
Monophonic Instrument Playing Practice
System Prototype

Mika Haarahiltunen

Bachelor's Thesis
December 2013

Degree Programme in Software Engineering
School of Technology

DESCRIPTION

Author
Haarahiltunen, Mika

Type of publication
Bachelor´s Thesis

Date
02.12.2013

Pages
42

Language
English

Confidential

() Until

Permission for web
publication
(X)

Title
Monophonic Instrument Playing Practice System Prototype

Degree Programme
Software Engineering

Tutor
Kotkansalo, Jouko

Assigned by
Huotari, Jouni

Abstract

The goal of the project was to develop a prototype of a system that could be used for practicing the
playing of breath instruments, such as flutes or saxophones. However, during the development
process, the emphasis shifted from a breath instrument specific design towards a more generic
design that could be used with any monophonic instrument. The development of the prototype
included studying existing solutions, specifying the functional requirements and finally
implementing the prototype. The idea was that the system could play and visualize the contents of
Standard MIDI Files, the user would play along using some monophonic instrument and the system
would tell in real time whether the user was playing correctly.

After the initial requirement analysis phase, roughly half of the time was spent on MIDI playback and
visualization and the other half on pitch detection. A significant portion of the time was spent on
studying these subjects, and as it turned out, implementing the planned features was far from
trivial. The seemingly simple MIDI playback and visualization functionality required precise
synchronization between multiple threads and introduced some unexpected problems, for example,
the official Standard MIDI File specification was not freely available. The pitch detection functionality
relied on somewhat complicated mathematics, suffered from latency and accuracy issues and some
of the related algorithms were computationally very expensive. The real-time nature of the system
required accurate audio and visualization synchronization and minimal pitch detection latency.

The thesis explains the theory and technical details of the implemented functionality and the
problems that were encountered during the development. It also describes the shortcomings of the
implementation and suggests some possible solutions for them.

Keywords
MIDI, signal processing, pitch detection

Miscellaneous

1

Contents
1 Overview..3
2 Standard MIDI File Format..5

2.1 Introduction...5
2.2 Data Types..6
2.3 Data Chunks...7

2.3.1 Header Chunk...8
2.3.2 Track Chunk..9

2.4 Events...10
2.4.1 MIDI Events...11
2.4.2 Meta Events..17
2.4.3 System Exclusive Events...22

3 Pitch Detection...24
3.1 Introduction...24
3.2 Zero-crossing Algorithms...24
3.3 Autocorrelation Algorithms...26
3.4 Practical Issues...30

4 Implementation..32
4.1 Overview..32
4.2 MIDI Playback...33
4.3 Wave Input...34
4.4 Pitch Detection...35
4.5 Testing..36

5 Further Work..38
References...40

Figures
Figure 1. Signal with noise and marked false zero-crossings..25
Figure 2. Filtered signal with marked zero-crossings..26
Figure 3. One way to get the original and shifted signals in autocorrelation...............28
Figure 4. Example sample window...28
Figure 5. Example squared difference autocorrelation function..................................28
Figure 6. Signal with multiple zero-crossing within a single wavelength.....................30
Figure 7. The prototype running...33
Figure 8. Program for providing input data..37
Figure 9. Program for visual debugging..37

Tables
Table 1. Variable-length value examples...7
Table 2. Split 14-bit value example...7
Table 3. Header chunk layout...8

2

Table 4. Track chunk layout...9
Table 5. Event layout...10
Table 6. MIDI event layout..11
Table 7. MIDI event types...12
Table 8. MIDI note numbers, names and frequencies..13
Table 9. MIDI controller numbers and descriptions...15
Table 10. MIDI program numbers and instrument names...16
Table 11. Meta event layout...17
Table 12. Meta event types...18
Table 13. SMPTE offset meta event frame rates...21
Table 14. System exclusive event layout...22

3

1 Overview

The goal of the project was to implement a prototype of a system that could be used

as an aid for practicing monophonic breath instrument playing. Originally the system

was intended especially for practicing the breath and mouth control techniques

required for playing a saxophone. The original requirements were not fixed but

included breath and mouth control practice feedback, recording the user input for

further analysis and providing the user at least some form of rhythm practice

functionality.

The first phase was finding out whether any existing systems implemented identical

or similar functionality. No existing systems were found that were meant specifically

for breath instruments or for practicing the breath and mouth control techniques.

Some existing systems, e.g., SingStar game series for PlayStation consoles, did

implement rhythm and pitch detection functionality but these systems were either

not compatible with breath instruments or were too game oriented to be suitable for

serious practicing.

The second phase was comparing the pros and cons of different input devices that

could be used for translating user actions, such as breath, to a software friendly

format. Using spirometers, MIDI breath controllers, MIDI saxophones, microphones

and combinations of these were considered. During this process the emphasis shifted

from hardware centric breath and mouth control analysis to more general and

software centric rhythm and pitch detection. In the end, specialized hardware

solutions were abandoned in favor of a microphone based solution. This was due to

the wide availability and cheap price of microphones compared to the other options

and due to the fact that mobile devices have built-in microphones.

The third phase was refining the application requirements. We decided on

implementing two major features. The first was that the application should be able to

play and visualize the contents of Standard MIDI Files. The second was that the

microphone signal should be analyzed and compared in real-time to the MIDI data

4

being played. Implementing some type of a scoring system as in SingStar or Guitar

Hero game series was discussed but was not implemented in the prototype.

The fourth phase was developing the prototype. The prototype was implemented

using the C++ programming language and Qt and Win32 software libraries. The Qt

library was used for implementing the user interface and some of its functionality

was also used in the back-end implementation. The Win32 library was used for MIDI

playback and for recording microphone input. The Standard MIDI File parser, MIDI

data visualization and pitch detection functionality was implemented from scratch.

The technical details of the Standard MIDI File format are described in detail in

chapter 2. Signal processing algorithms for pitch detection and their practical

limitations are described in chapter 3. The problems encountered in implementing

the prototype and some implementation details are discussed in chapter 4. Chapter 5

discusses missing features and shortcomings of the prototype and possible solutions

to some of these problems.

5

2 Standard MIDI File Format

2.1 Introduction

MIDI stands for Musical Instrument Digital Interface and was originally developed as

a communication protocol for controlling various electronic instruments. The MIDI

protocol was standardized in 1982 when the MIDI 1.0 specification was released. The

MIDI specification is maintained by MIDI Manufacturers Association (MMA) which

has made many enhancements and updates to the specification since its initial

release. Even though the specification has changed over the years, it is still called

"MIDI 1.0". (MIDI 2013.)

Despite common belief, MIDI is not an audio format. Even though the MIDI protocol

was originally developed specifically for musical instruments, it can also be used for

controlling other types of devices such as stage lighting and firework launchers, or a

combination of these. A single MIDI stream can contain up to sixteen event channels

that can be routed to the same or different devices. The MIDI protocol is a way for

communicating timed events and is suitable for controlling and synchronizing the use

of almost all types of digital devices, including computer software. (MIDI 2013.)

The Standard MIDI File (SMF) format is a binary file format that provides a

standardized way of storing MIDI event sequences. The MIDI format is widely

supported by musical arrangement software. On platforms that use file

extensions, .mid is commonly used as the extension for these files. (MIDI 2013.)

The official Standard MIDI File specification was available only as a printed copy that

could be ordered from the MIDI Manufacturers Association (MMA) website for a fee.

Because the official specification was not freely available, the presented information

is based on unofficial documentation. The presented information may be inaccurate

or incomplete and use terms that differ from the terms used in the official

specification. However, the presented information was used for implementing a

working Standard MIDI File parser so it should be mostly correct and complete.

6

The Standard MIDI File format was originally designed to be used with very limited

hardware. On early MIDI hardware, storage capacity and especially MIDI bandwidth

was very limited. The file format uses various techniques such as variable-length

values and running status for MIDI events and divided system exclusive events for

reducing storage space and MIDI bandwidth requirements at the expense of added

complexity. (MIDI 2013.)

It seems that some Standard MIDI File features, such as divided controller change

MIDI events, were added as hacks into an existing specification that was not originally

designed to support them. Most features that complicate the Standard MIDI File

format, such as variable-length fields and MIDI event running status, are designed for

reducing MIDI bandwidth usage. The divided controller change events actually

increase the MIDI bandwidth usage instead of reducing it.

2.2 Data Types

Standard MIDI files store data in binary format as single-byte, multi-byte and

variable-length values. A single-byte value contains 8 bits. Multi-byte values are

stored using big-endian (most significant byte first) byte ordering. The length of

multi-byte values is always either fixed (e.g., 16, 24 or 32 bits) or explicitly specified

with a length field before the multi-byte value (e.g., ASCII string lengths are stored

before the character buffer). Variable-length values are stored using a simple

encoding scheme: If a byte in a variable-length value has its most significant bit set to

1, another byte follows. The last byte in a variable-length value has its most

significant bit set to 0. In other words, each byte stores a flag bit and seven data bits.

A variable-length value may use at most 4 bytes, i.e., can contain at most 28 data bits

(4 bytes, 7 data bits per byte), and therefore the maximum representable value is

2^28-1 for an unsigned variable-length integer. The table below gives some examples:

(MIDI File Format 2013.)

7

Table 1. Variable-length value examples

In practice, this type of encoding scheme allows the size of an average MIDI file to

shrink to about 60% of the size of an otherwise identical file which uses 32-bit values

instead of variable-length values. This is because a MIDI file consists mostly of MIDI

events which consist of a variable-length delta time value and 3 data bytes. The delta

time values are usually small and fit in a single-byte variable-length value, thus most

MIDI events end up taking 4 bytes instead of 7 which would be the case if delta time

values were stored as 32-bit values. In the late 1980s when the Standard MIDI File

specification was written, this saving was significant given the limited amount of

storage space on computers and floppy disks and especially the very limited MIDI

bandwidth on older MIDI devices. (MIDI 2013.)

Some MIDI events use split 14-bit values which are formed from two bytes: The 7

least significant bits of one byte (LSB) define the 7 least significant bits and the 7 least

significant bits of another byte (MSB) define the 7 most significant bits. The most

significant bit of these two bytes is always set to 0. The following table visualizes how

a split 14-bit value is formed from the bytes: (MIDI File Format 2013.)

Table 2. Split 14-bit value example

2.3 Data Chunks

Standard MIDI files always contain a header chunk and one or more track chunks. The

Value Variable-length
00000000 00000000 00000000 00000000 [0]0000000
00000000 00000000 00000000 01000001 [0]1000001
00000000 00000000 00000000 11000001 [1]0000001 [0]1000001
00000000 00000000 10000000 11000001 [1]0000010 [1]0000001 [0]1000001
00001111 11111111 11111111 11111111 [1]1111111 [1]1111111 [1]1111111 [0]1111111

MSB LSB 14-bit Value
XXXXXXXYYYYYYY0XXXXXXX 0YYYYYYY

8

MIDI file format is extensible and can also contain custom data chunks. The MIDI

specification states that MIDI file parsers must ignore any unknown data chunks

without producing errors. Each chunk contains a 32-bit ID field (4 ASCII characters,

e.g., "MTrk"), a 32-bit data block size field and a data block whose size is specified

with the data block size field. Since all chunks follow this format, skipping any

unknown chunks is trivial: Read the ID and data block size fields and skip the number

of bytes specified by the data block size field if the chunk ID is not recognized. (MIDI

File Format 2013.)

2.3.1 Header Chunk

The following table illustrates the header chunk layout:

Table 3. Header chunk layout

The header chunk contains information about the entire song. A valid MIDI file

contains only one header chunk and it always comes first. The header chunk

identified is "MThd" and the data block size is always 6. (MIDI File Format 2013.)

Valid values for the type field are 0, 1 and 2. Type 0 MIDI files contain one track chunk

which contains all MIDI events for all channels, including time signature and tempo

events. Type 1 MIDI files contain two or more synchronized track chunks where the

first contains information common to all tracks, such as song title, time signature and

tempo events. The other tracks contain only track specific data. Type 2 MIDI files

contain multiple tracks that are not meant to be played simultaneously, e.g., drum

patterns or other sequences. Type 0 and 1 MIDI files can also be used for the same

purpose, making type 2 MIDI files somewhat less useful. Type 2 MIDI files are

intended as a minor storage space optimization where the header chunk does not

Field Type Size Value
ID 4 8-bit characters 4 ”MThd”
Data block size 32-bit unsigned integer 4 6
Type 16-bit unsigned integer 2 0-2
Track count 16-bit unsigned integer 2 1-65535
Time division 16-bit unsigned integer 2 See following text

9

need to be duplicated for all tracks, as is the case if they were stored in separate type

0 or type 1 MIDI files. (MIDI File Format 2013.)

The track count field specifies the number of track chunks in the MIDI file. This

should be 1 for type 0 MIDI files, between [2, 65535] for type 1 MIDI files and

between [1, 65535] for type 2 MIDI files. (MIDI File Format 2013.)

The time division field specifies the time division for all tracks in the MIDI file. The

time division affects how MIDI event delta time values are decoded into real time

values. If the most significant bit is set to 0, the following 15 bits describe the time

division in ticks per quarter note. If the most significant bit is set to 1, the following 7

bits specify a standard SMPTE (Society of Motion Picture & Television Engineers)

frames per second value where valid values are 24, 25, 29 (interpreted as 29.97) and

30 frames per second. The remaining 8 bits specify the number of ticks per frame. If

the time division value is 0x9978 (binary 10011001 01111000), the most significant

bit is set to 1, the following 7 bits (binary 0011001, decimal 25) specify the number of

frames per second and the remaining 8 bits (binary 01111000, decimal 120) specify

the number of ticks per frame which results in 25 frames per second, 120 ticks per

frame and 3000 (25 * 120) ticks per second. The time division is usually specified as

ticks per quarter note but specifying the time division using frames per second and

ticks per frame values might be useful if the MIDI events need to be synchronized

with a display device update frequency. (MIDI File Format 2013.)

2.3.2 Track Chunk

The following table illustrates the track chunk layout:

Table 4. Track chunk layout

Field Type Size Value
ID 4 8-bit characters 4 ”MTrk”
Data block size 32-bit unsigned integer 4 See following text
Event buffer See following text

10

Track chunks contain event data for one or more event channels. The minimum and

maximum number of track chunks in a valid MIDI file depend on the MIDI file type as

specified in the header chunk. Track chunk identifier is "MTrk" and the data block size

depends on the number and type of events in the event buffer. (MIDI File Format

2013.)

The event buffer contains all events for the track. There are no padding bytes before,

between or after any event structures. Events are stored in the event buffer in the

order they are intended to be executed. Different event types are described in detail

in following sections. (MIDI File Format 2013.)

2.4 Events

The following table illustrates the event layout:

Table 5. Event layout

All event structures begin with a variable-length delta time value. The delta time

values are specified in ticks since the previous event in the same track (MIDI File

Format 2013).

The variable-length delta time value is followed by an 8-bit type field that defines the

event type. There are three types of events: MIDI events, meta events and system

exclusive events. If the most significant bit is set to 0, the event is a MIDI event and

the following 7 bits define the actual MIDI event type and event channel. The type

field is 0xFF for meta events and 0xF0 for system exclusive events. (MIDI File Format

2013.)

The type field is followed by event specific data whose length and contents depend

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 See following text
Event data See following text

11

on the event type (MIDI File Format 2013).

2.4.1 MIDI Events

The following table illustrates the MIDI event layout:

Table 6. MIDI event layout

The variable-length delta time value is interpreted as ticks since the previous event in

the same track for all event types (MIDI File Format 2013).

For MIDI events, the type field actually contains two 4-bit values: The 4 most

significant bits define the MIDI event type and the 4 least significant bits define the

event channel (0-15). (MIDI File Format 2013.)

If the most significant bit of the type field is 0, running status should be used. This

means that the variable-length delta time value is followed by the parameter bytes

and the type field is not present. In this case, the MIDI event type is taken from the

previous MIDI event. Identifying the use of running status by checking the most

significant bit is possible because all valid event type values have their most

significant bit set to 1 and all valid MIDI event parameter values have their most

significant bit set to 0. (MIDI File Format 2013.)

The parameter bytes are interpreted differently for different MIDI event types but

valid parameter values are between [0, 127] for all MIDI event types. The following

table lists the different MIDI event types and how the parameter bytes should be

interpreted: (MIDI File Format 2013.)

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 See following text
Parameter 1 8-bit unsigned integer 1 See following text
Parameter 2 8-bit unsigned integer 1 See following text

12

Table 7. MIDI event types

Various sources used slightly different names for the event types and parameters

(e.g., some sources used "pitch bend" instead of "pitch change" and "key" instead of

"note number") and the official documentation was not freely available for

referencing (one would have to buy a printed copy) so the event type names used

here may not match with the ones used in the official documentation. Despite this,

the event type names used here should still describe the functionality accurately.

The note number values used by Note Off, Note On and Note Pressure Change MIDI

events can be converted to frequencies and back with the following equations where

f is frequency and n is note number:

f =440⋅2(n−69)/12 (1)

n=69+12⋅log2(
f
440

) (2)

Different sources use different octave number conventions for MIDI note numbers.

The following table lists all MIDI note numbers and their corresponding note names,

octaves and frequencies for standard tuning where MIDI note number 69 is A4 at

440Hz:

Event Type Value Parameter 1 Parameter 2
Note Off 0x8 Note Number Velocity
Note On 0x9 Note Number Velocity
Note Pressure Change 0xA Note Number Pressure
Controller Change 0xB Controller Number Controller Value
Program Change 0xC Program Number -
Channel Pressure Change 0xD Pressure -
Pitch Change 0xE Pitch Value (LSB) Pitch Value (MSB)

13

Table 8. MIDI note numbers, names and frequencies

Note Off MIDI event stops playback of a specified note in the specified event channel,

as if a keyboard key was released. Valid values for the note number are between [0,

Name Frequency # Name Frequency # Name Frequency
0 C-1 8.176 43 G2 97.999 86 D6 1174.659
1 C#/Db-1 8.662 44 G#/Ab2 103.826 87 D#/Eb6 1244.508
2 D-1 9.177 45 A2 110.000 88 E6 1318.510
3 D#/Eb-1 9.723 46 A#/Bb2 116.541 89 F6 1396.913
4 E-1 10.301 47 B2 123.471 90 F#/Gb6 1479.978
5 F-1 10.913 48 C3 130.813 91 G6 1567.982
6 F#/Gb-1 11.562 49 C#/Db3 138.591 92 G#/Ab6 1661.219
7 G-1 12.250 50 D3 146.832 93 A6 1760.000
8 G#/Ab-1 12.978 51 D#/Eb3 155.563 94 A#/Bb6 1864.655
9 A-1 13.750 52 E3 164.814 95 B6 1975.533
10 A#/Bb-1 14.568 53 F3 174.614 96 C7 2093.005
11 B-1 15.434 54 F#/Gb3 184.997 97 C#/Db7 2217.461
12 C0 16.352 55 G3 195.998 98 D7 2349.318
13 C#/Db0 17.324 56 G#/Ab3 207.652 99 D#/Eb7 2489.016
14 D0 18.354 57 A3 220.000 100 E7 2637.020
15 D#/Eb0 19.445 58 A#/Bb3 233.082 101 F7 2793.826
16 E0 20.602 59 B3 246.942 102 F#/Gb7 2959.955
17 F0 21.827 60 C4 261.626 103 G7 3135.963
18 F#/Gb0 23.125 61 C#/Db4 277.183 104 G#/Ab7 3322.438
19 G0 24.500 62 D4 293.665 105 A7 3520.000
20 G#/Ab0 25.957 63 D#/Eb4 311.127 106 A#/Bb7 3729.310
21 A0 27.500 64 E4 329.628 107 B7 3951.066
22 A#/Bb0 29.135 65 F4 349.228 108 C8 4186.009
23 B0 30.868 66 F#/Gb4 369.994 109 C#/Db8 4434.922
24 C1 32.703 67 G4 391.995 110 D8 4698.636
25 C#/Db1 34.648 68 G#/Ab4 415.305 111 D#/Eb8 4978.032
26 D1 36.708 69 A4 440.000 112 E8 5274.041
27 D#/Eb1 38.891 70 A#/Bb4 466.164 113 F8 5587.652
28 E1 41.203 71 B4 493.883 114 F#/Gb8 5919.911
29 F1 43.654 72 C5 523.251 115 G8 6271.927
30 F#/Gb1 46.249 73 C#/Db5 554.365 116 G#/Ab8 6644.875
31 G1 48.999 74 D5 587.330 117 A8 7040.000
32 G#/Ab1 51.913 75 D#/Eb5 622.254 118 A#/Bb8 7458.620
33 A1 55.000 76 E5 659.255 119 B8 7902.133
34 A#/Bb1 58.270 77 F5 698.456 120 C9 8372.018
35 B1 61.735 78 F#/Gb5 739.989 121 C#/Db9 8869.844
36 C2 65.406 79 G5 783.991 122 D9 9397.273
37 C#/Db2 69.296 80 G#/Ab5 830.609 123 D#/Eb9 9956.063
38 D2 73.416 81 A5 880.000 124 E9 10548.082
39 D#/Eb2 77.782 82 A#/Bb5 932.328 125 F9 11175.303
40 E2 82.407 83 B5 987.767 126 F#/Gb9 11839.822
41 F2 87.307 84 C6 1046.502 127 G9 12543.854
42 F#/Gb2 92.499 85 C#/Db6 1108.731

14

127] and should match a currently playing note. The velocity, between [0, 127],

defines how fast the note was released. If there has not been a matching Note On

event for the specified note, this event is ignored. (MIDI File Format 2013.)

Note On MIDI event starts playback of a specified note in the specified channel, as if

a keyboard key was pressed. Valid values for the note number are between [0, 127].

The velocity, between [0, 127], defines how fast the note was pressed. Note that a

Note On MIDI event with zero velocity should be interpreted as a Note Off MIDI

event, which can be used with running status to significantly reduce MIDI bandwidth

requirements. (MIDI File Format 2013.)

Note Pressure Change MIDI event indicates a pressure change on a currently playing

note in the specified channel. Valid values for the note number are between [0, 127]

and should match a currently playing note. The pressure value, between [0, 127],

specifies the pressure being applied (0 for no pressure, 127 for full pressure). This can

be used to express changes in the note volume, like when a saxophonist changes the

applied air pressure when playing a note. (MIDI File Format 2013.)

Controller Change MIDI event changes the specified controller value for the specified

channel. There are 128 controller values which affect different attributes such as

volume, pan and more. The controller number, between [0, 127], defines which

controller value is changing and the controller value, between [0, 127], defines the

new value. Note that some attributes are given as split 14-bit values whose most and

least significant bytes come from two different controller values. The defined MIDI

controllers are listed in the following table: (MIDI File Format 2013.)

15

Table 9. MIDI controller numbers and descriptions

Program Change MIDI event changes the current program for the specified channel.

The program number, between [0, 127], defines an instrument in the current

program bank. If a device supports multiple program banks, the current program

bank can be changed with a bank select Controller Change MIDI event. Note that the

second parameter data byte exists in the MIDI file but is not used for anything and

Description
0 Bank Select
1 Modulation
2 Breath Controller
4 Foot Controller
5 Portamento Time
6 Data Entry (MSB)
7 Main Volume
8 Balance
10 Pan
11 Expression Controller
12 Effect Control 1
13 Effect Control 2
16-19 General-Purpose Controllers 1-4
32-63 LSB for controllers 0-31
64 Damper pedal (sustain)
65 Portamento
66 Sostenuto
67 Soft Pedal
68 Legato Footswitch
69 Hold 2
70 Sound Controller 1 (default: Timber Variation)
71 Sound Controller 2 (default: Timber/Harmonic Content)
72 Sound Controller 3 (default: Release Time)
73 Sound Controller 4 (default: Attack Time)
74-79 Sound Controller 6-10
80-83 General-Purpose Controllers 5-8
84 Portamento Control
91 Effects 1 Depth (formerly External Effects Depth)
92 Effects 2 Depth (formerly Tremolo Depth)
93 Effects 3 Depth (formerly Chorus Depth)
94 Effects 4 Depth (formerly Celeste Detune)
95 Effects 5 Depth (formerly Phaser Depth)
96 Data Increment
97 Data Decrement
98 Non-Registered Parameter Number (LSB)
99 Non-Registered Parameter Number (MSB)
100 Registered Parameter Number (LSB)
101 Registered Parameter Number (MSB)
121-127 Mode Messages

16

contains an undefined value. The program numbers and their corresponding

instrument names available in the default program bank as described in Wikipedia

(General MIDI 2013) are listed in the following table: (MIDI File Format 2013.)

Table 10. MIDI program numbers and instrument names

Instrument Name # Instrument Name # Instrument Name
0 Acoustic Grand Piano 43 Contrabass 86 Lead 7 (fifths)
1 Bright Acoustic Piano 44 Tremolo Strings 87 Lead 8 (bass + lead)
2 Electric Grand Piano 45 Pizzicato Strings 88 Pad 1 (new age)
3 Honky-tonk Piano 46 Orchestral Harp 89 Pad 2 (warm)
4 Electric Piano 1 47 Timpani 90 Pad 3 (polysynth)
5 Electric Piano 2 48 String Ensemble 1 91 Pad 4 (choir)
6 Harpsichord 49 String Ensemble 2 92 Pad 5 (bowed)
7 Clavinet 50 Synth Strings 1 93 Pad 6 (metallic)
8 Celesta 51 Synth Strings 2 94 Pad 7 (halo)
9 Glockenspiel 52 Choir Aahs 95 Pad 8 (sweep)
10 Music Box 53 Voice Oohs 96 FX 1 (rain)
11 Vibraphone 54 Synth Choir 97 FX 2 (soundtrack)
12 Marimba 55 Orchestra Hit 98 FX 3 (crystal)
13 Xylophone 56 Trumpet 99 FX 4 (atmosphere)
14 Tubular Bells 57 Trombone 100 FX 5 (brightness)
15 Dulcimer 58 Tuba 101 FX 6 (goblins)
16 Drawbar Organ 59 Muted Trumpet 102 FX 7 (echoes)
17 Percussive Organ 60 French Horn 103 FX 8 (sci-fi)
18 Rock Organ 61 Brass Section 104 Sitar
19 Church Organ 62 Synth Brass 1 105 Banjo
20 Reed Organ 63 Synth Brass 2 106 Shamisen
21 Accordion 64 Soprano Sax 107 Koto
22 Harmonica 65 Alto Sax 108 Kalimba
23 Tango Accordion 66 Tenor Sax 109 Bagpipe
24 Acoustic Guitar (nylon) 67 Baritone Sax 110 Fiddle
25 Acoustic Guitar (steel) 68 Oboe 111 Shanai
26 Electric Guitar (jazz) 69 English Horn 112 Tinkle Bell
27 Electric Guitar (clean) 70 Bassoon 113 Agogo
28 Electric Guitar (muted) 71 Clarinet 114 Steel Drums
29 Overdriven Guitar 72 Piccolo 115 Woodblock
30 Distortion Guitar 73 Flute 116 Taiko Drum
31 Guitar Harmonics 74 Recorder 117 Melodic Tom
32 Acoustic Bass 75 Pan Flute 118 Synth Drum
33 Electric Bass (finger) 76 Blown bottle 119 Reverse Cymbal
34 Electric Bass (pick) 77 Shakuhachi 120 Guitar Fret Noise
35 Fretless Bass 78 Whistle 121 Breath Noise
36 Slap Bass 1 79 Ocarina 122 Seashore
37 Slap Bass 2 80 Lead 1 (square) 123 Bird Tweet
38 Synth Bass 1 81 Lead 2 (sawtooth) 124 Telephone Ring
39 Synth Bass 2 82 Lead 3 (calliope) 125 Helicopter
40 Violin 83 Lead 4 (chiff) 126 Applause
41 Viola 84 Lead 5 (charang) 127 Gunshot
42 Cello 85 Lead 6 (voice)

17

Channel Pressure Change MIDI event indicates a pressure change on all currently

playing notes in the specified channel. The pressure value, between [0, 127], specifies

the pressure being applied (0 for no pressure, 127 for full pressure), just like in Note

Pressure Change MIDI events. Note that the second parameter data byte exists in the

MIDI file but is not used for anything and contains an undefined value. (MIDI File

Format 2013.)

Pitch Change MIDI event changes the pitch of all currently playing notes in the

specified channel. Legal values for the parameter bytes are between [0, 127]. The

parameter bytes form a split 14-bit value that can be calculated as described in the

data types section. The 14-bit value is then normalized between [-1, 1] so that 0

becomes -1, 2^13 becomes 0 and 2^14-1 becomes 1. Values below 0 decrease the

pitch and values above 0 increase the pitch. The actual pitch change range is device

dependent, making this event somewhat non-portable, but is usually +/-2 semi-

tones. (MIDI File Format 2013.)

2.4.2 Meta Events

The following table illustrates the meta event layout:

Table 11. Meta event layout

The variable-length delta time value is interpreted as ticks since the previous event in

the same track for all event types (MIDI File Format 2013).

For meta events, the type field value is always 255 which can be used to identify the

event as a meta event. The actual type of the meta event is specified with the meta

event type field value. Valid values for this field are between [0, 255]. (MIDI File

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 255
Meta event type 8-bit unsigned integer 1 0-255
Length Variable-length 1-4 See following text
Data See following text

18

Format 2013.)

The variable-length length field describes the event data size in bytes. The event data

contents depend on the meta event type. (MIDI File Format 2013.)

The Standard MIDI File specification defines fifteen meta event types. The standard

meta event types and their IDs (meta event type field values) are listed in the

following table: (MIDI File Format 2013.)

Table 12. Meta event types

Pattern/Sequence Number meta event defines the pattern number of a type 2 MIDI

file or the sequence number of type 0 or 1 MIDI file. The length field value is always 2

and the event data contains a 16-bit big-endian unsigned integer. The delta time field

value should always be 0 and this event should come before any MIDI events and

non-zero delta time events. (MIDI File Format 2013.)

Text meta event defines a string that can be used for any reason such as comments.

The length field value describes the string length in bytes and the event data contains

the string. The string is usually ASCII encoded and may or may not contain a

terminating NUL-character. (MIDI File Format 2013.)

ID Meta Event Type
0 Pattern/Sequence Number
1 Text
2 Copyright Notice
3 Sequence/Track Name
4 Instrument Name
5 Lyrics
6 Marker
7 Cue Point
32 MIDI Channel Prefix
47 End Of Track
81 Set Tempo
84 SMPTE Offset
88 Time Signature
89 Key Signature
127 Sequencer Specific

19

Copyright Notice meta event defines a copyright information string. The length field

value describes the string length in bytes and the event data contains the string. The

string is usually ASCII encoded and may or may not contain a terminating NUL-

character. The string format is usually "© year author", e.g., "© 1994 Nobuo

Uematsu". The delta time field value should always be 0 and this event should be in

the first track and come before any MIDI events and non-zero delta time events.

(MIDI File Format 2013.)

Sequence/Track Name meta event defines the sequence name string when in a type

0 or type 2 MIDI file or in the first track of a type 1 MIDI file. When this meta event

appears in any track after the first in a type 1 MIDI file, it defines the track name

string. The length field value describes the string length in bytes and the event data

contains the string. The string is usually ASCII encoded and may or may not contain a

terminating NUL-character. The delta time field value should always be 0 and this

event should come before any MIDI events and non-zero delta time events. (MIDI File

Format 2013.)

Instrument name meta event defines the instrument name string for a channel

specified with a previous MIDI Channel Prefix meta event. The length field value

describes the string length in bytes and the event data contains the string. The string

is usually ASCII encoded and may or may not contain a terminating NUL-character.

(MIDI File Format 2013.)

Lyrics meta event defines a lyrics string. The length field value describes the string

length in bytes and the event data contains the string. The string is usually ASCII

encoded and may or may not contain a terminating NUL-character. These meta

events can be used for implementing a karaoke-style system. (MIDI File Format 2013.)

Marker meta event defines a description string for a significant point in the sequence,

e.g., the beginning of a new verse or chorus. The length field value describes the

string length in bytes and the event data contains the string. The string is usually

ASCII encoded and may or may not contain a terminating NUL-character. These

events are usually in the first track but may appear in any track. (MIDI File Format

20

2013.)

Cue Point meta event defines a description string for a manually triggered action,

e.g., the curtain call at the end of a performance. The length field value describes the

string length in bytes and the event data contains the string. The string is usually

ASCII encoded and may or may not contain a terminating NUL-character. These

events are usually in the first track but may appear in any track. (MIDI File Format

2013.)

MIDI Channel Prefix meta event defines the MIDI channel for following meta events,

such as the Instrument Name meta event. The effect of this event is terminated by

another MIDI Channel Prefix meta event or any non-meta event. The length field is

always 1 and the event data contains an 8-bit unsigned integer that specifies the MIDI

channel index between [0, 15]. (MIDI File Format 2013.)

End Of Track meta event signals the end of a track chunk. This event must always

appear as the last event of a track chunk. The length field value is always 0 and there

is no event data. (MIDI File Format 2013.)

Set Tempo meta event defines the sequence tempo as microseconds per quarter

note. If no Set Tempo meta event has been encountered, the default tempo is

500000 microseconds per quarter note (120 beats per minute). The length field value

is always 3 and the event data contains a 24-bit big-endian unsigned integer that

describes the tempo as microseconds per quarter note. Tempo can be converted

from beats per minute (BPM) to microseconds per quarter note (MPQN) and back

using the following equations where the constant 60,000,000 is the number of

microseconds per minute: (MIDI File Format 2013.)

BPM=
60,000,000
MPQN

(3)

MPQN=
60,000 ,000
BPM

(4)

SMPTE Offset meta event defines the SMPTE starting point offset from the beginning

21

of the track. It is defined in terms of hours, minutes, seconds, frames and sub-frames.

There are always 100 sub-frames per frame regardless of what sub-division was

specified in the header chunk. The length field value is always 5 and the event data

contains bytes for frame rate/hour offset, minute offset, second offset, frame offset

and sub-frame offset, in that order. (MIDI File Format 2013.)

The two most significant bits of the first data byte define the frame rate as frames per

second. The following table lists the bit combinations and their corresponding frame

rates: (MIDI File Format 2013.)

Table 13. SMPTE offset meta event frame rates

The 6 least significant bits of the first data byte define the hour offset as an unsigned

integer between [0, 23]. The second data byte defines the minute offset as an 8-bit

unsigned integer between [0, 59]. The third data byte defines the second offset as an

8-bit unsigned integer between [0, 59]. The fourth data byte defines the frame offset

as an 8-bit unsigned integer. The range of valid values for the frame offset depends

on the frame rate, i.e., [0, 23] for 24 FPS, [0, 24] for 25 FPS and [0, 29] for 29.97 and

30 FPS. The fifth and final data byte defines the sub-frame offset as an unsigned

integer between [0, 99]. (MIDI File Format 2013.)

Time Signature meta event defines the time signature for the sequence. The length

field value is always 4 and the event data contains bytes for numerator, denominator,

metronome pulse and the number of 1/32 notes per quarter note, in that order. The

first data byte defines the numerator as an unsigned integer between [0, 255]. The

denominator is defined as 2^n where n is the value of the second data byte as an

unsigned integer between [0, 255]. The third data byte defines the number of 1/24

quarter notes (clock signals) between metronome clicks as an unsigned integer

Bits Frame Rate
00 24
01 25
10 29.97
11 30

22

between [0, 255]. The fourth and final data byte defines the number of 32nd notes

per quarter note (24 clock signals) as an unsigned integer between [1, 255]. The

default time signature is 4/4, 24 1/24 quarter notes between metronome clicks and 8

1/32 notes per quarter note. (MIDI File Format 2013.)

Key Signature meta event defines the key and scale of a sequence. The length field

value is always 2 and the event data contains bytes for key and scale, in that order.

The first data byte defines the key as number of sharps or flats as an 8-bit two's

complement signed integer between [-7, 7]. A positive value for the key specifies the

number of sharps and a negative value specifies the number of flats. The second data

byte defines the scale as an 8-bit unsigned integer whose value is 0 for a major scale

and 1 for a minor scale. (MIDI File Format 2013.)

Sequencer Specific meta event defines sequencer specific information and is not

portable. The length field value defines the number of bytes in the event data buffer.

The first data byte is interpreted as an unsigned 8-bit integer and if the value is not 0,

it specifies the sequencer specific event code. if the value is 0, the 2nd and 3rd data

bytes should be interpreted as a 16-bit big-endian unsigned integer that specifies the

event code. The sequencer specific event codes are documented in manufacturer

specifications. (MIDI File Format 2013.)

2.4.3 System Exclusive Events

Like the Sequencer Specific meta event, system exclusive (SysEx) events are used for

signalling MIDI hardware or software specific events. There are three types of system

exclusive events: normal, divided and authorization system exclusive events. The

following table illustrates the system exclusive event layout: (MIDI File Format 2013.)

Table 14. System exclusive event layout

Field Type Size Value
Delta time Variable-length 1-4 See following text
Type 8-bit unsigned integer 1 240 or 247
Length Variable-length 1-4 See following text
Data See following text

23

The variable-length delta time value is interpreted as ticks since the previous event in

the same track for all event types (MIDI File Format 2013).

For system exclusive events, the type field value is 240 for both normal and divided

system exclusive events and 247 for authorization system exclusive events (MIDI File

Format 2013).

The variable-length length field describes the event data size in bytes. The event data

contents depend on the system exclusive event type. (MIDI File Format 2013.)

Normal and divided system exclusive events are identified by the value of the last

byte of the event data buffer. If the byte value is 247, the event is a normal system

exclusive event, otherwise it is a divided system exclusive event and following system

exclusive events contain more data for the divided system exclusive event. Other than

the first part of a divided system exclusive event are identified with event type field

value 247. The last part of a divided system exclusive event has the last byte of its

event data buffer set to 247. (MIDI File Format 2013.)

On older hardware with very limited MIDI bandwidth, a large amount of data in a

normal system exclusive event could cause following MIDI events to be transmitted

after the time they should be played. Divided system exclusive events allow splitting a

large event data buffer to smaller blocks and transmitting them with other events

between them, avoiding bandwidth issues. (MIDI File Format 2013.)

24

3 Pitch Detection

3.1 Introduction

Pitch detection has been researched for a long time but the research has been mostly

focused on static processing as opposed to dynamic or real-time processing which

was a requirement for the prototype. Most existing pitch detection algorithms are

capable of detecting individual notes which is by itself a relatively complicated

process. Detecting multiple simultaneously playing notes from a single audio signal is

much more complicated and the algorithms that try to achieve this suffer from

accuracy issues and are not suitable for real-time processing. Even with modern

algorithms and static processing on powerful machines, translating a symphony

performed by a full orchestra to musical notation from a single audio signal

containing the sound from all instruments is practically impossible.

The prototype was targeted specifically for monophonic (only one note can be played

at a time) instruments which simplified the pitch detection considerably. The pitch

detection algorithms described here are targeted for detecting the pitch of individual

notes from an audio signal that contain only the notes being detected. The two

algorithm types discussed here are zero-crossing and autocorrelation algorithms.

3.2 Zero-crossing Algorithms

The simplest pitch detection algorithms are based on interpreting the shape of a

plotted audio signal. The zero-crossing algorithm works by finding the points where

the signal amplitude crosses the zero point from negative to positive or the other way

around. The signal wavelength is the distance between two such points and the

frequency is simply the inverse of the wavelength in seconds. (McLeod 2008, 11-12.)

In practice, the input signal will contain some signal noise which will cause false zero-

crossings. The number of these false zero-crossings can be reduced by filtering the

signal with a low-pass filter, i.e., each sample is calculated from the average or

25

weighted average value of nearby samples in the source signal. The problem with this

approach is that in practice, the source signal sample rate (the number of samples in

the recorded sound wave) is typically at most 44100 samples per second. With lower

frequencies, the average can be taken from a relatively large number of samples but

with higher frequencies, taking the average from too many samples flattens the

signal and information is lost.

Another way to reduce the number of false zero-crossings is to register a zero-

crossing only when the amplitude crosses from a negative threshold to a positive

threshold. This can be thought of as thickening the zero line. When used together,

these two techniques significantly reduce the number of false zero-crossings caused

by signal noise. The following figures 1 and 2 help visualizing the algorithm:

Figure 1. Signal with noise and marked false zero-crossings

26

Figure 2. Filtered signal with marked zero-crossings

The zero-crossing algorithms are suitable for monophonic instruments that produce

low to medium frequency audio signals that resemble sine waves. As an example, the

shape of audio signals containing human singing are very close to sine waves. In

addition, most people cannot produce very high frequency notes and therefore most

songs do not contain them. On the other hand, some instruments, such as violins can

produce high frequency audio signals that may contain multiple peaks and zero-

crossings within a single wave, which is why the zero-crossing algorithm is suitable

only for some instruments.

3.3 Autocorrelation Algorithms

Autocorrelation algorithms work by comparing a signal to a shifted version of itself.

The idea is that when the amount of shift is close to the signal wavelength, the

shifted signal will overlap the original signal. To test how closely the signals overlap

each other, each sample in the original signal must be compared to the

corresponding sample in the shifted signal and the results are summed to get a single

27

autocorrelation value. These values are calculated for all possible shift amounts and

the results form an autocorrelation function. The original signal must contain at least

two whole wavelengths so that it can be shifted by a whole wavelength and can still

contain another to compare to the original. (McLeod 2008, 12-19.)

One way to calculate the autocorrelation values is to calculate the squared difference

of each value. The difference of the values is squared because the values are typically

between [-1, 1] and the difference can therefore be negative but taking the square of

the difference makes all autocorrelation values positive. This could also be done by

taking the absolute value of the difference. The autocorrelation values do not matter,

they make sense only when compared to other autocorrelation values of the same

autocorrelation function. When the autocorrelation values are calculated using a

difference function, they are closest to zero where the shifted signal overlaps the

original most closely.

Since the sample window should contain at least two whole wavelengths, one way to

calculate the autocorrelation function is to compare the first half of the sample

window contents to a part of the sample window contents that contains just as many

samples but the offset or shift s of the first sample is between [0, W / 2], where W is

the number of samples in the sample window. For squared difference

autocorrelation, this can be described mathematically as:

d (s)=
W /2−1

∑
j=0

(x j− x j+s) , 0⩽s⩽W /2 (5)

The following figures 3, 4 and 5 help visualizing the situation:

28

Figure 3. One way to get the original and shifted signals in autocorrelation

Figure 4. Example sample window

Figure 5. Example squared difference autocorrelation function

The first value of the squared difference autocorrelation function will always be zero.

This is because the shift for the first autocorrelation value is zero and therefore the

29

original signal is being compared to itself. The other throughs in the autocorrelation

function are possible frequencies. In the example, the second through occurs when

shift is 6 samples which is obviously the wavelength of the source signal. The third

through occurs when shift is 12 samples which is twice the wavelength of the source

signal, i.e., a lower octave. In practice, the autocorrelation function may also contain

throughs at half-octaves and the lower octave autocorrelation values may actually be

closer to zero than the autocorrelation value for the correct octave. This is why an

octave picking algorithm must be used.

The prototype implements the octave picking algorithm as follows: Find the second

through in the autocorrelation function and mark it as the match. Then find all

remaining throughs and at each through, mark it as the match if the through is k units

closer to zero than the previously marked through, where k is an arbitrary threshold

constant. It was found by experimentation that 6% of the maximum autocorrelation

value worked very well as the through picking threshold constant k.

Unlike zero-crossing algorithms, autocorrelation algorithms are suitable for all

monophonic instruments, including instruments that produce signals that contain

multiple zero-crossings within a single wavelength. The biggest source of errors in

autocorrelation algorithms is octave picking. The previously described octave picking

algorithm worked very well with squared difference autocorrelation after a suitable

through picking threshold value had been found by experimentation. This was also

the frequency calculation method used in the final version of the prototype. The

following figure illustrates a signal that is problematic for zero-crossing algorithms but

not for autocorrelation algorithms:

30

Figure 6. Signal with multiple zero-crossing within a single wavelength

3.4 Practical Issues

An important concept that is relevant for both types of algorithms is the sample

window size. The sample window size is the length of the recorded audio signal that

the algorithm requires as input before it can detect a pitch from it. If the sample

window size is too small, these algorithms cannot detect the pitch from the given

samples. If the sample window size is bigger than required, the algorithms may

perform unneeded processing depending on their implementation.

Reducing the number of samples that need to be recorded before they can be

analyzed reduces the latency between the signal generation (playing an instrument)

and pitch detection which is critical in real-time processing. If a pitch detection

algorithm is implemented so that a whole sample window is recorded before it is

analyzed, the sample window size directly affects the latency. As an example, the

frequency of MIDI note number 7 (G-1) is 12.250 Hz and its wavelength is therefore

about 0.082 seconds (the inverse of frequency). The minimum required sample

31

window size is about 0.082 seconds (one wavelength) for zero-crossing algorithms

and about 0.164 seconds (two wavelengths) for autocorrelation algorithms. This

magnitude of latency, especially the latency for autocorrelation algorithms, is

unacceptable in real-time applications.

The algorithmic complexity of zero-crossing algorithms is O(n) and their sample

window size must fit only one wavelength. The algorithmic complexity of the brute-

force autocorrelation algorithms is O(n²) and their sample window size must fit two

wavelengths. As an example, the frequency of MIDI note number 0 (C-1) is about

8.176 Hz and its wavelength is therefore about 0.122 seconds (the inverse of

frequency). If the source signal sample rate is the typical 44100 samples per second,

the sample window must contain about 5400 samples for zero-crossing algorithms

and about 10800 samples for autocorrelation algorithms. To calculate a frequency,

the zero-crossing algorithms would therefore require about 5400 operations while

the brute-force autocorrelation algorithms would require about 117 million

operations. In other words, the brute-force autocorrelation algorithms are not

suitable for real-time processing with large sample window sizes.

32

4 Implementation

4.1 Overview

The prototype itself is not very complicated and its source code size is only about five

thousand lines of code. Most of the development time was spent on studying the

related subjects and implementing small test programs. As an example, before the

MIDI playback functionality was integrated to the prototype, two smaller MIDI

playback test programs were implemented. The first was a program that would send

individual MIDI events to the MIDI driver when numeric keys were pressed on the

keyboard. The second was a program that would send a hard-coded MIDI event

buffer to the MIDI driver when the space key was pressed. Implementing the first

program revealed that sending individual MIDI event was not an option due to large

latencies. Implementing the second program revealed that buffered playback could

be used in the prototype implementation. For the final MIDI playback

implementation, the hard-coded MIDI event buffer was removed and double

buffering and multi-threading with related thread synchonization were added to the

buffered playback implementation.

The first pitch detection implementation used a zero-crossing algorithm. With some

experimentation and tweaking, the zero-crossing algorithm accuracy was improved

considerably but it was still only usable for very few instruments. The zero-crossing

based pitch detection algorithm was abandoned and an autocorrelation based pitch

detection algorithm was implemented. The autocorrelation based algorithm also

required a lot of experimentation and tweaking but in the end, it was a lot more

reliable than the earlier zero-crossing based algorithm. During the development,

some pitch detection related test programs were written and the pitch detection

implementation was rewritten almost completely multiple times.

The implementation consists of three major parts: MIDI playback, pitch detection and

their visualization. The MIDI playback and audio recording functionality are running

in worker threads while the pitch detection and visualization is running in the UI (user

33

interface) thread. The UI thread handles all synchronization between the threads

such as synchronization of MIDI playback and visualization.

On each frame, the main loop in the UI thread processes any UI, MIDI playback and

wave input events, in that order and then updates the visualization. The UI events

consist of button clicks, short key presses etc. The MIDI playback events consist of

synchronization and buffer complete events. The wave input thread generates only

buffer complete events.

The following figure shows a screen capture of the prototype:

Figure 7. The prototype running

4.2 MIDI Playback

The MIDI playback thread plays queued MIDI event buffers. These event buffers are

updated in the UI thread and sent to the MIDI playback thread. When a buffer is

34

completed, the UI thread is notified and the buffer can be updated and queued

again. The implementation uses double buffering so that while one buffer is being

used by the MIDI playback thread, the other can be updated in UI thread. The Win32

MIDI event buffers use a non-standard format which is why the Standard MIDI File

contents must be preprocessed before they can be sent to the Win32 MIDI playback

device.

The MIDI playback thread sends synchronization events when the first MIDI event is

played in the MIDI playback thread after playback has been started. In practice, there

is a slight delay before playback actually starts and and the use of these

synchronization events improves the synchronization of MIDI playback and

visualization by a few milliseconds. However, this was an insignificant improvement

since the Win32 MIDI playback implementation suffers from random latency issues.

The playback position can be queried from the device but the reported position may

be off by as much as 200 milliseconds. This differs greatly between different songs

and slightly between different playbacks of the same song. The prototype allows the

user to specify this latency but due to its seemingly random nature, this does not

solve the problem.

MIDI stream playback was inconvenient in a few ways. Seeking and pausing within a

MIDI stream would ignore notes that should already be playing at the position where

playback is started because their Note On MIDI events reside before the position. To

implement seeking and pausing almost correctly, some events, e.g., the Note On

events of playing notes, would need to be added at the position where playback is

started. This would still not be perfectly correct because a note may sound very

different in the beginning than in the middle or in the end. The tempo scaling feature

in the prototype is implemented by adding extra Set Tempo meta events within the

event stream but has the limitation that the tempo scaling can be changed only by

restarting the whole song.

4.3 Wave Input

The wave input thread handles recording audio buffers. The UI thread sends these

35

buffers to the wave input thread and when a buffer is full, the UI thread is notified.

The recorded audio buffer can then be processed in the UI thread and when it is no

longer needed, it can be reused. As in the MIDI playback thread the wave input

implementation uses double buffering so that while one buffer is being used by the

wave input thread, the other can be processed in UI thread.

The size of the audio buffers is equal to the sample window size and their input

frequency is 44100 samples per second. The sample window size can be adjusted by

the user but by default it is sized so that it fits two whole wavelengths of a note that

is one half-tone lower than the lowest note in the active track. The lowest note has

the longest wavelength and the one half-tone margin is left to account for the user

playing incorrect notes.

The amount of time the UI thread spends processing a recorded audio buffer must

not exceed the audio buffer length in seconds. This is because the implementation

uses two buffers of equal size and if one is being processed for too long, it will not get

sent to the wave input thread in time and information is lost.

4.4 Pitch Detection

The pitch detection implementation uses a squared difference autocorrelation

algorithm. When an audio buffer has been recorded in the wave input thread, it is

given to the pitch detection pipeline. The audio buffer sample values are originally

16-bit unsigned integers where 0 represents the most negative amplitude and the

maximum value represents the most positive amplitude. The audio buffer sample

amplitudes are converted to floating point values between [-1, 1] and the converted

sample values are then given to the pitch detection algorithm.

The first phase in pitch detection is determining whether the user has provided any

input. This is done by finding the highest absolute amplitude value and if it is below a

specified input threshold constant, the sample window contents are interpreted to

contain noise. The threshold value can be adjusted by the user but the default value

was working very well in tests.

36

The second phase in pitch detection is running the squared difference

autocorrelation algorithm for the expected note range. By default, the expected note

range includes notes between one half-tone below and one half-tone above the

notes in the active track. The expected note range can also be adjusted by the user.

By limiting the note range, the pitch detection algorithm has less room for error and

latency is minimized.

The last phase in pitch detection is octave picking. The prototype uses the octave

picking algorithm described in section 3.3. After a pitch has been found, it is then

converted to a MIDI note number using equation 2 and the result is visualized by

drawing a pitch marker on the screen.

4.5 Testing

During the development of the prototype, a major concern was the accuracy of the

pitch detection algorithm. Since the algorithm is meant for processing a large amount

of data in real-time, using a C++ debugger for verifying the results was very

inconvenient. For this reason, two utility programs were developed for testing the

pitch detection algorithm: one for providing input data and another for visual

debugging. The program that provided input data was used for playing individual

MIDI notes through the speakers using a user specified instrument and note number.

The program that provided visual debugging information was reading microphone

input, running a pitch detection algorithm on the recorded data and visualizing the

input data and results in real-time. The microphone was placed right next to the

speakers to minimize signal noise. The following figures 8 and 9 show screen captures

of the described programs:

37

Figure 8. Program for providing input data

Figure 9. Program for visual debugging

38

5 Further Work

The prototype implements most of the originally planned functionality but has some

unresolved issues and incomplete or missing features. One major missing feature is

recording the user input to an audio file for further analysis. This would be relatively

easy to implement since the prototype already implements audio buffer recording for

pitch detection. The recorded audio buffers could be stored to a large in-memory

buffer or written directly to an audio file. However, any runtime audio data

preprocessing or file output should be handled in a separate thread since the UI

thread must not get blocked because it is also responsible for MIDI playback and

pitch detection. The best option would probably be to store the audio data to a large

in-memory buffer which would get written to an audio file when the buffer is full or

when the user stops playing.

The biggest problems with the prototype pitch detection algorithm are latency and

the algorithmic complexity. The latency issues could be solved by using a sliding

sample window. This means that the whole sample window is not recorded at once

but only small parts of it and the sample window would be formed from these parts.

The oldest part gets discarded when a new part is recorded. The sample window size

could also be changed dynamically based on the expected input. The algorithmic

complexity could be reduced from O(n²) to O(log(n)) by using a Fast Fourier

Transform (FFT) algorithm for calculating the autocorrelation function. This was not

implemented in the prototype due to a lack of understanding of the mathematical

basis behind the algorithm. If background noise becomes an issue, e.g., due to low

quality microphones on some mobile devices, the noise can be reduced with the

same kind of signal filtering schemes that were used for zero-crossing algorithms.

The MIDI stream playback implementation is platform dependent and works only on

Windows XP and later Windows operating systems. As discussed in section 4.1, the

implementation also has some other issues, such as the random latency problem. All

of these problems could be resolved by converting the MIDI data to a waveform data

and playing that instead of streaming MIDI events. This approach would also be

39

platform independent. We found one existing open source C++ library, Timidity++

that could be used for implementing this type of functionality.

If a production quality system is to be implemented, it should include some sort of a

scoring system. The prototype shows the detected pitch in real time but does not

compare it to the song being played. Implementing the scoring system would not be

trivial. Examples of features that might be difficult to implement are distinguishing

between playing a long note and playing the same note multiple times in fast

succession and separating vibrato from fast note changes. The first iteration in

developing a scoring system could be based on comparing the detected input to the

expected input whenever the pitch detection algorithm is executed. The comparison

could allow some error, maybe based on a difficulty level. The score could be given

based on the number successful comparisons, perhaps as a percentage of all

comparisons.

A production quality system would need to be rewritten almost completely. The

Standard MIDI File parser might be the only module that could be reused as is.

Everything else is either works only on Windows or uses the Qt software library,

which might be too heavyweight for mobile applications. For example, a 64-bit

Windows release version of the prototype includes 40 megabytes of Qt specific

dynamic link libraries while the executable itself is only 134 kilobytes. The installation

package size might reduce considerable if the Qt library was linked statically but this

was not tested during the development of the prototype. However, the Qt software

library was used mostly for implementing the user interface, which would need to be

reimplemented anyway.

40

References

MIDI. Retrieved 01.12.2013. http://en.wikipedia.org/wiki/MIDI

MIDI File Format. Retrieved 01.12.2013.

http://www.sonicspot.com/guide/midifiles.html

General MIDI. Retrieved 01.12.2013. http://en.wikipedia.org/wiki/General_MIDI

McLeod, P. 2008. Fast, Accurate Pitch Detection Tools for Music Analysis. PhD thesis.

University of Otago.

http://en.wikipedia.org/wiki/MIDI
http://en.wikipedia.org/wiki/General_MIDI
http://www.sonicspot.com/guide/midifiles.html

	1 Overview
	2 Standard MIDI File Format
	2.1 Introduction
	2.2 Data Types
	2.3 Data Chunks
	2.3.1 Header Chunk
	2.3.2 Track Chunk

	2.4 Events
	2.4.1 MIDI Events
	2.4.2 Meta Events
	2.4.3 System Exclusive Events

	3 Pitch Detection
	3.1 Introduction
	3.2 Zero-crossing Algorithms
	3.3 Autocorrelation Algorithms
	3.4 Practical Issues

	4 Implementation
	4.1 Overview
	4.2 MIDI Playback
	4.3 Wave Input
	4.4 Pitch Detection
	4.5 Testing

	5 Further Work
	References

