

format, such as variable-length fields and MIDI event running status, are designed for 

reducing MIDI bandwidth usage. The divided controller change events actually 

increase the MIDI bandwidth usage instead of reducing it.

2.2 Data Types

Standard MIDI files store data in binary format as single-byte, multi-byte and 

variable-length values. A single-byte value contains 8 bits. Multi-byte values are 

stored using big-endian (most significant byte first) byte ordering. The length of 

multi-byte values is always either fixed (e.g., 16, 24 or 32 bits) or explicitly specified 

with a length field before the multi-byte value (e.g., ASCII string lengths are stored 

before the character buffer). Variable-length values are stored using a simple 

encoding scheme: If a byte in a variable-length value has its most significant bit set to

1, another byte follows. The last byte in a variable-length value has its most 

significant bit set to 0. In other words, each byte stores a flag bit and seven data bits. 

A variable-length value may use at most 4 bytes, i.e., can contain at most 28 data bits 

(4 bytes, 7 data bits per byte), and therefore the maximum representable value is 

2^28-1 for an unsigned variable-length integer. The table below gives some examples:

(MIDI File Format 2013.)
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Table 1. Variable-length value examples

In practice, this type of encoding scheme allows the size of an average MIDI file to 

shrink to about 60% of the size of an otherwise identical file which uses 32-bit values 

instead of variable-length values. This is because a MIDI file consists mostly of MIDI 

events which consist of a variable-length delta time value and 3 data bytes. The delta 

time values are usually small and fit in a single-byte variable-length value, thus most 

MIDI events end up taking 4 bytes instead of 7 which would be the case if delta time 

values were stored as 32-bit values. In the late 1980s when the Standard MIDI File 

specification was written, this saving was significant given the limited amount of 

storage space on computers and floppy disks and especially the very limited MIDI 

bandwidth on older MIDI devices. (MIDI 2013.)

Some MIDI events use split 14-bit values which are formed from two bytes: The 7 

least significant bits of one byte (LSB) define the 7 least significant bits and the 7 least

significant bits of another byte (MSB) define the 7 most significant bits. The most 

significant bit of these two bytes is always set to 0. The following table visualizes how 

a split 14-bit value is formed from the bytes: (MIDI File Format 2013.)

Table 2. Split 14-bit value example

2.3 Data Chunks

Standard MIDI files always contain a header chunk and one or more track chunks. The

Value Variable-length
00000000 00000000 00000000 00000000 [0]0000000
00000000 00000000 00000000 01000001 [0]1000001
00000000 00000000 00000000 11000001 [1]0000001 [0]1000001
00000000 00000000 10000000 11000001 [1]0000010 [1]0000001 [0]1000001
00001111 11111111 11111111 11111111 [1]1111111 [1]1111111 [1]1111111 [0]1111111

MSB LSB 14-bit Value
XXXXXXXYYYYYYY0XXXXXXX 0YYYYYYY
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MIDI file format is extensible and can also contain custom data chunks. The MIDI 

specification states that MIDI file parsers must ignore any unknown data chunks 

without producing errors. Each chunk contains a 32-bit ID field (4 ASCII characters, 

e.g., "MTrk"), a 32-bit data block size field and a data block whose size is specified 

with the data block size field. Since all chunks follow this format, skipping any 

unknown chunks is trivial: Read the ID and data block size fields and skip the number 

of bytes specified by the data block size field if the chunk ID is not recognized. (MIDI 

File Format 2013.)

2.3.1 Header Chunk

The following table illustrates the header chunk layout:

Table 3. Header chunk layout

The header chunk contains information about the entire song. A valid MIDI file 

contains only one header chunk and it always comes first. The header chunk 

identified is "MThd" and the data block size is always 6. (MIDI File Format 2013.)

Valid values for the type field are 0, 1 and 2. Type 0 MIDI files contain one track chunk

which contains all MIDI events for all channels, including time signature and tempo 

events. Type 1 MIDI files contain two or more synchronized track chunks where the 

first contains information common to all tracks, such as song title, time signature and 

tempo events. The other tracks contain only track specific data. Type 2 MIDI files 

contain multiple tracks that are not meant to be played simultaneously, e.g., drum 

patterns or other sequences. Type 0 and 1 MIDI files can also be used for the same 

purpose, making type 2 MIDI files somewhat less useful. Type 2 MIDI files are 

intended as a minor storage space optimization where the header chunk does not 

Field Type Size Value
ID 4 8-bit characters 4 ”MThd”
Data block size 32-bit unsigned integer 4 6
Type 16-bit unsigned integer 2 0-2
Track count 16-bit unsigned integer 2 1-65535
Time division 16-bit unsigned integer 2 See following text
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need to be duplicated for all tracks, as is the case if they were stored in separate type 

0 or type 1 MIDI files. (MIDI File Format 2013.)

The track count field specifies the number of track chunks in the MIDI file. This 

should be 1 for type 0 MIDI files, between [2, 65535] for type 1 MIDI files and 

between [1, 65535] for type 2 MIDI files. (MIDI File Format 2013.)

The time division field specifies the time division for all tracks in the MIDI file. The 

time division affects how MIDI event delta time values are decoded into real time 

values. If the most significant bit is set to 0, the following 15 bits describe the time 

division in ticks per quarter note. If the most significant bit is set to 1, the following 7 

bits specify a standard SMPTE (Society of Motion Picture & Television Engineers) 

frames per second value where valid values are 24, 25, 29 (interpreted as 29.97) and 

30 frames per second. The remaining 8 bits specify the number of ticks per frame. If 

the time division value is 0x9978 (binary 10011001 01111000), the most significant 

bit is set to 1, the following 7 bits (binary 0011001, decimal 25) specify the number of

frames per second and the remaining 8 bits (binary 01111000, decimal 120) specify 

the number of ticks per frame which results in 25 frames per second, 120 ticks per 

frame and 3000 (25 * 120) ticks per second. The time division is usually specified as 

ticks per quarter note but specifying the time division using frames per second and 

ticks per frame values might be useful if the MIDI events need to be synchronized 

with a display device update frequency. (MIDI File Format 2013.)

2.3.2 Track Chunk

The following table illustrates the track chunk layout:

Table 4. Track chunk layout

Field Type Size Value
ID 4 8-bit characters 4 ”MTrk”
Data block size 32-bit unsigned integer 4 See following text
Event buffer See following text
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Track chunks contain event data for one or more event channels. The minimum and 

maximum number of track chunks in a valid MIDI file depend on the MIDI file type as 

specified in the header chunk. Track chunk identifier is "MTrk" and the data block size

depends on the number and type of events in the event buffer. (MIDI File Format 

2013.)

The event buffer contains all events for the track. There are no padding bytes before, 

between or after any event structures. Events are stored in the event buffer in the 

order they are intended to be executed. Different event types are described in detail 

in following sections. (MIDI File Format 2013.)

2.4 Events

The following table illustrates the event layout:

Table 5. Event layout

All event structures begin with a variable-length delta time value. The delta time 

values are specified in ticks since the previous event in the same track (MIDI File 

Format 2013).

The variable-length delta time value is followed by an 8-bit type field that defines the 

event type. There are three types of events: MIDI events, meta events and system 

exclusive events. If the most significant bit is set to 0, the event is a MIDI event and 

the following 7 bits define the actual MIDI event type and event channel. The type 

field is 0xFF for meta events and 0xF0 for system exclusive events. (MIDI File Format 

2013.)

The type field is followed by event specific data whose length and contents depend 

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 See following text
Event data See following text
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on the event type (MIDI File Format 2013).

2.4.1 MIDI Events

The following table illustrates the MIDI event layout:

Table 6. MIDI event layout

The variable-length delta time value is interpreted as ticks since the previous event in

the same track for all event types (MIDI File Format 2013).

For MIDI events, the type field actually contains two 4-bit values: The 4 most 

significant bits define the MIDI event type and the 4 least significant bits define the 

event channel (0-15). (MIDI File Format 2013.)

If the most significant bit of the type field is 0, running status should be used. This 

means that the variable-length delta time value is followed by the parameter bytes 

and the type field is not present. In this case, the MIDI event type is taken from the 

previous MIDI event. Identifying the use of running status by checking the most 

significant bit is possible because all valid event type values have their most 

significant bit set to 1 and all valid MIDI event parameter values have their most 

significant bit set to 0. (MIDI File Format 2013.)

The parameter bytes are interpreted differently for different MIDI event types but 

valid parameter values are between [0, 127] for all MIDI event types. The following 

table lists the different MIDI event types and how the parameter bytes should be 

interpreted: (MIDI File Format 2013.)

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 See following text
Parameter 1 8-bit unsigned integer 1 See following text
Parameter 2 8-bit unsigned integer 1 See following text
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Table 7. MIDI event types

Various sources used slightly different names for the event types and parameters 

(e.g., some sources used "pitch bend" instead of "pitch change" and "key" instead of 

"note number") and the official documentation was not freely available for 

referencing (one would have to buy a printed copy) so the event type names used 

here may not match with the ones used in the official documentation. Despite this, 

the event type names used here should still describe the functionality accurately.

The note number values used by Note Off, Note On and Note Pressure Change MIDI 

events can be converted to frequencies and back with the following equations where 

f is frequency and n is note number:

f =440⋅2(n−69)/12 (1)

n=69+12⋅log2(
f
440

) (2)

Different sources use different octave number conventions for MIDI note numbers. 

The following table lists all MIDI note numbers and their corresponding note names, 

octaves and frequencies for standard tuning where MIDI note number 69 is A4 at 

440Hz:

Event Type Value Parameter 1 Parameter 2
Note Off 0x8 Note Number Velocity
Note On 0x9 Note Number Velocity
Note Pressure Change 0xA Note Number Pressure
Controller Change 0xB Controller Number Controller Value
Program Change 0xC Program Number -
Channel Pressure Change 0xD Pressure -
Pitch Change 0xE Pitch Value (LSB) Pitch Value (MSB)
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Table 8. MIDI note numbers, names and frequencies

Note Off MIDI event stops playback of a specified note in the specified event channel,

as if a keyboard key was released. Valid values for the note number are between [0, 

# Name Frequency # Name Frequency # Name Frequency
0 C-1 8.176 43 G2 97.999 86 D6 1174.659
1 C#/Db-1 8.662 44 G#/Ab2 103.826 87 D#/Eb6 1244.508
2 D-1 9.177 45 A2 110.000 88 E6 1318.510
3 D#/Eb-1 9.723 46 A#/Bb2 116.541 89 F6 1396.913
4 E-1 10.301 47 B2 123.471 90 F#/Gb6 1479.978
5 F-1 10.913 48 C3 130.813 91 G6 1567.982
6 F#/Gb-1 11.562 49 C#/Db3 138.591 92 G#/Ab6 1661.219
7 G-1 12.250 50 D3 146.832 93 A6 1760.000
8 G#/Ab-1 12.978 51 D#/Eb3 155.563 94 A#/Bb6 1864.655
9 A-1 13.750 52 E3 164.814 95 B6 1975.533
10 A#/Bb-1 14.568 53 F3 174.614 96 C7 2093.005
11 B-1 15.434 54 F#/Gb3 184.997 97 C#/Db7 2217.461
12 C0 16.352 55 G3 195.998 98 D7 2349.318
13 C#/Db0 17.324 56 G#/Ab3 207.652 99 D#/Eb7 2489.016
14 D0 18.354 57 A3 220.000 100 E7 2637.020
15 D#/Eb0 19.445 58 A#/Bb3 233.082 101 F7 2793.826
16 E0 20.602 59 B3 246.942 102 F#/Gb7 2959.955
17 F0 21.827 60 C4 261.626 103 G7 3135.963
18 F#/Gb0 23.125 61 C#/Db4 277.183 104 G#/Ab7 3322.438
19 G0 24.500 62 D4 293.665 105 A7 3520.000
20 G#/Ab0 25.957 63 D#/Eb4 311.127 106 A#/Bb7 3729.310
21 A0 27.500 64 E4 329.628 107 B7 3951.066
22 A#/Bb0 29.135 65 F4 349.228 108 C8 4186.009
23 B0 30.868 66 F#/Gb4 369.994 109 C#/Db8 4434.922
24 C1 32.703 67 G4 391.995 110 D8 4698.636
25 C#/Db1 34.648 68 G#/Ab4 415.305 111 D#/Eb8 4978.032
26 D1 36.708 69 A4 440.000 112 E8 5274.041
27 D#/Eb1 38.891 70 A#/Bb4 466.164 113 F8 5587.652
28 E1 41.203 71 B4 493.883 114 F#/Gb8 5919.911
29 F1 43.654 72 C5 523.251 115 G8 6271.927
30 F#/Gb1 46.249 73 C#/Db5 554.365 116 G#/Ab8 6644.875
31 G1 48.999 74 D5 587.330 117 A8 7040.000
32 G#/Ab1 51.913 75 D#/Eb5 622.254 118 A#/Bb8 7458.620
33 A1 55.000 76 E5 659.255 119 B8 7902.133
34 A#/Bb1 58.270 77 F5 698.456 120 C9 8372.018
35 B1 61.735 78 F#/Gb5 739.989 121 C#/Db9 8869.844
36 C2 65.406 79 G5 783.991 122 D9 9397.273
37 C#/Db2 69.296 80 G#/Ab5 830.609 123 D#/Eb9 9956.063
38 D2 73.416 81 A5 880.000 124 E9 10548.082
39 D#/Eb2 77.782 82 A#/Bb5 932.328 125 F9 11175.303
40 E2 82.407 83 B5 987.767 126 F#/Gb9 11839.822
41 F2 87.307 84 C6 1046.502 127 G9 12543.854
42 F#/Gb2 92.499 85 C#/Db6 1108.731
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127] and should match a currently playing note. The velocity, between [0, 127], 

defines how fast the note was released. If there has not been a matching Note On 

event for the specified note, this event is ignored. (MIDI File Format 2013.)

Note On MIDI event starts playback of a specified note in the specified channel, as if 

a keyboard key was pressed. Valid values for the note number are between [0, 127]. 

The velocity, between [0, 127], defines how fast the note was pressed. Note that a 

Note On MIDI event with zero velocity should be interpreted as a Note Off MIDI 

event, which can be used with running status to significantly reduce MIDI bandwidth 

requirements. (MIDI File Format 2013.)

Note Pressure Change MIDI event indicates a pressure change on a currently playing 

note in the specified channel. Valid values for the note number are between [0, 127] 

and should match a currently playing note. The pressure value, between [0, 127], 

specifies the pressure being applied (0 for no pressure, 127 for full pressure). This can

be used to express changes in the note volume, like when a saxophonist changes the 

applied air pressure when playing a note. (MIDI File Format 2013.)

Controller Change MIDI event changes the specified controller value for the specified 

channel. There are 128 controller values which affect different attributes such as 

volume, pan and more. The controller number, between [0, 127], defines which 

controller value is changing and the controller value, between [0, 127], defines the 

new value. Note that some attributes are given as split 14-bit values whose most and 

least significant bytes come from two different controller values. The defined MIDI 

controllers are listed in the following table: (MIDI File Format 2013.)
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Table 9. MIDI controller numbers and descriptions

Program Change MIDI event changes the current program for the specified channel. 

The program number, between [0, 127], defines an instrument in the current 

program bank. If a device supports multiple program banks, the current program 

bank can be changed with a bank select Controller Change MIDI event. Note that the 

second parameter data byte exists in the MIDI file but is not used for anything and 

# Description
0 Bank Select
1 Modulation
2 Breath Controller
4 Foot Controller
5 Portamento Time
6 Data Entry (MSB)
7 Main Volume
8 Balance
10 Pan
11 Expression Controller
12 Effect Control 1
13 Effect Control 2
16-19 General-Purpose Controllers 1-4
32-63 LSB for controllers 0-31
64 Damper pedal (sustain)
65 Portamento
66 Sostenuto
67 Soft Pedal
68 Legato Footswitch
69 Hold 2
70 Sound Controller 1 (default: Timber Variation)
71 Sound Controller 2 (default: Timber/Harmonic Content)
72 Sound Controller 3 (default: Release Time)
73 Sound Controller 4 (default: Attack Time)
74-79 Sound Controller 6-10
80-83 General-Purpose Controllers 5-8
84 Portamento Control
91 Effects 1 Depth (formerly External Effects Depth)
92 Effects 2 Depth (formerly Tremolo Depth)
93 Effects 3 Depth (formerly Chorus Depth)
94 Effects 4 Depth (formerly Celeste Detune)
95 Effects 5 Depth (formerly Phaser Depth)
96 Data Increment
97 Data Decrement
98 Non-Registered Parameter Number (LSB)
99 Non-Registered Parameter Number (MSB)
100 Registered Parameter Number (LSB)
101 Registered Parameter Number (MSB)
121-127 Mode Messages



16

contains an undefined value. The program numbers and their corresponding 

instrument names available in the default program bank as described in Wikipedia 

(General MIDI 2013) are listed in the following table: (MIDI File Format 2013.)

Table 10. MIDI program numbers and instrument names

# Instrument Name # Instrument Name # Instrument Name
0 Acoustic Grand Piano 43 Contrabass 86 Lead 7 (fifths)
1 Bright Acoustic Piano 44 Tremolo Strings 87 Lead 8 (bass + lead)
2 Electric Grand Piano 45 Pizzicato Strings 88 Pad 1 (new age)
3 Honky-tonk Piano 46 Orchestral Harp 89 Pad 2 (warm)
4 Electric Piano 1 47 Timpani 90 Pad 3 (polysynth)
5 Electric Piano 2 48 String Ensemble 1 91 Pad 4 (choir)
6 Harpsichord 49 String Ensemble 2 92 Pad 5 (bowed)
7 Clavinet 50 Synth Strings 1 93 Pad 6 (metallic)
8 Celesta 51 Synth Strings 2 94 Pad 7 (halo)
9 Glockenspiel 52 Choir Aahs 95 Pad 8 (sweep)
10 Music Box 53 Voice Oohs 96 FX 1 (rain)
11 Vibraphone 54 Synth Choir 97 FX 2 (soundtrack)
12 Marimba 55 Orchestra Hit 98 FX 3 (crystal)
13 Xylophone 56 Trumpet 99 FX 4 (atmosphere)
14 Tubular Bells 57 Trombone 100 FX 5 (brightness)
15 Dulcimer 58 Tuba 101 FX 6 (goblins)
16 Drawbar Organ 59 Muted Trumpet 102 FX 7 (echoes)
17 Percussive Organ 60 French Horn 103 FX 8 (sci-fi)
18 Rock Organ 61 Brass Section 104 Sitar
19 Church Organ 62 Synth Brass 1 105 Banjo
20 Reed Organ 63 Synth Brass 2 106 Shamisen
21 Accordion 64 Soprano Sax 107 Koto
22 Harmonica 65 Alto Sax 108 Kalimba
23 Tango Accordion 66 Tenor Sax 109 Bagpipe
24 Acoustic Guitar (nylon) 67 Baritone Sax 110 Fiddle
25 Acoustic Guitar (steel) 68 Oboe 111 Shanai
26 Electric Guitar (jazz) 69 English Horn 112 Tinkle Bell
27 Electric Guitar (clean) 70 Bassoon 113 Agogo
28 Electric Guitar (muted) 71 Clarinet 114 Steel Drums
29 Overdriven Guitar 72 Piccolo 115 Woodblock
30 Distortion Guitar 73 Flute 116 Taiko Drum
31 Guitar Harmonics 74 Recorder 117 Melodic Tom
32 Acoustic Bass 75 Pan Flute 118 Synth Drum
33 Electric Bass (finger) 76 Blown bottle 119 Reverse Cymbal
34 Electric Bass (pick) 77 Shakuhachi 120 Guitar Fret Noise
35 Fretless Bass 78 Whistle 121 Breath Noise
36 Slap Bass 1 79 Ocarina 122 Seashore
37 Slap Bass 2 80 Lead 1 (square) 123 Bird Tweet
38 Synth Bass 1 81 Lead 2 (sawtooth) 124 Telephone Ring
39 Synth Bass 2 82 Lead 3 (calliope) 125 Helicopter
40 Violin 83 Lead 4 (chiff) 126 Applause
41 Viola 84 Lead 5 (charang) 127 Gunshot
42 Cello 85 Lead 6 (voice)
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Channel Pressure Change MIDI event indicates a pressure change on all currently 

playing notes in the specified channel. The pressure value, between [0, 127], specifies

the pressure being applied (0 for no pressure, 127 for full pressure), just like in Note 

Pressure Change MIDI events. Note that the second parameter data byte exists in the 

MIDI file but is not used for anything and contains an undefined value. (MIDI File 

Format 2013.)

Pitch Change MIDI event changes the pitch of all currently playing notes in the 

specified channel. Legal values for the parameter bytes are between [0, 127]. The 

parameter bytes form a split 14-bit value that can be calculated as described in the 

data types section. The 14-bit value is then normalized between [-1, 1] so that 0 

becomes -1, 2^13 becomes 0 and 2^14-1 becomes 1. Values below 0 decrease the 

pitch and values above 0 increase the pitch. The actual pitch change range is device 

dependent, making this event somewhat non-portable, but is usually +/-2 semi-

tones. (MIDI File Format 2013.)

2.4.2 Meta Events

The following table illustrates the meta event layout:

Table 11. Meta event layout

The variable-length delta time value is interpreted as ticks since the previous event in

the same track for all event types (MIDI File Format 2013).

For meta events, the type field value is always 255 which can be used to identify the 

event as a meta event. The actual type of the meta event is specified with the meta 

event type field value. Valid values for this field are between [0, 255]. (MIDI File 

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 255
Meta event type 8-bit unsigned integer 1 0-255
Length Variable-length 1-4 See following text
Data See following text
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Format 2013.)

The variable-length length field describes the event data size in bytes. The event data 

contents depend on the meta event type. (MIDI File Format 2013.)

The Standard MIDI File specification defines fifteen meta event types. The standard 

meta event types and their IDs (meta event type field values) are listed in the 

following table: (MIDI File Format 2013.)

Table 12. Meta event types

Pattern/Sequence Number meta event defines the pattern number of a type 2 MIDI 

file or the sequence number of type 0 or 1 MIDI file. The length field value is always 2

and the event data contains a 16-bit big-endian unsigned integer. The delta time field 

value should always be 0 and this event should come before any MIDI events and 

non-zero delta time events. (MIDI File Format 2013.)

Text meta event defines a string that can be used for any reason such as comments. 

The length field value describes the string length in bytes and the event data contains

the string. The string is usually ASCII encoded and may or may not contain a 

terminating NUL-character. (MIDI File Format 2013.)

ID Meta Event Type
0 Pattern/Sequence Number
1 Text
2 Copyright Notice
3 Sequence/Track Name
4 Instrument Name
5 Lyrics
6 Marker
7 Cue Point
32 MIDI Channel Prefix
47 End Of Track
81 Set Tempo
84 SMPTE Offset
88 Time Signature
89 Key Signature
127 Sequencer Specific
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Copyright Notice meta event defines a copyright information string. The length field 

value describes the string length in bytes and the event data contains the string. The 

string is usually ASCII encoded and may or may not contain a terminating NUL-

character. The string format is usually "© year author", e.g., "© 1994 Nobuo 

Uematsu". The delta time field value should always be 0 and this event should be in 

the first track and come before any MIDI events and non-zero delta time events. 

(MIDI File Format 2013.)

Sequence/Track Name meta event defines the sequence name string when in a type 

0 or type 2 MIDI file or in the first track of a type 1 MIDI file. When this meta event 

appears in any track after the first in a type 1 MIDI file, it defines the track name 

string. The length field value describes the string length in bytes and the event data 

contains the string. The string is usually ASCII encoded and may or may not contain a 

terminating NUL-character. The delta time field value should always be 0 and this 

event should come before any MIDI events and non-zero delta time events. (MIDI File

Format 2013.)

Instrument name meta event defines the instrument name string for a channel 

specified with a previous MIDI Channel Prefix meta event. The length field value 

describes the string length in bytes and the event data contains the string. The string 

is usually ASCII encoded and may or may not contain a terminating NUL-character. 

(MIDI File Format 2013.)

Lyrics meta event defines a lyrics string. The length field value describes the string 

length in bytes and the event data contains the string. The string is usually ASCII 

encoded and may or may not contain a terminating NUL-character. These meta 

events can be used for implementing a karaoke-style system. (MIDI File Format 2013.)

Marker meta event defines a description string for a significant point in the sequence,

e.g., the beginning of a new verse or chorus. The length field value describes the 

string length in bytes and the event data contains the string. The string is usually 

ASCII encoded and may or may not contain a terminating NUL-character. These 

events are usually in the first track but may appear in any track. (MIDI File Format 
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2013.)

Cue Point meta event defines a description string for a manually triggered action, 

e.g., the curtain call at the end of a performance. The length field value describes the 

string length in bytes and the event data contains the string. The string is usually 

ASCII encoded and may or may not contain a terminating NUL-character. These 

events are usually in the first track but may appear in any track. (MIDI File Format 

2013.)

MIDI Channel Prefix meta event defines the MIDI channel for following meta events, 

such as the Instrument Name meta event. The effect of this event is terminated by 

another MIDI Channel Prefix meta event or any non-meta event. The length field is 

always 1 and the event data contains an 8-bit unsigned integer that specifies the MIDI

channel index between [0, 15]. (MIDI File Format 2013.)

End Of Track meta event signals the end of a track chunk. This event must always 

appear as the last event of a track chunk. The length field value is always 0 and there 

is no event data. (MIDI File Format 2013.)

Set Tempo meta event defines the sequence tempo as microseconds per quarter 

note. If no Set Tempo meta event has been encountered, the default tempo is 

500000 microseconds per quarter note (120 beats per minute). The length field value

is always 3 and the event data contains a 24-bit big-endian unsigned integer that 

describes the tempo as microseconds per quarter note. Tempo can be converted 

from beats per minute (BPM) to microseconds per quarter note (MPQN) and back 

using the following equations where the constant 60,000,000 is the number of 

microseconds per minute: (MIDI File Format 2013.)

BPM=
60,000,000
MPQN

(3)

MPQN=
60,000 ,000
BPM

(4)

SMPTE Offset meta event defines the SMPTE starting point offset from the beginning 
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of the track. It is defined in terms of hours, minutes, seconds, frames and sub-frames.

There are always 100 sub-frames per frame regardless of what sub-division was 

specified in the header chunk. The length field value is always 5 and the event data 

contains bytes for frame rate/hour offset, minute offset, second offset, frame offset 

and sub-frame offset, in that order. (MIDI File Format 2013.)

The two most significant bits of the first data byte define the frame rate as frames per

second. The following table lists the bit combinations and their corresponding frame 

rates: (MIDI File Format 2013.)

Table 13. SMPTE offset meta event frame rates

The 6 least significant bits of the first data byte define the hour offset as an unsigned 

integer between [0, 23]. The second data byte defines the minute offset as an 8-bit 

unsigned integer between [0, 59]. The third data byte defines the second offset as an 

8-bit unsigned integer between [0, 59]. The fourth data byte defines the frame offset 

as an 8-bit unsigned integer. The range of valid values for the frame offset depends 

on the frame rate, i.e., [0, 23] for 24 FPS, [0, 24] for 25 FPS and [0, 29] for 29.97 and 

30 FPS. The fifth and final data byte defines the sub-frame offset as an unsigned 

integer between [0, 99]. (MIDI File Format 2013.)

Time Signature meta event defines the time signature for the sequence. The length 

field value is always 4 and the event data contains bytes for numerator, denominator, 

metronome pulse and the number of 1/32 notes per quarter note, in that order. The 

first data byte defines the numerator as an unsigned integer between [0, 255]. The 

denominator is defined as 2^n where n is the value of the second data byte as an 

unsigned integer between [0, 255]. The third data byte defines the number of 1/24 

quarter notes (clock signals) between metronome clicks as an unsigned integer 

Bits Frame Rate
00 24
01 25
10 29.97
11 30
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between [0, 255]. The fourth and final data byte defines the number of 32nd notes 

per quarter note (24 clock signals) as an unsigned integer between [1, 255]. The 

default time signature is 4/4, 24 1/24 quarter notes between metronome clicks and 8

1/32 notes per quarter note. (MIDI File Format 2013.)

Key Signature meta event defines the key and scale of a sequence. The length field 

value is always 2 and the event data contains bytes for key and scale, in that order. 

The first data byte defines the key as number of sharps or flats as an 8-bit two's 

complement signed integer between [-7, 7]. A positive value for the key specifies the 

number of sharps and a negative value specifies the number of flats. The second data

byte defines the scale as an 8-bit unsigned integer whose value is 0 for a major scale 

and 1 for a minor scale. (MIDI File Format 2013.)

Sequencer Specific meta event defines sequencer specific information and is not 

portable. The length field value defines the number of bytes in the event data buffer. 

The first data byte is interpreted as an unsigned 8-bit integer and if the value is not 0, 

it specifies the sequencer specific event code. if the value is 0, the 2nd and 3rd data 

bytes should be interpreted as a 16-bit big-endian unsigned integer that specifies the 

event code. The sequencer specific event codes are documented in manufacturer 

specifications. (MIDI File Format 2013.)

2.4.3 System Exclusive Events

Like the Sequencer Specific meta event, system exclusive (SysEx) events are used for 

signalling MIDI hardware or software specific events. There are three types of system 

exclusive events: normal, divided and authorization system exclusive events. The 

following table illustrates the system exclusive event layout: (MIDI File Format 2013.)

Table 14. System exclusive event layout

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 240 or 247
Length Variable-length 1-4 See following text
Data See following text
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The variable-length delta time value is interpreted as ticks since the previous event in

the same track for all event types (MIDI File Format 2013).

For system exclusive events, the type field value is 240 for both normal and divided 

system exclusive events and 247 for authorization system exclusive events (MIDI File 

Format 2013).

The variable-length length field describes the event data size in bytes. The event data 

contents depend on the system exclusive event type. (MIDI File Format 2013.)

Normal and divided system exclusive events are identified by the value of the last 

byte of the event data buffer. If the byte value is 247, the event is a normal system 

exclusive event, otherwise it is a divided system exclusive event and following system 

exclusive events contain more data for the divided system exclusive event. Other than

the first part of a divided system exclusive event are identified with event type field 

value 247. The last part of a divided system exclusive event has the last byte of its 

event data buffer set to 247. (MIDI File Format 2013.)

On older hardware with very limited MIDI bandwidth, a large amount of data in a 

normal system exclusive event could cause following MIDI events to be transmitted 

after the time they should be played. Divided system exclusive events allow splitting a

large event data buffer to smaller blocks and transmitting them with other events 

between them, avoiding bandwidth issues. (MIDI File Format 2013.)
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3 Pitch Detection

3.1 Introduction

Pitch detection has been researched for a long time but the research has been mostly

focused on static processing as opposed to dynamic or real-time processing which 

was a requirement for the prototype. Most existing pitch detection algorithms are 

capable of detecting individual notes which is by itself a relatively complicated 

process. Detecting multiple simultaneously playing notes from a single audio signal is 

much more complicated and the algorithms that try to achieve this suffer from 

accuracy issues and are not suitable for real-time processing. Even with modern 

algorithms and static processing on powerful machines, translating a symphony 

performed by a full orchestra to musical notation from a single audio signal 

containing the sound from all instruments is practically impossible.

The prototype was targeted specifically for monophonic (only one note can be played

at a time) instruments which simplified the pitch detection considerably. The pitch 

detection algorithms described here are targeted for detecting the pitch of individual 

notes from an audio signal that contain only the notes being detected. The two 

algorithm types discussed here are zero-crossing and autocorrelation algorithms.

3.2 Zero-crossing Algorithms

The simplest pitch detection algorithms are based on interpreting the shape of a 

plotted audio signal. The zero-crossing algorithm works by finding the points where 

the signal amplitude crosses the zero point from negative to positive or the other way

around. The signal wavelength is the distance between two such points and the 

frequency is simply the inverse of the wavelength in seconds. (McLeod 2008, 11-12.)

In practice, the input signal will contain some signal noise which will cause false zero-

crossings. The number of these false zero-crossings can be reduced by filtering the 

signal with a low-pass filter, i.e., each sample is calculated from the average or 
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weighted average value of nearby samples in the source signal. The problem with this

approach is that in practice, the source signal sample rate (the number of samples in 

the recorded sound wave) is typically at most 44100 samples per second. With lower 

frequencies, the average can be taken from a relatively large number of samples but 

with higher frequencies, taking the average from too many samples flattens the 

signal and information is lost.

Another way to reduce the number of false zero-crossings is to register a zero-

crossing only when the amplitude crosses from a negative threshold to a positive 

threshold. This can be thought of as thickening the zero line. When used together, 

these two techniques significantly reduce the number of false zero-crossings caused 

by signal noise. The following figures 1 and 2 help visualizing the algorithm:

Figure 1. Signal with noise and marked false zero-crossings
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Figure 2. Filtered signal with marked zero-crossings

The zero-crossing algorithms are suitable for monophonic instruments that produce 

low to medium frequency audio signals that resemble sine waves. As an example, the

shape of audio signals containing human singing are very close to sine waves. In 

addition, most people cannot produce very high frequency notes and therefore most 

songs do not contain them. On the other hand, some instruments, such as violins can

produce high frequency audio signals that may contain multiple peaks and zero-

crossings within a single wave, which is why the zero-crossing algorithm is suitable 

only for some instruments.

3.3 Autocorrelation Algorithms

Autocorrelation algorithms work by comparing a signal to a shifted version of itself. 

The idea is that when the amount of shift is close to the signal wavelength, the 

shifted signal will overlap the original signal. To test how closely the signals overlap 

each other, each sample in the original signal must be compared to the 

corresponding sample in the shifted signal and the results are summed to get a single
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autocorrelation value. These values are calculated for all possible shift amounts and 

the results form an autocorrelation function. The original signal must contain at least 

two whole wavelengths so that it can be shifted by a whole wavelength and can still 

contain another to compare to the original. (McLeod 2008, 12-19.)

One way to calculate the autocorrelation values is to calculate the squared difference 

of each value. The difference of the values is squared because the values are typically

between [-1, 1] and the difference can therefore be negative but taking the square of 

the difference makes all autocorrelation values positive. This could also be done by 

taking the absolute value of the difference. The autocorrelation values do not matter, 

they make sense only when compared to other autocorrelation values of the same 

autocorrelation function. When the autocorrelation values are calculated using a 

difference function, they are closest to zero where the shifted signal overlaps the 

original most closely.

Since the sample window should contain at least two whole wavelengths, one way to 

calculate the autocorrelation function is to compare the first half of the sample 

window contents to a part of the sample window contents that contains just as many 

samples but the offset or shift s of the first sample is between [0, W / 2], where W is 

the number of samples in the sample window. For squared difference 

autocorrelation, this can be described mathematically as:

d (s )=
W /2−1

∑
j=0

( x j− x j+s) , 0⩽s⩽W /2 (5)

The following figures 3, 4 and 5 help visualizing the situation:
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Figure 3. One way to get the original and shifted signals in autocorrelation

Figure 4. Example sample window

Figure 5. Example squared difference autocorrelation function

The first value of the squared difference autocorrelation function will always be zero. 

This is because the shift for the first autocorrelation value is zero and therefore the 
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original signal is being compared to itself. The other throughs in the autocorrelation 

function are possible frequencies. In the example, the second through occurs when 

shift is 6 samples which is obviously the wavelength of the source signal. The third 

through occurs when shift is 12 samples which is twice the wavelength of the source 

signal, i.e., a lower octave. In practice, the autocorrelation function may also contain 

throughs at half-octaves and the lower octave autocorrelation values may actually be 

closer to zero than the autocorrelation value for the correct octave. This is why an 

octave picking algorithm must be used.

The prototype implements the octave picking algorithm as follows: Find the second 

through in the autocorrelation function and mark it as the match. Then find all 

remaining throughs and at each through, mark it as the match if the through is k units

closer to zero than the previously marked through, where k is an arbitrary threshold 

constant. It was found by experimentation that 6% of the maximum autocorrelation 

value worked very well as the through picking threshold constant k.

Unlike zero-crossing algorithms, autocorrelation algorithms are suitable for all 

monophonic instruments, including instruments that produce signals that contain 

multiple zero-crossings within a single wavelength. The biggest source of errors in 

autocorrelation algorithms is octave picking. The previously described octave picking 

algorithm worked very well with squared difference autocorrelation after a suitable 

through picking threshold value had been found by experimentation. This was also 

the frequency calculation method used in the final version of the prototype. The 

following figure illustrates a signal that is problematic for zero-crossing algorithms but

not for autocorrelation algorithms:
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Figure 6. Signal with multiple zero-crossing within a single wavelength

3.4 Practical Issues

An important concept that is relevant for both types of algorithms is the sample 

window size. The sample window size is the length of the recorded audio signal that 

the algorithm requires as input before it can detect a pitch from it. If the sample 

window size is too small, these algorithms cannot detect the pitch from the given 

samples. If the sample window size is bigger than required, the algorithms may 

perform unneeded processing depending on their implementation.

Reducing the number of samples that need to be recorded before they can be 

analyzed reduces the latency between the signal generation (playing an instrument) 

and pitch detection which is critical in real-time processing. If a pitch detection 

algorithm is implemented so that a whole sample window is recorded before it is 

analyzed, the sample window size directly affects the latency. As an example, the 

frequency of MIDI note number 7 (G-1) is 12.250 Hz and its wavelength is therefore 

about 0.082 seconds (the inverse of frequency). The minimum required sample 
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window size is about 0.082 seconds (one wavelength) for zero-crossing algorithms 

and about 0.164 seconds (two wavelengths) for autocorrelation algorithms. This 

magnitude of latency, especially the latency for autocorrelation algorithms, is 

unacceptable in real-time applications.

The algorithmic complexity of zero-crossing algorithms is O(n) and their sample 

window size must fit only one wavelength. The algorithmic complexity of the brute-

force autocorrelation algorithms is O(n²) and their sample window size must fit two 

wavelengths. As an example, the frequency of MIDI note number 0 (C-1) is about 

8.176 Hz and its wavelength is therefore about 0.122 seconds (the inverse of 

frequency). If the source signal sample rate is the typical 44100 samples per second, 

the sample window must contain about 5400 samples for zero-crossing algorithms 

and about 10800 samples for autocorrelation algorithms. To calculate a frequency, 

the zero-crossing algorithms would therefore require about 5400 operations while 

the brute-force autocorrelation algorithms would require about 117 million 

operations. In other words, the brute-force autocorrelation algorithms are not 

suitable for real-time processing with large sample window sizes.
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4 Implementation

4.1 Overview

The prototype itself is not very complicated and its source code size is only about five

thousand lines of code. Most of the development time was spent on studying the 

related subjects and implementing small test programs. As an example, before the 

MIDI playback functionality was integrated to the prototype, two smaller MIDI 

playback test programs were implemented. The first was a program that would send 

individual MIDI events to the MIDI driver when numeric keys were pressed on the 

keyboard. The second was a program that would send a hard-coded MIDI event 

buffer to the MIDI driver when the space key was pressed. Implementing the first 

program revealed that sending individual MIDI event was not an option due to large 

latencies. Implementing the second program revealed that buffered playback could 

be used in the prototype implementation. For the final MIDI playback 

implementation, the hard-coded MIDI event buffer was removed and double 

buffering and multi-threading with related thread synchonization were added to the 

buffered playback implementation.

The first pitch detection implementation used a zero-crossing algorithm. With some 

experimentation and tweaking, the zero-crossing algorithm accuracy was improved 

considerably but it was still only usable for very few instruments. The zero-crossing 

based pitch detection algorithm was abandoned and an autocorrelation based pitch 

detection algorithm was implemented. The autocorrelation based algorithm also 

required a lot of experimentation and tweaking but in the end, it was a lot more 

reliable than the earlier zero-crossing based algorithm. During the development, 

some pitch detection related test programs were written and the pitch detection 

implementation was rewritten almost completely multiple times.

The implementation consists of three major parts: MIDI playback, pitch detection and

their visualization. The MIDI playback and audio recording functionality are running 

in worker threads while the pitch detection and visualization is running in the UI (user
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interface) thread. The UI thread handles all synchronization between the threads 

such as synchronization of MIDI playback and visualization.

On each frame, the main loop in the UI thread processes any UI, MIDI playback and 

wave input events, in that order and then updates the visualization. The UI events 

consist of button clicks, short key presses etc. The MIDI playback events consist of 

synchronization and buffer complete events. The wave input thread generates only 

buffer complete events.

The following figure shows a screen capture of the prototype:

Figure 7. The prototype running

4.2 MIDI Playback

The MIDI playback thread plays queued MIDI event buffers. These event buffers are 

updated in the UI thread and sent to the MIDI playback thread. When a buffer is 
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completed, the UI thread is notified and the buffer can be updated and queued 

again. The implementation uses double buffering so that while one buffer is being 

used by the MIDI playback thread, the other can be updated in UI thread. The Win32 

MIDI event buffers use a non-standard format which is why the Standard MIDI File 

contents must be preprocessed before they can be sent to the Win32 MIDI playback 

device.

The MIDI playback thread sends synchronization events when the first MIDI event is 

played in the MIDI playback thread after playback has been started. In practice, there 

is a slight delay before playback actually starts and and the use of these 

synchronization events improves the synchronization of MIDI playback and 

visualization by a few milliseconds. However, this was an insignificant improvement 

since the Win32 MIDI playback implementation suffers from random latency issues. 

The playback position can be queried from the device but the reported position may 

be off by as much as 200 milliseconds. This differs greatly between different songs 

and slightly between different playbacks of the same song. The prototype allows the 

user to specify this latency but due to its seemingly random nature, this does not 

solve the problem.

MIDI stream playback was inconvenient in a few ways. Seeking and pausing within a 

MIDI stream would ignore notes that should already be playing at the position where 

playback is started because their Note On MIDI events reside before the position. To 

implement seeking and pausing almost correctly, some events, e.g., the Note On 

events of playing notes, would need to be added at the position where playback is 

started. This would still not be perfectly correct because a note may sound very 

different in the beginning than in the middle or in the end. The tempo scaling feature 

in the prototype is implemented by adding extra Set Tempo meta events within the 

event stream but has the limitation that the tempo scaling can be changed only by 

restarting the whole song.

4.3 Wave Input

The wave input thread handles recording audio buffers. The UI thread sends these 
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buffers to the wave input thread and when a buffer is full, the UI thread is notified. 

The recorded audio buffer can then be processed in the UI thread and when it is no 

longer needed, it can be reused. As in the MIDI playback thread the wave input 

implementation uses double buffering so that while one buffer is being used by the 

wave input thread, the other can be processed in UI thread.

The size of the audio buffers is equal to the sample window size and their input 

frequency is 44100 samples per second. The sample window size can be adjusted by 

the user but by default it is sized so that it fits two whole wavelengths of a note that 

is one half-tone lower than the lowest note in the active track. The lowest note has 

the longest wavelength and the one half-tone margin is left to account for the user 

playing incorrect notes.

The amount of time the UI thread spends processing a recorded audio buffer must 

not exceed the audio buffer length in seconds. This is because the implementation 

uses two buffers of equal size and if one is being processed for too long, it will not get

sent to the wave input thread in time and information is lost.

4.4 Pitch Detection

The pitch detection implementation uses a squared difference autocorrelation 

algorithm. When an audio buffer has been recorded in the wave input thread, it is 

given to the pitch detection pipeline. The audio buffer sample values are originally 

16-bit unsigned integers where 0 represents the most negative amplitude and the 

maximum value represents the most positive amplitude. The audio buffer sample 

amplitudes are converted to floating point values between [-1, 1] and the converted 

sample values are then given to the pitch detection algorithm.

The first phase in pitch detection is determining whether the user has provided any 

input. This is done by finding the highest absolute amplitude value and if it is below a 

specified input threshold constant, the sample window contents are interpreted to 

contain noise. The threshold value can be adjusted by the user but the default value 

was working very well in tests.
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The second phase in pitch detection is running the squared difference 

autocorrelation algorithm for the expected note range. By default, the expected note 

range includes notes between one half-tone below and one half-tone above the 

notes in the active track. The expected note range can also be adjusted by the user. 

By limiting the note range, the pitch detection algorithm has less room for error and 

latency is minimized.

The last phase in pitch detection is octave picking. The prototype uses the octave 

picking algorithm described in section 3.3. After a pitch has been found, it is then 

converted to a MIDI note number using equation 2 and the result is visualized by 

drawing a pitch marker on the screen.

4.5 Testing

During the development of the prototype, a major concern was the accuracy of the 

pitch detection algorithm. Since the algorithm is meant for processing a large amount

of data in real-time, using a C++ debugger for verifying the results was very 

inconvenient. For this reason, two utility programs were developed for testing the 

pitch detection algorithm: one for providing input data and another for visual 

debugging. The program that provided input data was used for playing individual 

MIDI notes through the speakers using a user specified instrument and note number. 

The program that provided visual debugging information was reading microphone 

input, running a pitch detection algorithm on the recorded data and visualizing the 

input data and results in real-time. The microphone was placed right next to the 

speakers to minimize signal noise. The following figures 8 and 9 show screen captures

of the described programs:
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Figure 8. Program for providing input data

Figure 9. Program for visual debugging
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5 Further Work

The prototype implements most of the originally planned functionality but has some 

unresolved issues and incomplete or missing features. One major missing feature is 

recording the user input to an audio file for further analysis. This would be relatively 

easy to implement since the prototype already implements audio buffer recording for

pitch detection. The recorded audio buffers could be stored to a large in-memory 

buffer or written directly to an audio file. However, any runtime audio data 

preprocessing or file output should be handled in a separate thread since the UI 

thread must not get blocked because it is also responsible for MIDI playback and 

pitch detection. The best option would probably be to store the audio data to a large 

in-memory buffer which would get written to an audio file when the buffer is full or 

when the user stops playing.

The biggest problems with the prototype pitch detection algorithm are latency and 

the algorithmic complexity. The latency issues could be solved by using a sliding 

sample window. This means that the whole sample window is not recorded at once 

but only small parts of it and the sample window would be formed from these parts. 

The oldest part gets discarded when a new part is recorded. The sample window size 

could also be changed dynamically based on the expected input. The algorithmic 

complexity could be reduced from O(n²) to O(log(n)) by using a Fast Fourier 

Transform (FFT) algorithm for calculating the autocorrelation function. This was not 

implemented in the prototype due to a lack of understanding of the mathematical 

basis behind the algorithm. If background noise becomes an issue, e.g., due to low 

quality microphones on some mobile devices, the noise can be reduced with the 

same kind of signal filtering schemes that were used for zero-crossing algorithms.

The MIDI stream playback implementation is platform dependent and works only on 

Windows XP and later Windows operating systems. As discussed in section 4.1, the 

implementation also has some other issues, such as the random latency problem. All 

of these problems could be resolved by converting the MIDI data to a waveform data 

and playing that instead of streaming MIDI events. This approach would also be 
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platform independent. We found one existing open source C++ library, Timidity++ 

that could be used for implementing this type of functionality.

If a production quality system is to be implemented, it should include some sort of a 

scoring system. The prototype shows the detected pitch in real time but does not 

compare it to the song being played. Implementing the scoring system would not be 

trivial. Examples of features that might be difficult to implement are distinguishing 

between playing a long note and playing the same note multiple times in fast 

succession and separating vibrato from fast note changes. The first iteration in 

developing a scoring system could be based on comparing the detected input to the 

expected input whenever the pitch detection algorithm is executed. The comparison 

could allow some error, maybe based on a difficulty level. The score could be given 

based on the number successful comparisons, perhaps as a percentage of all 

comparisons.

A production quality system would need to be rewritten almost completely. The 

Standard MIDI File parser might be the only module that could be reused as is. 

Everything else is either works only on Windows or uses the Qt software library, 

which might be too heavyweight for mobile applications. For example, a 64-bit 

Windows release version of the prototype includes 40 megabytes of Qt specific 

dynamic link libraries while the executable itself is only 134 kilobytes. The installation

package size might reduce considerable if the Qt library was linked statically but this 

was not tested during the development of the prototype. However, the Qt software 

library was used mostly for implementing the user interface, which would need to be 

reimplemented anyway.
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