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Preface

Drones or, more officially, unmanned aircraft systems (UASs) have made their way
into everyday life during the past decade both as handy appliances for private
use and as professional equipment fitting into the workflows of a large variety of
businesses. When considering the trends in drone usage, various aspects need to
be considered such as technological issues, regulations and policies, operational
issues (including training), data and computation, as well as more specific issues
related to particular application areas. This volume is a collection of contributions
submitted to the Findrones2020 conference held virtually in November 2020 in
Pori, Finland. The aim of the conference was to serve as a forum for sharing
experiences and discussing future trends in the field. While the general scope of
the conference was wide, including trends in drone technology, education, and
regulatory issues, a special focus was on the application of UASs in agriculture,
forestry, and environmental monitoring. The first part of this book presents an
overview by Kramar and co-authors on the technological and operational challenges
UASs face, especially when operated in harsh conditions such as the Arctic. This
wide-scope review encompasses virtually all aspects of UAS usage and gives the
reader a good introduction to the subject.

In the second part, chapters are divided into two categories: those related
to drone technology and navigation, and those related to the usage of UASs
in agriculture. In their chapter, Suurnäkki et al. describe an experimental setup,
involving an icing wind tunnel, for testing the effect of ice on the dynamics of a
drone propeller. They find the setup suitable for studying the challenges of Nordic
conditions on drones, pointing out some needs for further development. Saffre et
al. develop a methodological framework for autonomous operation of a swarm of
drones for surveillance and situation awareness applications. The swarm operates
autonomously on a predefined mesh. The performance of the framework is analyzed
with respect to the number of drones and base placement strategy. In another chapter
dealing with technical issues, Palovuori addresses a means of rendering a drone
invisible against the sky by automatic control of the LED tapestry. This part of the
volume is concluded by a chapter by Nevalainen et al. presenting a self-corrective
simultaneous localization and mapping framework for long-term drone missions.
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The considered application is in the field of forestry while the paper focuses on the
correction algorithm development for map updating.

The third part of this volume begins with a review by Kaivosoja on the possibili-
ties for UAV-based imaging in smart farming. Various aspects of drone usage such as
improving target visibility, development of sensor technologies, data management,
and integrating robotics for actuation are considered. In their contribution, Halla et
al. present a general framework for estimating the availability of water in soil for
plants using various means of data collection, including drones. The data acquired
by drones can be considered as a proxy for direct measurements of water content
in the soil. Linna et al. focus on the feasibility of using ground penetrating radars
(GPR) in data acquisition from crop fields and on the possibility of mounting
the GPR to drones. The range of possible applications is wide, ranging from soil
mapping to the detection of pipes and cables. In their chapter, Narra et al. propose
a cost-effective solution for the assessment of crop yield by dividing crop fields
into zones according to productivity and extending the results of yield sampling
to the whole field according to these zones. Obtained yield maps provide decision
support to farmers when considering actions for improving the productivity of their
fields. In the final contribution by Nevavuori et al., a data fusion approach is taken
to improve the performance of the previously developed deep learning framework
for yield prediction and modelling. A way of combining remote sensing data from
drones with data on soil properties, weather conditions, and low-resolution images
from satellites is studied.

The chapters contained in this volume form a tiny snapshot of the wide range
of issues to be considered in drone usage, even when narrowing the scope to
environmental applications and smart farming. New technological advancements
and avenues for applications are reported almost daily. Developments in sensor
technology widen the range of useful applications while more widespread use
of drones brings the prices down. Challenges posed by unfriendly and harsh
environments have to be considered through careful planning of operations as
well as technology developments. As with other rapidly developing technologies,
governmental regulations tend to lag and need to be updated continuously. While
not making compromises on safety and security, the regulations should enable the
uptake of new advancements that would lead to more optimal and environment-
friendly solutions. We hope that the current volume would give the reader new ideas
and promote future advancements in drone usage.

Pori, Finland Tarmo Lipping

Pori, Finland Nathaniel Narra

Pori, Finland Petri Linna

March 2021
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Unmanned Aircraft Systems
and the Nordic Challenges

Vadim Kramar, Juha Röning, Juha Erkkilä, Henry Hinkula, Tanja Kolli,
and Anssi Rauhala

Abstract The European Union (EU) regulations regarding the unmanned aircraft
system (UAS) that came into force in 2021 emphasise technological and operational
safety. Those regulations have been developed on the common rules in the field of
civil aviation and establishing a European Union Aviation Safety Agency (EASA).
The implementation of the regulations and compliant UAS operator activities are
still the ground of the future. Therefore, it is essential to systematically gather
information about all the factors affecting UAS operations in a safe and meaningful
manner. This book chapter introduces the Nordic as well as generic challenges
for UAS operations. The challenges can be divided into two main categories:
technological and operational. Based on the extensive literature review and authors’
practical experience, both types of challenges are grouped by relevance topics. For
example, the weather-related phenomena challenges overlap in both technological
and operational categories but still can be mitigated differently. Technological
challenges are usually mitigated by UAS design and human-computer interactions,
while operational challenges may be mitigated with legislation and organisational
activities and personal UAS operator qualities. Finally, the needs for further research
on the challenges affecting safe UAS operations are discussed.
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1 Introduction

Future autonomous mobile systems will employ artificial intelligence (AI) technolo-
gies to be capable of operating in an often unstructured and dynamic environment
in a safe and meaningful manner and simultaneously work toward given mission
objectives without being extensively controlled by human operators [1]. In this book
chapter, challenges associated with the unmanned aircraft system (UAS) operations
are introduced. Special attention is given to the Nordic or even the Arctic conditions’
requirements on the application of UAS. The Nordic weather conditions are often
harsh and include a wide range of phenomena. Simultaneously, the technology
readiness level of using UAS is advancing rapidly, which has resulted in regulative
actions such as the European Union (EU) regulations that came into force at the
beginning of 2021. Besides, EU 2019/945 [2] and EU 2019/947 [3] crucially
emphasise UAS operations’ safety.

These days, the application of UAS in cold and harsh environments such as
the Arctic and Antarctic is comprehensive. It includes remote sensing in fluvial
environments [4], wildlife [5] and airborne [6] monitoring and population ecology
[7], tracking of river ice [8] and sea ice movement [9], snow extent mapping [10],
estimating the mass and body condition of animals [11], air quality measurements
[12], spatial ecological and landscape surveys [13], observing the atmospheric
phenomena [14], boundary layer [15] and profiling [16], monitoring changes on
a construction zone [17], military purposes, e.g. [18], and many others. In addition
to the professional application of UAS for research, business, and military purposes,
the consumer’s applications will also appear increasingly with the rapidly increasing
Arctic tourism [19]. Moreover, there is a spreading area of non-commercial applica-
tion of UAS for the benefits of society. With the involvement of private individuals,
academic researchers, journalists, non-governmental organisations (NGOs), and
sometimes public services and commercial structures, UAS may be used for human-
itarian aid, environmental protection, emergency services, responsible journalism,
and activism [20].

As UAS have become more popular even among regular consumers in addition
to hobbyists and professionals, international or national authorities in most of
the developed countries have introduced regulations on the use of UAS during
the 2010s [21, 22]. However, due to the rapid emergence and development of
the technology, regulations may have been straggling in some countries and thus
placed barriers on research, development, market opportunities, and societal gains
[21]. Moreover, the applicability, technical requirements, operational limitations,
administrative procedures, and ethical constraints have varied significantly between
different countries [21]. Due to the adaptation of EU level regulations [3], new
administrative procedures will be implemented. For example, in Finland, the
registration of unmanned aircraft (UA) is now required except for the toy UAs
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that weigh less than 250 g. The registration process and the knowledge exam and
relevant training materials for so-called Open category applications of UAS are to be
arranged and provided by the National Aviation Authority (NAA), Finnish Transport
and Communication Agency (Traficom). In addition to that, NAAs empower other
trustful organisations to provide Open category training and professional training
for Specific or Certified categories of UAS operations. The last two categories
demand from UAS operators considering more aspects in planning and conducting
the UAS missions. Those aspects include safety and risks, policies and procedures,
considerably air traffic rules and legal measures, infrastructure particularities, and
many others [3].

An example of a Specific category training opportunity is the DroneMaster
project (2020–2022) [23], aiming to develop and bring online education for pro-
fessional UAS operators. The professional applications of UAS imply UA missions
in a challenging environment and under critical conditions. Due to the geographical
location of Finland, many professional UAS operations take place in challenging
weather conditions. For that reason, the project team has collected the technological
and operational requirements systematically. The DroneMaster project [23] team
has conducted qualitative research using a questionnaire that has indicated how
the UAS operators and end-users utilise UAS in the Northern Ostrobothnia area of
Finland. From the questionnaire results, it was possible to point out that 77% of the
UAS operators use commercial UAS solutions. The most notable UAS application
areas in Northern Ostrobothnia are media-centric (mostly entertainment and pho-
tography related), sales and marketing, nature and animals, geology, mapping, and
topography. These application areas use UAs of a variety of mission-specific pay-
loads. According to the respondents, the Nordic conditions, especially in the winter
season, and the UAS technology maturity are challenging for the UAS operators in
the above and many other application areas. Today, specific technological solutions
give UA’s components protection from such weather conditions as rain. Still, the
winter conditions will affect the UAs even stronger. The weather can also affect the
mission-specific payloads’ functional properties, like cameras and sensor platforms.
Often, those payloads do not have any Ingress Protection (IP) [24], and therefore
wind, rain, and freezing temperatures might cause their malfunctions. The question-
naire answers indicated that the UAS operators would like to have more information
regarding the new European Commissions legislations (EU 2019/945 [2] and EU
2019/947 [3]), as well as modern UAS technology, maintenance aspects, and how to
operate UAS.

Within this book chapter’s scope, the specified in EU acronyms will primarily be
used: UA, UAS, and a UAS operator. According to EU legislation [2], the definitions
are given as follows:

(1) ‘unmanned aircraft’ (‘UA’) means any aircraft operating or designed to operate
autonomously or to be piloted remotely without a pilot on board;

(2) ‘equipment to control unmanned aircraft remotely’ means any instrument, equipment,
mechanism, apparatus, appurtenance, software, or accessory that is necessary for
the safe operation of a UA other than a part and which is not carried on board
that UA;
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(3) ‘unmanned aircraft system’ (‘UAS’) means an unmanned aircraft and the equipment to
control it remotely;

(4) ‘unmanned aircraft system operator’ (UAS operator’) means any legal or natural person
operating or intending to operate one or more UAS.

The following acronyms and terms are to be considered interchangeable as they
all are used in reference materials: unmanned aerial vehicle (UAV), unmanned
aircraft (UA), and drone. Widely spread recognition of UAV as “lightweight
aircraft” is not appropriate since some UAs are heavy-duty drones that can carry
a payload of 30 or more kilograms, e.g. GRIFF [25], or even a human, e.g. EHang
[26]. Some as heavy as aircraft are, e.g. NATILUS [27] or Northrop Grumman MQ-
4C Triton [28].

2 The Nordic Challenges

The Nordic countries have an intermediate climate with four seasons. In most
Nordic countries, the summers are bright and warm, and winters are dark and cold.
It is common to have heat waves during the summer season when temperatures will
rise to almost 40 ◦C. During the winter season, the temperatures can plummet up
to −40 ◦C, and the lowest recorded in the Arctic is −68 ◦C below zero. Depending
on the definition, the Arctic region starts north of 60◦ north latitude or north of the
Arctic Circle (66◦33′44′′ N). Already during the autumn season, there can be quite
a lot of high rainfall, snowfall, and darkness since the daytime gets ever shorter as
the upcoming winter Polar Night draws closer. During that time, to the north of
the Arctic Circle, the sun does not raise at all. After the Polar Night has passed, the
daytime grows longer until it is the longest during the midsummer when the summer
solstice occurs. During that time, to the north of the Arctic Circle, the sun does not
set at all.

All those factors multiply the impact of generic challenges for UAS operations
and form combinations of factors that increase the overall severity significantly.
For that reason, the generic UAS challenges are listed and grouped along with the
specific to the North, and all together are considered. All these challenges for UAS
operations are categorised into technological challenges and operational challenges
[29, 30].

Technological challenges may be addressed, and their impact reduced or elim-
inated with the development or excellence of technologies, improved design or
functionality of UAS, more sophisticated construction materials, or application of
additional technological means or artefacts. Addressing the collections of challenges
belonging to those topics requires different technological approaches, even though
some of those approaches may be common [29, 30].

Operational challenges are those that may be addressed with human actions,
predictive or corrective. Some problems or risks brought by the operational
challenges may be reduced or excluded by access to information content under
proper awareness and preparedness. Some operational challenges (e.g. legislative
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or weather-related) are not possible to overcome, and therefore, they must be taken
into consideration at planning and operational phases when the decisions are to be
made whether to cope with those or cancel or reschedule the UAS mission [29,
30]. Addressing the collections of challenges belonging to those topics requires the
UAS operators’ different types of actions, even though some of those actions may
be similar or sequential.

2.1 UAS Design-Related Challenges

Different classifications of UAS exist [31, 32]. In Europe, one of the proposed
categories for small UAs is by maximum take-off mass (MTOM), which is under
25 kg [2]. Light UAs are up to 150 kg, and large UAs of more than 150 kg
are not classified any further. Body materials, main construction, and moving
parts may be designed for a specific application or even a particular UA mission.
Depending on the construction type, different design challenges appear [31]. Some
of the earlier research suggests that fixed-wing lightweight UA would be suitable
for a wide range of operational environments, including maritime, mountains,
and arctic environments [33, 34]. Extra strong elements of UAs are produced
using composites, which are very strong, stiff, and durable and at the same time
lightweight (e.g. carbon fibre-reinforced composites (CRFCs)). Newly developed
materials have high chemical resistance and keep their properties in a wide range
of temperatures. Carbon nanotubes (CNTs) may be used to build electric-powered
coating that prevents icing of UA. Composite additive-enhanced materials may be
3D printed [35].

The payload is a combination of different technological design challenges,
mission-specific requirements [36, 37, 38] and design targets, e.g. to keep the
MTOM within a certain range. In the specific cases of UAS applications, several
additional considerations have to be taken into account while developing, e.g.
transportation of vaccines requires meeting the infrastructure requirements, trans-
portation container design, time and vibration threshold, as well as relevant to
logistics economic consideration in general [39]. The payload of the UA should be
known at the flight operations planning stage. The challenges are to keep the payload
within the specified payload capacity of UA and achieve the physical and the data
exchange specification match of the interface. Performing the UA operation with
excess payload or physical mismatch may cause mission failure and safety threat. In
contrast, the interface mismatch may result in malfunctions of the mission-specific
payload. The general public sometimes are concerned [40] about the nature of the
payload and the appearance of heavy cargo transported by UA in relative proximity.
The results of the concerns may have a direct or indirect effect on the UAS mission.
As the direct impact, the aggressive crowd may cause the abortion of the mission or
the need to reroute the flight. As the indirect, the future missions may be suspended
or cancelled.
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The most critical part of the UAS that affects flight operations duration is
the power source, most commonly a battery. Battery technologies are essential,
regardless of UAS power sources. Power source design challenges include max-
imising efficiency and robustness while minimising the mass [41]. Modern power
technologies such as solar [42] or fuel cell [43] may be supplemented with energy-
scavenging technologies [44]. The combination of several power sources results in
hybrid engines [45, 46], which are designed to improve efficiency and reliability,
while the internal combustion engines are still used [46]. Even aviation gasoline-
powered UA may have battery-powered ignition and computing boards. Battery
technologies have developed over the years but are still prone to charge loss
and voltage drop under low temperatures. Battery capacity, keeping the suitable
temperature conditions, alternative energy sources, and energy harvesting are
matters of cutting-edge research activities these days. These challenges [47] are
addressed from both ends, by developing more sophisticated battery technology
[41, 48] and by optimising the energy expenditure [49, 50]. In the case of electric-
powered UAS, challenges associated with battery technologies are linked to weather
physics and weather dynamics topics [33] since challenges belonging to those bring
a higher energy demand.

Assistive and mission-specific sensors are a huge technological development area
that progresses along with nonspecific to UAS sensor development. A vast number
of sophisticated assistive and mission-specific sensors for UAS are developed
worldwide. The UA-associated sensor technologies [51] may include challenges
designating from a range of cameras [52, 53], or another mission-specific payload,
deployment of and integration with IoT services [54], utilisation of data fusion [55],
and the implementation of multi-UA setup [56], which may also be organised as UA
swarms [57]. Sensor accuracy may be crucial in some application areas [12].

Computing capacity is always a compromise in autonomous systems [58] with
limited capacity power sources, a wide range of sensors, intensive communications,
and demand for energy-hungry data processing [31], e.g. big data processing [59].
Achieving the right balance between computing capacity, its efficient utilisation, and
power consumption brings a broad range of challenges. Modern microprocessors
are powerful and energy-efficient so that not only control but also some data
processing and analytics functionality may be performed on board. Multilateral
computation by principles of edge computing and supported with cloud services
boosts computation abilities. Still, in the case of poor connectivity or its absence,
unilateral computing may be beneficial. Edge computing may bring certain benefits
to UAS computational architectures [60].

Operational AI aims to help with processing vast volumes of operational data to
achieve higher operational efficiency. The associated challenges include designing
autonomous and assisted flight control systems that may use machine vision, data
fusion, machine perception, AI-enhanced communications, and data security to
operate proactively, within encoded ethical principles, interact with, and provide
assistance to the UAS operators through adaptive multimodal interfaces. In the
future, with the help of operational AI, it will be possible to carry out fully
autonomous missions [61], also life-critical [62]. Operational AI challenges are
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also relevant to the limitations of AI-enhanced autonomous and semi-autonomous
automation and flight assistance that should reduce the cognitive workload of
UAS operators [63]. These challenges are also relevant to ethical dilemmas that
sometimes are not even possible to be resolved by humans, such as choosing whom
to harm if no other option is available [64].

Communications expose a broad range of challenges [32, 65, 66, 67] asso-
ciated with inferior quality of communication channels, absence or out-of-reach
of required communication infrastructure, and insufficiency of communication
parameters. These challenges play an important role, as the communications failure
may cause severe consequences to the UA mission. Internet access may be absent,
and even the satellite Internet connection may not always be operational in the
remote Nordic and the Arctic areas. The problems with radio or satellite signals
could be caused by the location, environment, or weather conditions (e.g. no
connection in narrow rocky gaps). In general, any form of wireless communication
is affected by those conditions and may be distorted or lost. That may affect
communication for different purposes, such as vehicle-to-vehicle (V2V), swarm,
air-to-ground (A2G), and command and control (C2) with Ground Control Station
(GCS). In the case of radio communication, it may be affected by magnetic storms
or electromagnetic interference. Some radio-frequency bands may be a subject of
licensing or reserved. Certain methods aimed at improving the communications as
a part of disaster management [68] may be utilised for other UAS applications in
areas with poor communication infrastructure. Electromagnetic interference causes
problems in communications and may cause hazards in UA electronics. Reducing or
eliminating the negative impact of such a phenomenon is yet another set of design
challenges. For example, electromagnetic shielding is used to protect electronics
[69], but antennas are always exposable. Counter-UAS (C-UAS) technologies use
the highly focused high-power electromagnetic pulse to cause hazards in electronics
[70], which in the case of military UAs and those that operate in areas of intensive
electromagnetic emission brings these design challenges to the high level of
importance. The possible negative impacts in communications may be reduced
when potential problems are known or anticipated and appropriate solutions are
planned [66]. In the case of the unexpected occurrence of communication loss in
the field of operations, the corrective actions may be very challenging [56].

Vertical take-off and landing (VTOL) features are usually not designed for
operations in harsh environments and a moving home point, such as a boat or a
ship, an iceberg, or a floating ice floe. Nevertheless, those are not rare operational
conditions in the Arctic, which brings definite design challenges. The current
technology development allows achieving quite challenging cases, e.g. take-off from
docking stations [71] or landing on a moving platform [72]. Nordic conditions
bring specific requirements for VTOL operation [31]. For example, a launching pad
or base may be required, which in the case of the moving basis is a particularly
challenging requirement even for the UAS operators having the appropriate skills.

A change of the air density in higher altitude is a well-known challenge by UAS
operators. This challenge reduces the flight time by engaging the UA engines more
aggressively to maintain the required speed and altitude [73]. The falling of UA
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into the air pockets may sometimes be observed visually. The front of two different
atmospheric pressure areas is not possible to be recognised visually, while the
information about the movement of an area with different density may be obtained
from the weather forecast.

Technical malfunctioning may bring a very diverse range of challenges [32, 74],
in all varieties, from power source failures through computing or communication
malfunctions to UAS operators’ control interface crash [75]. The severity of
technical malfunctions can be partly mitigated by increasing the redundancy of
mission-critical components and control surfaces [74]. Technical malfunctions may
not be reserved during the mission [77], while the negative impact of those may
be reduced by a fast and correct response of the UAS operators. For example,
power source shortage [47, 76] may appear during a long-time expedition along
with a lack of other supplies, and mitigation actions are similar. Nevertheless, in
electric-powered UAs, UAS operators may utilise technological means to acquire
electric power from renewable or power-generated sources. When the UA cannot
return to the departure point, the search missions may be more effective if the
UAS operators and supporting team are prepared in advance and backed up with
positioning technologies. That kind of cases may occur when, e.g. due to technical
malfunctioning, the UA parachute is engaged, or the UA is blown out of operating
range by the wind. It is possible to assume that conducting the UA mission within
the scope of the technical specification of the UAS in the majority of cases is not
expected to cause the additional risk of technical malfunctioning [75].

2.2 Weather- and Nature-Related Challenges

Weather causes a lot of both technological and operational challenges to UAS
operations. Challenges posed by weather physics [78] bring additional requirements
that are not usually considered in the design of generic UAs intended for operations
in calm weather conditions. Traditionally found in the specification of generic UAs,
operational conditions limit those to the wind speed that does not exceed the speed
of a UA, the operating temperature that ranges above 0 ◦C, and the air’s humidity
that does not exceed 80% or even 50%. The Specific and Certified operations of
UAS may need to be performed in far more challenging weather conditions or
at higher altitudes where the Open category operations are prohibited. Partially,
the range of challenges caused by weather physics factors associated with the
immersion of dust or moisture may be eliminated by IP protection [24]. The other,
associated with icing, may be addressed with technology advances related to ice
protection, de-icing, and dynamic ice accretion [79, 80, 81, 82, 83]. Some of the
associated challenges may require advances in construction materials preventing
condensation or routing heat from heating sources, e.g. using printed electronics
[29]. Challenges posed by weather dynamics [78] by affecting the UA aerodynamic
properties harm the control of UA and its battery life [47, 73]. The challenges
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caused by weather dynamics may exceed the UA’s technical ability and therefore
compromise its mission.

One of the most significant weather-related technological challenges related to
Nordics and other Subarctic/Arctic locations is low temperatures, which bring a
range of critical challenges affecting UA’s performance [73]. Most of the consumer-
grade UAs are certified to operate in a temperature range above 0 ◦C, and some are
above −10 ◦C. Industry-grade UAs may be certified to operate in the temperature
range above −20 ◦C. The most significant negative impact of a low temperature
is on battery life [84, 85]. Also, sudden voltage drops may be expected (typical
for lithium-ion polymer (LiPo) types of batteries) [75] and even voltage loss.
Notably, that happens in the case of a change of the battery charge beyond the
range controlled by an “intelligent” battery control circuit, or the battery does
not have that kind of circuit. UA’s high operational performance that requires
high current drains the battery much faster at lower temperatures compared to
the same performance within the specified temperature range above 0 ◦C. In the
Arctic, the temperature may drop lower than −50 ◦C. At that low, the temperature
may affect substantial parts’ mechanical properties, which may become fragile.
Also, liquids and lubricants’ viscosity may change and therefore increase friction.
Additionally, electronics’ electrical properties may change due to the imbalance of
control circuits and getting properties of some elements out of the operating range.
Low temperature-related impacts on battery life and operation can be somewhat
mitigated by using self-heating smart batteries or thermal insulation [85] of pre-
heated to around +10 ◦C batteries [75]. Many manufacturers discourage the users
from charging the batteries in temperatures below +5 ◦C. During the flight,
temperatures can be maintained by using insulation [85] or chemical heat pads if
the batteries are exposed to the elements.

Rapid temperature changes, such as rapid temperature drop, may cause the UA
similar consequences as rain, mist, and fog, particularly relevant to condensation
and moisture immersion. The additional requirements of these challenges are related
to the UA construction materials to keep their physical properties in the broader
range of temperatures, at least the anticipated ones. Furthermore, rapid temperature
changes challenges may cause those weather phenomena associated with weather
dynamics [73]. Temperature crossing 0 ◦C by changing from above 0 ◦C to
below or the opposite way brings challenges associated with the accumulation of
moisture and ice inside and on UA’s outer surface. That may result in poor battery
performance or failure, electronic failure, distortions of optics, and the like and have
a similar negative impact as the other challenges described before in this section
[73].

Freezing rain and ice fog appear at temperatures close to +10 ◦C and, in addition
to those exposed to rain, uncover many challenges caused by instantaneously
crystallising water particles. The particles may cause icing of contacts that changes
electrical properties or breaks the conductivity; forms icy masses on propellers
and wings that negatively affect the aerodynamic properties; or forms icy masses
on a body of UA that affect negatively to the overall balance of UA in the air
and may even lead to a jam of the flight control elements [73]. Freezing rain
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has a more substantial effect than just rain or snow since its drops immediately
crystallise when they hit any surface of UA, and ice formation may grow thick.
Snow brings a wide range of challenges that affect UA’s flying performance, battery
life, communications properties, and reception of satellite signals, just like in the
case of rain [73]. Light snow may not stick to a UA surface during the flight but
may stick before the land-off and after the landing. Blowing the snow may bring
stacking snowflakes. Heavy snow due to a higher density of snowfall and blizzard
due to a higher speed and multidirectional snow movement have more negative
impacts as they directly hit the aerodynamic properties of a UA [73]. In those cases,
snowflakes are more likely to stack on the UA surface during the flight. Wet snow
or sleet immediately brings an additional negative impact associated with water and
moisture, as well as any other melting snow does. Any snowfall negatively affects
the performance of UA sensors equipped with optics.

Rain, mist, and fog bring a range of challenges associated with the negative
affection on UA’s flying performance, higher load to the power source, and
communication abilities [73]. While rain brings masses of water and mist brings
moisture, fog may cause rapid moistening and water condensation. Water or
moisture may accumulate and enter the electric circuits and electronic elements.
Accumulated during the flight moisture may be rich in airborne dust particles and
other impurities, such as salt, which may be a reason for future corrosion and short
circuits and, therefore, negatively affect UA’s reliability. Wet air and drops of water
on a lens may distort or make unusable UA sensors using optics. Heavy clouds
negatively affect satellite signal reception, required for satellite-based positioning
systems, e.g. global positioning system (GPS). Also, the clouds may make it difficult
or impossible to have visual contact with UA [73]. Partially, these challenges may
be addressed with advances in navigation and communications technologies [32]. A
change in the air density is a challenge to the UA [73] flight performance. The lower
density of the air, which typically appears at higher altitudes, negatively impacts
lift and thrust forces. Especially challenging for UA may be crossing the front of
two areas of different air density or falling into the air pocket. The flight-assisting
automation may be programmed to reduce the negative influence of crossing the
front and slipping into the air pocket. At the same time, enhanced efficiency of UA
engines and aerodynamic properties improve UA’s behaviour at higher altitudes
[86].

The heavy and gusty wind having a speed about the speed of UA or higher
may jeopardise the control and blow the UA away out of control or, in the case
of autonomous operation, the operation range [73]. That may make impossible a
return of UA. At higher altitudes, the wind speed may be significantly higher than
at lower altitudes. It is very challenging to develop an automated piloting algorithm
to compensate for heavy and gusty wind and maintain UA’s plane position with the
minimum course fluctuation. This challenge may be addressed by, e.g. advanced
control [87] or aerodynamic models and improved control performance [88]. Wind
shear, whirlwind, storms, and hailstorms [78, 73] bring a powerful combination of
weather-related challenges. The relatively heavier and bigger UAs with powerful
engines and excellent aerodynamics may withstand storms to a certain degree, but
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hailstorms bring extra factors of falling icy hails. A sophisticated flight-assistive
automatic may be programmed to detect abnormal wind movement cases and further
perform the corrective actions while maintaining the set altitude. Further, the flight-
assistive automatic may inform the UAS operator that the UA is entering the storm
area and offer the opportunity to return rapidly to the home base or the predefined
point.

Dust and solid particle clouds that blow from the ground due to take-off and
landing or can be brought with masses of air may temporally alter or disable
visual contact and communication with UA and the performance of its optics-
equipped sensors. The small particles entering to mechanical parts of UA may
bring extra friction and alter mechanical performance [75]. UA flight in a cloud
of tiny solid particles results in lower flying performance and shorter battery life
and possible loss of visual contact and communication. UAS are used to research
the distribution of ultrafine particles in the air and air quality [12, 89], while dust and
solid particles in the air may also damage UA sensors. Additional protection may be
needed to address these challenges [90]. Solid particle and liquid ingress protection
determine two important yet essential properties of environment tolerance of UA.
The protection levels are known as IP codes or International Protection Marking,
which are classified by IEC 60529 standard [24]. It is vital to notice, though, that not
only UA but also on-board and gimbal-attached equipment would have appropriate
protection. The higher level of protection means a better tolerance, but it concerns
the specified property only and does not cover a combination of external factors
affecting UA’s performance. For example, heavy rain or dust storm may not break
the UA’s seal but jeopardise its operation by bringing conditions that exceed the
capacity of the UA aerodynamic properties [73].

Extreme light conditions are always challenging for optical sensors. The con-
ditions are typical in the Nordic and even more exposed in the Arctic. During the
cloudy days, harsh weather, twilight and night-time, there may be low light or no
light conditions at all, e.g. during the Polar Night when the sky is closed by heavy
clouds. There is an excess of light during bright sunny days, especially in the winter
when the sunlight is reflected from horizon-to-horizon snow and ice masses. These
challenging conditions bring special requirements for any optical equipment used
with UAs, mainly their exposure and white balance properties and abilities. The
machine vision technologies may be enhanced through more sophisticated sensor
technologies and combinations of sensors [51, 91, 92].

The weather-related operational challenges may have a crucial impact on the
UA mission. The challenges are relevant to adapting UAS operations to the
environment and how the UAS operators respond to environmental challenges.
Excellence in technology and UAS design may reduce the negative affection
of weather factors. Still, it is not possible to eliminate those. Alternative plans,
risk avoidance, rescheduling, and other mitigation activities may reduce negative
affection. It is always recommended to consult the weather forecast [78] when
planning the mission, while in the case of utilisation of the UTM system, the
real-time weather data may be supplied. Nevertheless, under conditions of high
technological readiness of UAS to withstand the weather challenges, appropriate
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qualification of UAS operators [64], and according to procedures allowing Specific
or Certified category of operations in the different challenging environment, those
operations may be performed when they are authorised [3].

Heavy and gusty wind may appear unexpectedly regardless of the weather
forecast and challenge aerodynamic properties and flight control [83]. Those
challenges may have a strong negative impact on the success of a UA mission [77].
Therefore, the UAS operators have to react fast and provide the appropriate response
to compensate for the impact. The prompt responses are linked to the personal
qualities of UAS operators. Wind shear, whirlwind, storms, and hailstorms are also
challenging the aerodynamic properties of UA [83], sometimes so drastically that
their influence exceeds the capabilities [83, 75] unless the UA is of a massive aircraft
type. Often those phenomena may cause an intensive vibration of the UA or a sudden
change in UA flight trajectory. The last may appear so rapidly that UAS operators
cannot respond fast enough to correct the flight trajectory, which may lead to a crash
[75].

In some cases, it is possible to respond with corrective action. That is linked to
the personal qualities of UAS operators. The corrective actions of flight-assistive
automatic may provide UAS operators with efficient help. When the phenomena
are spotted, the UA may be set to the automated rapid return to the home base
or the predefined point. Otherwise, the UAS operator may trigger that operation.
UAS operators know well the decrease in density of air with higher altitude as
operational challenges reducing the flight time by engaging more aggressively the
UA engines to maintain the required speed and altitude [73]. Dust and solid particles
may bring ground-associated and air-associated operational challenges. The more
specific take-off procedures are recommended such as using a launching pad or
station, which may require additional training of UAS operators. In the air, the ultra-
small particles may not be seen and therefore not spotted by the UAS operators. The
relatively heavy particles may move in the air in a form of a cloud. The cloud may
be spotted visually, and it is generally recommended to avoid crossing its path or
entering the cloud with UA that the aerodynamic properties would not be challenged
[75, 83].

Short flight time is one of the most important operational challenges [75]. In
the Arctic, territories are large, but at the same time, many places are difficult to
reach. The flight time of UA may be affected negatively by harsh and even more
by extreme weather conditions. Therefore, UA missions must be well-planned, and
during the mission, operators should provide responsive and even proactive control.
Also, this challenge is relevant to the availability of supply [42, 83].

Similarly, extreme light conditions challenge operational and mission-specific
US sensors, which affects UAS operators’ performance relying on visual data from
those sensors or the quality of data collected with the help of those sensors [75].
The negative effect may be reduced with sensor modifications or special tactics
that consider the light source position [75]. Depending on the extreme, the UAS
operators and the supporting team may require auxiliary light sources or direct
sunlight protection. Navigation systems may be impacted by heavy clouds (satellite)
or extreme light conditions (visual sensor-based). To avoid the presented above
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challenges, performing the missions during the daytime in cloud-free conditions
is recommended [93]. Other impact factors presented earlier [29], and those
that are specified by mission requirements, may demand more sophisticated UA
technologies utilising multi-sensor non-satellite positioning.

The nature-related operational challenges are relevant to all the other elements
of nature but weather. Those elements are geographical irregularities, elements, and
formations, as well as wildlife, fish, and plants. Geographical irregularities, such as
cliffs and crevices, have a fixed position, while piles of ice and icebergs are moving
obstacles [29]. The associated challenges are related to selecting the home point, the
mobility of the UAS operators, or the UA flight path [75]. Operating UA at a low
altitude above the open water with floating ice floes or during the ice breaks may
bring such unexpected obstacle as suddenly pushed up ice floe [29]. Possible blind
areas due to geographical formations may prevent communications between the
UAS operator and the UA [94]. It is recommended to be aware of local geographical
irregularities and prepared for corrective actions [30, 75]. Wildlife may be disturbed
by UA and expose a wide range of emotions from internal stress to angriness [95,
96]. The challenge is that the UA may be attacked by wildlife [97] or even the UAS
operator, especially when their intrusion is considered as a threat to the offspring. In
addition to that, the UA performing a flight may be accidentally damaged by fighting
animals. It is recommended to get acquainted with the presence of wildlife in the
area of the UAS mission and minimise the possible negative impact by avoiding to
disturb it [95, 96].

2.3 Legislation and Organisational Challenges

According to formalised or freely planned routines, challenges posed by legislation
and organisational actions frame the UAS operators’ efforts. The review of such
challenges is following.

Best practice-associated challenges may be technology-driven or generic. The
current challenges are in following the best practices, recreating their routines,
and conducting expected actions or responses to the field’s situations [75]. The
technological challenges have already been researched for several application
domains. The application domains include environmental monitoring [98, 99],
forestry applications [100, 101], wildlife monitoring [53], disaster management
[68], hydrology [102], fishery science [103], radiometry [104], and soil carbon
mapping [105]. Many of those practices include generic operational aspects as well.
Nevertheless, generic [106] or generic but still more specific to the Arctic [107]
collections of best practices exist.

Laws, policies, and regulations are countries or geographic area dependent.
Legislative materials may outline restrictions and prohibitions, describe opera-
tional practices, and contain information regarding required processes, licences,
and permissions. All those matters bring associated challenges to UAS operators
[75]. Among those to be considered are challenges relevant to generic or Open
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applications of UAS and relevant to the Specific and Certified operations. For
example, health or medical applications of UAS [77] may require certification of
mission-specific equipment.

Any of the UAS missions should not violate human rights, but the general public
has many concerns conditioned by sometimes unethical applications of UAS [108].
The associated challenges are avoiding erosion of human rights, which has to be
considered at the entire UAS operations process from the planning stages to the
mission outcome processing [109].

Ethics and privacy considerations are already in the focus of legislative reg-
ulations in different countries but are still be researched further [77]. The main
challenge for UAS operators is to be aware of those considerations, bear those in
mind, and act appropriately while operating the UA [64, 75]. Heightened privacy
considerations, including data protection, concerning both the society members and
UAS operators, are a subject for the general public and policymakers [109].

2.4 Challenges of Human-Computer Interaction and Personal
Qualities of UAS Operations

Challenges posed by UAS operators and other human actors’ personal qualities
are mostly due to the combination of knowledge, experience, and individual
perception of those. Nevertheless, a range of personal qualities, including emotional
intelligence, moral, quick decision-making, and fast motoric, are essential for UAS
operators. Those qualities can be developed as a result of training, coaching, or
extensive practical experience. The review of the associated challenges is following.

Human-computer interactions (HCI) related operational challenges are causally
linked with their technological counterparts, but they expose the UAS operator’s
view on and reflection to the technological limitations or excellence. Any challenge
of this type may complicate or prevent the UAS mission, result in mission failure,
and cause safety risks. The review of such challenges is following.

Control interfaces may help to eliminate human limitations such as slow reaction
compared to a real-time control system and inability to pay attention to several
objects under control [110] and assist in decision-making processes [111]. Human-
robot interactions have been researched well before the UAS era [112]. Similar
principles apply and may be enhanced with assistive technologies [113]. Achieving
that brings a broad range of design challenges, typically associated with human-
computer interactions, and in the case of intelligently enhanced interactions is linked
with operational AI challenges. Innovations relevant to UAS control interfaces
range from direct controlling, e.g. using gestures, 3D interfaces or video streaming
systems enhanced with the first-person view (FPV). More specific control interface
requirements may come from the UAS application domain, e.g. infrastructure
inspection [114] and civil engineering [115]. The associated challenges include the
UAS operators’ ability to use those interfaces and benefit from their power. Modern
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concepts, such as cognitive human-machine interfaces and interactions (CHMI2)
[116], bring UAS operators practices to the new level but may require additional
training.

Infrastructure requirements are sometimes critical for UA mission. They may
not be achievable in a particular geographical area to match the demand for a
specific UAS mission, e.g. duration of the expedition [75, 76]. The occurrence of
such challenges may have a dramatic effect on the UAS mission. For example, it
may require engaging additional technological solutions, e.g. non-GPS navigation
or the communication channel must be established, or deployment of additional
equipment, e.g. a portable base station or alternating current (AC) power outlet
arranged for C2 equipment. It is recommended to perform a take-off from a natural
or artificial object standing at a certain height and a reasonable distance from the
snow to reduce blown snow’s negative impact. Adapting to a different temperature
(e.g. when UAS is taken indoor or outdoor) is recommended to be performed slowly,
in a lengthy period and using a buffer zone. Some of these infrastructure elements
may not be available in the Arctic fields, or there may be no infrastructure available
at all [75]. This challenge may be addressed with a mission-specific temporal
infrastructure set that may be deployed for the UAS mission [117]. A similar
approach can be adapted to the other UAS operations in the field. Organising the
UAS mission in the wild may require compromises between the required and the
available infrastructure, and therefore a more thorough mission planning is needed.
For this type of case, it is recommended to conduct a cost-benefit analysis to evaluate
UAS applications’ effectiveness [77].

UAS traffic management (UTM) systems raise combined technological chal-
lenges linked to communications, computing capacity, control interfaces, infras-
tructure requirements, just-in-time/dynamic data supply, safety, security, technical
malfunctioning, and time constraints [118]. The combined challenges are valid to
any geographical area where the UTM services are provisioned [119, 120, 121].
UTM-associated challenges may appear when dynamically updated information due
to newly discovered circumstances is such that may require re-routing or may affect
the UAS mission dramatically. Then, the entire support team’s involvement may be
needed for rapid decision-making [122].

Beyond visual line of sight (BVLoS) missions bring a broad range of techno-
logical challenges associated with communications, remote controlling, rerouting,
and other operations of autonomous or assisted navigation, localisation, operational
AI, data protection, and cybersecurity [74, 123, 124, 125]. In the case of multiple
UA missions [119], like swarms of UAs, the challenge is even more severe [65].
Besides the organisational challenges, BVLoS may require the authorisation of
the mission and UAS certification. It might also be a subject of UTM systems.
The recently published UAS regulations in Europe categorise such missions as a
Specific or Certified category [2, 3]. The rigid guidelines restricting BVLoS UAS
missions in different countries have to be checked [77] to comply with the most
recent regulations.

The weight of UAS and auxiliary equipment required for a mission may be
important. Sometimes, the mission must be performed by one UAS operator only.
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Therefore, the complete set of equipment must be lightweight and portable enough
to be carried or moved by one person. On the other hand, too lightweight UA may
not have enough capacity to withstand wind power and not being blown away.
Industry-grade UAS sometimes require a team that deploys a launching base and
operates the mission. A reasonable balance of equipment mobility should not require
having an extra team member in addition to the operational team [75]. Essentially,
the weight of empty UA itself is a part of take-off mass and therefore is in relevance
to the operational time and payload [31, 67, 68]. Evaluating the ability to reach the
operation point is especially important when the UAS operators and the supporting
team move to remotely located areas to deploy the temporal home base. Cost-benefit
analysis may help with precise planning to optimise the expenses and evaluate the
UAS mission’s effectiveness [77]. These challenges may be positively affected by
novel constructive materials such as carbon nanotubes [79].

Time constraints are an essential consideration and sometimes an extreme
challenge in rapidly changing weather conditions. Those may make it impossible to
perform the planned mission or conclude the ongoing. Even more challenging, life-
critical missions require proactive planning and fast reaction to the fast-changing
situation. For example, optimal placement of UASs to cover the operation area,
optimal routing, and help with decision-making may significantly help to cope with
time constraints [126, 127, 128, 129]. Time constraints are affected by take-off and
landing time and the speed of UAS. The main associated challenges are linked to
battery technologies, payload, and fuel type. When UASs are utilised in life-critical
applications, time constraints are among the crucial factor of the mission success
[126, 127, 128, 129].

Coordination with professional operations (e.g. search and rescue, military,
police, medical, etc.) is required for harm- and hampering-free missions [109]. In
some cases, the challenges of coordination may be faced for elimination by all the
involved parties. The co-involvement may be achieved (e.g. in the case of search and
rescue and backcountry medical response [130]) under conditions of UA’s technical
readiness, a qualified UAS operator, compliance with policies and regulations, and
whenever needed infrastructure support. That may imply interoperability with or
integration into the professional information system, including UTM.

Following guidelines and professional codes of practice is a high goal [131], and
achieving it is a different challenge for UAS operators depending on their moral
qualities [64]. Consulting existing guidelines and professional codes of practice
should be essential for all the stakeholders and actors of UAS operations [109].
Planning and following the plan is often challenging in the case of any type of
human activities. In extreme, rapidly changing conditions, following the procedure
strictly is not always feasible and safe. Sometimes, advancing or preventive action
or even cancellation of a mission is necessary. The best plan, though, is where all
the possible changes are anticipated and considered in advance [75]. UAS mission
following the plan is essential unless there is a strong need to either change to the
backup plan or act proactively [132].

Human factors are often more critical to the success of a mission than technical
excellence [124]. Among many others, the associated challenges include the level
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of competence, the sum of experience, the degree of understanding UAS and on-
board and auxiliary equipment and their technical abilities and limitations, and the
ability to proact or react to changing circumstances. The challenges exposed by
human factors are difficult to predict, but when they appear, their negative impact
may be reduced with classical approaches for human-robot interactions [112] and
preventive awareness [111]. Human responses, challenging the UAS operations
in general or particular mission, public or personal, may vary significantly [75].
Adverse psychological and physiological human reactions to UAs still require more
detailed research [109]. It is recommended to anticipate or be aware of possible
negative responses, and in some cases, the decision is between to continue the UA
mission or cancel it [40, 133]. UAS operators’ insufficient qualification may not be a
reason for mission failure but may bring unwanted risks [124]. Therefore, for some
specific missions, additional training and the official certification of UAS operators
are required [3]. Emotional aspects challenge the UAS operators, the supporting
team, and the other actors of UAS missions, including the object of the mission,
e.g. the victim to whom the life-critical UAS mission is aimed [129]. The personal
quality of UAS operators and their experience help them withstand the influencing
factors. Inter-communications and support for decision-making may also help all
the actors of the mission, even in the case of automated missions [129].

Formal procedures, e.g. for operation and maintenance [51], may provide
more streamline experiences with a smaller probability for errors. The UAS
operator-associated challenges are to know and follow those procedures. Along
with guidelines and professional codes [131], all the procedures may still not
be formalised in the nearest time or not formalised at all. Some effort towards
formalisation has already been taken in Europe [3].

Process-relevant challenges [51, 40, 131] occur when generic, typical, or nor-
malised processes are not sufficient enough, and a deviation or even breakthrough
is required. Such situations may be passively adopted or actively developed. An
example of the first is the need to use extra solid gloves to control UA on a frosty
day. The second is essential for research. For example, a commercial off-the-shelf
(COTS) consumer-grade UAS is used for non-trivial tasks for which it has not been
designed. That may require additional equipment or improvement of UAS itself or
the rationalised operational process. These types of challenges are usually known in
advance and may be considered during the planning phase.

2.5 Infrastructure-Related Challenges

Infrastructure-related challenges may cause issues regardless of the excellence of
the UA design, even though technological excellence may reduce the negative
impact. The review of such challenges is following.

AI data post-processing is widely used whenever volumes of data, requirements
for processing speed, other demands, or processing-specific requirements do not
match with the ability of processing by humans. One of the typical AI application
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areas for data post-processing is 3D mapping [134] and other photogrammetry
tasks [98]. A considerable number of UAS applications relevant to monitoring,
mapping, and observation require data post-processing, e.g. forestry [100]. The
associated challenges include such considerations as a format of data, compressing
and encryption, storing data on board, or transferring to the Ground Control Station
(GCS), which is linked with the communications challenges. With the current
development of UA on-board computing capacity, it is possible to build 3D models
of the environment in real time to support operational AI’s functioning, e.g. for
navigation purposes [135].

Satellite-based navigation systems may be altered or not always be available
at high north latitude. Harsh weather conditions can aggravate the situation. A
magnetic compass of UA may be disoriented and require frequent recalibration.
Gyroscopic compass may not be portable enough for a lightweight UA, and it may
also be compromised. Compass problems are conditioned by a Magnetic North
Pole shift versus the Geographic North Pole, terrestrial magnetic distribution in the
Arctic, and magnetic aberrations (also relevant to solar activity). A lack of precise
location has a direct negative impact on an automated routing and assisted control
and the outcome of UAS mission or quality of gathered data, for example, in the case
of image co-registering. Some of these challenges may be addressed with a variety
of technology advances [31, 62, 115, 135, 136, 137] and combined with geofencing
technologies enhanced with satellite remote sensing [138].

Safety is one of the key set of technological challenges [139, 140]. A variety
of safety-relevant aspects are investigated and addressed [67, 124]. UAS provide
enormous potential safety, e.g. in search and rescue, disaster assessment and
response, and hazard monitoring [94], but there are obvious concerns regarding, e.g.
aviation safety and malicious use of UAS [139]. Safety is always to be considered by
UAS operators as the ultimate goal of any UA mission. The safety considerations
and associated challenges for the UAS operators are broad. They include public
safety [67]; the physical safety of involved human actors and wildlife; the safety of
scientific data, equipment, and infrastructure; and air space safety in general [75].
Following the safety regulations, formal procedures, and best practices, thorough
planning of the mission, taking care of the technical condition of UAS, operating
carefully, and providing a prompt response in case of extraordinary situations
contribute to the safety [38, 75, 124].

Security is another crucial set of technological challenges that may be addressed
in a variety of ways [32, 40, 139, 141, 142]. Possible security threats include, e.g.
jamming or spoofing the localisation data or UAS transmissions, manipulation of
captured footage, injection of falsified sensor data, malicious software, denial-of-
service (DoS) attacks, and GCS control signal jamming or spoofing [142]. The
security breach is one of the severe challenges that may lead to lost data or control
of UA and make the mission compromised, e.g. the flight may be rerouted [77].
Addressing possible challenges requires UAS operators to know the challenges
and the ability to recognise those and respond appropriately [94, 142]. There have
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also been concerns of possible data capture and transmission back to the UAS
manufacturer or a third party, resulting in the blacklisting of certain manufacturers
from governmental applications in, e.g. the United States. However, independent
audits have not validated the concerns about unwanted data transmissions, although
particular vulnerabilities exist [143].

Just-in-time/dynamic data supply is crucial for data-critical missions and
autonomous or assisted navigation [32, 47]. The full-duplex C2 communications
with GCS may have different latency requirements depending on the nature of the
UAS mission. Regardless of the requirements, communication reliability should not
be compromised [65, 66]. The challenges occur when the communication channel
has been compromised and the expected data exchange has fallen [47]. These
challenges are also relevant to data that is to be supplied by services provisioned
through UAS traffic management (UTM) systems for UAS operations in the urban
environment.

Lack of supply may have a dramatic impact on the UAS mission and may cause
many consequential challenges unless eliminated with preparatory and proactive
actions [75]. During the mission, it is possible to run out of energy (e.g. battery
charge or fuel), spare parts and tools, life support for the team (e.g. food or water),
and other supplies due to a variety of reasons such as the wrong estimate of required
quantity/amount or need to have, broken equipment, possibilities to lose equipment,
etc. The nearest source of supply may be located unreachably far, and transportation
is difficult to impossible to arrange. Such a situation may lead to a cancellation
of the mission and even calling a rescue. The lack of supply may appear during
local missions but have a higher impact during a long-time expedition [47, 76].
The probability of occurring may be reduced by careful planning and availability of
spare equipment and a reserve of supply.

Low-carbon operation challenges are relevant to optimising the energy expendi-
ture [49, 50], the flight path optimisation [49, 141], more efficient communications
[67, 144], and the use of renewable energy sources [42, 44, 102]. Even though
these challenges may be addressed with technological excellence, as soon as the
low-carbon operation range beyond the single flight, other considerations appear,
including integration into the supply chain, business, and operational processes
[145].

3 Discussion

At the beginning of 2021, the European Union Aviation Safety Agency (EASA)
published Easy Access Rules for Unmanned Aircraft Systems (UAS) [146] that
contain the rules and procedures for the operation of unmanned aircraft (UA)
adapted for better understanding of recent EU regulations (EU 2019/945 [2] and
EU 2019/947 [3]) by the general public. For many defined types of UAS operations,
it is required to evaluate the environmental and weather conditions and, in some
instances, even acquire advanced weather information. Still, the collection of
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weather effects on the UA is to be developed further. The specific challenges and
special conditions that affect the UA missions in the Nordic environment or at the
higher altitudes of the mountain areas are not yet considered and reflected by the
existing regulations.

More research is needed to investigate further the Nordic challenges and their
particularities from the technological perspective. For example, such technological
challenge as safety may be addressed by equipping the UA with the parachute
system and duplicating its power and electric circuits, engines, and propulsor
system. However, most of those safety systems are typically designed to operate
in mild environmental conditions. Some of the weather challenges typical to the
Nordic though may appear in many other climate zones and, therefore, compromise
the safety systems’ functioning. At the same time, attention is not always paid to
the security of UAS, while security breach may eliminate the excellence of the
safety systems and cause unwanted consequences. The holistic view at the UAS
as a technology artefact exposed to the broad set of challenges may help understand
the common causes of those and interrelationships between them. That may advance
technological elements so that the design of the entire UAS would achieve a higher
degree of robustness and resilience to severe weather conditions and therefore
achieve a higher level of safety.

Every challenge mentioned in this chapter has from several to a vast number
of possible solutions. For example, anti-icing solutions include sprays, liquids, and
nano-coating and composite materials. Many universities and companies work on
any of those solutions around the world. Because of that, a significant number of
publications exist about every solution. It is well beyond this chapter’s scope to
present all the possible solutions or present one state-of-the-art in-depth solution.

More systematic research on operational best practices is needed and a higher
effort to popularise operational practices. Coping with operational challenges is in
line with the development of UAS and supportive infrastructure technologies. Real-
world challenges that humanity meets, such as the COVID-19 pandemic, accelerate
applications of UAS [145]. Contribution to the professional development of the UAS
operators is needed for a better match of the technological progress with labour
forces for society’s benefits. That includes formal education, acquiring and sharing
experiences, gathering, processing operational data, and raising public awareness
about UAS applications’ benefits. Informative communication with the general
public and discussing concerns may eliminate uncertainty and reduce unacceptance.
Supportive regulations and positive perception of the general public will positively
impact the development of UAS applications.

To address some of the operational challenges, raise awareness about the possible
pitfalls, reduce potential risks, and simplify planning, the dedicated UAS operator’s
handbooks were developed [106, 107]. Also, best practices to minimise the UA
disturbance to wildlife are published [147]. Nevertheless, all those guides are
considered very primary.

The more formalised approach has been taken by the ASTM (formerly known
as American Society for Testing and Materials) Committee that started working
on New Practice for General Operations Manual for Professional Operator of
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Light Unmanned Aircraft Systems (UAS) [148]. In Europe, Joint Authorities for
Rulemaking of Unmanned Systems (JARUS) is working on JARUS guidelines on
Specific Operations Risk Assessment (SORA) [149]. The Easy Access Rules for
Unmanned Aircraft Systems explains how SORA may be implemented in practice
[146]. All these documents are still under development. The symbioses of regulatory
and standardisation effort, technological excellence, and operational practices for
risk-free UAS operations are yet to be achieved.

4 Conclusion

The rapid emergence and development of unmanned aircraft systems (UAS) and
their recent advances offer enormous potential for commercial and non-commercial
applications. Still, it has also raised a broad range of technical and operational
challenges. All the technical and operational challenges introduced in this chapter
are typical to applications of UAS in the Nordic or even Arctic environment. At
the same time, they may also be specific to other climate zones. Nevertheless, the
Nordic environment reveals conditions that bring the challenges associated with
UAS operations to the highest level of toughness.

The safety of UAS operations has been considered a critical measure. Envi-
ronmental conditions associated with the weather and geographical and other
environmental particularities bring a broad range of challenges that have a strong
influence on the safety of UAS operations. The majority of UAS operations happen
in mild conditions that do not set the extreme demand. Achieving a higher level
of safety requires investment, but UA’s crash might be even more expensive. The
crash is associated with the damage of property or wildlife and may cause a risk
to people’s lives. What is more, it may cause reputational losses of both the UAS
operator that controlled the crashed UA and the UAS vendor that produced the
crashed UA.

Even though a lot of research attention is paid to specific technologies associated
with the introduced challenges, there is still a lack of research to understand all the
possible challenges and develop a holistic view of how the entire range of challenges
impacts the overall design of UAS. Robust all-weather-resilient UAS technologies
able to withstand the severe Nordic conditions could establish the benchmark.
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Applying an Icing Wind Tunnel for
Drone Propeller Research, Validation
of New Measurement Instrument

Petri Suurnäkki, Tuomas Jokela, and Mikko Tiihonen

Abstract Unmanned aerial vehicles have increased in popularity in recent years,
especially the numbers of small multicopters. At the same time, icing research of
such systems has been left behind, and results especially for propellers in this scale
and in VTOL configuration are few. While the numbers of such systems have grown,
also their usage in cold and icing conditions has increased.

A lot of research has been conducted for full-size airplanes and rotorcraft, but
for drones the Reynolds numbers are relatively low in comparison. For this reason,
it is important to research these systems in order to develop anti-icing methods
and operate drones safely in all weather conditions. Also, currently used numerical
tools are developed and validated for high Reynolds number conditions, but such
validation has not yet been conducted for low Reynolds number flows.

VTT has operated an icing wind tunnel since 2009 primarily for experimental
research in wind power technologies. Part of this line of research, methods for
preventing icing of wind turbine blades, has been developed, and numerical tools
developed in-house have been validated.

For developing the icing wind tunnel capabilities, a propeller dynamometer was
added as a research instrument. This provides the means to research propellers used
in drones to be researched in the wind tunnel. During the commissioning of the
instrument, experiments in warm and dry conditions were conducted for validation
and repeatability purposes. Experiments showed that the thrust measurements were
accurate and repeatable, but torque measurement requires more development.
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1 Background

Unmanned aerial vehicles (UAVs) or drones, and especially those with vertical
take-off and landing (VTOL) capabilities, have increased in usage rapidly in the
recent years. As with larger aircraft, icing is also a serious hazard to drones of
various sizes and architectures. UAVs have become a valuable tool for various
applications ranging from remote sensing duties to transportation of goods. Thus,
ensuring their operational safety in these kinds of conditions, it is essential to avoid
unnecessary hazards in the case they have to be operated during icing threat. Also,
in order to design and operate UAVs in various conditions, knowledge on the low
Reynolds number propeller performance and especially the change in performance
due to icing is essential. Today, there is limited research on UAV and low Reynolds
number propeller icing, and no mature icing protection methods for these exist.
For these reasons, research conducted especially on low Reynolds number propeller
performance in icing conditions needs to be performed. Hence, fitting an icing wind
tunnel with proper instrumentation for propeller research is important.

Icing is a common threat in aviation and poses a threat for large aircraft and
rotorcraft, as it does to smaller drones. Hence, throughout the years, a lot of research
has been carried out for general aviation, and a good understanding of ice formation
and its effects on aerodynamics for fixed-wing aircraft and rotorcraft have been
established [1–4]. Similar large-scale research has also been extensively conducted
on wind turbine rotors, where in-depth knowledge of aerodynamic icing also exists
[5–7].

Testing is also important for validation of numerical tools, as numerical tools
can provide key analysis more affordably than fully experimental workflow. Larger
numerical model validations have been conducted previously by instances such as
AGARD [8], for the scale of large commercial aircraft. Meaning that while they
have been validated thoroughly and proven to work, they have been developed for
high Reynolds number. While there is some research conducted on the numerical
tools of low Reynolds number icing [9, 10], the amount of research and validation
of these tools is still in short supply, and more experimental research is still required
in order to properly validate these tools.

For smaller drones, very few icing protection systems exist, and for development
of these, experimental work is crucial. On the contrary, large-scale aircraft have
mature icing protection systems due to the large volume of research conducted [11].
Some development for fixed-wing UAV anti-icing solutions has already been done
[12–17], but the amount of research results in this scale is still limited. Additionally,
some research has been conducted for propellers of this scale operating in icing
conditions [18–22].
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1.1 Aerodynamic Icing

Aerodynamic icing happens when supercooled water droplets impinge and freeze on
unprotected surfaces [1]. Physics of ice accretion can be divided into three topics:
droplet impingement, ice accretion, and ice adhesion [23], but often it is convenient
to consider the first two distinct parts [1].

For droplet impingement, the rate at which droplets strike the aircraft surfaces is
the product of several variables [1]. The water catch efficiency is dependent on the
liquid water content (LWC) of the cloud, size and shape of the body, and airspeed
[1]. Additionally, there is limited effect from the ambient pressure due to altitude
and temperature for the collection efficiency [1].

Ice accretion is the rate at which the striking water droplets freeze to form ice
on the unprotected surface, which is primarily governed by heat transfer from the
surface of the body [1]. Two main ice types forming are rime and glaze ice, but also
certain types of mixed ice of these two can be encountered [23]. Additionally, at
warm temperatures or high speed, slushy ridge of ice called beak ice forms, and this
is the third main type of ice accretion that may form on wings or rotor blades [1].
These main ice types are presented in Fig. 1.

If aerodynamic surfaces are not protected, icing causes aerodynamic penalties
by increasing drag and reducing the lift of lifting surfaces [23]. The changes of
aerodynamic effects can be separated to surface roughness and changes of the shape
of the body due to icing [23]. While the lift reduces and drag increases, the aircraft’s
weight also grows, and combination of these may result in the inability to continue
flying [24, 25]. For rotorcraft, the icing affects the handling due to the same reasons
[1]. The icing also affects the pitching moment characteristics, which may also
increase the control loads [1].

1.2 Wind Tunnels

Experimentation is an important aspect of aerospace engineering, and wind tunnels
are one of the options. Low-speed wind tunnels are possible to use to test models
prepared early in design cycles, offering also the full complexity of real fluid flow
[26]. Wind tunnels provide large amounts of reliable data and are a rapid and
accurate mean to conduct aerodynamic research [26]. In addition to numerical
tools, wind tunnels are an essential tool in engineering, both for model testing of
new designs and basic aerodynamic research [27, 28]. Wind tunnel testing has also
grown interest in other branches of industry and science when it comes to low-speed
aerodynamics [28].

Wind tunnels are usually defined by three main criteria: maximum wind speed,
flow uniformity, and turbulence intensity [28]. For the structure of wind tunnels,
there are two basic types of wind tunnels: the open-circuit wind tunnel and the
closed-circuit wind tunnel [26]. Additionally, there are also two configurations of
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Fig. 1 Illustration of the
main ice types. Redrawn from
[1]

basic test sections: open or closed [26]. The measurement equipment also varies in
wind tunnels varying from observing tools to balances and acoustic measurement
tools [26, 28]. Force measurements are done with force balances, which can be
categorized into internal and external balances [28]. Thus, wind tunnels vary a lot,
and generally, the type of wind tunnel and instrumentation depend on the purpose
of the tunnel and available funds [26].

While there are many specialized wind tunnels, one of the types is the icing wind
tunnel. These are used to research the effects of aerodynamic icing and impact on
aircraft performance. Icing wind tunnels have a refrigeration system to decrease the
air temperature and water atomizers upstream of the test section for water droplet
production [26]. Both open-circuit and closed-circuit icing wind tunnels exist, and
one example of the closed-circuit icing wind tunnels is the NASA 6 x 9-ft Icing
Research Tunnel at Lewis Research Center [26]. This is a closed-loop low-speed
wind tunnel, where the shell of the tunnel is heavily insulated to keep circulating air
in the tunnel cold [26].
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2 Applying the VTT Icing Wind Tunnel for Drone Research

VTT Icing Wind Tunnel (IWT) is an open-return type subsonic wind tunnel located
in a climate-controlled room. The IWT has a 3×3 water spraying nozzle matrix
located in the non-contracted part of the wind tunnel. With the added contraction,
the contraction ratio is 3.19:1, but the wind tunnel can also be operated as an open
jet facility. Contracted test section has a nominal size of 700×700 mm in cross-
section and 1000 mm in length. The uncontracted cross-section is 1250×1250 mm.
A schematic of the wind tunnel is presented in Fig. 2.

Wind tunnel can achieve wind speeds up to 50 m/s, but only for limited periods,
whereas wind speeds up to 20 m/s can be achieved continuously. It is possible to
operate the facility between −25 and 30 ◦C. LWC range is between 0.1 and 1.0 g/m3

with droplet sizes (MVD) between 12 and 30 μm. Turbulence intensity (TI) in the
test section varies between 0.6 and 1.3%. The wind tunnel is capable of producing
all three ice types: rime ice, glaze ice, and mixed ice.

Wind speeds are calibrated with a cup anemometer, and LWC calibrations are
conducted using ISO 12494 procedure [29]. LWC and MVD can be changed by
varying the water flow and atomizing air flow to the nozzle matrix.

In order to apply the wind tunnel better for drone research first, the existing
capabilities were analyzed in order to create requirements for new capabilities.
Based on this analysis, a new measurement device, a propeller dynamometer, was
fitted into the wind tunnel. In this chapter, the dynamometer was validated against
the existing results, and repeatability of the measurements in cold conditions was
investigated.

2.1 Existing Capabilities

As the IWT has been in use for over a decade, it already has the existing capabilities
regarding drone research. Obviously, the wind tunnel is possible to be used to study
ice accretion as the wind tunnel conditions are well known. For example, there is

From
fan Spray bars

3�3 nozzle matrix

1250�1250�1250

700�700�1000

Modular duct Test section,
top removable

Heated
window

Fig. 2 VTT icing wind tunnel schematic
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a set of well-verified standard conditions, and the droplet size is well known in a
variety of conditions.

Due to the earlier research in wind power domain, it is possible to do experiments
with airfoil sections and sensors in the tunnel. Also, both of these in well-lit
conditions provide means for good imaging. There is also a possibility to use a
single-axis balance for force measurements. For the size of the tunnel, it is possible
to test full-drone systems for ice accretion and even possible to fly drones up to 2 kg
maximum take-off weight (MTOW) with the open jet.

A complete list of the existing capabilities of the wind tunnel:

• Ice accretion, well-verified standard conditions
• Good imaging possibilities of the experiments
• Experiments for airfoil sections
• Experiments for sensors
• Possible to test full-drone systems

– Maximum 2 kg MTOW systems possible to fly with the open jet

• Single-axis force measurement

2.2 Requirements for New Capabilities

While the wind tunnel already had capabilities suitable for drone research in
icing conditions, it was unable to be used for propeller research. Especially with
VTOL drones, propeller performance is crucial for flying safely in cold climate.
Similarly, propeller performance also limits fixed-wing drones flight envelopes in
icing conditions. Thus, it was deemed crucial to be able to research propeller
performance in the icing wind tunnel, and requirements for new capabilities aspire
from this.

Basic requirement was to be able to test propeller performance. As propeller
performance is characterized by the thrust coefficient and power coefficient, it
was thus required to be able to measure the thrust and torque of the propeller.
Additionally, it was good to be able to monitor the power consumption of the system
in addition to the torque. Also, since icing can create imbalance into the propeller,
it was required to be able to measure the vibrations of the propeller.

As the icing is a dynamic process and thus in order to monitor the development
of propeller performance, it was required to be able to test propeller with either
constant rotational speed (RPM) or constant thrust. This would make it possible to
monitor how the coefficients describing the performance begin to develop during
the icing process.

Additionally, in order to keep the costs low regarding the new capabilities and
operating the wind tunnel, it was required that the new solution is also cost efficient.

List of requirements for the new testing capabilities:
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• Testing propeller performance

– Thrust measurement
– Torque measurement
– Vibration measurement
– Power consumption

• Possible to test propellers with constant RPM or constant thrust
• Cost efficient solution

2.3 Propeller Dynamometer

To improve the drone research capabilities based on the requirements, a propeller
dynamometer was fitted as a new measurement instrument. The instrument was a
commercial Series 1585 propeller dynamometer from RCbenchmark. This com-
mercial product got an in-house modification. Main part of the modification was
adding a protective shroud to cover the electronics, load cells, and other sensors
from ice accretion. The “VTT mod” propeller dynamometer was then fitted into the
contracted test section of the wind tunnel as seen in Fig. 3.

The dynamometer comes with a control board, which works as the data
acquisition system and controller, but it requires additional electronics to function.
The complete system consisted of DualSky XC-65-Lite electronic speed controller
(ESC) and a DualSky XM5010TE-4 motor. The whole system was powered by a
TDK-Lambda GEN60-55-3P400 power supply, providing constant 11.1 V for the
system.

Fig. 3 “VTT mod” propeller
dynamometer fitted into the
wind tunnel test section
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With this new instrument, it is possible to measure the thrust of the propeller
and the reactional torque. Additionally, electrical power, through voltage and
current, can be recorded. The dynamometer also has accelerometers for measuring
vibrations. Propellers between 6” and 12” can be tested with this setup in the size
limitations posed by the wind tunnel test section.

With the included graphical user interface (GUI), it is also possible to create
scripts for the system. In-house script for a PID-controller was created in order to
run experiments with constant RPM or thrust.

3 Experimental Setup

In order to test the accuracy and performance of the new instrument, validation tests
in warm and dry conditions were conducted. In addition to this, the repeatability
of the system was tested in icing conditions. For these experiments, a well-
characterized propeller was chosen as the test specimen.

3.1 APC Propeller

For validating the new measurement device, APC Thin Electric 11×8 propeller
was chosen, as this propeller has been researched earlier by Brand and Selig [30]
providing good baseline data and it has good availability. For this validation study,
3 propeller specimens of the same type were used, and they were used in rotation
during individual runs. Figure 4 represents the geometric characteristics of chord
c, sweep s as the ratio of the radius R and twist β provided by the propeller
manufacturer. All of these were represented as a function of the ratio of the local
radius r and propeller radius. The root airfoil is Eppler E63 transitioning to NACA
4412 at the tip.

3.2 Procedures for Validation and Icing Conditions
Repeatability Tests

The validation tests were run in warm and dry conditions, where the propeller was
running at a constant RPM and wind speed was varied for different advance ratios.
For these experiments, the RPMs used were 4000 and 6000, which would yield
Reynolds numbers between 55,000 and 95,000. The temperature of the facility was
kept at 20 ◦ C. Data was collected for 5 min for each discrete step of advance ratio.

In order to test the repeatability of the measurement instrument in cold and wet
conditions, a light icing condition was chosen. For this, the facility temperature was
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Fig. 4 Geometric characteristics of the APC thin electric 11×8 propeller. Plotted from manufac-
turer provided data

lowered to −5 ◦C and air humidity increased to the range of 85–100%. The liquid
water content LWC was chosen to be 0.1 g/m3, which is a fairly light condition
for icing. The LWC was validated with the ISO 12,494 [29] procedure. Similarly to
the validation tests in warm conditions, the propeller was kept rotating at a constant
RPM of 4000 and 6000, and wind speed varied for different advance ratios. The test
was run for 5 min or until the first shedding event.

3.3 Data Reduction

The majority of the data reduction was already handled by the dynamometer control
board, by converting the electrical measurements into physical units. Thus, the
system already provides measurements for thrust T , torque Q, rotational speed n,
system voltage U , and current I . The propeller performance data is derived from
the measured quantities by non-dimensionalizing them for advance ratio J , thrust
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coefficient CT , and power coefficient CP . These derivations utilize the air density
ρ, rotational speed n, wind speed V , and propeller diameter D. As all cases were
run non-static, the coefficient is plotted against the advance ratio and time. These
non-dimensional quantities are defined as

J = V

nD
(1)

CT = T

ρn2D4 (2)

CP = P

ρn3D5 . (3)

The power coefficient is derived from the power P , and most commonly, this is
calculated from the mechanical power, but also the electrical power can be used.
Mechanical and electrical powers are given by

P = 2πnQ (4)

P = UI. (5)

4 Results and Discussion

Generally, the thrust measurement works accurately, but during the validation tests,
it was noticed that the reactional torque measurement did not provide accurate and
consistent results. As the system measures reactional torque with two load cells,
the structure may pose variation in the measurements. Especially, the hinges that
connect the motor mount to the load cells could be improved in quality as they
were noticed to cause unpredictable hysteresis. This is most likely the main cause
of inconsistent torque results. Thus, more development on the torque measurement
needs to be done, while the thrust measurement was validated. Development
may be done by fitting a torque transducer or developing the structure of the
dynamometer better. Results from the electrical power measurements were observed
to be repeatable, but they are not comparable against the baseline results from Brandt
and Selig [30].

There are some general observations to be pointed out from the repeatability
tests in icing conditions. Generally, the thrust measurements in icing conditions are
repeatable at low advance ratios throughout the test run. At higher RPM, initially
the measurements begin in repeatable conditions, but due to the dynamic process of
ice accretion there is some variation in the results once higher amounts of ice have
accreted.
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4.1 Validation Results

As mentioned above, the thrust measurements at reference conditions are repeatable
and match the reference baseline results by Brandt and Selig [30]. These thrust
measurement validation results are presented in Figs. 5 and 6.

Observing these results validates that the thrust measurement is accurate and
repeatable. They match well to the baseline data provided for the propeller. For
these figures and each step of advance ratio, the test was run 5 times for the earlier
mentioned 5 min. These results were then averaged out for the final figures. Between
the runs, there was also only minor variation to be observed.

4.2 Repeatability Results in Icing Conditions

Figures 7, 8, 9, 10, 11, 12, 13, and 14 present the results of the repeatability tests
in icing conditions. Thrust measurements at 4000 RPM with two advance ratios
are presented in Figs. 7 and 8, and representative electrical power measurements
are in Figs. 11 and 12. Similarly, Figs. 9 and 10 show the thrust measurements at
6000 RPM for two advance ratios, complemented by electrical power measurements
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Fig. 5 Thrust characteristics at 4000 RPM. Average from several measurements
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Fig. 6 Thrust characteristics at 6000 RPM. Average from several measurements

in Figs. 13 and 14. As the reactional torque measurement was observed to require
more development in the validation tests, the electrical power measurements were
used instead.

Observing Figs. 7, 8, 9, and 10 shows that the thrust measurements repeat well
also in icing conditions. Especially at the lower RPM throughout the measurement
period, but with the higher RPM due to the icing process variation at the later
stages can be observed. Still, in the beginning for both RPMs, the measurements
are repeatable. Ice shedding can be observed in Fig. 10 when the measurement has
ended before 300 s. Some ice shedding can also be observed in Fig. 9 in a single run
when thrust measurement became more noisy. In the scope of this chapter, further
observations about ice shedding or drop of thrust coefficients are not done. For
the scope of developing the wind tunnel capabilities, repeatability of the tests is
considered at this point, but analyzing what the results would mean in the scope of
drone operations is not relevant.

From Figs. 11, 12, 13, and 14, it can also be observed that the electrical thrust
measurements are repeatable. For both RPMs, this trend is observable. In Fig. 13, the
ice shedding can also be observed from some of the runs as increased measurement
amplitude. But regardless, the electrical power measurements especially at the
beginning are well repeatable, and variation is shown due to the dynamic process of
icing.
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Fig. 7 Thrust measurements at 4000 RPM with advance ratio 0.11
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Fig. 8 Thrust measurements at 4000 RPM with advance ratio 0.43
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Fig. 9 Thrust measurements at 6000 RPM with advance ratio 0.11
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Fig. 10 Thrust measurements at 6000 RPM with advance ratio 0.43
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Fig. 11 Electrical power measurements at 4000 RPM with advance ratio 0.11
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Fig. 12 Electrical power measurements at 4000 RPM with advance ratio 0.43



46 P. Suurnäkki et al.

Run 1
Run 2
Run 3
Run 4
Run 5
Average

0.15

0.1

0.05

0
0 50 100 150

Time (s)

P
ow

er
 C

oe
ffi

ci
en

t C
P

200 250 300

Fig. 13 Electrical power measurements at 6000 RPM with advance ratio 0.11
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Fig. 14 Electrical power measurements at 6000 RPM with advance ratio 0.43
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5 Conclusion

Fitting an icing wind tunnel with a propeller dynamometer for improving drone
research capabilities has been presented. While the wind tunnel already had the
existing capabilities suitable for drone research, the instrumentation presented
provides the means to conduct research on low-Reynolds number propeller perfor-
mance.

Commercial products provide cost-efficient solutions, but modifications to them
are to be expected. They also offer good user interfaces and ease of use but may
require further development to completely suit the purpose. The balance of resource
usage between modified commercial solution and completely custom solution is to
be looked.

It is also important to validate the new instrument against the existing data
and research the repeatability of the results. For this purpose, the new instrument
was fitted with a propeller that had good existing baseline data available. With
the validation tests, it was found that the thrust measurement is accurate and
repeatable, but the reactional torque measurement requires further development. In
tests performed in cold conditions, the thrust measurements were repeatable, and
same observation was done for the electrical power measurements.

Developing the wind tunnel capabilities with the new instruments paves the road
for further research of drones in icing environments. Thus, research is continued by
exploring drone propellers performance in various icing conditions. Additionally,
it is possible to develop methods to protect the propellers from icing to be able to
mitigate the safety risk and extend the flight envelope in icing conditions.
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Self-Swarming for Multi-Robot Systems
Deployed for Situational Awareness

Fabrice Saffre, Hanno Hildmann, Hannu Karvonen, and Timo Lind

Abstract Machine-based situational awareness is a key element to conscious and
intelligent interaction with the complex world we live in, be it for the individual unit,
a complex dynamical system, or even complex systems. To create this awareness,
the frequent gathering of accurate and real-time intelligence data is required to
ensure timely, accurate, and actionable information. Unmanned Aerial Vehicles
(UAVs) and other semi-autonomous cyber-physical systems are increasing among
the mechanisms and systems employed to assess the state of the world around
us and collect intelligence through surveillance and reconnaissance missions. The
current state of the art for humanitarian and military operations is still relying
on human-controlled flight/asset operations, but with increasingly autonomous
systems comes an opportunity to offload this to the devices themselves. In this
chapter, we present a principled and expandable methodology for evaluating the
relative performance of a collective of autonomous devices in various scenarios.
The proposed approach, which is illustrated with drone swarms as an example use
case, is expected to develop into a generic tool to inform the deployment of such
collectives. It is expected to provide the means to infer key parameter values from
problem specifications, known constraints, and objective functions.
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1 Introduction

Much has been written about the importance of accurate information, considered
by some to be “power and currency of the virtual world we inhabit” [11]. There
are classes of applications where the availability of timely, accurate, and actionable
information is a key prerequisite to a successful handling of the situation. In the
(civilian) context of civil security and public defence, this is the case, for example,
for large events or events where complex interactions between participants can lead
to problematic behaviours (crowd control [48], evacuation management [32]), or in
the aftermath of a natural disaster (earthquake, flooding, large forest fires, etc. [1]).

In the military domain, the need for high-quality information sources is found in
virtually all aspects of operations. Drones, or Unmanned Aerial Vehicles (UAVs),
have been used as civilian or military surveillance tools, to patrol borders for
trespassers and smugglers or to watch for enemy infiltrations [31].

1.1 Civilian and Military Use of UAVs for ISR

The umbrella term applied to all intelligence functions for military operations is
Intelligence, Surveillance, and Reconnaissance (ISR), which originally was per-
formed by humans, but for a number of reasons (reliability, timeliness, consistency,
etc.) this is sub-optimal. The observation of an expansive geographical area over an
extended period of time [36] is almost certainly going to be problematic [43]. This
could be because it is uneconomical to station a dedicated human force and keep it
supplied in a remote, hard-to-reach place, or because environmental conditions are
harsh or hazardous, making it a difficult assignment.

Polar [9] or tropical environments, e.g., are notoriously hard to navigate for
humans, and UAVs have been used for data collection in such environments with
outstanding results [23]. In addition, there are dedicated wildlife areas [33] where, in
addition to the difficult accessibility of the terrain, restrictions apply to the presence
of humans. Yet precisely because they are remote, many of these regions are crossed
by international borders or are home to vulnerable ecosystems, both of which make
constant and diligent monitoring an obvious requirement. This creates the almost
perfect use case for autonomous drone-based surveillance [31].

1.2 Using Autonomous UAVs as Well as Swarms Thereof

For Intelligence, Surveillance, and Reconnaissance (ISR) and, in general, for
decision support, information is commonly aggregated from many different sources
[47], and UAVs are ideally suited for this task. With increasing levels of autonomy
becoming achievable, thanks to progress in Artificial Intelligence (AI) and related
fields, missions that could conceivably be carried out by UAVs without any
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human intervention are rapidly growing in number. Of particular interest are self-
organizing [10] groups of autonomous UAVs (drone swarms) that could be deployed
concurrently and act as a team in the pursuit of complex, abstractly defined
objectives [3]. One promising field of application for this fast-maturing technology
is ISR, or surveillance in the civilian domain [21]. There, the use of collectives
of cyber-physical systems (e.g., UAVs) operating as a single unit is increasingly
considered [22]. Within ISR, there is a strong focus on mission planning and
scheduling for various types of assets, such as, e.g., ground-based units, UAVs, or
satellites [14]. The literature on collaborative multi-robot systems [7, 12, 24, 25]
used as Mobile Sensing Platforms (MSPs) is growing fast [15, 17, 21, 22], with sub-
areas developing for complex problems such as task allocation [28], multi-robot task
allocation [7], group formation [42], and, more generally, self-organization [24].

Overview
Section 2 briefly discusses our stance on the use of UAVs as MSPs and provides
some examples for the uses of drones at the Technical Research Centre of Finland
(VTT) and the Netherlands Organisation for Applied Scientific Research (TNO).
We argue for taking a biologist’s view on UAV swarms (including a warning)
and then elaborate on a number of aspects and challenges inherent to Multi-Robot
Systems (MRSs)/Multi-Agent Systems (MASs). In Sect. 3, we define a variation
of the self-swarming for Situational Awareness (SA) application (the problem) as
well as propose a solution for it. Before evaluating our approach, Sect. 4 details
the models used, the performance measures, and the implementation/methodology
used to generate the results. With this in place, Sect. 5 provides comparative results
as well as a discussion thereof.

The interested non-technical reader may immediately want to skip ahead to the
conclusion (Sect. 6) where we hope to provide a concise summary of our work,
situate it inside the application landscape, and, building on this, provide an outlook
over how this (theoretical result) will be used in future projects.

2 Background

VTT provides a wide set of services [30, 44] and solutions [27] to UAV systems
and has deep knowledge of modern UAV components, such as batteries, materials,
and sensors (Fig. 1). Several next-generation new autonomous drone use cases are
hosted by VTT, including projects in the areas of 5G and cyber security. At TNO,
research in drone technology started as early as 1937 (see Fig. 2, courtesy of TNO
Museum Waalsdorp1) and today, dozens of research groups across all units use
drones.

1https://www.museumwaalsdorp.nl/en/radiocommen/telecommunication-remote-control-of-a-
plane-1938-1940/.

https://www.museumwaalsdorp.nl/en/radiocommen/telecommunication-remote-control-of-a-plane-1938-1940/
https://www.museumwaalsdorp.nl/en/radiocommen/telecommunication-remote-control-of-a-plane-1938-1940/
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Fig. 1 A TNO reconnaissance drone departing for automatic threat evaluation for border security
and surveillance as part of the (now concluded) EU funded ALFA (Advanced Low-Flying Aircrafts
Detection and Tracking) project [46]

Fig. 2 TNO has been active in drone research for more than 80 years. Shown: entry (in Dutch)
in the reconstructed lab records by Van Soest in 1947 and archived at TNO Museum Waalsdorp.
Translation (by Eric Luiijf, TNO): “At the end of 1937, the Royal Dutch Navy requested the lab
[TNO] to develop a method to control a sea plane [. . . ] from the ground”

2.1 UAVs as Mobile Sensing Platforms

The usage of UAVs as MSPs [5, 15, 16, 20, 21, 26, 33] or as Wireless Senor Network
(WSN)-nodes [17, 41] is growing in popularity in the literature. With regard to single
UAV usage, in Fig. 1, a drone is departing for a Beyond Line of Sight (BLOS) flight
[46], and Fig. 3 shows a drone performing a geological survey [40].

Due to the recent advances in the corresponding technologies [41], decreasing
unit cost is making the operation of collectives of UAVs increasingly feasible [7],
with Search and Rescue (SAR) operations being one of the dominant application
domains for UAV swarms [24, 37, 45]. Legal restrictions [26] still make the
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Fig. 3 UAV-use for geology [40]. The corresponding report can be found in [29]

Fig. 4 A field demonstration (conducted outside of the civilian airspace) for the SWACOM
(Swarming and Combat Management, a project by Thales Nederland B.V., TNO-DSS, and
branches of the Dutch Military) project, where multiple heterogeneous devices collectively find,
and identify, objects that can pose a threat to either units in the field or civilians

practicality of operating a drone swarm in civilian airspace very difficult, but for
projects such as SWACOM2 we have access to non-civilian airspace (see Fig. 4).

2.2 The Swarm Is More Than the Sum of Its Drones

The argument for the use of UAVs no longer needs to be made; the literature
speaks for itself, e.g., [4, 32]. With advances in the related technologies, the use
of multiple UAVs as a single, physically disjunct, unit is increasingly considered
in the literature, e.g., [2, 19–22, 38]. Using a term borrowed from biology, such
collectives are commonly referred to as a swarm [20].

2https://www.youtube.com/watch?v=epCXIYpMSFw&t=13s.

https://www.youtube.com/watch?v=epCXIYpMSFw&t=13s
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UAV swarms offer a number of advantages over the use of a single, larger, more
costly, UAV [19] ranging, e.g., from overcoming physical challenges (the curvature
of the earth restricts the communication between a ground station and an aerial unit,
and this is less so the case between two aerial units), operational bounds (multiple
drones can replace their peers when these need to land for charging) over practical
considerations (such that smaller units are harder to spot for the enemy) to financial
constraints (smaller drones cost significantly less, both in Capital Expenditure
(CAPEX) as well as in Operational Expenditure (OPEX)).

It should be noted that (as always) there is no proverbial silver bullet. UAV
swarms, while offering many advantages, also have the potential for poorer results
[25], if their design is not done well. Therefore, the authors would like to offer
words of caution in regard to the use of swarming and other phenomena observed
in biology: whenever considering such concepts from the field of biology, the
practitioner should bear in mind that any such phenomena exist for a purpose
(having evolved through selective processes to come into existence in the first place).
Unless we (a) understand this raison d’être and do so (b) within the appropriate
context and environment, designing concepts from biology into cyber-physical
systems is merely an act of doing things for the sake of doing them. Particularly
with regard to swarming, the ability for group of devices to exhibit coordinated
movement through collective decision [13] has occasionally been regarded as its
own reward [6], notwithstanding its usefulness in a practical application scenario.

2.3 Digital Twins

The approach used in this chapter is inspired by the way in which social insects
use their environment as a shared memory. Since our locations do not actually emit
pheromones, we keep track of this in a digital representation of the environment.
We use a centralized memory (in the control centre) to mirror the corresponding
effect a drone’s path would have on the environment. In other words, we maintain a
computer-based model of the real world, a so-called Digital Twin (DT).

DTs [34] are essentially virtual (thus, digital) replicas of physical systems or
environments [8], with maybe the most famous example being NASA’s replication
of the Apollo 13 capsule on earth to assist the astronauts in space looking for a
solution, given their specific circumstances and available resources. The use of
DTs has become widely popular in the industry in recent years [18], especially
in the context of real-time prediction, optimization, monitoring, controlling, and
enhanced decision-making capabilities [39]. They are considered a technology trend
and a disruptive engineering approach [34], not the least due to their potential
to effortlessly integrate data (bi-directionally) between the real (physical) and the
digital (virtual) version or model of a machine [18].
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3 Describing the Problem and the Solution

As discussed, real-time data collection capability can be a critical factor for many
applications [33], be it in the civilian [12] or in the military domain [35]. In this
chapter, we propose a generic and theoretical solution to an abstract problem. As
such, the presented approach constitutes the first step towards a more domain, and
application, -tailored solution (see Sect. 6 for future work).

3.1 Problem Definition and Specification

The problem falls into the category of MRS task allocation [7, 12, 24, 25],
specifically the continuous assignment of sets (sequences) of tasks (locations) to
members of a swarm, over time. A collective of cyber-physical systems (a UAV
swarm) is tasked with providing information about a large area; their performance
is assessed through a freshness, summed up for all locations under surveillance.

The problem is kept generic; we distinguish the following problem-defining
characteristics, expressed formally through a number of tunable parameters:

• The environment is reduced to three parameters or functions, namely (a) the
number of unique locations in the environment, (b) how these locations are
connected to one another, and (c) the physical distance between the locations.

• The bases where the agents (UAVs) can recharge their batteries. Both, their
number and location are relevant (compare e.g., the results in Figs. 8 and 9)

• The drones are defined by their number, a function assigning them to starting
bases and their maximum range (referred to as the autonomy value).

• Permissible actions, which in our case are simply being present at a location,
which have the effect of resetting the signal intensity there to zero.

3.2 The Objective

The objective is to identify and fine-tune a local (per drone) decision-making
algorithm so that the resulting collective swarm of drones exhibits collective
artificial intelligence as a self-organizing swarm. The main difference with related
work on this topic is the scale of the desired response, both in time and in space.

The goal is not to elicit a collective motion pattern such as flocking or schooling
in a small environment (where the agents or particles operate in close proximity and
directly interact with each other through, e.g., collision avoidance and/or trajectory
alignment mechanisms) and over a short characteristic time scale (seconds or
minutes). Instead, our objective is to develop a method that allows a swarm of drones
to perform a (set of) task(s) collectively and autonomously in a very large space
(square kilometres) and for an unlimited duration (weeks, months, or years).
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While we use the distance measure of kilometres, the dimensions of the
environment scale (up or down) with the performance of the devices as well as
the size of the swarm. While the use case discussed is the surveillance of a national
park using large drones, this could equally be applied to, e.g., the management of a
commercial port (Rotterdam, Hamburg, etc.) using smaller drones (or autonomous
surface vessels).

Within that, the performance of the swarm has to be maximized collectively,
through implicit coordination between individual units. For example, two drones
patrolling the same area at the same time are sub-optimal, and we want to reduce
this using as little inter-drone communication as possible. In addition, the work
is intentionally kept generic, but this gives rise to a number of sub-problems:
navigation in an arbitrary topology, information exchange between drones, response
to faults, and other unexpected events, etc.

3.3 The Approach

The core concept is that devices plan their paths individually, and based exclusively
on their own perception of the environment. Taking inspiration from biology, the
underlying view taken is that each location emits a signal that, as it accumulates,
can diffuse into neighbouring locations. The signal intensity represents the age of
the information about the corresponding location and is reset to zero when a drone
visits. However, since this signal has no physical existence in the real world, the
system (the set of all bases) collectively maintains a shared memory (of signal
levels), to which any drone can write/from which it can read, but only while at a
base. Therefore, the drones operate in a way that somewhat resembles the behaviour
of certain social organisms such as honeybees which share information about their
environment with their peers when gathering inside the hive.

Coordination between drones is achieved indirectly, through what amounts to
a DT: a real-time simulation of the monitored area in which the production and
diffusion of a virtual signal can be used to influence the collective response of
the swarm. The underlying assumptions are that: (1) this simulation is running
continuously and (2) the current state of the world’s DT is accessible by drones
at every base (so it can be used for path planning). This is not particularly difficult
by achieve, but it requires two-way communication between the bases, so that the
overall picture (local intensity of the signal at all locations) remains up-to-date
throughout the system. The signal differs from what is usually called a pheromone
in that it is not generated by the agents themselves. On the contrary, the signal is
produced at a fixed rate at every location in which none is present.
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3.4 The Solution

We propose a solution in which each drone determines for itself where/when to go.
It does so based on model maintained by the DT and while landed at a base.

This means (a) that drones determine their next path in advance (always while
landed and before they take off again) and (b) that this path is constructed based
entirely on the information about the world, as maintained by the DT. Before taking
off, the UAV ‘flies’ its intended path within the DT, which updates its model as if
the drone had already completed its journey in the real world.

The main advantage of this approach is that it does not require any commu-
nication between units—or between units and bases—during the flight. The main
drawback is that once a route has been selected and the drone has departed, it can
no longer be modified through exogenous means. The control loop—executed by
each drone—distinguishes a number of stages:

1. At base and charging: Drones will charge until their battery is full.
2. Charged and ready: After reaching full charge, a drone enters a resting state

out of which it will come with a fixed probability per predefined time period.
3. Planning a route: A UAV has a maximum range (the number of transitions from

one location to another in a discretized world map which a drone can complete
with a single battery charge). Planning happens in two stages:

(a) Outbound: As long as the battery charge (remaining hops) is larger than the
shortest path (number of hops) from the current location to the nearest base,
the drone may select any neighbour of its current position as the next location
to visit. This decision uses the signal levels of the neighbouring locations,
either deterministically (picking always the one with the highest intensity) or
stochastically with a variable non-linear component (the stronger the signal
from a location, the higher the chance of it being chosen as next hop). The
current implementation uses the deterministic variant, with investigations
into the performance of a stochastic choice left for future work (see Sect. 6).

(b) Inbound: Once the distance to the nearest base reaches the same value as
the remaining autonomy (battery charge), the UAV becomes restricted in the
choice of its next destination. In short: it uses the same method to determine
the next hop as before, but this time only those locations that reduce the
number of hops to a base are considered. NB: This means that a drone can
return to the base from which it started or head for a different one.

4. Departure: Before the UAV departs, it updates the DT which treats the plan as
fait accompli and resets the signal intensity for all locations in the flight path to
zero. The drone then performs its flight autonomously and only reconnects to the
system after it has landed at the next base.

Resetting the intensity of the signal in the DT immediately along the entire route
prior to the drone’s physical departure has two advantages: (1) it makes it easier
to implement, since all updates are made in one go and without the need for any
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Fig. 5 Illustrating the benefit of immediately resetting the signals along the entire path (right
image), as opposed to doing so per location, when visiting that location (left image). The first
drone starts in base A and is planning to move to base B. In the left sequence, signals are only
removed from a location when the drone moves there. In this situation, a second drone (in base
B) may plan the exact same route—only in reverse (from base B to base A), which is effectively
redundant

interaction with airborne units and (2) it means that distant waypoints along the
route become less attractive to other drones planning their own patrol immediately
(i.e., before they are even reached by the departing unit). Point (2) tends to limit
duplication of effort by reducing overlap between waypoint sequences. The idea
behind the approach is briefly illustrated in Fig. 5 on the next page.

4 Materials and Methods

4.1 The World

The map is discretized using a hexagonal mesh. This choice ensures that the distance
between any two neighbours (candidate waypoints) has the same value for all
connections (in our simulations this value is set to 1). A distance of 1 can be
understood as 100 m to allow some comparison to the real world.

Maps are generated by creating the hexagonal mesh equivalent of a 5 km square
(25 km2), fully connected, and then iteratively removing nodes randomly, starting
from the outer edge (i.e., only nodes with less than 6 neighbours can be removed)
to generate a realistically complex geographical area to patrol. A sample of 1000
such regions was created and used consistently throughout all simulations. The final
sample was comprised of 995 regions (5 had to be discarded due to their being
disconnected) varying in size from just above 2 to just under 21 km2. Figure 6 shows
two representative examples of a typical layout.

The assets, i.e., drones and drone bases, were set as follows: unless stated
otherwise, one base is created per km2 (rounded down), so the number varied
between 2 and 20 bases for the aforementioned sample. With regard to the actual
placement of the bases, two variations were implemented: (1) purely random and
(2) near optimal, meaning that starting from random locations, bases were moved
apart following a repulsive field until an approximately even distribution (within the
confines of the region of interest) was reached. Unless stated otherwise, the number
of drones is equal to the number of bases and their initial location (at which base they
start) is chosen at random (so it is possible for two drones to start at the same base).
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Fig. 6 Two examples of a hexagonal mesh (meaning that any node has exactly 6 possible
neighbouring locations to which it can be connected) superimposed over an arbitrarily shaped
geographical area. In both cases, the square in which the swarm’s territory is inscribed is 5 × 5 km
(for a mesh in which any two connected nodes are 100 m apart)

With regard to power consumption and battery charging, each hop incurs a cost of
1, while each time step spent at a base recharges the battery by 1. The autonomy of
each drone (at full charge) was set to 60. If considering the 100 m distance between
waypoints, this corresponds to a total distance travelled per trip of 6 km. If the
drones’ autonomy is a realistic 30 min, this in turn implies a time unit of 30 s and a
flight speed of 12 km/h. NB: These values are approximations and are only intended
to give the reader a rough idea of the scale at which the proposed system could
operate.

4.2 Departure and Path Planning

The probability to leave the resting state after reaching full charge was set so that,
statistically, each drone would spend the same time flying, charging, and on stand-
by, which in turn implies that about one-third of the fleet can be expected to be
airborne at any one time. Every drone computes its flight plan based on information
available from the DT at the time of departure, as per the procedure detailed in
Sect. 3.4.

4.3 Performance Measure

For the performance measure, we need to reiterate the intended application domain,
namely the continuous allocation (observation) of locations to schedules such that
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we minimize the age of the information as much as possible. This value is already
recorded for all locations in the DT. This allows us to determine, for any number of
time steps, how many locations have not been visited during that period. Conversely,
for any fraction of locations, we can determine how many steps (on average) it takes
such that all locations have been visited at least once.

For example, if there are 6 drones flying concurrently and 120 nodes (roughly
covering one square kilometre at 100 m interval), at least 95% (114) will not have
been visited less than one time step ago (possibly more if two or more drones happen
to be co-located). If this threshold is increased to one (visited less than two time
steps ago), this fraction could drop at most to 90% (108), since, in the absence of
any overlap, both the nodes closest to the drones now and those closest to them
one time step ago will be excluded (and so on and so forth). The rate at which this
fraction of “surviving” nodes decreases as the value of the threshold increases is a
good indication of performance for the chosen objective of effectively patrolling the
area. For example, it is reasonable to say that a distributed algorithm for which, at
any point in time (after the system has reached steady state), 50% of the nodes will
have statistically been visited in the last 100 time steps is better than one for which
reaching the same fraction (0.5) requires extending the threshold to 150 time steps.
Furthermore, this measure can easily be extended to include a wider area around the
drones, using a revised formulation such as “what fraction of nodes have not been
within 1, 2, . . . , n hops of any drone in the last t time-steps?” (see Fig. 7).

Fig. 7 The performance metric. The survival curves indicate the fraction of nodes in the hexagonal
mesh (vertical axis) that have not been within 100, 200, and 400 m of at least one drone in the last
t time steps (horizontal axis) i.e., 59% of the area was always beyond one hop of the nearest drone
in the last 200 time steps, 38% if extending the time window to 600 steps (middle curve)
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4.4 Data Collection

Two hundred independent simulation runs (including the initialization phase in
which the base and drone locations are determined) were conducted for every region
in the sample. So for every combination of parameter values, results are compiled
from nearly 200k realizations. Each simulation lasted 2000 time steps, which was
found to be sufficient for the system to have reached steady state.

5 Results and Discussion

The results are the summary of more than 2 million independent simulations, with
the tested scenarios being imaginary maps (i.e., not real locations); the results and
the discussion are to be seen in this light.

5.1 Benchmark Performance Analysis

As a benchmark, we considered randomly placed bases. As previously stated, 995
simulated environments of varying areas were used, and the presented results are the
average values from 200 individual runs for each combination of parameter values.
Figure 8 plots for each of the tested environments the average number of steps it
took (y-axis) to achieve one of the three measures of, basically, complete coverage,
as a function of the total area of the region of interest (x-axis). Recorded is the time
taken to visit 99% of all locations, defined using the increasingly inclusive criteria
of having been within 100, 200, or 400 m of at least one drone.

It is important to keep in mind that, unless stated otherwise, the ratio between
the number of drones and the area size remains the same for all simulations (so for
significantly larger environments, there is also a significantly larger sized swarm).
The fact that the approach actually appears to perform better for larger environments
is therefore not surprising: the law of big numbers dictates that it will be increasingly
unlikely to have all drones (and bases) placed such that some part of the environment
remains unvisited for a long period.

It is also important to consider the following: the decision to measure when a
location was visited, but also when a location was almost visited is motivated by the
nature of the approach. We use signals to guide the drones’ paths but restrict their
movement to a hexagonal mesh. In this constellation, we can easily come up with
examples where visiting all locations comes at a high cost (i.e., has to go through
locations that have recently been visited). We argue that this measure is appropriate
for the applications we have in mind, which consider the drones carrying advanced
sensing equipment that can operate over distances and thus assess the condition of
neighbouring locations.
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Fig. 8 Results for starting results for starting with a single drone per base and a fixed “number of
bases to mapsize” ratio. 995 simulated environments were evaluated (plotted along the x-axis on
the basis of their size, not topology). Recorded are the average performance (over 200 simulations,
see Figure 10 for the variance) with regard to the time taken (y-axis) to collect data from 99% of
the locations, where the data collection capability was assumed to be such that cells within 1, 2,
or 4 hops could be observed. Figure 9 shows results for twice the number of bases or twice the
number of drones

5.2 Influence of the Number of Bases and Drones

In the benchmark, the ratio between the number of bases and the size of the area was
kept constant, with the number of drones equal to the number of bases. This was to
quantify the influence that the size of the region of interest has on performance, for a
fixed average population density. The obvious next step, particularly with respect to
identifying parameter values capable of delivering a target performance in a future
real-world deployment, is to relax this fixed population density rule.

We started by examining two additional scenarios: one in which the number
of drones was doubled but the number of bases was kept identical (relative to
benchmark values), and vice versa (twice as many bases, same number of drones
as in the benchmark). The results are summarized in Figs. 9 and 10.

Unsurprisingly, increasing the number of drones resulted in a marked perfor-
mance increase compared to the benchmark. From a qualitative viewpoint, this is
trivial (having more units can only reduce the time interval required to reach any
given level of coverage), but it is informative to compare the gain achieved (as
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Fig. 9 Identical plot as in Figure 8, but for double the number of drones (left) or double the number
of bases (right). Bases are distributed randomly
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Fig. 10 Performance comparison between the benchmark scenario (full bars), the modified
version involving twice the number of drones (empty bars), and the one involving twice the number
of bases (dashed bars). The chosen metric is the average value of the threshold time interval for the
three criteria. Error bars indicate the standard deviation

a function of the severity of the criterion) quantitatively. For the least inclusive
one (<100 m), the performance increased by 62% on average, whilst for the most
inclusive (<400 m), this figure dropped to 53% (see Fig. 10).

The effect of increasing the number of bases is more interesting and less intuitive:
doubling this parameter value appears to result in a significant improvement,
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reducing the threshold value by an average 20% for the toughest criterion. This
is easily explained by more patrol routes becoming available as the number of bases
increases, but since the cost of these charging stations is likely to be substantially
lower than that of a drone, it also strongly suggests that this approach could be a
more efficient strategy to achieve a given target performance.

5.3 The Impact of Base Locations

A final set of numerical experiments involved a preliminary exploration of the
influence of base placement. The fact that performance generally increases with the
size of the region of interest when the number of bases is linearly proportional to the
surface area (benchmark scenario) seems to indicate that poor placement could have
a strong negative impact. Accordingly, we tested an alternative scheme in which
bases are placed so as to approximate an even distribution (see Sect. 4.1 for details).

Results are shown in Fig. 10 and confirm that this modification had a beneficial
effect, although it was not as pronounced as anticipated. We believe that this is due
to the relatively long range of the drones relative to the typical environment size.
This tends to limit the impact of the charging points location, since it makes it less
likely that any part of the region of interest is beyond reach, even if it is far from the
nearest base. We will seek to confirm this interpretation in future work (Fig. 11).
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Self-Swarming for Multi-Robot Systems Deployed for Situational Awareness 67

6 Conclusion

The considerations presented in this chapter lay the ground work for general
investigations into path planning for data collection of a collective of cyber-physical
systems. Both VTT and TNO engage in this theoretical research for reasons related
to a large number of projects, involving numerous types and classes of unmanned
and potentially autonomously operating vehicles. Applications range from assessing
conditions in the environment in real time (monitoring air quality, looking for
gas leaks, surveillance for large industrial terrains) over military intelligence
gathering (finding land mines, tracking enemy movement, and ultimately engaging
in armed conflict) to, in the future, deployment of intelligent autonomous systems
over extremely large distances (in space or on other celestial bodies). All these
applications are currently being worked on in some way or the other, and many
of these use cases will become reality in the years to come.

6.1 Scope and Applicability of the Presented Idea

The title of this chapter intentionally speaks of multi-robot systems, as opposed
to restricting the applicability of the presented work to swarms of UAVs. Within
the scope of the presented work, one might argue the presented approach and the
discussed results are more applicable to, e.g., ground-based drones such as rovers
because the provided modelling glosses over a number of issues that UAVs would
face for the practical implementation. For example, the range of a UAVs depends on
the wind conditions at the time, and due to this, connections between two locations
do not incur symmetric energy costs (unlike in our model).

The specific requirements of any use case will determine how, and to which
extent, an application can be tuned and tailored. Any expert and practitioner in the
field knows that after a system is built, optimizing it for the specific use case will
often hold the potential for significant performance improvements and will, quite
commonly, be what can make the difference between outperforming the competition
or being outperformed. With that in mind, we proposed a straightforward, simple
mechanism that enables a collective of devices to operate on a shared problem. The
approach side-steps all difficult inter-agent negotiation processes (undoubtedly at
some cost to the performance) and, due to its simplicity, is inherently robust against
unit failure. The need for secure communications is removed, as the devices do not
need to communicate for the planning and execution of the plan (drones may still
breaking radio silence when they have spotted something noteworthy).
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6.2 Future Work

We randomly created nearly a thousand maps of different sizes and extensively
tested various settings for all of them. Even though none of these represents a
real-world location or use case, clear trends can be identified. For instance, for
constant surface area/swarm size ratio, performance improves as the environment
becomes larger. Such results can and will inform current and future projects where
case-driven approaches have to be designed and implemented. Based on the current
projects, and those planned/expected in the near future, we consider the following
as future work.

6.2.1 Realistic Cost Functions

Realistic cost functions for calculating and planning the routes. This means
including relevant environmental conditions such as wind speed and direction,
but also using different drone models. A rover on Mars, for example, can simply
pause operations and resume them when conditions have improved while a UAV
over a battlefield cannot. These investigations will be project-driven and probably
happen in parallel to investigations of using heterogeneous collectives (either in the
equipment the drones carry (not everyone has a temperature sensor) or in their type
or class, e.g., using rovers and drones together).

6.2.2 Increasing Agent Autonomy

VTT and TNO are working toward increasing agent autonomy in the sense of
endowing the drones with more advanced intelligence and decision-making capa-
bilities. Our drones can already carry significant payloads with regard to sensing, as
well as data processing, hardware. In the various scenarios presented in this chapter,
a drone simply follows its planned route, but it seems obvious that in any realistic
deployment, future surveillance drones would need to be capable of deviating from
their course in response to detecting certain events. Future work will investigate
the interplay between the type of orchestration methods described here and the
situational awareness and other autonomous features being developed in a variety
of other projects at TNO and VTT.

6.2.3 Adding Priorities

Adding priorities to be able to have a differentiated view on the map. This
has a connection to the previous point as drones could change the priority of
a location based on data that they have collected during their journey. We are
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currently considering local alterations to the signal production or diffusion rate as a
convenient route to implement such variable priorities.

6.2.4 Additional Investigation of Topology and Swarm Size

We want to continue our systematic exploration of how swarm size impacts per-
formance, and what practical implication this can have (consider, for example, the
possibility of altering the number of drones post-deployment, based on information
collected at runtime). Furthermore, we are in the process of evaluating a measure of
complexity for the generated maps (fractal dimension) that would allow for a more
fine-grained investigation of the influence of the region’s characteristics than simply
considering the total surface area. If successful, applying the same metric to any real
map could allow us make statistical predictions about the performance of any given
deployment of the proposed solution (swarm size, drone range, number of bases,
DT parameter values, etc.).

6.2.5 Stochastic Versus Deterministic Planning

In the variation currently used, the paths are planned deterministically based on
the signals in neighbouring locations. We are currently investigating a stochastic
alternative, which could result in additional flexibility.
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Toward Invisible Drones: An Ultra-HDR
Optical Cloaking System

Karri Palovuori

Abstract In order to reduce the visual detectability of drones, an active cloaking
system was developed to match their color against the background sky. The system
consists of an embedded control system connected to a smart LED tapestry and
two color sensors, all capable of operating over an extreme dynamic range of
1 : 1 000 000. The cloaking system was applied to a commercial drone, and the
results under widely varying outdoors conditions are reported. The cloaking system
successfully matches all background sky conditions, save the solar disk or halo.

Keywords Drone · Visibility · Invisibility · Camouflage · Twilight · Adaptive

1 Introduction

Depending on the situation, the visibility of airborne drones can be a vice or a virtue.
On one hand, to signal their presence to people underneath and to other air traffic,
bright lights are added to drones for their effortless detection during dark. This is
also mandated by regulations under many jurisdictions [1, 2]. On the other hand,
sometimes minimal disturbance to the environment is preferred. Such cases include
non-distractive observation of wildlife or livestock and covert surveillance.

The elimination of the signal lights reduces the visibility of a drone, but the drone
hull is highly contrasted against the sky under any environmental circumstances,
except during the nighttime. Even white drones, which diffusely reflect the average
ground color, appear visually as black (Fig. 1a) in flight. During the night, any non-
illuminated drone is obviously invisible by default.

To cloak a drone against the sky requires it to have the same apparent color
and luminance toward the observer as the section of the sky seen surrounding it.
While this fundamental principle is well known from both fiction [3] and history [4],
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Fig. 1 (a) A white drone against overcast sky, (b) the same drone cloaked (the undercarriage and
the camera remain clearly visible)

its application to drones presents serious technological challenges: the maximum
brightness of the sky is very high, and its luminous intensity has a vast dynamic
range. These are both difficult to match by an illumination system and to accurately
measure by a sensor.

The clear sky at midday is blue and has a typical luminance of about 8000 cd/m2

[5]. The minimum illumination condition under which any targets against the sky
can be detected by the naked eye is defined as nautical twilight [6], during which
the sky has a luminance of about 0.005 cd/m2 [7]. These two limits suggest a
requirement for the dynamic range of roughly 1 : 1 600 000 for both the measuring
and the illumination systems. In contrast, the dynamic range of a typical 8-bit
computer display is 1 : 255 and that of an entry-level 10-bit HDR display 1 : 1023.

If the location or direction of the observer is not known, the drone has no
information of the exact direction of the sky to match its color to. In such a case,
a default decision has to be made. Two obvious choices are the color of the zenith
and the average color of the whole sky. Since the dynamic range of the colors the
sky can simultaneously have is from near black to vivid dusk or dawn, an average is
problematic and likely to yield a very incorrect result. We used the color of the zenith
in all our measurements as the target color and observed the drone from underneath.

2 Methods

The cloakings system consists of the light-emitting cloak itself, two measurement
systems to measure the target color and the current cloak color, and a control system
to match those. The cloaking system was developed in steps, by first building
a handheld test patch to verify the feasibility before integrating it to a midsized
commercial drone.
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2.1 The Cloak

The cloak itself, i.e., the light-emitting surface was constructed of a commercial
unbranded adhesive LED strip consisting of 144 APA102C RGB LEDs per meter
on a flexible PCB of 12.5 mm width [8]. This particular type was originally selected
due to its high brightness, anticipating challenges in matching the brightness of
the sky. The LEDs on the strip have a Lambertian radiation pattern, appearing of
constant luminance from any forward viewing angle.

The APA102C RGB LEDs each have a red, a green, and a blue LED chip
and a smart controller integrated into a small surface mount package. The data is
transferred synchronously with a data signal and a clock signal from unit to unit,
which can be daisy chained indefinitely. Each unit regenerates both the signals to
the next unit with a delay of half a clock period. The data stream contains a simple
synchronization pattern and after that 32 bits of control data for each unit. Each
unit strips the 32 first control bits after the synchronization for its own use and then
transmits the rest unmodified.

The APA102C has two simultaneous brightness controls. First, each RGB color
is defined with a 24-bit word, i.e., 8 bits per component. Second, the total dimming
of the LED is defined with a 5-bit word [9]. As a result, the brightness of an
individual RGB LED has a dynamic range of 13 bits. With a larger number of LEDs,
dithering can expand the average dynamic range greatly.

At maximum brightness each RGB LED consumes 60 mA of current resulting
in total current consumption of almost 9 A per meter of strip. This is enough to
generate significant ohmic losses over the power supply traces on the strip and a
subsequent drop in operating voltage of the LEDs, apparent already with relatively
short runs of the strip. The operating voltage changes directly affect not only the
brightness of the LEDs but also their color as the different color chips have different
threshold voltages. Therefore, simple feedforward control is not enough to ensure
a correct outcome from this type of light source, and feedback is required. This
compensates for all minor error sources (e.g., temperature, batch variation, defective
chips), too.

The maximum density of the LEDs in the cloak is defined by the strip geometry.
Along the strip the LEDs are placed with an interval of 6.9 mm (144 per meter), and
the strip is 12.5 mm wide. The perfect visual acuity of the human eye is enough to
discriminate details of ~1 arc minute [4], suggesting the individual LEDs or LED
strips cannot be resolved when viewed from further than ~ 40 m. In practice, it
is unlikely that the viewer would observe a cloaked target with foveal vision and
perfect focus, before it is visually acquired. Thus the cloak is possibly effective
from shorter distances, too.
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2.2 The Measurement System

In order for the cloak to match the color of the sky, the sky color needs to be
measured. The dynamic range requirement of this measurement system is very large
compared to common optical sensors. At the low end, cameras report colors with 8
bits of resolution per component and even dedicated color sensors only with 16 bits.
The sensor of choice was the VEML6040 color sensor, which has a resolution of
only 16 bits but in addition has a configurable integration period directly affecting
sensitivity, expanding the total dynamic range to 21 bits [10]. The sensor has an I2C
bus for communication.

The sensor chip itself has a Lambertian sensitivity pattern, and to measure the
color of the sky from a particular direction, the field of view of the sensor needs to
be restricted. A baffle for this purpose was designed, 3D printed with black PLA, and
painted matte black. An inner optical stop of the baffle limits the field of view of the
sensor to 60 degrees, while an outer stop prevents direct sunlight from illuminating
the inner stop at solar elevations less than 55 degrees. The latter limit was chosen to
match the maximum solar elevation at the geographical location of the study.

Two identical sensor systems were constructed and mounted on the drone, one
on top of it to measure the sky color and another below the fuselage on the
undercarriage to measure the cloak color.

2.3 The Control System

To adjust the cloak color to match the sky color, an embedded microcontroller
system was built using an MBED LPC1768 module. The module is based on a
96 MHz ARM Cortex M3 microcontroller and has all the necessary infrastructures
(GPIO, voltage regulation, buses, etc.) required in this project. In addition, a LoRa
radio link was included to provide the capability to manually control and tune the
cloak parameters in flight.

Initially, a basic software PID controller was created to control the color match-
ing but was soon found to be unsatisfactory. The integrating I term is necessary to
compensate for unknown changes in the LED cloak caused by, e.g., temperature or
operating voltage. However, due to the vast dynamic range of the system, I term
values high enough to yield a reasonable response time resulted in oscillation under
low light levels near the obvious system discontinuity of zero, i.e., darkness. This
was remedied by using the PID controller to control the logarithm of the individual
color brightness levels instead of the level values themselves. Thus the adjustments
relative to the brightness level were performed with a constant response time, and
the darkness did not present a discontinuity.

The color of the cloak was set with three simultaneous methods. To maintain
the best possible color resolution, the 5-bit overall brightness of each single RGB
LED was set to the lowest value still sufficient, and the 8-bit R, G, and B values
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are scaled accordingly. The error between the required and the resulting LED colors
was accumulated over the array of LEDs, always carried over to the next LED,
performing automatic dithering over the cloak. This was obvious under the darkest
circumstances causing most of the LEDs to remain completely black.

The LoRa radio link was realized with an RFM95 868 MHz module. From the
ground station, requests were transmitted to the cloak system and status responses
were returned back with a rate of 50 Hz. The requests contained commands to turn
the cloak on or off and to control the color either purely autonomously or with
manual adjustment factors for R, G, and B. The responses reported the measured
colors, the calculated LED brightness, and the radio link quality. The brightness
information was of interest to verify the margin from the brightest sky color to the
cloak maximum output.

The power for the cloaking system was obtained from switching regulators and
batteries built into the control system. In drone use, it would be preferential to divert
this power from the drone itself.

3 Results

The cloaking system was first applied to a small handheld test patch and then
to a commercial drone. Both systems were tested under various natural lighting
conditions including the brightest clear and overcast skies. It was found that the
cloak constructed with 100% LED strip coverage was indeed bright enough to match
the sky, already with ~25% of its maximum brightness. Somewhat unexpectedly,
the brightest clear and overcast skies were of almost the same brightness. Since the
minimum light output of the cloak is zero, the cloak thus has the capability to match
all sky colors, except the solar disk and halo.

The dynamic range of the cloak depends on its size, as the minimum nonzero
light output of the entire cloak is the minimum output of a single LED and the
maximum is the maximum output of the entire array. Therefore larger cloaks have
larger dynamic ranges. The minimum size cloak consists of a single LED and has a
dynamic range of 1 : 8191.

3.1 The Test Patch

A 10 cm × 12.5 cm test patch of the cloak was built onto a piece of clear acrylic
plate (Fig. 2a). A white patch was placed next to the cloak as a reference. The control
system and the sky-measuring sensor were placed behind (on top of) the cloak, and
the cloak-measuring sensor was held manually in a position to measure the cloak
color. This positioning is relatively noncritical as if the sensor observes only partly
the cloak and partly the sky, the control system will still force these to match, i.e.,
the end result remains the same. The cloak LED array consisted of 144 LEDs and



78 K. Palovuori

Fig. 2 (a) The test patch, (b) cloaking against blue sky, (c) cloaking against overcast sky

thus covered a dynamic range of 1 : 1 179 648. To power the LEDs, two switching
regulators with 5 A output were connected in parallel and driven from their internal
18650 Li-ion batteries.

In Fig. 2b and c, the individual LEDs are clearly visible, but the overall brightness
and color of the cloak match the background. This was verified by swapping the
two sensors and having the same result. The white reference patch appears as black
revealing the huge contrast between the sky and the diffuse ground reflection.

3.2 The Drone

For the drone to serve as the carrier for the cloak, we chose a very popular
commercial model, the DJI Phantom 4. This drone is of medium size (350 mm
diagonal, 1.4 kg), and it is very easy to fly due to its high level of autonomy
and advanced collision avoidance features. From previous experience we knew
the drone to be capable of lifting at least 1 kg of extra payload. The drone has
integrated signaling LEDs at the ends of its motor booms, and these cannot be
completely disabled through the user interface. Simply covering the LEDs was
unsuccessful as they are very bright and the white plastic hull of the drone is slightly
translucent, scattering enough light to make the drone highly visible under low light
conditions. So these LEDs had to be removed altogether, which required a complete
disassembly of the drone.

The control system and the sky-measuring sensor were mounted on top of the
drone, and the cloak-measuring sensor was mounted on the drone landing gear. First
flight tests revealed a significant decrease in the GPS visibility for the drone, which
was traced back to the close proximity of the GPS receiver antenna of the drone to
the control system electronics and power bank of the cloak. The problem was solved
by lifting the control system on top of a lightweight supporting platform (Fig. 3).
The greater number of LEDs required the power system to be upgraded to 4 parallel
5 A switching regulators powered from a single LiPo battery. The power could not
be obtained from the drone itself, as the drone self-diagnostics interpreted it as a
power system malfunction.
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Fig. 3 The drone equipped with the cloaking system

The underside fuselage of the drone was covered with the LED strip to the best
of our ability. The surface in question is not flat but curved in all directions, making
the task very challenging. While the strip is flexible, it does not stretch, and it
bends easily only in the lengthwise direction. Underside the fuselage, the drone
has a gimballed camera and a fixed landing gear, neither of which could be cloaked
due to their complex geometry. One end of the removable battery extends slightly
outside the fuselage and presents the same problem. Additionally, the drone has
several types of downward-facing sensors which were left uncovered. The cloak of
the drone consisted of 287 LEDs resulting in a dynamic range of 1 : 2 351 104.

The drone was flown under different lighting conditions to verify the cloaking
function (Fig. 4). Both the color and the brightness adapted as expected, and the
cloaked parts of the drone disappeared visually after reaching the distance where
individual LEDs could not be discerned any longer. The undercarriage, the camera,
and the battery end remained visible nonetheless. With a bright background, the
propeller disks were slightly visible as dark halos as well. During the darkest test
conditions, the dithering function of the cloak became apparent, as most of the LEDs
were completely black. While this is evident from the camera shot (Fig. 4c), it was
exceedingly difficult to see by the naked eye due to the depth of darkness. The few
LEDs that are still emitting light are all at their lowest brightness setting. The ratio
of actual brightness between Fig. 4a and c is close to 500 000 : 1.
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Fig. 4 The cloaked drone under extremely different lighting conditions. (a) Bright sky, (b) civil
twilight, (c) nautical twilight

3.3 The Cloaking Factor

The visual acquisition of a drone is a multifaceted process including visual,
temporal, environmental, and psychological aspects, and it is therefore quantifiable
only through user studies. One of the technical aspects of the cloaking system is the
reduction of the visual cross-section it provides to the drone. We measured this from
the photographs of the cloaked vs uncloaked drone against different background
sky conditions. The sky around the drone in these photographs was verified to be
homogenous and thus provided a credible estimate of the drone background (which
being occluded by the drone was not observable). The relative cross-section was
calculated with MATLAB as the difference of pixel colors between the cropped
drone image and a similar size background sample (around the drone) relative to the
background size and brightness:

σDRONE =
∣
∣
∑

pixelsDRONE − ∑
pixelsBG

∣
∣

∑
pixelsBG

This definition is insensitive toward changes in drone distance and camera
parameters, as long as the camera transfer function is linear. Using the difference
of the sums instead of the sum of the differences as the nominator allows for the
dithering to succeed and also makes the definition insensitive toward camera focus.

The cloaking factor was defined as the ratio of the relative cross-sections of the
uncloaked and cloaked drone images:

F = σUNCLOAKED

σCLOAKED

Thus a cloaking factor F of 1 signifies no cloaking at all, and a cloaking factor
of 2 signifies that the remaining relative cross-section is one half of the uncloaked
drone. Since the absolute visual cross-section is inversely related to the square of
the viewing distance, the acquisition distance d decreases as the cloaking factor
increases:



Toward Invisible Drones: An Ultra-HDR Optical Cloaking System 81

Table 1 Measured cloak effectiveness (including non-cloaked parts)

Lighting condition Typ. sky luminance (cd/m2) Cloaking factor
Relative minimum
acquisition distance

Daylight 10 000 3.1 0.57
Civil twilight 1 3.2 0.6
Nautical twilight 0.005 1.6 0.8

dCLOAKED = dUNCLOAKED√
F

Table 1 summarizes the results of the cloaking experiments. It can be seen that
the cloak reduces the visual cross-section significantly. From the photographs in
Fig. 4, the heavy impact of the uncloaked camera and undercarriage to these results
are clear, but no effort was made to exclude these from the measurements or results.

4 Conclusions

A cloaking system for drones that matches their color to the background sky was
constructed and tested. A commercial LED strip was used to build the cloak and
proved to be sufficient for all lighting conditions already at 25% of its maximum
output. Considering the huge dynamic range necessary for this application, that
margin was quite narrow. Nevertheless, at these same conditions, the LED density
could be slightly reduced without diminishing performance.

The cloaking system reduces the visibility of the drone down to a fraction, even
while large parts of the drone were uncloaked. This allows the drone to operate at a
closer distance undetected, which was the original goal.

The commercial drone we used was not an optimal object for cloaking due to the
built-in lights, the nonplanar underside, and the external payload. To fully cloak a
drone with this approach, a suitable drone should be designed with the cloak ability
in mind from the start. Extrapolating from the successfully cloaked parts of our
test drone, such a drone would be completely invisible for observers at a suitable
distance.
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Long-Term Autonomy in Forest
Environment Using Self-Corrective
SLAM

Paavo Nevalainen, Parisa Movahedi, Jorge Peña Queralta,
Tomi Westerlund, and Jukka Heikkonen

Abstract Vehicles with prolonged autonomous missions have to maintain environ-
ment awareness by simultaneous localization and mapping (SLAM). Closed-loop
correction used for SLAM consistency maintenance is proposed to be substituted
by interpolation in rigid body transformation space in order to systematically
reduce the accumulated error over different scales. The computation is divided
into an edge-computed lightweight SLAM and iterative corrections in the cloud
environment. Tree locations in the forest environment are sent via a potentially
limited communication bandwidth. Data from a real forest site is used in the
verification of the proposed algorithm. The algorithm adds new iterative closest
point (ICP) cases to the initial SLAM and measures the resulting map quality by
the mean of the root mean squared error (RMSE) of individual tree clusters. Adding
4% more match cases yields the mean RMSE of 0.15 m on a large site with 180 m
odometric distance.

Keywords Odometry · SLAM · Sparse point clouds · Lidar · Laser scanning ·
Forest localization · Autonomous navigation

1 Introduction

The past decade has seen a rapid evolution of methods and technologies in onboard
odometry for autonomous navigation and localization. The state of the art has
reached a significant level of maturity in both lidar-based [1] and visual-based
odometry, among others [2]. Nonetheless, drift in long-term operation is an inherent
problem to methods based only on on-board sensors and data, with the probability
of a lost position estimation increasing over time [3]. Most methods address this
with loop closure [1, 2], where data is compared with older records if locations
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are repeated. In any case, long-term autonomy based only on onboard odometry
data still presents significant challenges. In remote and unstructured environments
such as forests, typical methods do not always apply, and loop closure can rarely
be applied [4]. In these scenarios, onboard processing at the edge without network-
based computational offloading has inherent limitations. Challenges arise from the
point of view of memory (amount of scan data to be stored for later processing),
from the perspective of computational load and latency (amount of data to be used
for localization through point cloud matching processes), and in terms of the update
rate of the localization process (how often is the relative position computed).

Specifically, this chapter deals with the problem of Simultaneous Localization
and Mapping (SLAM) in unstructured forest environments with 3D laser scanners.
SLAM algorithms aim at tracking the movement of the laser scanner (odometry)
related to its surroundings and creating a composition from individual views, which
consist of scanned point clouds (PCs), and scanner positions and orientations. A
laser scanner attached to a vehicle provides a spatial input signal which can be
a very powerful component in supporting situational awareness, especially when
fused with input of other sensors.

A structure from motion (SfM) study [5] divides SLAM methods into two
divisions: indirect and direct methods and sparse and dense approaches. One can
add four more divisions: probabilistic and non-probabilistic methods, structured
and non-structured environments [4], fixed and adaptive frame sampling, and sensor
fusion approach [6] versus plain SLAM. Indirect methods rely on early frame-by-
frame processing, which produces a set of anchor points. The fixed frame sampling
uses every frame or a fixed ratio of frames, whereas adaptive sampling tends to
skip a sequence of highly similar frames. The case chosen here uses indirect anchor
points from adaptively chosen frames, is non-probabilistic, and is aimed to a forest
environment, which is non-structured and has nearly uniformly distributed sparse
anchor PC. The sixth categorization is “plain SLAM,” since this article considers the
quality of the resulting environment map independent of the possible fusion steps.
Of the excluded fusion techniques, the most important one is Global Navigation
Satellite System (GNSS), and the fusion of SLAM and GNSS can be considered
partly as propagating the global position of GNSS to individual trees in a most
consistent way.

State of the Art Iterative closest points (ICPs) is the standard baseline method in
SLAM. It is the computationally most economic choice in its simplest versions,
if the convergence can be guaranteed by the application specifics. If a PC is near-
uniformly random, the overlap ratio of visible cones is a good estimation for an
outlier ratio γ , which is one of the few tuning parameters used by robust ICPs [7].
The outlier ratio γ limits the ICP matching process to 1 − γ part of the match
pairs and reduces the accumulation of the odometric error. If the matches occur in
a geometrically consistent zone between two PCs, the match overlap ratio λ can be
estimated by λ ≈ 1 − γ .

The strategy of forcing a minimum overlap does not guarantee global conver-
gence, though. A globally optimal method with a proven convergence is Go-ICP [8],
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which can detect a difference between a local and a global ICP match in the case of
near-uniform PC. Other “global” methods try to smooth the mean matching error,
which is the target function, by various means, but fail to guarantee the convergence
to a global optimum.

Near-uniform randomness gives a chance to tighten the conditions of branch-and-
bound (BnB) limit estimates used in [8]. We use Go-ICP as a backbone of a naive
and risky SLAM method pcregistericp() [9–11], since there are no SLAM methods
specifically suited for sparse uniformly random PCs to the best of our knowledge.

When dealing with a limited view cone (less than 360◦ view), a problem similar
to closed-loop detection [12, 13] occurs each time the view cone coincides with a
much older frame. This can happen in a small scale of 2–5 m, but it can also happen
over distances of 0.5 km to 1 km.

Motivation Autonomous mobile robots and specifically unmanned aerial vehi-
cles (UAVs) have seen an increase penetration for forest surveying and remote
sensing [14, 15]. Owing to the unstructured environments that forests represent,
autonomous navigation presents inherent challenges. Key issues appear in the areas
of localization and mapping, where one has to take into account several key points
in a local scope to make the SLAM computationally feasible [4]. Moreover, an
autonomy stack for forest navigation ought to consider long-term autonomy (e.g.,
owing to the long distances that UAVs can traverse over long times, or the longer
time that ground vehicles can operate). Typical odometry techniques relying on loop
closure do not suffice because locations are not repeated often. In particular, we are
interested in lidar-based odometry, localization, and mapping with methods that can
be used for both unmanned ground vehicles (UGVs) and UAVs.

Taking into account these considerations, there is a need for more advanced
techniques for long-term autonomy exploiting registrations of the same objects even
from distant locations. This approach differs from traditional loop closure as there
can be several partial overlaps of frames over different time scales, and the partial
overlap may occur over large distances. Modern laser scanners, even low-cost solid-
state LiDARs, are capable of measuring distance to objects up to several hundreds
of meters [16].

In addition to the accuracy of localization over long distances, the majority of the
state-of-the-art lidar-based SLAM algorithms require relatively high computational
resources to operate in real time [1, 17]. Moreover, the amount of points in a single
scan PC has increased to millions per second in recent years. Solid-state lidars with
limited field of view (FoV) are only able to detect a reduced number of features in a
single scan, but the scan density increases significantly. Therefore, techniques that
need to compare all points (e.g., ICP) or traditional feature extraction techniques do
not scale well. From the perspective of map-based localization, a similar issue arises
with approaches such as the normal distribution transform (NDT) [18].

Our approach extends the idea of loop closure to track features (i.e., tree stems)
over long-term autonomous operation, which can be stored and compared in the
form of sparse PCs. Relying in sparse PCs that contain only uniformly distributed
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features, we are able to reduce both the processing time for localization (in terms of
point cloud matching) and the size in memory of larger-scale maps.

In general, we see a gap in the literature in approaches to long-term autonomy and
self-corrective localization leveraging the matching of uniformly random feature
points. To the best of our knowledge, this together with exploiting sparse PCs
for faster processing in unstructured environments has not been addressed yet.
Moreover, our approach can be leveraged for managing and accounting for the
actively rotating view cone of modern solid-state lidars.

Recently, there has been progress in rigid body interpolation [19] mainly applied
in the robotics field. There is an advantage in having both rotation and translation
addressed at the same time. To our understanding, this provides a chance to address
the odometric consistency independently of the scale of the localization problem.

Contribution
We propose a method to reduce the cumulative match error by adding extra ICP
matches, which comprise a large time interval. Frames within the interval are
squeezed together by an interpolation scheme reducing the imprint of sets of anchor
points associated together in the final map. The process reduces the noise and blur in
the final map, increases the odometric accuracy, and solves both small-scale closed-
loop occurrences due to the work cycle movements and large-scale closed-loop
problems.

In summary, in this chapter, we address the following three issues: (i) a self-
corrective localization algorithm able to incrementally increase the accuracy of the
produced environment map without relying on loop closure; (ii) memory efficiency
and computation at the edge by relying on sparse point clouds and long-term
tracking of features; and (iii) an adaptive approach that adjusts the positioning
update rate based on the available data at a given time.

2 Methods

The Site and the Data The test data is from a forest operation site in Pankakangas
at Lieksa, Eastern Finland (63◦19.08′ N, 30◦11.57′ E). The data was recorded in
August 2017 in co-operation with participants enlisted in the Acknowledgements
section. The sample has a strip road of length 130 m. There are 9009 data frames
and 3.7 GB of .pcap data. The total number of trees is 680 and one frame includes
130 trees on the average. An example scanner view is depicted in the left detail of
Fig. 1. The mean distance to the nearest trees is L0 = 3.5 m excluding the peripheral
zone at a distance of 40 m. The right detail shows how the mean distance increases
over the radial distance.

Methodology A simple and fast ICP method pcregistericp() [10, 11] implemented
in Matlab [9] produces rigid body transformations, which can be used to build an
environment map from sparse key points, each key point representing a detected
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Fig. 1 Left: a single scanner view. Each point represents an edge-computed registration of a tree.
Points are 3D even shown in a horizontal projection. Right: mean distances to the nearest trees at
each scanner range. L0 = 3.5 m is over all the trees and is depicted with a dash line

tree in a scanner view. The problem is to improve this rather low-quality tree
map by selecting a small set of promising pairs of frames and producing a
computationally more expensive and more accurate match using Go-ICP [8]. Each
extra match between frames j and i may engulf several frames, which should be
properly adapted to the newly introduced and very reliable match. The exponential
interpolation of rigid body transformations is used for that purpose.

We introduce first the rigid body transformation as a homogenous operator and
its logarithm and exponentiation, which are the core of the interpolation method.
A novel aspect is the operator power being in the matrix form. We show that the
interpolation is contractive meaning that the final PC map improves (individual tree
clusters become sharper) per each addition of extra matches. The sharpening can
be measured internally by minimization of the mean match error and externally by
observing the mean radius of clusters in the final map. Finally, we define the control
parameters for the branch and bound (BnB) of the global minimum search of the
SLAM match.

2.1 Operator Exponentiation

A rigid body transformation τ ∈ SE(3) in the special Euclidean group SE(3)

consists of one rotation represented by a rotation R ∈ SO(3) within the special
orthogonal group SO(3) followed by and a translation p ∈ R

3. The treatise uses the
notation and conventions of [19]. The transformation τ can be seen as a homogenous
mapping τ : q �→ q ′:
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(

q ′
1

)

=

[τ ]
︷ ︸︸ ︷
([R] p

0 1

) (

q

1

)

, (1)

where braces [.] depict the matrix representation of an operator. Transformation
τ(R, p) is defined by a pair of a rotation and a translation. An alternative
parameterization is τ( 	ω, θ, v), where a unit axis 	ω = (ω1 ω2 ω3) ∈ R

3 is the
rotation axis, θ is a rotation angle around that axis, and v ∈ R

3 is the tangential
direction, where the origo moves in the beginning of that rotation. Note that 	ω is the
unit eigenvector of [R] associated with the eigenvalue 1: [R] 	ω = 	ω.

A twist S([ω], v) combines two of the elements of a rigid body transformation,
and its matrix form is

[S] =
([ω] v

0 0

)

, (2)

where [ω]a = 	ω × a is a vector cross product for any a ∈ R
3, or, as written open in

the matrix form:

[ω] =
⎛

⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ . (3)

Note that this definition gives [ω] a cyclic property: [ω]3 = −[ω], which will be
used, when dealing with series expansions of ex , sin x and cos x. Exponentiation of
[S]θ gives us

e[S]θ =
(

e[ω]θ G(θ)v

0 1

)

= [τ ], (4)

where the right equality can be settled by setting v = G−1(θ)p and e[ω]θ = [R].
The twist gain function G(θ) unfolds by the exponentiation series and the rotation
matrix term can be expanded to a closed form:

[R] = I + sin θ [ω] + (1 − cos θ)[ω]2, (5)

which is the well-known Rodriguez formula. Finally, raising τ to a power u ∈ R,
one gets

[τu] =
([Ru] pu

0 1

)

, (6)
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where

[Ru] = I + sin θu[ω] + (1 − cos θu)[ω]2 (7)

pu = G(θu)G−1(θ)p. (8)

The homogenous representation allowed a definition of a matrix power of a rigid
body transformation limited to SE(3). To signify this limitation, we write [τu] and
not [τ ]u, since the wide realm of general matrices is perilous [20], what comes to
exponentiation and taking logarithms. The same argument holds to the notation with
[Ru].

The twist gain function G(θ) is opened next:

G(θ) = Iθ + (1 − cos θ)[ω] + (θ − sin θ)[ω]2. (9)

Its inverse is needed in Eq. 8:

G−1(θ) = 1

θ
I − 1

2
[ω] +

(
1

θ
− 1

2 tan(θ/2)

)

[ω]2. (10)

One can easily see that there is a singularity in G−1(θ) when θ → 0. But the
product in Eq. 8 stays defined, albeit it needs a Taylor series expansion1 at θ = 0.
This is needed because the homogenous formulation chosen here is not a conformal
theory [21]. The product G(θu)G−1(θ) develops to

G(θu)G−1(θ) = Iu +
[

A(θ, u) − sin θu

2

]

[ω]

+
[

u − 1 − cos θu

2
− B(θ, u)

]

[ω]2, (11)

where

A(θ, u) = 1 − cos θu

2 tan θ/2
, B(θ, u) = sin θu

2 tan θ/2
, (12)

which are both of a form 0/0 at θ = 0. Taylor series developed at θ = 0 gives

A(θ, u) = u2

2 θ − (u2 + u4)θ3/24 + O(θ4) (13)

B(θ, u) = u − (u/12 + u3/6)θ2 + O(θ4). (14)

1. . . or a min–max polynomial definition, which is excluded from this treatment.
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Note that small values of θ will often occur with the intended application,
whereas large values θ ≈ π occur seldomly, if ever.

Extraction of [ω] and θ from a given [R] is called taking a rotation logarithm,
since [R] = e[ω]θ . The exact logarithm algorithm is given in [19] and has two special
cases for θ ≈ 0 and θ ≈ π . The intended application of the transformation matrix
power is such that one needs to solve Eq. 6 several times with different values of
u, so the constant parts [ω] and θ are pivotal. Figure 2 shows an example, where a
rigid body coordinate frame τa is interpolated to another frame τb using 11 values
u ∈ [0, 1]R.

The matrix power in Eq. 6 has one special case of pure translation where there is
no rotation (θ = 0 and [R] = I ) with

(

I p

0 1

)u

=
(

I pu

0 1

)

. (15)

Naturally, this special case should be covered by a general solution of the vector
pu. As a sanity check, setting θ ≈ 0 leads to pu ≈ pu for all u ∈ R. By setting
u = 1 and after a tedious trigonometric manipulation, one gets pu = p for all
θ ∈ [0, π). Although Eqs. 11–14 are novel in the context of the matrix power of
the homogenous formulation, a similar Taylor series approach has been presented
for dual quaternion exponentiation and logarithm in [22], and one could construct
a similar transformation power τu using suitable quaternion libraries. The value of
Eqs. 11–14 is that the odometric process described in the next section can proceed
within a usual matrix infrastructure. The computational price tag of two alternative
formulations (dual quaternions and homogenous co-ordinates) for taking multiple
matrix powers is surprisingly close to each other for large PCs.

Fig. 2 Example of a power
interpolation τu = τ 1−u

a τu
b .

When u = 0 → 1,
τu = τa → τb smoothly
between two rigid body
frames τa and τb. Columns of
[R] form the orthogonal
frame axes, which are shown
in red, green, and blue
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A study on the error of the exponentiation of the rigid body transformation
follows. Two consecutive operations ‖[(tu)1/u] − [t]‖ produce a Frobenus norm
error shown in Fig. 3. The result is the average over 300 rigid body transformations
with a uniformly distributed p ∈ [−1, 1]3 ⊂ R

3 and R( 	ω, θ), where 	ω ∈ S2 is
uniformly distributed over a unit sphere S2 ⊂ R

3 and θ ∈ [0, π) is also uniformly
distributed. The sequential matrix multiplication version with 1/u ∈ N has been
provided (red line) alongside the usual u ∈ [0, 1] ⊂ R matrix power test (blue line).
As can be seen from Fig. 3, the computational accuracy is not a problem near u = 0,
and u ≈ 1 does not usually occur. The overall accuracy in the multiplication case
is 4.8 × 10−3, which is enough for practical implementation. Both tests are clearly
conservative when compared to actual computations, which generate new operators
τu from constant values θ and [ω].

2.2 Rigid Body Motion Interpolation

This section expands the presentation in [23] and uses the notation of [19]. The
detailed definitions are provided since the formulations come from a variety of
sources. Odometry is built by matching sequential PCs Pl and Pl+1 in the coordinate
system of the frame l by estimating a transformation τl+1 l from a frame l + 1 to the
frame l. A simple and fast ICP method pcregistericp() of Matlab [9–11] is applied
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i=1..1/u u -t

Fig. 3 A numerical verification of rising rigid body transformations to a power u. Blue line depicts
taking a power u and then 1/u. Red line is for taking a power u followed by a number (1/u ∈ N)
of matrix multiplications
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to produce a sequence of rigid body transformations T = {τl+1 l | 1 ≤ l ≤ n} from
frames l + 1 to frames l. This process is not secure, and it is possible to have an
erroneous match, which is off some 2–10 m.

The combination of two PCs achieved by a successful match is denoted by .
∼∪ .

as Pl

∼∪ Pl+1tl+1 l , where the transformation matrix tij = [τij ]T because, unlike in
the definition of Eq. 1, points are now columns of a PC matrix. A match between
frames l + 1 and l includes inaccuracies el and identification of outliers (points not
matched to any point) and of matching pairs of points. The final SLAM result has
all frames matched to the first frame:

P = ∼∪
n

l=1 Pl tl1, (16)

where n is the number of frames, t11 = I , and the total transformation matrices tl1
are built iteratively from local matches tl+1 l by tl+1 1 = tl1tl+1 l .

The PCs Pl tl1 each contribute to the total map P . A typical ICP process produces
a chain of stepwise transformations T . One can recover a random transformation
connecting frames i and j by

tij = tj1
−1ti1. (17)

An application of Eq. 16 is called globalization (or SLAM process). The
odometry problem is solved when the globalized translation vectors are extracted.
The path Q of the vehicle is

Q = {qi1 | τi1 = (Ri1, qi1)}i=1...n (18)

The basic scenario of the self-corrective odometry is depicted in Fig. 4 using
two paths Q and Q′ to represent a situation, where some of the transformations
tl+1 l , j ≤ l < i have been judged inaccurate, noisy, or inexact by some criteria.
The criteria is usually related to the blurriness of the global map. Then, a corrective
check is being performed from the frame i to the frame j producing an improvement

of a match. Formally, an error measure e(Pj

∼∪Pi tij
′) < e(Pj

∼∪ Pi tij ) of a match
improves, when a new match tij

′ is used instead of a synthesized transformation tij
of Eq. 17. Now, all the intermediary PCs PCl, j < l < i, need to be updated.

Let �τl be correction needed at a frame l: τlj�τl = τ ′
lj , and let it be forced to

have boundary conditions �tj = I and �ti = �t = tij
−1tij

′. A rather obvious
interpolator is by �tl = [�τul ]T , where 0 ≤ ul ≤ 1 with obvious end conditions
uj = 0 and ui = 1. Assuming representative powers ul are defined for each
transformation tlj , one can solve new values tlj

′:

tl1 := tl1
′ = tj1tlj [�τul ]T , j ≤ l ≤ i, (19)
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Fig. 4 An update from τi1 to
τi1

′ makes the old path
j + 1, . . . , i − 1
incompatible. It can be
corrected by any interpolation
scheme, e.g., Eq. 19

where “:=” denotes a computational substitution of a new value. As a sanity test, by
setting l = j and ul = 0, one gets tj1

′ = tj1I
2 = tj1. And by setting l = i and

ul = 1, one gets
ti1

′ = tj1tij tij
−1tij

′ = tj1tij
′. The path following after the frame i changes after this

update as well. The rest of the frames have to be corrected to align properly with the
updated value ti1

′:

tk1 := ti1
′

tki
︷ ︸︸ ︷

ti1
−1tk1, i < k ≤ n . (20)

One question remains: how to choose the power ul , given a SLAM history
{tl1}j≤l≤i? There are several possibilities but for numerical experiments we used
the simplest possible strategy, the relative continuous index:

ul = (l − j)/(i − j), j ≤ l ≤ i. (21)

Contractive Property We propagate change on odometric sub-path j ≤ l ≤ i

by using [�τul ] as a correction term. As long as all the involved powers ul are

confined to the unit interval 0 ≤ ul ≤ 1, the new PC map
∼∪

i

l=1 Pltl1
′ contracts,

i.e., all the involved rotations θlj
′ for each sub-match τlj = τ([ωlj ], θlj , qlj ) of a

corrective step between frames i and j become smaller θlj
′ ≤ θlj and the magnitude

of translations qlj
′ gets reduced qlj

′ ≤ qlj . The proof is based on the monotonicity of
terms G(θu)G−1(θ) (see Eq. 8) and θu in the base {I, [ω], [ω]2}. A visual evidence
of this is shown in [23], where tree clusters get less dispersed on each step of iterative
improvement.

2.3 Branch-and-Bound Limits

The globally convergent ICP method Go-ICP [8] uses two coefficients σt and
σr to set up the granularity of the transition and rotation search space in
the BnB search grid, respectively. Two coefficients γt = √

3σt and γrp =
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2 sin(min(
√

3σr/2, π/2))‖p‖ define the local lower bound of the minimum match
error at a point p ∈ P in the original scanning frame. Note that rotational term γrp

indeed depends on the point p. A minimum bound eij of a match error eij between
frames i and j is

e2
ij =

∑

p∈P

(

max(ep − γrp − γt , 0)
)2

. (22)

Tree locations in a forest usually have a nearly uniform distribution, which can
be described by a mean distance L0 m between natural neighbors (a concept defined
in the next paragraph). The right detail of Fig. 1 depicts the L0 distribution over the
scanning range r , and even the point density depends on range, the zone 10 ≤ r ≤
26 m with 3.0 ≤ L0 ≤ 4.0 m is large and populated enough for our purposes. In our
data samples, L0 = 3.5 m was the observed average specific to the data collection
site.

To make the definition of L0 more formal, we define natural neighbors q ∈
N(p) ⊂ P of a point p as those points, which get connected by an edge (p, q) ∈
E ⊂ P 2 in a Delaunay triangularization (P,E, T ) of a point set P . There, E are
edges of Delaunay triangles T ⊂ P 3. Then, the mean distance is

L0 = mean
p∈P

mean
q∈N(p)

‖p − q‖. (23)

If a magnitude δ = ‖q‖ of a pure translation from a perfect match is smaller than
L0/2, δ < L0/2, the ICP convergence is very likely. This will be shown later by a
numerical experiment. We define this limit as δ0:

δ0 = L0/2. (24)

For reference, a hexagonal lattice is the optimal packing on points and having two
such PCs switched randomly produces a mean match error e = 0.35L0.

Other important parameters characterizing the scanned PCs are the scanning
scope R and the allowed outlier ratio γ , which makes the standard ICP method
somewhat more robust. Outliers are points without a proper match. Figure 5 shows
a circular PC being rotated by an angle θ0. At a distance r0, δ0 = r0θ0. The radius
r0 divides the disc into two parts with ratios γ : 1−γ . A simplifying assumption is
being made that all the outer point pairs do not match, and all the inner point pairs
do match, so that 1 − γ = πr2

0/(πR2), and one can solve θ0:

θ0 = δ0√
1 − γR

. (25)

A justification for this simple derivation of the limit θ0 is that a rotation with
θ0 < θ of two identical uniformly distributed PCs produces a situation similar to a
case of two i.i.d. PCs at the outer zone r0 < r . Both a translation δ0 and a rotation
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Fig. 5 A rotation θ0
produces a mismatch δ0 to
γ |P | point pairs starting from
r0, when a uniformly
distributed PC is rotated
around its center

θ0 are related to the so-called correlation length [24], which is a distance where the
auto-correlation of a spatial sample vanishes.

A simple ICP is assumed to succeed when:

(
δ

δ0

)2

+
(

θ

θ0

)2

≤ 1, (26)

where δ is the known magnitude δ = ‖q‖ of the known match τ([ω], θ, q) and
θ is the known horizontal rotation from the correct match. This means that for a
possible grid search or BnB approach, the two parameters λ0 and θ0 define the grid
granularity.

A complete misalignment has mean error e between pairs of matching points
e ≈ δ0, and a complete alignment equals the registration noise ε: e ≈ ε. The ICP
match succeeds at the limit θ = θ0 since the point density decreases, and the local
L0 increases, when scan radius r grows, see the right detail of Fig. 1.

The BnB search grid can be set to a granularity, where the final attempt at the
finest level of the search hierarchy can be safely done by a simple ICP. By this
arrangement, the BnB grid does not need to extend to actual tolerances sought after.
Numerical values in our example data are L0 = 3.5 m, γ = 0.6, δ0 = 1.75 m, and
R = 35 yielding θ0 = 3.7◦.

The convergence condition of Eq. 26 requires a verification. Figure 6 summarizes
a test setting, where matched PC pairs drawn from the data were artificially
separated by τ(θ, δq0), where translations were taken to several directions encoded
by unit vectors q0 to register the effect over the translation range δ. Two contour
lines with the match error e = 0.2 m and e = 0.7 m are shown. A successful match
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Fig. 6 Match error e (m) of a simple ICP method, when initial mismatch state τ(θ, δ) is known.
The area inside the circle is where the convergence is guaranteed for uniform distributed PCs with
L0 = 2δ0

has e ≤ 0.2 mm since this does contribute well to the desired final tree map accuracy.
The point registration noise ε from the tree registration process is approximately
0.05 < ε < 0.1 m. The convergence area of the condition of Eq. 26 is inside the red
arc. 200 PC pairs were used to produce the plot.

The final values for the Go-ICP granularity coefficients are σt = δ0 and σr = θ0.
Each match uses an iteration stop criterion given in [8], and the only extra control
layer is by monitoring that two PCs have enough geometric overlap in the matched
configuration. The overlap λ ≈ 1 − γ , but a geometric calculation using view cone
characteristics is used for the actual test. This is because frame PCs contain churn;
trees obscure each other and some outliers occur everywhere in the scanning view.
If λ is not large enough, λ < λ0 = 0.4, the frame pair (i, j) will not be used in the
iterative improvement of the matches.

The odometry is done in 3D and σr concerns also the roll (and pitch) of the
vehicle, even these had a negligible effect in point matching. This is because the
point cloud is relatively flat, see Fig. 7. The figure depicts also a limit chosen φ0 =
8.2◦ for a successful match. This was found by a numerical test producing a similar
plot as shown in Fig. 6. The size of φ0 indicates that the BnB search grid should
be elongated (it is cubic grid in Go-ICP implementation). Very large rolls or pitch
movements did not occur, and so we limited the BnB search space of rotation to
±30◦ horizontal zone and trusted that the hierarchical BnB quickly eliminates the
useless search space. So, the final ICP convergence test is (δ/δ0)

2 + (θ/θ0)
2 +

(φ/φ0)
2 ≤ 1.
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Fig. 7 A demonstration of
the found limit case for a
rather certain ICP match to
occur. The angle φ = 8.2◦ is
the deviation from the vertical
axis

Fig. 8 Overlap (gray area)
can be estimated from the
orientation and position only
under an assumption of
uniform PC distribution

2.4 Iterative Improvement

An initial tree registration and SLAM over sparse PCs is to be done at the
autonomous vehicle. The aim of the initial SLAM is the immediate collision
avoidance and basic orientation along the vehicle task goals. The PCs of selected
views V = {(PCl, τl1}l=1,...,n will be sent to the cloud environment, where an
improvement of the map will occur.

The estimation of the overlap λ is depicted in Fig. 8. Two vehicle poses τi1
and τj1 in views V are depicted by their view cones. We noticed that the vertical
dimension and the corresponding rotations corresponded very little to the final
SLAM map via the match pair selection. Therefore, for example, the overlap
analysis is done in a projective horizontal plane.

The process starts by selecting m potential pairs of frames, which will be
subjected to improvement. Figure 9 depicts a scatter plot based on estimated
overlap of views V based on the relative view cone overlap λ and the mean

error e(Pj tj1
∼∪Piti1) of the match, where non-overlapping parts are excluded. The

maximum frame difference max i − j = 1000 and 0.2 % of the inspected 1,870,000
frames fall to a promising or acceptable set. The acceptable set was found by

looking overlap ratios over 0.2 < λ and checking the match error e(Piti1
∼∪ Pj tj1)
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Fig. 9 Scatter plot over ICP
matches. An ICP match
attempt either succeeds
(acceptable) or is inferior
(either fails completely or
produces small overlap and
large error)
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of pairs (i, j). Note that value pairs needed (match errors e and geometric overlap
factors λ) are fast to achieve in practice, e.g., the overlap factor can be estimated by
any universal approximator, e.g., a small specialized convolutional neural network
(CNN). In a real-time application, this initial production of values (e, λ) can be done
by random tests.

The preliminary set I2 ⊂ [1, n] ⊂ N depicted by 3500 black dots is sampled to
a subset of m ≈ 100 nearly Poisson disk distributed pairs depicted by red circles
in Fig. 10. The detail at the top of Fig. 10 is a schematic about how each black dot
ι = (i, j) ∈ I2 relates to two frames j and i. The nearly Poisson disc sampling was
chosen since one can assume an individual sample will improve the surrounding
pairs with equal amount everywhere. A mini-algorithm for producing a promising
sample selection I follows:

1. Test recent views (Pl, τl1) randomly and select pairs (i, j) with 0.2 < λ. From
those, select ones with the following condition fulfilled:

eij < 0.3m + λij × 0.5m (27)

and add (i, j) ∈ I2. The inequality border is depicted by a red line in Fig. 9. Note
that evaluation of values eij and λij is relatively cheap, since the former comes
from a direct nearest neighbor search and the latter is estimated directly from the
parameters of transformations τl1(θl, 	ωl, pl) with l ∈ {i, j}.

2. Round I2 to a set of grid points with spacing ε. A set rounding operator {.}ε is
introduced for that purpose: {A}ε = {round(a/ε)ε | a ∈ A}. The spacing ε is
decreased iteratively by ε := 0.8ε until the size |I1| of the rounded set is closest
to the intended size: |I1| ≈ m. The initial guess is ε = √

box area in Fig. 10/m.
With the final ε,
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Fig. 10 The selection of extra matches. Above: a match pair (i, j) representing a potential match
is related to frames i and j . The original SLAM proceeds along the abscissa from 1 to n with
i = j +1. Below: set I (red circles) of improvement matches with nearly Poisson disk distribution
is chosen from 2800 potential match pairs of a set I2 (black dots)

I1 = {I2}ε . (28)

3. For each occupied grid point ν ∈ I1, choose the nearest match from the set I2:

I = {ι | ι = argmin
μ∈I2

‖μ − ν‖, ν ∈ I1}. (29)

The main step of the algorithm applies Eqs. 19 and 20 randomly until the whole
set I is exhausted or a convergence criterion is fulfilled. The simple SLAM is tried
first. If it delivers a match error e and an overlap λ which do not fulfill the condition
of Eq. 27, Go-ICP is called instead.

2.5 Quality Criteria of the Final Map

Basically, there are two possible convergence criteria, one expressing the mean
match error eJ over a subset J ⊂ I1 and another one quantifying the quality of
the final map. A measure useful for possible applications of tree maps is the tree
registration noise eC [23]. The registration noise is root mean square error (RMSE)
of the tree cluster points from the arithmetic mean of the cluster.

This study focuses on finding the best possible transformations, so we use a
numerically faster measure, which addresses the sharpness of the resulting map



100 P. Nevalainen et al.

image. For that purpose, two grid factors ε1 = 0.2 m and ε2 = 10.0 m are chosen.
The first one counts 1. . . 4 grid points for a tree with a diameter D = 0.1 . . . 0.2 m,
and the second one is conveniently larger than the mean distance between nearest
trees L0 = 3.5 m given in Sect. 2.3. One can define a blur ratio 0 < β < 1:

β = |{P }ε1 |ε2
1

|{P }ε2 |ε2
2

, (30)

where P = ∼∪l=1...n Pltl1 is the SLAM map, and {.}ε is the set rounding operator
originally defined for Eq. 28. The numerator of the ratio in Eq. 30 approximates the
occupied area in the final map P and the denominator estimates the overall area of
the map.

The blur ratio β is used as a target parameter to be minimized in the iterative
improvement. It is related to the tree registration noise eC by having the minimum
at the same time, but the absolute value of β depends on how much undergrowth and
small trees are on the site. Using β in governing the improvement process is a novel
feature, e.g., the authors of [23] use the registration noise eC instead, which requires
alpha shape [25] clustering. The tree clusters are detected by using rα = 0.5 m as
the alpha shape radius and ignoring clusters with less than 15 points.

3 Results

The initial (top) and end states (bottom) of the final map P = ∪n
l=1Pltl1 are depicted

in Fig. 11. Unlike with the ordinary ICP match .
∼∪ ., the associations between

matching points have not been created, but the map P is just an unstructured PC.
The odometric path is plotted in red. The blur ratio β of Eq. 30 moves from the
initial β = 0.31 of the top map of Fig. 11 to β = 0.022 of the end map at the
bottom. A tree map of practical applications usually consists of tree cluster centers
only, but for the sake of illustration, the registration points from all frames have
been included. The initial scan on the top detail reaches up to 60 m distance, while
consistent tree registrations in the below map are within a 40 m stripe. The simplistic
SLAM method pcregistericp() has a large rotation error, which is seen from the
elongated tree clusters in the top details. The final map is the result of the medium-
gaps-first strategy. Some blurred details are undergrowth and thickets.

The average stepwise match error e = meann
k=2 e(Pk−1

∼∪ Pktk k−1) was rather
stable over the iterative improvement. This is probably because as some tree clusters
get sharper during the process, and some spread out due to registration errors. The
order of choosing the corrective pairs of frames ι = (i, j) had a great effect. The
strategy of choosing the smallest corrective steps first (i−j in ascending order) ends
to a worse end result β = 0.035 than the medium-gaps-first strategy, which reaches
β = 0.022. This result is depicted in Fig. 11. Three strategies, medium-gaps-first,
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Fig. 11 Above: the initial SLAM map. Below: the final map by the medium-gaps-first strategy

smallest-gaps-first, and random choice are summarized in Table 1. The map noise
eC is the RMSE of the tree cluster radius.

The map noise value found eC = 0.15 m is competitive when compared to a
similar study [26] with eC ≈ 0.2 m and with more dense original scanning. The
test sites of our study and of [26] also compare well: our area was 180 × 40 m2 with
approximately 600 trees with mean distance L0 = 3.5 m and [26] has a 300 m×35 m
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Table 1 Evaluation times of two ICP methods.

Method Blur factor (1) RMSE error (m) # corrections (m)

Small-gaps-first 0.035 0.27 119

Medium-gaps-first 0.022 0.15 71

Random order 0.051 0.19 119

Table 2 Evaluation times of two ICP methods

Method One call (s) Number of calls

Go-ICP 0.41 29

pcregistericp 0.19 80

Table 3 The BnB search space reduction, when Go-ICP gets adapted to the nearly sparse uniform
PCs

PC type Horiz. zone (◦) Rot. granul. σr (◦) Transl. granul.σt (m) BnB size

General 180 1.0 1.2 350 × 106

Sparse uniform 60 3.7 1.9 1.5 × 106

area (much narrower) with 224 trees with a mean distance L0 = 7.5 m (much more
mature trees). We had two paths whereas [26] had one path.

A Python implementation of Go-ICP [27] was used. The average run time was
0.41 secs over 29 Go-ICP runs triggered. The average size of the PCs was 131 points
making the Go-ICP quite fast (Table 2).

The standard Go-ICP [8] uses much smaller coefficients σr and σt , since it is not
specialized to near uniform PCs. Also, we found that the tilt φ from the vertical axis
of the vehicle is limited to φ ∈ [−π/6, π/6], and this further reduces the BnB search
space. These advantages are summarized in Table 3. The translation granularity σt

is computed in [8] by σt = 10−4 × N × L/2, where N ≈ 130 is the data point
number and L ≈ 180 m is the largest included diameter of the PC. This gives an
automated value σt = 1.2 m. The translation search was limited to 10 × 10 × 2 m3

volume in both cases.

4 Discussion

Figure 10 shows how the slow movement and constant changes in view orientation
of the vehicle at frames 0–500 and 3700–4000 causes a lot of possible correction
matches demonstrating potential for frame selection, e.g., by dead-reckoning criteria
based on inertial mass units (IMUs) and short-term SLAM. This addition does not
change the algorithm proposed, though.

At the frame 3500 of Fig. 10, there is a moment where the vehicle moves directly
and fast ahead leaving very little need for iterative SLAM improvement. This phase
is close to usual movement of automobiles and is a dominant mode of test cases
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presented in the existing literature. Our proposal takes into account possible work
cycles and constant back and forth translation and irregular rotational movement,
e.g., what happens in the forest conditions.

More experiments are needed in deciding a sensible strategy over the application
order of improvement matches. The medium-gaps-first strategy is just a best found
for this particular task, and obviously there is need for some sort of control, e.g.,
an end condition to stop the divergence when the blur ratio β does not improve
anymore. A probabilistic way for optimizing both the selection and ordering of
the set I of the frame pairs could arise by applying, e.g., probabilistic data
association [28] to Delaunay triangle stars used in [4].

The data [29] used is a recording of a forest harvester operation [23]. Although
the data allowed in developing some parts of the pipeline, crucial parts are
missing. These are the aforementioned search for the fastest converging sequence of
corrections, functional memory management of recent scanner views and a process
converting individual views to a memoized global map [4], and countering possible
systematical errors in relatively simplistic tree registration method presented in [23],
which was used to generate the test data [29].

Since the pcregistericp() calls dominate (2800 initial matches edge-computed
and 80 corrective matches versus 29 Go-ICP calls), the combined time stays tolera-
ble and promising for a possible full implementation. The 2800 initial matches are
to be edge-computed at the vehicle, and therefore this process is likely a subject of
many optimizations concerning the sensors, application-specific integrated circuits
(ASIC), and algorithmic developments [30].

The blur ratio β of Eq. 30 is very close to the dimensionality estimation by box
counting [31]. The iteration starts with a box counting dimension estimate d = 1.4
and gets stagnated to d ≈ 1 for a long time, while cluster arches of individual trees
get shorter; see the top detail of Fig. 11. Then, dimensionality moves to the final
d = 0.3. PC dimensionality would be a better iteration progress indicator in that it
does not require specific parameters ε1 and ε2. Both indicators β and d apply in the
2D (projective maps) and 3D cases by a change of the power of ε in Eq. 30.

The search space reduction (230:1) shown in Table 3 has large but indirect effect
to the computation, since the BnB process is hierarchical and eliminates large swath
of search space rather soon. The reduction in computation time seems to be in the
range of 3:1 . . . 10:1, when uniformity assumptions are applied.

From the point of view of lightweight computation at the edge and cloud
offloading in remote environments, the method we have proposed in this chapter
presents some inherent benefits. First, by providing a self-corrective approach, there
is potential to minimizing the drift in localization for autonomous mobile robots
operating over large distances in places with a weak or missing Global Navigation
Satellite System performance (GNSS-denied environments). For example, UAVs
flying under tree canopy in forests for surveying applications that cannot rely on
GNSS sensors are a potential application area. Second, by minimizing the size of
the PC used for correcting the odometry process, we can provide cloud offloading
or multi-robot collaboration even in environments where connectivity is poor and
unreliable and latency does not allow for traditional computational offloading.
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Therefore, large-scale maps can be built at the cloud or within multi-robot systems
in remote environments.

Finally, it is worth mentioning that this method can be extended to multiple
domains and application areas. From the perspective of the low computational
complexity, this method can extend long-term autonomy in mobile robots by
reducing the embedded hardware requirements. This is in turn related to lower
energy consumption and applicability in smaller platforms. Moreover, if landmarks
or anchors are well identified, this can also be leveraged within collaborative multi-
robot systems, e.g., with micro-aerial vehicles being deployed from ground units in
remote environments [32]. In forests environments in particular, our adaptive and
lightweight self-corrective SLAM approach can be used for either canopy or tree
stem registration, but other features that are distributed throughout the operational
environments could be exploited as well.

The next two subsections are devoted to the discussion of alternative details of
the Methods section.

4.1 Alternatives for Power Coefficients

The choice of power coefficient ul seems to have great effect on the proposed
iterative improvement scheme. Just as there are alternatives to the proposed
interpolation scheme [33], there are alternatives for the formulation of ul defined
in Eq. 21:

1. Cumulative measures like the relative odometric path length ul = ∑l
k=j+1 ‖qk −

qk−1‖/∑n
k=j+1 ‖qk − qk−1‖ of transformations τk1([omegak], θk, qk) or accu-

mulated match errors: ul = ∑l
k=j+1 ek/

∑n
k=j+1 ek .

2. A more sophisticated SE(3) metric. One candidate is a linear combination of

relative rotation and translation [34] d(τlj ) =
√

aθ2
lj + b‖qlj‖2, where τlj =

τlj (θlj , 	ωlj , qlj ) and 0 < a, b ∈ R are free positive constants. This leads to

ul = d(τlj )

d(τij )
. (31)

If the scanner view cone is known, the above measure is very close to the mean
squared distance between corresponding spots in the two view cones.

3. For paths with a lot of loops, one can find the nearest fit from the skew path
{τu |τ 1−u

j1 τu
i1}0≤u≤1 shown in Fig. 2:

ul = argmin
u

d(τ−1
u τlj ), (32)

where τ−1
u τlj is a transformation from τlj to τu.
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4.2 Frame Elimination

After the iterative improvement, some frames may show a large detrimental
contribution to the final map quality. These frames can be removed. For this, one has
to reshuffle the summation of the map error eC to individual frames l, 1 ≤ l ≤ n:

e2
C = mean

i∈[1,n],p∈Pi
′ ‖p − chi

‖2 =
n

∑

i=1

wi, (33)

where an inclusion of p ∈ P ′
i ⊂ Pi occurs only if it contributes to some tree in the

final map and wi are the rearranged summand parts of the mean. The largest values
can be removed. Finding a subset of frames to be removed is a combinatorially
expensive operation, which should be done only if the application specifically
requires it. Removing low-quality frames has similarities with the problem of
selecting and ordering the corrective frame pairs, and both problems resemble
feature selection over large feature space in general Machine Learning.

5 Conclusion

This article gives a complete presentation of mathematical details of rigid body
interpolation and its application to iterative SLAM improvement. A main motivation
was to provide a unified approach to the SLAM accuracy improvement. This
resulted in an outline of the proposed iterative improvement algorithm. The second
motivation was to test how much the very reliable Go-ICP algorithm can gain
advantage from the small and sparse problems. It seems that Go-ICP is a feasible
choice for tree map-related SLAM.

Our results suggest that the iterative SLAM improvement using rigid body
interpolation proposed in this chapter has potential for many applications with
sparse PCs, whether point clouds are key points, sets of beacons, or subsampled
PCs. The near-uniform distribution makes the BnB search grid of Go-ICP coarser,
and this and small PC size speed up Go-ICP, which is otherwise known to be a rather
slow method. The sensor fusion with GNSS, inertial mass units, and other sensors
has been left out to keep the presentation simple.

More research is needed especially about an optimal selection of the improve-
ment matches before an effort to build a true pipeline from autonomous vehicle
to a cloud environment can be done. The pipeline would cover the edge-computed
tree registration and SLAM, transmission of sparse PCs to the cloud computing
environment, and the iterative tree map improvement. This may take years but could
be worth of an effort.
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Future Possibilities and Challenges for
UAV-Based Imaging Development
in Smart Farming

Jere Kaivosoja

Abstract Technologies related to UAV (unmanned aerial vehicle) are developing
rapidly. On the other hand, technologies related to farming are developing also,
and several possibly revolutionizing technologies are about to become reality in
farming. These technologies can set new goals and targets for the UAV imaging in
smart farming. This work first reviews forthcoming technologies from measurement
technologies, data management, execution technologies, and farming methods and
then, as a top-down basis, formed possible imaging concepts for the future. The
core future concepts were new imaging techniques with UAVs, data collection for
digital twins and mapping for on-demand acting working UAVs and robotics. The
presented technologies are at very early development stage.

Keywords Drone · Spraying · Hyperspectral · Multispectral · Mosaics ·
Concept · Precision farming

1 Introduction

Technologies related to UAV (unmanned aerial vehicle) imaging are developing
rapidly, and there are already a wide variety of precision farming applications [1–
3]. On top of the UAV development, other technologies related to farming are
developing also, and several groundbreaking approaches might be met in sustainable
intensification [4]. Those could also revolutionize the way UAV imaging is used in
farming context in the future, thus setting new goals for the UAV development.

In precision farming, the goal is to spatially and timely optimize the farming
inputs for maximizing the farming outcomes and minimizing the environmental
load. This optimization is often difficult and a result of compromises. One of
the starting points is to detect the current within-field variation. Remote sensing
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can offer several approaches for that. The idea that combines all the relevant
technologies in precision farming and in farm management is called smart farming.
While precision farming goes into a single farming process one at the time, the
smart farming covers the whole farming process [5, 6]. In short, smart farming
in the context of arable farming is a combination of information management,
precision farming knowledge, and farm machinery automation [7]. Smart farming
is the key for sustainable farming in the future [8]. Currently digitalization and
artificial intelligence (AI)-based farm management became the new norm, building
basis for cyber-physical system (CPM) farm management approach [5]. These make
it possible to exploit UAV imaging data in new ways.

The UAV technologies itself can also revolutionize the way we treat plants during
the growing season. UAVs can measure the status of plants and detecting weeds or
infested plants and estimating nutrient status [2, 3, 9–12] or other variations within
the field without destroying the plants. The UAV flying patterns are mostly adapted
from remote sensing based on aircrafts; there can be several ways to develop this.
When imaging techniques and technologies are considered, their accuracy is a very
important aspect. To access the measurement accuracy or more widely measurement
quality, the true value, i.e., ground truth, is needed. The work [7] studies data quality
aspects more thoroughly in the precision farming context. To estimate the ground
truth for UAV measurements, external and possible independent measurements are
needed. On top of UAV imaging, the application of spraying UAVs could change the
way how we exploit measurement information since they can work on demand, up
to daily basis. Examples of the concepts with spraying UAVs are widely provided in
the paper [13]. However, the regulations of spraying UAVs in Europe are complex
and incomplete and mostly restricting.

One more challenging aspect for the UAV imaging is the expected changes from
monoculture, where a single crop or variety is cultivated in a field at a time. The need
for multiple cropping [14] and intercropping methods has long been recognized.
The UAV imaging is an interesting position where it could provide new tools for the
intercropping management.

The objective of this study was to examine these different future trends of
agriculture from the UAV imaging point of view to be able to underpin future
possibilities and challenges. The main research question was that what kind of UAV
imaging applications there will be in the future.

Similar to [15, 16], this study approaches its topic in a wide context. This work
outlines future development strategies and presents possible application concepts.
Due to rapid technology development around the topic, several suggested applica-
tions can be already developed to a certain technology readiness level (TRL) or even
to a commercial stage in some cases. However, this paper examines the current UAV
imaging applications in agriculture in contrast to development possibilities in future
smart farming concept.
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2 Material and Methods

The first step was a literature review on current UAV research, smart farming,
digitalization, and agronomics to recognize future trends and development themes.
The second step was to integrate findings from earlier empirical research case
studies such as papers [10, 11, 17–19]. The following step was to form separate
themes related to the future of UAV imaging in terms of a top-down approach.
Figure 1 illustrates the general separate topics under development related to the
UAV imaging in agriculture including main keywords of each.

Four separate main topics were recognized: (1) measurement technologies, (2)
data management including communication technologies, (3) execution technolo-
gies, and (4) farming methods. These topics are next explained in more detail.

2.1 Measurement Technologies

The core of the UAV imaging is to produce high-quality measurement data for
different purposes. According to paper [20], data quality in remote sensing data
means spatial, radiometric, and spectral resolution, temporal resolution, precision
in the cluster accuracy, positional accuracy, thematic precision, temporal validity,
data completeness, spatial redundancy, readability, accessibility, and consistency.

Fig. 1 General themes and related keywords around UAV imaging development scenarios in
future agriculture
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Fig. 2 Common pollen beetles on a rapeseed leaf being visible on a high-resolution image

These are also valid with UAV imaging data in agriculture when the purpose of data
is clear. Instead of only the spatial redundancy, all image redundancies may be valid.
Accessing feasibility of the developed imaging system requires fulfilling all the
quality aspects, and that is often challenging. Typically agricultural cases construct
orthophotos or use raw images. In study [21], the ratio was 70:30 to orthomosaics.

So far, the wider adaptation has concentrated on adapting simple flying patterns
and measuring greenness differences and making direct precision farming applica-
tion tasks based on it [9, 21]. New mapping methodologies should be developed
[21, 22] to be able to see the targets from a better angle. For example, in the review
[21], all the UAV imaging were done toward nadir. Selecting a suitable imaging
system, namely, a camera, is also very important. Increasing spectral resolution
might decrease spatial resolution in terms of applied tools that are available. Figure 2
presents common pollen beetles (Meligethes aeneus) on a leaf standing out easily
on a high-resolution image. The optics in UAV imaging systems are often designed
and optimized for orthophoto imaging from a distance of tens of meters [21].

The different sensor or technique integrations have provided promising results
[11, 23], and that can be a way to overcome some of the challenges. The radiometric
accuracy [17, 20] is still a challenge: to be able to distinguish target objects in a
sunlight.

2.2 Data Management

Different machine learning [24] techniques are widely adopted to the UAV imaging.
The main purpose of them is the successful classification of the imaged data.
A typical challenge [21] is to gather enough reference data for teaching and
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validation. A fundamental deficiency is the lack of generalized solutions that work
in different conditions. Computing solutions such as spectral unmixing [25, 26]
can offer tools for improving the classification accuracy in specific cases when
high spectral accuracy is applied. Current data analysis methods consider that
imaging data is directly used or fused together with certain external data for the
usage [27, 28]. Decision support system (DSS) (or AgriDSS) [29] is traditionally
a software-based system which helps farmers to solve these issues. The farm
management information systems (FMIS) are constantly developing [6, 15, 16, 30].
The adaptation of digital twin to the agriculture from industry, similar to adaptation
of agriculture 4.0 [31], is interesting. Digital twin is a digital duplicate of the
physical world, including the semantic object model, as well as the growth model
that is characteristic for the specific crop and cultivar. In UAV imaging applications,
digital twins mean that instead of deciding to put more fertilizers to less green areas,
this makes it possible to measure plants and having a powerful system processing
several data sources before making execution plans not directly related to imaging.
Dataspace policies such as “toward a common European data space” [32] GAIA-X
(Federated Data Infrastructure for Europe) and EFDI (Extended Farm Management
Information Systems Data Interface) [33] are all supporting this digital twin-driven
revolution by providing applicable data and processing strategies.

Communication technologies such as 5G, 6G, and beyond are key enablers
together with IoT (Internet of Things) especially in the real-time interactions
between external systems, satellites, and UAVs. Technologies such as edge com-
puting may solve individual bottlenecks.

2.3 Execution Technologies

The technologies that carry out the farming actions are presented here as execution
technologies. These technologies practically consider working machines at the field.
The robotics development provides several options for UAV imaging or other in
situ measurements. The UAV imaging is typically an additional task that needs
to be done while field robots and tractors can measure while they work. This
makes it questionable to develop UAV imaging for some cases, such as additional
fertilization. However, one clear benefit from the remote sensing approach is that
the overall needs can be estimated already before the actual work.

As presented earlier, the spraying UAVs offer new perspectives. Basically, they
can work without destroying the cultivated plants or crops and without compacting
the soil. This means that the spraying works can be made on demand, instead for an
annual pesticide or herbicide spraying protecting against all possible threats. This
means that the results of UAV imaging can be applied rapidly and more often. Also
new types of tasks for UAVs such as pollinators [34] or biological controlling can
offer tasks for imaging.
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Fig. 3 Cropped image from a 3D model representing plots of different crops planned for
intercropping near harvesting time. Small image represents relative greenness on the test site

2.4 Farming Methods

Currently there are several options for the typical monoculture, for example, mixed
cropping, intercropping [35], and agroforestry [36]. Also methods such as organic
farming and biodiversity friendly farming [37] can set new goals for UAV imaging.
The crop row detections [38] applicable also for intercropping are fairly applied
with UAV imaging [21]. Technologies such as beneath forest canopy navigating
UAVs might become valid with agroforestry.

The monocultural farming is easier related to polycultural approaches especially
from the harvesting point. Typical mixed cropping application is a mixed forage
production [39]. Also the relation and interactions between different crops can
vary a lot. Next Fig. 3. shows a 3D model based on DJI Phantom 4 RTK UAV
imaging and DroneDeploy software. In the figure, several different crops potential
for intercropping are grown in separate plots. Small image on Fig. 3. presents VARI
(Visible Atmospherically Resistant Index) from the same plot setup showing relative
greenness differences. The crops are reaching harvesting time, and the presented
RGB colors and crop heights differ between plots. Selective harvesting [40, 41] is
often needed in intercropping.

UAV imaging could, for example, reveal most suitable intercropping combi-
nations in relation to harvesting, but the applicability of imaging in wide area
intercropping is more challenging. The agroforestry can be seen as intercropping
with trees; thus that approach would joint the current research themes of applications
where same trees [42], vines [43], or shrubs are targets in different years.
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3 Results

As the results of this study, different development possibilities and challenges are
presented.

3.1 Measurement Technologies

The UAV operation can be developed to be more suitable for several agricultural
aspects. The core is to provide better visibility of the target object:

– Slant range: Imaging with a tilted camera, often used with 3D modeling but with
uneven canopy, the simple slanted angle may provide better target observation.

– Close-up: Close imaging may make small pests or insects visible. With limited
coverage, sample points and interpolation can be applied.

– Invasive: Slightly moving the cover leaves can be required in some cases. Similar
to robotics, the camera can be in the active part, but the data collection with UAVs
needs to be done similar to close-up imaging.

– Interactive: This requires real-time analysis; the UAV can navigate to the
interesting areas and go through them in detail.

– Fleets: Multiple drones can work interactively in a same case or in different
cases. Fleets can decrease the field visit time.

– Time series: Autonomous UAVs can routinely inspect fields or targets, and the
changes can be tracked similar to mining industries.

Possibilities for sensor technology development:

– New technologies: These are different spectral areas, fluorescence, and ground-
penetrating radar. Each interesting phenomenon has different spectral response.

– Active systems: This will decrease errors in the pre-processing and could even
provide absolute values like laboratory instruments, but it needs close-up imaging
and controlled external lightning conditions.

– New integrations: Real-time integration to latest satellite imagery. Integration
of different imaging solutions can ease processing.

These will have a great impact on all of the data quality elements.

3.2 Data Management

Impacts based on farming data management development:

– Digital twin development: Pre-processed data is recorded as such and it updates
the digital twin. Imaging is not essential, but if done, it can be exploited.
Measurements are not forced to estimate real values.
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– Simulation: In addition of being part of digital twin, simulation will also take a
role in reference data construction and provide synthetic data for measurement
development.

– Data availability: This eases data analysis done by third-party, more specialized
services

– Internet of Things: This provides real-time external data, such as information
from traps. They can detect thresholds and launch UAV campaign or act
interactively.

– Communication technologies: These enable real-time exploitation of external
measurements.

– Data processing: Edge computing and real-time analysis offer more and more
frequent results. Machine learning and new analyzing methods can offer robust-
ness.

The affected main quality elements will be accessibility, readability, consistency,
and data completeness. These data management technology developments will
also have an impact on redundancies, thematic precision and cluster accuracy, and
possibly temporal validity. Data management can also impact indirectly all of the
quality elements.

3.3 Execution Technologies

Changes in current farming work executions may have the following effects:

– Spraying UAVs: non-destructive field works on demand; hotspot management
– Other UAV works: new applications for imaging: flowering, insects, etc.
– Robotics support: imaging to produce tasks for field robot in real time
– Robotics overview: scanning environment widely for robotics safety monitoring

Rather than impacting the quality elements, execution technologies will generate
new imaging applications as such.

3.4 Farming Methods

The technologies related to farming methods are:

– Intercropping technology: plant optimization similar to precision farming,
mixtures, and densities

– Selective harvesting: work execution timing at field scale or locally
– Mixed field: performance analysis during the growing season
– Agroforestry: Methods for accessing difficult locations

These methods will also rather deliver new applications than impact on quality.
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4 Discussion and Conclusions

This paper presented several different ways how to develop UAV imaging in smart
farming context. The time scale of these technologies varies a lot. While the working
UAVs already exists, data management technologies are mostly concepts and gen-
eral future frameworks and approaches. The related technologies were divided into
four different categories listed here and followed by the most notable development
branch: (1) measurement technologies, new imaging techniques and styles; (2) data
management, digital twin and data collection for it; (3) execution technologies,
working drones and on-demand actions; (4) farming methods, mapping the success
of intercropping.

As this paper presented ideas at very early TRL levels, or even at the stage where
the end technology is not recognized, the paper provided partly subjective view
points as it is required when predicting future trends.

Two major challenges are recognized: the generalization of the imaging process
and the economic payoff of different applications. As currently the UAV imaging
is struggling with the affordability of precision farming actions, the billion-level
impacts with pests and diseases are in hand.

One way for the next steps would be to go into details of individual cases by
taking steps on TRL levels. Another possibility is to broaden the approach from the
technology size to agronomy, agroecology, and economics and determine the most
potential applications.
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Role of Drones in Characterizing Soil
Water Content in Open Field Cultivation

Antti Halla, Nathaniel Narra, and Tarmo Lipping

Abstract Soil water content is a central topic in open field cultivation. In Finland’s
boreal region with four thermal seasons, it has many roles which alter throughout
the year. Climate change is changing the weather patterns, affecting all water-related
processes and challenging the current farming practices. Better understanding of
soils and their characteristics regarding response to water processes is called for,
and data collection has a key role in this. Precision agriculture has been driving
data intensification in farming. Unmanned aerial vehicles, or drones, have many
applications and overall wide interest as an emerging technology in agriculture.
Yet they lack an established role in day-to-day farming practices. Regarding data
collection in open field cultivation, drones can be compared – or combined –
with satellites, rovers, stationary devices, as well as plain old on-site observations
by the farmer. In this study we give an overview of recent published literature,
looking at data collection from the perspective of soil water information. We
assess the opportunities and challenges of using drones in characterizing soil water
content, mainly using soil and plant properties as proxies for it. Drones are useful
in on-demand, nonintrusive, high-resolution spatial mapping of field properties.
Soil moisture monitoring however requires frequent measurements, limiting the
applicability of current drones.

Keywords Soil water content · Plant available water · Leaf reflectance · Soil
reflectance

1 Introduction

Open field cultivation relies on a complex interdependent system of plants, soil,
and weather. Water, essential for plant growth and the upkeep of soil biota, is a
critical component in this system. Its movement between and within each part of the
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Fig. 1 Weather, soil, and plants form a dynamic system. (a) A combination of sensor platforms is
needed for comprehensive measurements. (b) Soil water can be naturally recharged from above by
precipitation and gravity and from below by ground water and capillary rise. (c) Rainwater needs
to infiltrate the surface or it accumulates in puddles and flows overland. (d) Percolation to deeper
layers may be prevented by a compacted hardpan. (e) Excess water is drained through underground
drainage pipe. (f) Plants take in water through their roots and transpire water vapor through their
leaves. (g) Part of the water is evaporated back to the atmosphere

system (Fig. 1) is guided by equally complex hydrological factors. Weather largely
determines how much water enters a non-irrigated crop field and how much exits
through evaporation loss. Water in the plants is essential for photosynthesis and
other biological functions as well as for transport of soluble nutrients. Roots of most
plants also need oxygen; therefore excess water at root level can damage the crops
by creating anaerobic conditions.

Besides being crucial to plant growth plants, water can influence working
conditions, soil biota, and soil morphology, all of which can in turn lead to lasting
qualitative changes in the soil. Heavy machinery in wet, soft soil can lead to
compaction in the soil [2], while freeze-thaw cycles can alleviate it [26].

Soil water can be naturally recharged from above by precipitation under grav-
itational force and from below by capillary forces on ground water. How the
soil responds to incoming water is defined by soil hydrological properties which
are largely a function of mineral texture, aggregate structure, and soil organic
content. These properties show significant spatial variation at scales small enough
to show heterogenous distributions between fields and even within individual fields,
both horizontally and vertically. A combination of multiple sensor platforms and
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measurements help in forming a complete picture of the water dynamics within
a field: satellites, aircrafts, ground vehicles, weather stations, ground probes, and
drones.

1.1 The Need for Water Data

Knowing the current and forecasted state of soil water content and its availability to
plants has significant implications to optimizing resources. Indeed, an ecologically
sound management of the farm requires this information. Understanding the
dynamics of this soil-water-plant system requires data that can characterize it and
help explain the underlying processes. As this understanding develops, more needs
for additional data collection can be identified. Improvements in technology enable
us to measure properties of this system that has previously been out of reach. They
can also increase the quantity and quality of the collected data in general as well as
the efficiency of the data collection process itself.

Climate change is expected to disrupt water-related phenomena. The outlook in
western Finland is more precipitation from autumn to spring, less snow coverage,
longer dry periods during growing season although more intense rainfall events [39].
Predicting water content in different weather scenarios can help in assessing the
risk to crop production. The current crop growth models in use that depend on soil
moisture content are typically calibrated for regional water patterns of recent history.
If these patterns are to change, then it becomes essential to recalibrate management
practices. In addition, increasing awareness of and drive to end inefficient practices
that lead to nutrient leaching, or water wastage, has made soil moisture monitoring
an important aspect in open field farming.

1.2 Measuring Soil Water Content

Soil hydrology and measurement of true soil water content have been presented
comprehensively by Novák et al. [37]. While providing accuracy these methods
are labor, time, and resource intensive, which limit their practical application in
everyday farming context. Notably, the gravimetric method requires extracting a
soil sample and drying it in an oven. They do however serve an important role
in ascertaining the true value with some confidence, in instrument calibration
and model development. Data on features whose correlation with soil-water is
established can also be used, albeit with lower confidence. If a correlation can
be established, there is value in low fidelity characterization of soil-water with
high acquisition ease and resolution. Remote sensing methods together with the
necessary data post-processing steps can be computationally more intensive and
also laborious to set up but are more conducive for automation.

Water content varies with space and time. Spatial variation is, for example, due
to differences in soil properties, topology, precipitation level, and relative location
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respective to underground drainage, which makes reliable extrapolation from point
measurements difficult. The rate of change can be high especially during growing
season.

In this study, instead of direct measurement, we look at the most common meth-
ods for estimating the soil water content through indirect proxy measurements that
correlate with the actual soil moisture. For the purposes of this study, we divide these
proxy variables into soil proxies and plant proxies, which measure soil water content
through soil or plant properties, respectively. Soil proxies measure properties of the
bare ground, such as its dielectric permittivity or spectral reflectance. Plant proxies
measure, for example, the plant canopy’s spectral reflectance or temperature. The
list of variables here is not meant to be exhaustive. Any variable that correlates
with soil water content could be included. Well-known examples are given while
the focus of the study is in the methodology.

A conceptual model is presented in Fig. 2 describing how, for the purposes of
this study, the water-related phenomena and variables are assumed to be related to
the measurements of proxy indicators. As an example, the Normalized Difference
Water Index NDWI (sometimes called moisture index NDMI) uses two infrared
spectral bands of an image sensor to measure liquid water content of vegetation
canopies. Similarly, the commonly used vegetation index NDVI is calculated from
red and near-infrared channels, measuring chlorophyll-related leaf reflectance in the
plants [20]. Plant available water is a necessary, although not sufficient, condition
for the existence of chlorophyll in leaves. Thus, both NDWI and NDVI are plant-
related proxies for plant available water. However, as virtually all proxies, they are
influenced by many other factors. Two main factors, namely, soil characteristics and
plant type, are shown in the figure as parameters, which may need to be calibrated
for when interpreting proxy measurements.

The model in Fig. 2 is static, depicting the state of the system at a given moment.
Each arrow represents an assumed causal influence in the direction of the arrow.
This framework is used as a guiding structure for organizing the literature overview
in this study.

1.3 Drones in Agriculture

The use of drones, or more formally – unmanned aerial vehicles (UAVs) – in
agriculture is increasing rapidly. UAVs are used in crop production, forestry, and
disaster risk reduction. Applications in crop production range from crop health
monitoring and irrigation planning to weed detection and insurance [17].

Broadly speaking, the role of drones can be seen either as passive or active,
depending on how much they interact with their environment. Active drones can
spray pesticides or take physical samples. This study is focused on passive data
collection. The actual end application of the data can be crop stress monitoring,
crop detection, seasonal planning, loss estimation, etc. In these roles, drones can be
seen as an alternative or a complementary tool for acquiring the needed information.
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Fig. 2 Soil and plant properties as proxies for water related information in the soil. Measurements
are typically several steps apart from the actual phenomena of interest. There are several paths
that can be taken, depending on the situation, available technology, and resources. Outputs from
multiple sensors can be combined for more reliable indicators

In addition, drones have been used in ancillary roles, such as in collecting data from
wireless sensor networks [42, 47].

Drones, ground vehicles, airplanes, and satellites can all be equipped with same
or similar measurement technology. Therefore, much of the literature regarding
soil water measurement is presented under the topic of the given technology. Data
acquisition by drones typically has specific advantages and constraints in terms of
spatial and temporal resolution of the data as well as practical considerations of
operating a drone. The wide and growing range of different types and sizes of drones
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from large military drones to “smart dust”; their properties in terms of endurance,
range, weight, and altitude; as well as their applications has been reviewed and
classified by Hassanalian and Abdelkefi [24].

The ability to do on-demand high-resolution mapping of fields without disturbing
either soil or plants is a main advantage of a drone in open-field farming. Constraints
on a drone as a sensor carrier platform are due to factors such as weight of
the instruments, required proximity to ground, and flight time. Airborne vehicles
measuring soil and canopy surface only through reflectance and spectrometry
have limitations. Some of the sub-surface properties can be estimated from these
images, if the data generating processes are known. Using manual sampling to
acquire reference data on parameters such as soil texture, soil structure, and organic
content, for example, would allow for more accurate estimates compared to visual
examination of the obtained images alone.

Drones themselves are becoming commodity items. The value of drones in data
collection however would come from their capabilities and limitations as a sensor-
carrying platform. Utility for a farmer additionally requires a mature data processing
workflow that can routinely turn the raw collected data into relevant information that
improves their field management decisions.

1.4 Objectives

This is a preliminary study to map out the different aspects related to measuring
water content in a crop field and to provide an overview of recent literature on the
topic. We approach the crop field as system from two different perspectives – water
state and soil properties. We look at methods to measure the water state on the field
at a given moment, as a snapshot of the dynamic system. That enables water stress
detection in monitored conditions. We also look at measuring system properties,
those relatively stable soil hydrologic properties that could aid in characterization of
soil’s response to water events. Knowledge of this response would allow us to better
estimate the soil moisture conditions at a given time, even with scarce data. It would
also enable forecasting the availability of water to plants and simulate the behavior
of the field in different scenarios such as prolonged drought or excess rainfall. We
look at how drones have been used in these tasks and what is the future outlook.

2 Measurement Targets

The target is to estimate the actual water content in the soil and the plant available
water specifically. As discussed above and shown in Fig. 2, we focus on measuring
the variables of interests indirectly through proxies in soil and plants. There are also
other variables, such as weather data, that covary with soil water content and could
therefore be used to improve estimations of it.
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2.1 Soil Proxies

Spectral properties of soil correlate with soil moisture and can be used to monitor
moisture conditions in bare soil [16], such as drying of the soil in spring. Remote
sensing soil surface reflectance has limited utility as a proxy, as it provides
information mostly about the soil surface, which can differ considerably from
moisture below. Soil surface characteristics in itself have a large role in determining
the amount of infiltration and runoff, especially with crusting [11]. Furthermore,
even the soil surface is hidden below the crop canopy during the growing season.

Soil relative dielectric permittivity is a typical soil proxy and can be measured
using ground probes [37] as well as radar [9, 30].

When there is plant canopy, the soil is typically not directly observable using
reflectometry, but a soil probe or radar is needed.

2.2 Plant Proxies

Plant physiological properties can be used to detect water stress, which in turn is an
indicator of plant available water content at root level. Gago et al. [19] reviewed
literature on using UAVs to measure water stress by using leaf reflectance and
temperature and called for studies measuring leaf chlorophyll fluorescence as a more
direct indicator of photosynthesis.

Spectral imaging, both within and beyond the visible spectrum, is the main
method for measuring plant proxies. Information from different spectral bands is
combined into specialized indices that target specific phenomena of interest, for
example, NDVI for crop vegetation vigor, NDWI for water content of crop canopy
[20], and Leaf Area Index (LAI) for estimating evapotranspiration among other
properties [48]. Candiago et al. evaluated vegetation indices for precision farming
applications from multispectral UAV images in [7].

Hassan-Esfahani et al. [25] used plant proxy together with gravimetric reference
samples to produce a machine learning model for surface soil moisture estimation.
In addition to multispectral and thermal images, their best performing input combi-
nations required knowledge of field capacity, derived from soil texture samples.

2.3 Soil Characteristics

Soil characteristics are those relatively stable properties of the soil that affect the
interaction between soil and water, i.e., how rainfall infiltrates the surface, percolates
through soil layers, how much of it is retained in the soil, and how much available
for plants to use [37]. Mineral texture and aggregate structure of the soil as well
as its organic matter content are the main components. These are relatively stable
properties, which can be considered constant at least within a single season. There
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can however be considerable spatial variation within a field, both on the surface and
sub-surface. The presence, type, and condition of underground drainage systems and
other installed infrastructure that affect the water dynamics of the field are similarly
stable factors in the system.

Soil characteristics don’t generally vary with water content, but knowledge of
them can aid in the estimation of water content and its behavior over time, as they
affect the sensor measurements and may need to be calibrated for. They can also
be used as inputs to pedotransfer functions (PTF) to estimate soil hydrological
properties, such as field capacity and wilting point, based on their statistical
relationships in large soil data sets [43]. The traditional way to characterize soils
is by collecting soil samples and analyzing them in a laboratory. Technologies that
would measure soil properties in situ or reducing the number of needed soil samples
would therefore also help in estimating soil water content.

3 Measurement Technology

Technology for measuring proxies for soil water content in soil and plants is divided
here into image sensors, radar, and ground probes. As same or similar sensors can
be mounted on different platforms, sensor-specific reviews irrespective of platform
are also included here for broad perspective and summarized in Table 1. Selected
case studies that exhibit utility of drones as a platform are summarized in Table 2.
An overview on the literature is given briefly below.

3.1 Ground Probes

Ground measurements can be used to collect continuous time series data such as
soil moisture data with sub-surface sensors. Calibration can be an issue, as there is
no generic method that works across all manufacturers. Many manufacturers don’t
give access to either to the raw data or the internally applied conversion functions
[27].

One challenge is that ground probes measure point data. This point data needs to
be interpolated over potentially highly variable soil properties. In addition to point
sensors, mobile sensors for apparent soil electrical conductivity have been used for
soil spatial variability mapping [12].

The use of drones here is limited. Using drone mounted ground probes would
require a mechanism for inserting the probe into the soil without damaging it.
The soil around the inserted probe also needs time to settle for accurate reading.
Otherwise, drones could be used to collect data from sensors with wireless
connectivity or in combination with a ground vehicle.
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Table 1 Generic sensor related reviews

References Title Sensor Year

Gago et al. (2015) UAVs challenge to assess water stress for
sustainable agriculture

RGB,
multispectral,
hyperspectral,
thermal

2015

Barbedo (2019) A review on the use of unmanned aerial
vehicles and imaging sensors for monitoring
and assessing plant stresses

RGB,
multispectral,
hyperspectral,
thermal

2019

Adão et al. (2017) Hyperspectral imaging: a review on
UAV-based sensors, data processing and
applications for agriculture and forestry

Hyperspectral 2017

Lu et al. (2020) Recent advances of hyperspectral imaging
technology and applications in agriculture

Hyperspectral 2020

Messina and
Modica (2020)

Applications of UAV thermal imagery in
precision agriculture: state of the art and
future research outlook

Thermal 2020

(Brocca et al.,
2017)

A Review of the Applications of ASCAT
Soil Moisture Products

Radar (ASCAT) 2017

(Edokossi et al.,
2020)

GNSS-reflectometry and remote sensing of
soil moisture: a review of measurement
techniques, methods, and applications

Radar (GNSS-R) 2020

Liu et al. (2016) Ground penetrating radar for underground
sensing in agriculture: a review

GPR 2016

Klotzsche et al.
(2018)

Measuring soil water content with ground
penetrating radar: a decade of progress

GPR 2018

Zajícová and
Chuman (2019)

Application of ground penetrating radar
methods in soil studies: a review

GPR 2019

Corwin and
Scudiero (2020)

Field-scale apparent soil electrical
conductivity

Apparent Electrical
Conductivity
sensor

2020

Babaeian et al.
(2019)

Ground, proximal, and satellite remote
sensing of soil moisture

Ground, proximal,
satellite

2019

Hardie (2020) Review of novel and emerging proximal soil
moisture sensors for use in agriculture.
sensors

Proximal sensors 2020

Jackisch et al.
(2020)

Soil moisture and matric potential – an open
field comparison of sensor systems

Ground probe 2020

3.2 Radar

Radar is an active remote sensing method, where the device sends an electro-
magnetic pulse and records the reflected or scattered return wave. Depending on
the wavelength, radar signal can penetrate the plant canopy or soil. Radar signal
frequencies range from high frequency radio waves (MHz) to around 100 GHz
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microwaves. Soil moisture can be derived from the dielectric constant extracted
from the return signal [31].

Advanced Scatterometer (ASCAT) on board of satellites has been used in
measuring surface soil moisture but is in its own not enough for precision agriculture
applications [6] due to coarse (1 km+) resolution.

Global Navigation Satellite System Reflectometry (GNSS-R) is a method that
combines active satellite signals with an on- or near-ground passive receiver and
has been used to measure surface soil moisture [14]. A prototype for UAV mounted
GNSS-R for retrieving soil moisture was presented by Jia et al. [28].

Ground-penetrating radar (GPR) is a term used for radars capable of subsurface
measurements, with signals in 10–2000 MHz range. They have been used in civil
engineering [44] and archeology [8] for applications such as object detection and
assessing structural health. Resolution and maximum measurement depth depend
on the signal frequency: higher frequency detects finer details but attenuates faster.
In agriculture the depth of interest is approximately from the surface down to the
depth of 2 meters. With a proper frequency, it is possible to characterize the soil in
agriculture-relevant depth [32].

GPR has been used in characterizing soil characteristics and dielectric properties
[9]. It can also give information about the soil water content, which affects the
dielectric permittivity of the soil, which in turn affects the radar signal [30]. Zajícová
and Chuman [46] reviewed applications of GPR in soil studies, concluding that it
can assist in estimating soil moisture and in detecting soil horizons, especially in
sandy soils with low cation exchange capacity (CEC). They point out that while
clay soils have been found to be unfavorable for GPR surveys, more due to CEC
than grain size, with high attenuation of the radar signal, even a penetration depth
of 0.5 m would be sufficient for many applications.

GPR has been mounted on drones for landmine detection by Fernández et al. in
[21], using synthetic aperture radar (SAR) algorithm. Wu et al. [45] described using
a 1.5 kg radar system operating at 500–700 MHz range to map moisture in the top
10–20 cm of the soil.

3.3 Spectral Imagery

Cameras are typically categorized as visible light (RGB), multispectral, hyperspec-
tral, and thermal cameras depending on the electromagnetic spectral range within
which the sensors operate. RGB cameras operate within the visible spectrum (red,
green, and blue spectral bands). Multispectral cameras include the visible range as
well as selected bands in the near-infrared (NIR) short-wave infrared (SWIR) range.
Hyperspectral cameras work in the same spectral range, but while both RGB and
multispectral cameras capture distinct spectral bands, hyperspectral cameras capture
a contiguous spectral range. A basic premise in spectral imagery is that certain
plant phenological phenomena can be correlated to reflectance values in specific
wavelengths. These wavelengths, or bands, can be further refined into specialized
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indices. For example, NDWI is a combination of two near-infrared channels which
correlates with liquid water molecules in vegetation canopy [20].

Drone mounted hyperspectral cameras were reviewed by Adão et al. [1]. They
saw potential for drones as platform as the hyperspectral devices are becoming
smaller and lighter, although the amount of data collected by these devices can
be huge and the required processing complex. Hyperspectral camera was used by
Ewing et al. for soil gradation in laboratory conditions [15]. Hyperspectral devices
have previously been out of reach for many farmers due to high price, but more
affordable technologies and options are being developed and productized. One
approach is combining regular digital cameras with passive diffraction grating filter
and machine learning [41]. Even open-source do-it-yourself cameras have been built
and tested, such as in [40].

Barbedo reviewed the use of drone imaging for monitoring plant stresses. He
concluded that all approaches for water stress detection found had limitations for
practical adoption. Combining data from multiple complementary sources was seen
as the way forward, along with improved sensor technology, computer vision, and
machine learning techniques [5].

Thermal cameras, operating mostly in the mid-infrared wavelengths (3–8 μm),
have been used for assessing water stress with Crop Water Stress Index (CWSI).
This and other promising applications of UAV thermal imagery such as subsurface
drainage mapping are reviewed by Messina and Modica [36]. They pointed out that
low-resolution compared to RGB images, low number of applications for thermal
data, and required knowledge of thermography in the process are all limiting the
adoption of thermal cameras. López and Giraldo proposed a method for planning an
optimal irrigation route and rate, based on CWSI [33].

Drones have been used to provide variability maps to produce better extrap-
olations from point measurements. They have been used when the availability
of satellite imagery has been limited or when the spatial resolution hasn’t been
high enough. The minimum pixel size for multispectral imagery of the Sentinel
2 satellite from European Space Agency is 10x10m [3], while drones can achieve
sub-centimeter resolution.

3.4 Other Measurement Technologies

Light detection and ranging (LiDAR) has been used to create digital elevation
models [38] and to map canopy volume and height for biomass [10]. This data
can be used as proxies for crop vigor which in turn can be used with models
for field water balance, water flows, and accumulation points. Fitzpatrick et al.
proposed using thermoacoustic imaging that combines a microwave source with
an ultrasound receiver to overcome some of the limitations of current technology,
especially GPR [18]. Hardie reviewed a range of soil moisture sensors for use in
agriculture, identifying their limitations and concluding that current technology for
soil moisture measurement generally doesn’t often meet the practical requirements
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in farming [23]. Babaeian et al. did an extensive review on ground, proximal,
and satellite remote sensing of soil moisture, touching also other methods such as
neutron scattering, nuclear magnetic resonance, and gamma ray sensors [4]. They
found that many common methods only measure surface soil moisture and then
proceeded by reviewing modeling approaches for root zone soil moisture estimation.

4 Discussion

Measuring plant available water content at the field scale with confidence requires
combining data from multiple data sources. Making conclusive inferences about soil
water content based solely on remote sensing data can be difficult, if not impossible.
This uncertainty in the estimations could be reduced by combining the empirical
models for spectral data with physically based models such as hydrological and crop
growth models [4]. The cause of the detected features can be hard to identify because
many causes can lead to similar data patterns. While ground probes provide point
data with comparatively more proximal sensing of data, remote sensing technology
can be used for gaining spatial distribution information, and drones can be mounted
with several types of instruments to measure additional data on demand.

Opportunities for using drones in information collection are found when looking
at the gaps left by other technologies and seeing how the strengths of drones such as
spatial resolution, adaptability for different instruments, and non-intrusiveness can
help. Satellites with 10 m + spatial resolution can provide approximate information
at field level, but within-field variability may require higher resolution, which can
be acquired using drone-mounted cameras. For example, estimation of LAI using
Sentinel-2 data was studied and found to be unsatisfactory especially in precision
agriculture when within-field variability is a concern [29].

Satellite based radars (C-band, L-band) can typically measure soil to a vertical
depth of 2–7 cm of surface soil, but their horizontal surface resolution can be above
1 km [6]. On the other hand, near-surface ground-penetrating radars can characterize
soils in deeper layers with much higher resolution, both vertically and horizontally
[9, 30, 45, 46]. UAVs have the advantage of non-intrusiveness which allows it to be
used during growing season to get information about subsurface conditions while
also enables quick mapping of the whole field. High spatial resolution opens up the
possibility of measuring chlorophyll fluorescence which could provide a more direct
indicator of photosynthesis and allow for detection of water stress [19].

The conceptual model presented in the introduction is a static model with the
main purpose of guiding the literature research. It could be further extended for
use as a basis for a numerical model for estimating individual unknown variables,
when other variables are known. Each arrow would then add uncertainty to the
estimate as proxies move further away from the actual measurement target. For a
useful dynamic model, weather and evapotranspiration would need to be included
as well.
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All the different methods of measuring soil moisture described here are based on
indirect measurements of proxy variables and therefore unlikely to be satisfactory
individually. They are subject to various degrees of uncertainty from multiple
different sources, including measurement error and model error. When proceeding
from estimation of current state to forecasting, this uncertainty will be further
amplified. An important task is to quantify the different sources of uncertainty and
their contribution to the overall prediction. This uncertainty can then be reduced
by targeted data collection, including complementary measurements from different
types of sensors [13].

5 Conclusions

The interaction of soil and water is a central topic in open field farming, and
the changing weather patterns call for re-evaluating current field management
practices. Measuring soil water content is a multi-faceted spatiotemporal problem
with varying degrees of uncertainty. A tractable solution can be to measure soil
properties and assess plant canopy condition. Soil characteristics define the more
stable part of the system, while the highly variable water content can be estimated
through plant- and soil-related proxies.

In this study, several key variables related to soil and plant available water content
along with their relationships were identified and presented as a conceptual graph
model. This graph was then used to guide a literature search to find applications of
drones in measuring soil water content and characteristics in open field cultivation.
This graph can be used as a tool to choose measurement methods and targets and
diagnostics and in understanding the field water dynamics in general. It could further
be used as a basis for developing a model to estimate the yield gap on a given field
due to water issues. In the future this graph can be iteratively expanded upon as the
need to include additional features and processes to the model arises.

Drones have characteristics that make them useful in measuring water content
in open field cultivation, especially in on-demand, high-resolution spatial mapping.
Visual range and multispectral cameras are commonplace in drones, but hyperspec-
tral and thermal cameras along with radar technology can be mounted on drones as
well, taking into account weight and cost limitations in practical applications.

Continuous monitoring and forecasting soil moisture require frequent measure-
ments. Autonomous drones may be able to do this in the future, but at the moment
this information needs to be provided by ground probes and other devices deployed
at the field. In these cases, drones may still have a role in measuring the more stable
properties and patterns of the field that can be used to improve the soil moisture
estimates.

Even with collected data – with or without drones – the challenge of combining
and analyzing data from different sources remains, before the results can be useful
in practical decision-making for a farmer. The amount of data collected and the
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number of potentially computationally intensive, post-processing steps required can
quickly become overwhelming, calling for proper infrastructure and high level of
automation throughout the data processing chain.
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Ground-Penetrating Radar-Mounted
Drones in Agriculture

Petri Linna, Antti Halla, and Nathaniel Narra

Abstract For precision farming, we need more and more accurate information not
only about the crop, but also the soil. Surface measurement is fairly easy, with huge
amounts of data being received from satellites all the time. With the help of drones,
that data can still be refined, but the measurement price increases depending on the
equipment as well as working time. With regard to soil measurement, measurement
slows down and becomes more expensive.

The study mapped research papers of ground-penetrating radar and those
different topics where they have been used. The topics were limited to agriculture
only. The used frequencies were discovered from every topic. The study investigated
artificial intelligence papers related to ground-penetrating radar and needs to begin
an own artificial intelligence study in this subject. Finally, various concepts were
evaluated for conducting ground-penetrating radar research. One of these concepts
was to connect a ground-penetrating radar to a drone.

Keywords Soil compaction · Moisture content · Soil layers · Soil salinity ·
Drainage system · Roots · Biomass · Carbon · Robot · GPR

1 Background

When moving to the precision farming, increasingly exact information above
ground as well as soil is needed. The first mentioned part is easy because there are
a lot of data available from satellites all the time. With a drone, similar data can be
obtained much more accurately, but depending on the equipment and spent working
time it requires financial investment and data processing skills. Underground data
collection is often time-consuming, expensive, destructive, labor-intensive, and
point-based [34].
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In Finland, soil variations can be very large for an individual field, so more
measurement is needed to get a clearer picture of the field in question. In our
previous MIKÄ DATA project, we made a grid at 50-m intervals for four different
survey fields, giving each field about 30 to 40 soil sample points. The project
collected data from several different sources, including satellite and drones acquired
for the project. Drone imaging was performed every week on an area of 100
hectares, resulting in a complete time series for the entire growing season from
two summers. The fields were scanned with electrical conductivity (EC) devices
from Veris (Veris Technologies, Inc., USA) and Geocarta (Paris, France); the former
also contain a Ph sensor and NIR camera. The EC-related devices provided a very
accurate picture of the field and how the soil types in the field varied within the field
and at different depths. The NIR camera also captured the soil mulch in the field.
The Veris device also obtained a Ph value as point data about every twenty meters.
Scans were performed on 12-m lines. The Veris Tech device reached a depth of one
meter, and the Geocarta device reached a depth of two meters. This information was
used to gain a better understanding about the soil and nutrient variation in the fields.

The same data were used to develop a yield forecast model. Historical data from
the soil did not seem to play a major role in the development of the crop forecast
model. The crop represents very strongly the current growing conditions of the field
and the structure of the soil, so soil information does not provide new information
during the harvest season for crop prediction [37, 38].

After the MIKÄ DATA project, the PeltoAI and BioEväät projects were started,
which study in particular the growing conditions and water management of fields.
The projects involve almost 20 fields. So far, field problems have been related to (1)
water management for a variety of sectoral reasons (e.g., broken drainage or lack of
water during the season), (2) low-organic matter, (3) compaction, (4) problematic
elevation, (5) high pH values, (6) problematic history (e.g., old forest land, or food
soil disposal), and (7) carbon emissions on peatlands. Some of these problems have
also been identified from the available open data. For example, a broken drain was
located from open orthophotos from the National Land Survey and moisture maps
from the Sentinel satellite. Admittedly, the automatic detection of this problem
would require the development of a more complex analysis. The surface elevation
problems were found with the help of the openly available lidar data of the National
Land Survey and the rain simulations made from them. NDVI maps collected from
Sentinel satellite data or by drone provided a good indication of the problem areas
in the field but did not directly identify the real problem accurately. The problem
could be, among other things, compaction, water management, or a lack of organic
matter.

The results of the above-mentioned projects strongly indicate that we need a
solution that will allow us to find out more about soil compaction, moisture, soil
layers, and the amount of biomass present. Based on this information, it would
then be possible to assess the growth potential of the field more accurately and
find solutions to the identified problem areas. Veris equipment was used in the
Spring of 2018, but the measurements made did not focus on humidity and humidity
calibration was not done. However, EC devices offer the possibility of moisture
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mapping in addition to other mapping [15, 24]. Ground-penetrating radar (GPR)
is not technically a new invention. It has long been used, for example, in civil
engineering and in the assessment of the condition of roads and railways. However,
according to Liu et al., in a wide review paper, GPR is still a very little-studied
technique in agriculture [34].

2 Introduction

This chapter focuses on GPR. First, the basic features of GPR are introduced. GPR
is used, for example, to exam the structures of concrete or find objects in the soil.
So GPR can provide information without having to break up the structure. The GPR
devices use microwave bands of UHF and VHF, which usually means in practice
about 100 MHz to 2 Ghz. Usually, the device can use only a certain frequency band,
thus concentrating only on the identification of certain matters. The low frequencies
will go to several ten meters in the soil, but their precision weakens according to
depth. Higher frequencies separate more details but with them get only to the surface
layers. The GPR device transmits the signal and the same device contains a receiver
with which it catches the signal. From the force, speed, and echo of the signal echo,
the device is able to separate matters from the target.

The operating principle of GPR is illustrated in Fig. 1. It transmits the signal (Tx),
and the signal will come back from different layers or targets as a reflected wave.
This signal is received with Rx, and then signal is processed and showed to the user.

In the literature review were mainly used the sources of IEEE and Springer.
Because there were a lot of different sub-topics of applications of GPR, only topics
that are linked or beneficial to the agriculture were focused. The papers that are

Fig. 1 Structure of GPR
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related to the AI have been filtered according to the age of paper, because of quick
developments of AI during the ten last years.

In the last chapter has been utilized own experience of different concepts. The
robot concept has been studied earlier, and commercial site equipment has shortly
tested. The drone equipment has been used for couple of years, so it helps to build
GPR and drone concept. The combination of the trailer and the all-terrain vehicle of
a study has also been analyzed at a practical level.

The research questions relate to the mapping of GPR utilization potential in the
pilot fields. (1) What issues can be identified with GPR in agricultural perspective?
(2) What the frequencies of GPR should be used in agriculture? (3) How to utilize
AI in GPR data analysis? (4) What kind of concept should build where is utilized
drone with GPR?

3 What Issues Can Be Identified with Ground Radar?

The following subsections cover things that can be determined from the soil with
GPR. The aim is to find GPR studies from agriculture sector or which can apply to
agriculture sector.

3.1 Soil Compaction

Soil compaction is a big problem in fields because it prevents the roots from growing
properly and prevents water from being stored in the soil. Big and heavy machines
are constantly causing fresh compaction. Certain soil types are also more sensitive to
compaction. In Finland, the challenge for beet cultivation is also that it is collected
in late autumn with large machines, which means that the soil is usually very wet
and easily becomes compacted.

According to the results of [1], compaction causes many problems in cultivation,
as strong compaction reduces the macropores within the soil matrix and hence
reduces water content. These cause degradation to the soil and thus reduce the
amount of crop. They used an 800 MHz antenna in their study. They had induced
compaction by driving a tractor several times on the same lines. The compaction
caused by the tractor was detectable by GPR. They also noticed how soil compaction
restricted root growth.

Wang et al. [51] used a 500 MHz antenna. They noticed strong correlation
between electromagnetic wave velocity and bulk density. In addition, they noticed
that the soil dielectric constant was strongly dependent on the soil water content.
They estimated that a plenty of field research would still be required to assess the
relationship between soil compaction and GPR.
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3.2 Moisture Content

Moisture measurement is strongly associated with soil dielectric permittivity, the
dielectric constant, and electrical conductivity. Moisture can be calculated using
these values, but in addition, the frequency of the measuring device must be taken
into account [7, 8]. Dielectric permittivity means the ability of a medium to allow
passage of electromagnetic energy, and electrical conductivity means the availability
and mobility of electrical charges in the medium [48].

Lu et al. [36] evaluated that soil moisture content could be measured in
three different ways based on their scale: point (e.g., the gravimetric method),
intermediate (e.g., GPR), and coarser scale (e.g., satellite). According to their
research, GPR can achieve high measurement accuracy, but more research is needed
with different soil types and GPR methods. They used 250 MHz frequencies.

There have been efforts to measure moisture from satellites in “The Soil Moisture
and Ocean Salinity” mission and thus obtain moisture data from large areas, but the
problem is that the moisture is only above the ground or a few centimeters from
the ground. For this reason, a device such as GPR is needed, whereby moisture
can be measured to a greater depth [13]. Algeo et al. [2] tested three different
frequencies of GPR: 250, 400, and 1000 MHz, which was used for the evaluation
of early time signals and signal traveling time. The results look promising but still
need confirmation before commercial implementation.

In many studies, it has been noticed that it is possible to measure the volume
content of moisture in the soil [26, 40, 42, 53]. Wu et al. [54] recently conducted
a study where they built a drone with GPR. Over the 700 MHz frequency, they
faced the challenge of soil roughness associated with Rayleigh’s criterion. They
experienced disturbances in the 400–500 MHz range, so the final measurement
range chosen was 500–700 MHz. The study yielded promising results but still needs
further research and hardware adjustment. Liu et al. [33] obtained the best result
with the frequency of 900 MHz, and during their research, they made moisture
and root measurements to obtain more accurate results. Benedetto [9] used 600 and
1600 MHz antennas in their research.

Despite several recent studies, it is not yet entirely clear which frequencies are
suitable. Several of the above-mentioned studies state that the results are promising,
but the functionality of the method still requires confirmation.

3.3 Soil Layers

GPR provides a good indication of the lithological soil layers of the soil [42]. Roads
and railways in particular are interested in the condition and depths of the soil layers.
In fields, research can focus on the identification of soil layers or the identification
of the point between different layers. Benedetto and Tosti [10] made an evaluation
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of clay content and were able to identify even just a couple of percentages of clay
content. Their findings mainly focused on the 570–630 MHz range.

The Geological Survey of Finland (GTK) has carried out large geological surveys
in Finland. They have for many years researched more than 400 peat production
areas by GPR, utilizing 100, 200, and 250 MHz antennas. In the last few years, they
have also developed and used UAVs (i.e., drones) to collect multispectral data to
support GPR data [46]. The soil type of some of Finland’s fields is peat, so this
research also provides a really broad and good basis for field research.

3.4 Soil Salinity

Soil salinity in Europe is not a major issue. However, in southern coastal areas of
Europe, this is starting to become a problem when seawater mixes with groundwater.
Daliakopoulos et al. [16] state in their research that remote sensing and especially
satellite data are a promising measurement method for soil salinity. There is still a
need to develop measurement of soil salinity to gain a deeper understanding of the
soil and develop soil protection and remediation as a whole.

Electrical conductivity represents a material’s ability to conduct electric current,
and it also indicates the amount of mineral salts it contains. A high-conductivity
level indicates high salinity. In fields, the amount of salts is increased by fertilization.
In Finland, the fertility analysis of soil sample conductivity is usually measured as
electrical conductivity in mS/cm and is reported as a leading number by multiplying
the obtained measurement result by ten. Usually, the leading number is less than
2.5. Higher conductivity means that plants have more difficulty to get nutrients and
water.

According to many studies, the soil salinity can be measured by GPR [17, 42, 55].
Soil salinity has a very strong link to soil electrical conductivity, so soil salinity can
be calculated based on the electrical conductivity and soil moisture. Awak et al.
[6] used 200 MHz, and their research result was that GPR can be used to get even
high-resolution electrical conductivity maps.

3.5 Drainage System

Detection of various objects is the easiest area for GPR. In agriculture, this may
relate to the examination of locations of drainage pipes, if the exact location of
the drains is not known. GPR detects easily, especially older clay-made drainers,
because they will give a stronger echo, instead of new plastics, which have a weaker
double echo from the top and inside of the pipe. The best echo from drainpipes by
GPR will be obtained by driving over them vertically.

As a result of our own GPR testing, the pipes can be identified well at 1000
MHz but also at lower frequencies. The frequency is linked to how deep the pipes
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are. In our own field tests, 1000 MHz was sufficient for a depth of up to 3–4 m,
so the frequency was suitable for checking drains. In Finland, the need to search
for a drainage pipe system is quite small because of a good centralized long-term
archiving procedure of drainage pipe maps. Allred [4] obtained good results with
250 MHz antennas. However, in a subsequent study, Allred et al. [3] found that
drainage pipes are easier to recognize from homogeneous rather than heterogeneous
soils.

3.6 Roots, Biomass, and Carbon

The measurement of root systems using GPR has been studied mainly for trees,
achieving 85% accuracy [42]. The diameter of a tree’s fine roots is less than 2 mm
and that of finest roots smaller than 1 mm [25]. When measuring root systems in
fields, the challenge is that the root sizes are much smaller. Winter wheat has fine
roots of 0.5–2.0 mm in diameter for example and very fine roots that are less than 0.5
mm in diameter [35]. Root measurement can be focused on many different things:
diameter, biomass, architecture, depth, quantity, and detection [34]. The importance
of root system measurement is related to the rising trend of measuring the amount
of biomass in a field, both underground and above ground. The amount of carbon
formed from this biomass can be estimated, which in turn is strongly linked to the
condition of the field and to environmental issues such as the evaporation of carbon
dioxide from the field.

Shen et al. [44] quantified soil carbon with GPR, and the best detection for root
diameter was 56% when they used a GPR frequency of 1800 MHz. Liu et al. [35]
noticed that accuracy was linked to soil moisture and different soil conditions, with
wet clay soil being better than dry sandy soils.

The study of crop root measurement using GPR is still very limited. Research
is required to find out the impacts of other soil factors that can affect the GPR
signal and accuracy of root estimations. GPR is a significant potential technique
in estimating the ratio of surface biomass to underground biomass for different
varieties. This data could be used to make prediction models that would later be
calculated for biomass calculated only from the surface.

4 What Frequencies Should Be Used in Agriculture?

The aim is to find out which frequencies have been used in the applications of the
first research question. The previous section listed issues that can be clarified with
GPR and the frequencies used in those cases. The lowest frequencies started at about
100 MHz and the highest was closer to 2 GHz.

Liu et al. [34] have extensively explored potential issues from an agricultural
perspective as well as their frequencies. Tables 1 and 2 summarize that the best
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Table 1 Soil measurement frequencies of GPR, edited from Liu et al. [34]

Target Frequency

Soil clay content 500, 600

Hardpan 500

Soil moisture, soil water 400, 100, 200–800, 600, 1600

Table 2 Root measurement frequencies of GPR, edited from Liu et al. [34]

Target Frequency

Root diameter and biomass 500, 800

Root biomass and root architecture 1000

Root diameter 900, 1000

Root biomass 1500

Root diameter and root depth 500, 900, and 2000

Root detection 900

Root number 900

frequencies are somewhere around 500 and 1000 MHz. On the other hand, it is
difficult to give any frequency that would fit every case. Some studies have used
devices that have a wider frequency range instead of just one frequency. Especially,
fine roots require a much higher frequency than others.

It would also be possible to try the gprMax tool [52], but it has only three different
antennas, which limits the matching of suitable frequencies. GPR still needs a lot of
research, especially in the agricultural sector, to get a clear picture of the usability
of different frequencies for finding different features. In addition, there are many
things to be investigated, and it is not yet possible to establish with certainty the
connections between all of them.

5 AI Development

In the previous research paper, we mapped out how much AI had been utilized in the
use of GPR data and what had been the identifiable issues during the past decade.
That study found more than 20 papers [32].

According to the summary of Table 3, the biggest efforts have been made to
identify landmines and various other objects. Other issues were also explored in
the individual papers. From an agricultural perspective, the most interesting are
such as “Water content and its prediction,” “Layer properties: Density, permittivity,”
“Moisture content,” and “Compaction.” Research must be continued in this area,
and efforts must be made to expand it to find more AI studies that focus on what is
necessary from an agricultural point of view. Many of the studies mentioned in the
table had been performed based on simulated data generated by the gprMax tool.
In this simulation tool, it is possible to use three different antennas, which were
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Table 3 GPR and AI research areas

Research area Article

Layer properties: density and permittivity [11]

Cover depth and diameter of rebar [22]

Moisture content [22]

Corrosion, infrastructure monitoring [5]

Bridge deck evaluation (density, moisture, rebar locations,
corrosion)

[28]

Detection of hidden surface crevasses on glaciers [53]

Landmines [23, 31, 40, 41, 49]

Water content and its prediction [57]

Small targets, holographic subsurface penetration [56]

Debonding, pavement monitoring [47]

Pipes, cables, and course of their track [43]

Deep and shallow crevasses [50]

Objects (generally) [14, 19, 29, 39, 45, 58]

1.5, 1.2, and 0.4 GHz. However, the study did not focus on identifying the GPR
frequencies [32].

Utilization of AI and especially the utilization of neural networks with newer
technologies require more research in order to interpret GPR data more automat-
ically. The aim is to explore the potential of AI for GPR data in agricultural
applications. Gathering GPR data the traditional way (walking with instruments)
can be slow, and clarifying the ground truth is challenging, especially when one
needs to go deeper into the soil.

The following aspects need to be solved before practical AI development:

1. Training data:

(a) How to put labels to the data?
(b) Ground truth: human evaluation vs. real knowledge?

2. Data:

(a) Real vs. simulated
(b) Before vs. after season or during growing season
(c) Own vs. open data
(d) Once vs. time series data
(e) Real vs. post-analyses

3. Finding a suitable AI technique

(a) Neural networks vs. machine learning
(b) Existing analyses [18]

AI needs a lot of training data. In GPR data, one challenge is to develop labeling
methods for marking drainage pipes for example. In addition, it is becoming a
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challenge to find out the ground truth of the soil. Many traditional soil samples
would probably be needed to confirm the entire data set and calibrate the results
with them.

Obtaining data for the development of AI requires human and equipment
resources. Collecting data may also involve challenges related to the time of the
collecting period, i.e., weather conditions need to collect data series, or seasonal
growing requirements. Real data should be used in AI development so that the AI
model can be trained correctly, but it may be possible to use simulated data to test
different initial models. When collecting data from fields, the challenges of data
transparency are easily encountered. However, some open data sets can be found in
foreign sources (example sources [20, 30], Data.gov,1 RGPR,2 Data.world3). This
problem was encountered in the study conducted by [32]. In many of these studies,
researchers used simulated data, which had been made with gprMax.

Choosing the right kind of AI technology requires the capture and tagging of the
appropriate data. The AI techniques used were listed in our previous paper, so this
requires more practical level testing. AI has been used quite little in the study of
GPR data, as only around twenty papers were found [32]. However, it is also good
to note the numerous existing methods of analysis.

6 The Concept Model of a Drone with GPR

We have outlined up to four different concepts for implementing GPR measurements
(Fig. 2). In our previous study, we introduced concept of an autonomous robot
mounted with a GPR device [32]. The robot designed for logistical purposes is
based on the ROS platform; however, its design will also consider the needs of
a GPR, such as power supply, navigation accuracy, and bigger tires for improved
mobility. An autonomous robot can help with improving time and labor required
for data collection. This is especially convenient if there is a need to conduct time
series data collection in the same area. The constraint is the power supply needs of
the robot and the challenges associated with the terrain, such as a soft or watery
field. The use of the robot is limited to pre-sowing or post-harvest periods of the
season. Field tests have not yet been performed using a robot.

The all-terrain vehicle (ATV) has been utilized in previous field scans carried
out by Geocarta4 in the MIKÄ DATA project. The ATV proved to be a really fast
and efficient data collection concept. In that case, the measuring equipment was
placed in self-made trailer. Neither the shape of the terrain nor the humidity caused
measurement problems. A trailer may also be required in GPR case because it allows

1https://catalog.data.gov/dataset?tags=gpr.
2https://emanuelhuber.github.io/RGPR/80_RGPR_GPR-data-free-to-download/.
3https://data.world/datasets/gpr.
4https://geocarta.net/.

https://catalog.data.gov/dataset?tags=gpr
https://emanuelhuber.github.io/RGPR/80_RGPR_GPR-data-free-to-download/
https://data.world/datasets/gpr
https://geocarta.net/
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Fig. 2 Different platforms for conducting GPR surveys

the simultaneous use of other measuring devices. For GPR use only, the use of an
ATV may be slightly oversized. A significant advantage of an ATV is that it provides
the measuring equipment with enough power for longer periods of measurements.
An ATV requires a dedicated navigation system to follow a pre-calculated route.

Commercial GPR products provide a quick way to carry out measurements. At
the end of 2020, the Quantum Imager (USRadar Inc., USA) Triple Frequency5

(100, 250, and 1000 MHz) was tested with assistance from Kontram (Kontram Oy,6

Finland). The Quantum allowed up to three different frequencies to be used same
time, which is still exceptional. In this way, preliminary field results and insights
into the right type of GPR were obtained. The equipment was used to collect data
for three fields, which means over ten kilometers walked routes in the fields. The
practical experience was interesting and very necessary to develop the concepts and
deepen the GPR skills. The challenge was to plan the exact route in advance, which
in practice had to be done with a separate device and control the route based on it.
It is also a constraint to carry out larger measurements, as the measurement is quite
laborious if there is even a little vegetation in the field that limits the movement of
the wheels. Vegetation is also challenge for the robot concept. In this case, it became

5https://usradar.com/quantum-imager-triple-frequency-gpr-system/.
6https://www.kontram.fi/en/etusivu.html.

https://usradar.com/quantum-imager-triple-frequency-gpr-system/
https://www.kontram.fi/en/etusivu.html
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clear that tires size and softness are important. Even small irregularities cause quite
a bit of equipment jumping, as the soil froze this worsened. So there is needed wide
tires with low air pressure. Finding a suitable weather became a challenge in these
measurements. There were quite rainy weeks at the time of the quote, so this should
be noticed in all measurement methods.

The aim of this study is to design the concept of a combination of a GPR device
and a drone, which is suitable for agriculture needs. This research revealed three
studies where a combination of GPR equipment and a drone had also been built.
Wu et al. [54] focused on soil moisture mapping in the 500–700 MHz frequency
range. Their hardware configuration consisted of a drone, a lightweight vector
network analyzer (Planar R60), a transmitting and receiving (monostatic) antennas,
a power bank, and a smartphone. The results were promising but require further
investigation, such as antenna calibration on different surfaces. García-Fernández et
al. [21] approached the use of drone and GPR from a slightly different perspective
and developed a portable and easily deployable air-launched GPR scanner. The
hardware included a radar module whose range was 100 MHz–6 GHz, antenna,
GNNS, RTK, micro-computer (Raspberry Pi), and batteries. The third finding was
the study by Cerquera et al. [12] where they used a software-defined radio (SDR)
platform as GPR. They installed an SDR platform on the drone using a USRP B210
device7 by Ettus (Ettus Research, Texas, USA), which can programmatically select
the frequencies to be used between 70 MHz and 6 GHz. Their research focused on
identifying landmines. The GPR hardware thus consisted of a USRP platform and
antennas connected to it. The drone also had an optical sensor for altitude control.

Commercial integrations of drones and GPR are available on the market.
Novatest (Novatest S.r.l., Ancona, Italy) offers a dual configuration setup8 where,
for example, the DJI Matrix 600 Pro (DJI, Shenzhen, China) is used as the drone
platform and the ground probe is alternatively a CBD GPR 200/400/800 MHz or
low-frequency GPR plug-in SUBECHO model (RadarTeam AB, Boden, Sweden)
using 70/150 MHz. However, depending on the model and battery, the promised
flight time is only 15–20 min, which in practice means about two kilometers of
measuring distance. At lower frequencies, the size of the antenna poses its own
challenge, because the length of the antenna increases rapidly as the frequency
decreases.

The advantage of a drone is to carry out data collection during the growing season
and ease of collection from a rough surface too, e.g., after plowing. In addition, the
drone has the advantage of high speed, although the challenges are a relatively short
flight time and the weather-related flight constraints. Furthermore, flight permission
might be challenging for some fields due to regulatory constraints. According to
this study, the frequencies required are mainly between 500 and 1000 MHz with
even higher frequencies required for root systems.

7https://www.ettus.com/all-products/ub210-kit/.
8https://www.novatest.it/en/civil-engineerings/uav-gpr-cobra/.

https://www.ettus.com/all-products/ub210-kit/
https://www.novatest.it/en/civil-engineerings/uav-gpr-cobra/
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Fig. 3 USRP B210

Based on the above findings, the drone concept will consist of the following
devices. The DJI Matrix 600 Pro is a potential choice, due to its carrying capacity,
commercial availability, and as well as experiences from other studies. The GPR will
be based on the USRP device (Fig. 3), as it is an open development platform and it
allows to choose the frequencies from wide range. In addition, it allows the use of
several frequencies by varying them during the measurement, so that measurement
data of several frequencies are obtained from almost the same measurement point. A
significant advantage of the USRP device is its relative low cost. A major challenge
in the USRP is that it requires considerable in-depth knowledge of software coding
and signal processing. When building the drone concept, it should also be taken into
account that the USRP device can be used for other concepts. The drone must be
equipped with a precision GNSS system in order to fly at a fairly low altitude and on
the route planned. In previous studies, the flights have taken place at a higher altitude
of 100–150 m, which has made it possible to combine the images into one image
afterward, and in addition, there have been fixed points in the fields for alignment.

Measurement is affected by the permeability and conductivity of the soil.
According to the International Telecommunication Union, the moisture content is
the major factor determining permittivity and conductivity [27]. Therefore, it is
necessary to make moisture measurements in the fields to be measured to calibrate
the results.

In the PeltoAI project, currently Tomst TMS-49 (Tomst s.r.o., Prague, Czech
Rep.) soil moisture sensors are installed in seven test fields, at three different
locations in each field. They are set up so that two sensors measure the problem
area of the field and one measures the average area grown according to the NVDI
value obtained from the satellite, which serves as a benchmark for the worse points.
In addition, some measuring points also have another sensor that is 40 cm deep.

One of the test fields has been scanned with a Veris device, providing a map of the
field conductivity. If necessary, calibration measurements can also be taken from the
field with a separate soil compaction meter. At least three soil samples have been
taken from each test field to provide accurate information on the soil type of the
soil and the conductivity at the time of measurement. The real-time moisture and

9https://tomst.com/web/en/systems/tms/tms-4/.

https://tomst.com/web/en/systems/tms/tms-4/
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electrical conductivity measurement sensors (LSE01,10 Dragino Technology Co.,
Ltd., Shenzhen, China) will be ordered for the season 2021.

The soil density meter, soil samples, moisture, and conductivity sensors provide
ground truth values to calibrate and compare to the GPR data. These are very
important steps to enable the development of AI with validated data.

7 Conclusions and Discussion

This chapter explored the factors and information about soil that can be deter-
mined by GPR. The most commonly used frequency bands would appear to be
concentrated in the 500–1000 MHz range although much higher frequency bands
were used for the study of root systems. The lower frequencies would no longer
seem to provide any added value in the study of fields, as factors affecting the
growth conditions of a field are at a depth of about 0–2 m. In root research, the
challenge is especially the size of the finest roots, and their measurement seems
to be challenging and needs more research. In the AI section, the issues that take
priority were researched. Gathering data and making training material will involve
a major research effort before the actual development of AI can be done.

There were introduced four GPR concepts. The concept of using drones with
GPR was investigated more deeply. The advantage of a drone is especially fast
implementation if there is a need to study large areas of land, as well as the
ability to measure a rough surface target, and the ability to measure during the
growing season. The challenge would be to get the device close enough to the
ground if higher frequency GPR is used, which needs to be closer to the soil. At
lower frequencies, this is less of a problem. However, the accurate maximum flight
altitudes of the GPR frequencies have yet to be determined.

The next goal is to study the implementation of the necessary analyses. Each area
to be studied might require a different method of analysis. It must be ascertained
whether some analysis requires certain specific frequency ranges or two different
frequencies, or whether the analyses are flexible in terms of frequencies. Another
goal is to study USRP platform and implement it in drone. The third goal is to
define the possibility of using AI in data analysis.

This study focused on GPR and its potentialities in agriculture. Also AI devel-
opment needs were evaluated. Last were introduced four concepts and specially of
drone with GPR. In several of our projects, we have tested different measurement
technologies, and based on them, we came to the same conclusions as [48] that in
the future there will be a combination of many different sensors. This is due to the
fact that each device has its own advantages and disadvantages.

10https://www.dragino.com/products/lora-lorawan-end-node/item/159-lse01.html.

https://www.dragino.com/products/lora-lorawan-end-node/item/159-lse01.html
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A Minimalist Approach to Yield Mapping
of Standing Wheat Crop with Unmanned
Aerial Vehicles

Nathaniel Narra, Antti Halla, Petri Linna, and Tarmo Lipping

Abstract Yield estimation and mapping of standing crops are often based on
tedious data gathering procedures that can be daunting and not cost-effective in
the absence of harvester-mounted yield mappers. A cost-effective solution with
reasonable accuracy has greater potential for adoption especially if one can leverage
latest machine learning tools to supplant tedious processes. This study conducts
a feasibility test in using drones in a minimalist sampling strategy to estimate
wheat yields over different productivity zones. The first step is to use unsupervised
clustering of spatio-temporal multivariate data to delineate zones of homogeneous
vegetation vigour. These zones are assumed to capture the variability in yield and aid
in designing an efficient sampling strategy. The second step involves using a UAV-
mounted camera to capture digital images to estimate the wheat head count and then
to derive a yield estimate within the image field of view. Using physical counting
of grains within a 0.5 × 0.5 m reference frame, the performance of the estimation
procedure was observed. The results show that while the workflow is tractable and
friendly in low-resource environments, the accuracy is poor at this stage. Pertinent
challenges and potential improvement strategies are discussed.

Keywords Object detection · Clustering · Performance zones · FasterRCNN ·
Global wheat head detection · Machine learning · Yield estimation

1 Introduction

Among various activities within agriculture, crop production typically operates
with an objective of maximizing yield. In this context, crop and soil management
procedures are developed to optimize the yield with respect to crop inputs and
interventions. It is natural then that being aware of the final yield is an important
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parameter in quantitatively monitoring and improving strategies. This parameter can
be defined over a range of scales over which yield can be measured: intra-field, field,
farm, regional, national and international. Each scale finds purpose in informing
management decisions for practitioners, planners and policy-makers. Depending
on the purpose, yield can be quantified either before harvest or after. Uses can
vary from maintaining records, optimizing logistics, understanding crop response to
interventions, forecasting annual crop stocks and allied statistics for food security.

There are a number of established methods for estimating the yield, of either a
standing crop or harvested crop, with varying accuracy and scales. They range from
manual strategies to automated measurements [28]. Among the more sophisticated
methods developed for estimating yield are those that use remotely sensed spectral
imagery. These involve using machine learning methods to establish correlation
between the spectral properties of crops and yield [18, 19, 23]. With developments
in satellite-based remote sensing, the capacity to perform analyses of cropland
images has improved. In the past 2 decades, there have been a number of satellite
missions that have embraced the open access data concept. This abundance of multi-
year multi-spectral data from such missions has enabled large-scale development of
algorithms for data analytics. Current capabilities of satellite imagery have enabled
collecting and analyzing data with spatial resolutions down to 10 m. This makes it
possible to estimate yields at the field scale with coarse spatial variations [7].

Capturing spatial variations of yield within a field is important from a precision
agriculture perspective where optimizing crop production places equal emphasis
on mitigating environmental damage, optimizing use of natural resources and
maximizing yield [20, 22]. Mapping finer spatial variations requires a denser
sampling of yield measurements, which can be tedious through manual methods.
This is where strategies that use machine learning for an informed sampling strategy
and computer vision to ascertain yield can give promising results. Any sampling
strategy aims to capture the shape of the function it is sampling. In the context
of mapping crop yield, sampling should be conducted at locations that capture the
underlying variability in yield. The non-homogeneous distribution of factors that
affect yield, such as soil type/texture, soil moisture content, influences the spatial
variability of yield at harvest [1]. With advances in sensors, there are increasing
spatio-temporal data sources that log soil and plant characteristics in greater detail
across space and time. Advanced clustering algorithms, a branch of unsupervised
machine learning, can be used to identify meaningful homogeneous clusters, also
called productivity zones [4, 15]. In the absence of soil surveys and mapping of
other significant factors, crop vigour observed through spectral images can be used
as a proxy for calculating the underlying clusters of homogeneous crop productivity.

Sensor developments combined with positioning systems have resulted in har-
vesters equipped with yield mappers that measure yield during harvest at high
resolutions. However, such sensor packages can be expensive. A combination
of machine vision and artificial intelligence along with high-resolution spectral
imagery can be used to produce high-resolution yield maps [21]. Such imagery
is achievable due to developments in remote sensing platforms such as unmanned
aerial vehicles (UAV) and affordable consumer grade multi-spectral cameras. UAVs
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provide users with control over scheduling over-flights and thus can be useful
platforms for in-season crop monitoring. However, current capabilities of drones are
not always cost-effective especially in terms of time and expertise required for data
acquisition and its preparation for further analysis. Machine learning can be applied
to extract the yield information from spectral images through learned correlations.
In crops where the yield is apparent in images of crop canopy, advances in machine
vision have been used in detection toward measuring yield. Thus, there have been
studies where yield has been estimated using digital colour images for rice [16]
and wheat [6, 32]. Thermal images of wheat canopy seem to offer better wheat head
contrast, making their detection easier [5]. An alternative to handheld camera setups
are UAV-mounted cameras for image data acquisition. With increasing choices of
UAV-mountable high-resolution cameras (RGB, multi-spectral, thermal and even
hyperspectral), conducting data acquisition over greater ranges becomes possible
[8]. With developments in deep learning architectures, they have found use in
detecting wheat grains [17, 30]. Among them, convolutional neural networks have
been directly applied on images to detect wheat heads in images [12, 27].

While UAV-based data mapping presents advantages over satellite-based
imagery—e.g., better resolution and indifference to cloud coverage—in some
situations, it can be impractical. This is mostly due to the rather laborious data
post-processing procedure necessary to convert multiple images into a single geo-
referenced mosaic. This study aims to assemble a machine-learning-based workflow
to rapidly estimate crop yield and map its spatial variability through digital images
of the crop canopy. A secondary aim of the study is to identify procedures and
challenges in data collection and analysis, necessary for developing a database for
training and testing deep learning architectures. This non-intensive low-resource
approach to the wheat head counting task is developed as a cost-effective alternative
to harvester-mounted commercial yield mapper.

2 Material

The study area is a 4.19 ha field (Fig. 1) with wheat crop in 2020 season, located
in the Satakunta region of Finland (lat. 60◦58’43”N, long. 22◦32’48”E). The field
is situated in cropping zone 1 as categorized by the Natural Resources Institute
Finland (Luonnonvarakeskus) [14]. The soil types present are silty moraine and
sandy moraine. The final yield (per hectare) as reported by the farmer was 4400
kg/ha.

2.1 Data Sources

The remote sensing data acquired consisted of multi-spectral satellite images and
drone-mounted multi-spectral data. Satellite data from Sentinel2 L2A product was
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Fig. 1 Aerial orthophotograph of the field under study (boundary demarcated in dashed black
lines). The points (P1, P2, P3) are locations where manual yield sampling and drone imaging were
conducted. Two 0.5 × 0.5 m sampling sites were chosen at each location

acquired for 2020 growing season through the Sentinel EO Browser service.1

Images without cloud occlusions or shadows over the field were manually selected.
Six spectral bands were selected—blue, green, red, NIR, red edge and SWIR—with
a bounding box covering an area of 615×425 m. The selected data are subsequently
downloaded as a compressed folder. The UAV setup consisted of an AIRINOV 3DR
Solo Quadcopter (Airinov SAS, Paris, France) mounted with a SEQUOIA multi-
spectral camera (Parrot SA, Paris, France) with a built-in illumination sensor. The
UAV was flown manually using the control joystick, flying at altitudes between 2
and 10 metres. An aluminium frame of 0.5 × 0.5 m was constructed to be used as a
reference frame. For training wheat head detection, the global wheat head detection
(GWHD) dataset was used [3]. Briefly, the dataset consists of 4700 crop canopy
images with 190,000 annotations or bounding boxes with the heads at different
stages of maturity.

3 Methods

The procedure involves data collection from various sources and associated tasks in
processing them for analysis. A geospatial database is chosen for storing data due
to possibility of spatial queries. Machine learning is applied for the critical tasks
of calculating productivity zones and identifying wheat heads from images of crop
canopy taken using a UAV.

1https://apps.sentinel-hub.com/eo-browser/.

https://apps.sentinel-hub.com/eo-browser/
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3.1 Data Preparation

The pack of images downloaded via the EO Browser portal was loaded into QGIS
geographic information system [25]. The images were clipped using the polygon
shape file of the field. The pixel centres were extracted as point geo-locations,
henceforth referred to as ‘data points’, producing 1280 such points within the field.
The clipped images (rasters) and the data points were stored in a PostgreSQL
database.

3.2 Clustering: Productivity Zones

Only clear satellite images (i.e., no clouds and shadows) of the field with vegetation
evident in them were used for further processing, which for 2020 season was
between 2 June and 18 August and constituted of 14 viable image stacks. In this
chapter, two indices are used as indicators of crop condition: Normalized Difference
Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI).
NDVI is a commonly used index to represent photosynthetic activity. It quantifies,
on a scale of −1 to 1, the ‘greenness’ of the vegetation (usually >0.2) based on how
plants reflect light at red and near infra-red wavelengths.

NDV I = NIR − RED

NIR + RED
.

NDMI is an index that represents water content in vegetation. The values are
between −1 and 1. Values between −0.2 and 0.4 typically represent water stress,
and high-positive values represent canopy without water stress (>0.4).

NDMI = NIR − SWIR

NIR + SWIR
.

A z-score normalization was applied to each index raster for a particular date.
This ensures 0 mean and a standard deviation of 1 for data on each date and,
instead of indices depending on the crop phenological stage, ensures a more reliable
comparison temporally [22].

zscoren(t) = indexn(t) − μn(t)

σn(t)
.

The calculated indices were stored in a PostgreSQL database as rasters and the
attribute values at each data point queried. A feature vector was assembled for each
data point and its attributes.
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fn = {

lat, lon, ndvin(t1), ndmin(t1), . . . , ndvin(ti), ndmin(ti)
}

,

where lat, lon are the latitude and longitude of the data point n; ndvin/ndmin(t) is
the index value of data point n at time t (i = 14).

The feature vectors were then used to perform unsupervised clustering using
the IBM Watson Studio Desktop application (IBM, New York, USA). Clustering
was performed through the autocluster node that estimates and compares multiple
clustering models (Two-Step, K-Means and Kohonen) by iterating through multiple
combinations of options. Models were compared and ranked using the silhouette
metric.

3.3 Wheat Grain Data

To gather wheat head and grain statistics, each cluster was sampled at 2 closely
placed locations. At each location, the procedure followed was: the metal reference
frame was placed at an appropriate location. After the site was imaged by the drone,
the wheat heads within the frame were harvested and stored in marked plastic bags.
The heads were subsequently left in the open at room temperature for drying. Once
dried, each head was manually de-shelled and the following measures were noted:
head width, head length and grain count. These detailed counts were noted for
at least 100 heads for each zone. The total head count and grain weight for each
location were noted as well.

3.4 Drone Imaging

To keep drone operation workload to a minimum, no pre-flight procedures such as
flight path planning were performed. After placing the reference frame at a chosen
location, the UAV is manually made to hover at various altitudes between 2 and 10 m
with the camera taking consecutive images at regular time intervals (2 s). The images
were stored on the on-board memory card within the camera housing. After the
flights, the images were transferred to a workstation where the appropriate images
were manually chosen. Images that were blurred or where the reference frames
were too far from the centre of the image were discarded. Multiple images for each
location were chosen such that they were of different perspectives and altitudes (and
consequently slightly different spatial resolutions).
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3.5 Wheat Head Detection

As the fundamental task is that of object detection—object being the wheat head—
the straightforward choice was using the FasterRCNN method [26]. Briefly, the
network works by first extracting features from an image. Second, the Region
Proposal Network within the network generates regions that potentially contain
an object. A major performance enhancement from this network comes due to
the use of anchor boxes to detect images at various scales and aspect ratios.
Another performance enhancer is the use of the same feature map detecting regions
and classification. In this chapter, the basic PyTorch implementation includes the
ResNet50 as a backbone. The code is a development of a public code2 released on
the Kaggle site for the global wheat detection challenge.3

4 Results

The results of the performance comparison of the clustering algorithms (Two-Step,
K-means, Kohonen) showed that the standard K-means (silhouette = 0.507) and
Two-Step (silhouette = 0.512) algorithm performed similarly (Fig. 2). There were
4 clusters produced with the Two-Step clustering and 5 clusters with K-means
clustering.

Fig. 2 Results of clustering—left: K-means clustering with an optimal 5 clusters; right: Two-Step
clustering produced with 4 clusters. It is worth noting that the top 3 largest clusters are similar in
extent

2https://www.kaggle.com/pestipeti/pytorch-starter-fasterrcnn-inference.
3https://www.kaggle.com/c/global-wheat-detection.

https://www.kaggle.com/pestipeti/pytorch-starter-fasterrcnn-inference
https://www.kaggle.com/c/global-wheat-detection
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Grain sampling locations were chosen roughly in the central regions of these
zones. 2 locations were chosen in each zone for a little more robustness in the
cumulative statistics. Table 1 lists the various parameters measured at the chosen
sample locations. Plots illustrating the distribution of grains per head versus head
lengths and widths, along with their marginal distributions, are shown in Fig. 3.

Five images were chosen from the image stack for each of the six sampling
locations. Bulk counts of wheat heads when compared to manual measurements
showed an underestimation of the counts (Fig. 4). The FasterRCNN architecture
used has not been tuned extensively and only been trained on 4700 images with
plants in differing phenological stages.

In terms of computation, none of the modules is resource-intensive once the
detection architecture is trained. The most labour-intensive part of the training work
flow remains the manual sampling of the wheat crop, which is an essential task for
training the network.

5 Discussion

The importance of estimating, measuring or forecasting crop yield is made apparent
due to its immediate economic significance. It can be further useful as a tentative
indicator of the state of the ecosystem where interactions within its components—
such as soil, soil biota, weather/climate and water—have a bearing on crop growth
and subsequently the final yield. This yield can be measured at various scales
depending on the resolution at which data are collected. Thus, depending on the
density of sampling and scale of aggregation, one can ascertain yield using satellite-
based estimation of standing crop, harvester-based mapping and regional statistics
of harvested yield. In the precision farming paradigm, where judicious optimization
of yield is desired through site-specific management practices, it can be beneficial
to map the spatial variability of yield at high resolution. Typically, there are a
few options: (a) manual counting, (b) combine harvester-mounted yield mapping
sensor package and (c) algorithm-based estimation through modelled or learned
correlations. The manual methods are either too laborious or do not provide the
desired intra-field spatial resolution. Harvester-mounted yield sensors can map at a
high resolution; however, equipment costs have kept them from being ubiquitous.
An additional constraint with this method is that the yields are mapped only at the
time of harvest. Thus, they are not a viable tool for estimating yield of a standing
crop. Algorithmic approaches can address these constraints by achieving reasonable
accuracy and offer a more accessible solution that can be used for crop monitoring.
However, the scope and capability of these algorithms can vary widely. They
can range from simple linear regression models to sophisticated multivariate deep
learning (non-linear) or probabilistic models that can forecast yield. The advantage
to the algorithmic approach is that a significant part of the labour-intensive process
is executed during the training stages. With developments in sensors and computer
vision methods, many of these tedious tasks can be automated, such as using object
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Fig. 3 Descriptive scatter plots with regression lines and marginal plots for—left: head length
versus grain count per head for each zone (P1, P2, P3). The counts observed for the 2 sampling
locations in each zone are combined; right: similar plot of head width versus grain count per head

detection instead of manual counting, while UAVs enable quick access to sampling
locations.

In this chapter, an attempt has been made to ascertain the tractability of a
low-labour approach to estimating yield of standing wheat crop in a field. The
UAV-mounted camera-based workflow described in Fig. 5 is designed to supplant
resource heavy procedures—in terms of labour, time or other resources—with
tools developed in the machine learning and computer vision domain. The overall
approach is to select sampling locations that optimally capture the yield hetero-
geneity within the field, use computer vision tools to detect wheat heads in a
size-standardized crop patch and finally extrapolate the estimated patch yield over
the entire field.

Each of these steps contributes toward resource efficiency through assumptions
made about the relationship between direct measures and their proxies. The major
assumptions are: (1) grain weight can be correlated to wheat head counts and
morphometrics [11]; (2) clustering of vegetation indices captures yield hetero-
geneity. Technological and procedural limitations impose certain constraints on the
workflow: (1) drone flights are limited by regulatory and weather-dependent flight
constraints; (2) camera capabilities determine imaging parameters and perspective
distortion; (3) identifying performance zones is dependent on the availability of
cloud-free satellite time series images (4) image-based detection and morphometry
is heavily dependent on training data volume. While the results of this study show
that the yields estimated are extremely low, it should, however, be noted that the
relative differences in yield among the three locations are similar. In other words,
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Fig. 4 Results of running the FasterRCNN architecture over data with inferred wheat heads
demarcated in red boxes. 3 sample images are shown. 5 chosen images at each of the 6 sampling
locations were tested. The total number of heads detected for each of the images is displayed in
the table below along with the manually observed true counts (red bold font). The corresponding
yield for each zone (P1, P2, P3) is calculated based on the average number of heads detected per
zone and the corresponding yield/head (from Table 1). Images of samples of grains gleaned from
the respective locations are shown to illustrate the difference in grain sizes

the estimation is low by similar margins. In summary, the results help identify 4
modules that are essential for improvements and critical for performance.

• Clustering methods provide a coherent way of uncovering productivity zones
that can help increase the confidence in estimations that are extrapolated from
sample observations. These zones can help in making decisions on the number of
samples to take and their locations, which are necessary to capture the variation
in the field. In this chapter, two indices were used as a basis for partitioning the
field into clusters—NDVI, NDMI. The NDVI exhibits the vegetative vigour that
can give information about variations in early crop development. With NDMI,
it is expected that variations in plant water stress states and differential rates
of senescence will expose the distribution of underlying factors. One factor to
account for are edge effects at field boundaries due to resolution differences
in the different sentinel bands. Methods as proposed by Yamada and Rogerson
[31] should be incorporated to get the most relevant clusters. The clustering
algorithms used in this study, the simple K-means-based process, have been
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Fig. 5 Schematic of the conceptual workflow including data sources

shown to be effective. However by using functional clustering methods, more
rational discrimination of clusters in time series data can be achieved [22].

• Training data—images: In spite of the availability of an excellent dataset
(GWHD: 4700 images), more training image samples can certainly help with
training algorithms. Additionally, placing a 0.5 m reference frame within the
image field of view would not be practical during training data acquisition. Such
a frame can be inferred from images. By detecting the crop heights under the
camera using a LiDAR [29], the optical geometry and distortion of the specific
camera can be used to calculate the distances in the images. An alternative
approach can be using lasers to project frames within the field of view of the
images [13]. Though, how the uneven nature of the crop canopy affects the laser
lines remains to be studied.

• Head detection: There is potential for significant improvement in the object
detection task, where the detection rate has been very low (20 − 30%) leading
to a corresponding underestimation of yield. Certainly some detection error is
due to the fact that in the images the wheat heads and vegetation at the canopy
level tend to occlude the heads below. However, better detection can be expected
if the FasterRCNN architecture can be optimized and trained with more data.
Additional deep learning architectures, such as the recent Yolov4 architecture
[2], can also be explored for improved performance [10].
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• Head morphometry: The results indicate that head counts alone are not
good predictors of yield. However, when considered along with their lengths
and widths, they can potentially be correlated to yield. Manually collecting
a distribution of these features is obviously not an efficient solution. Image-
based morphometry [9] can be implemented to gather the essential length and
width features. Performing precise measurements with a UAV from an overhead
perspective may pose significant challenges, due to inability to image heads
from the side. However, by using the downdraft of the UAV rotors to change
the relative position of the head to the camera could be a possible approach.
This would require concerted effort in gathering training data to understand the
confidence with which morphology can be estimated using such a technique.

In the future, a data collection campaign will be designed based on the improve-
ment strategies discussed above, in part to address a major limitation of the GWHD
database. In the context of this study, the database does not provide true counts
in the crop patch within the image view; instead, it only provides locations of
image detectable heads (un-occluded). Nor does it correlate these images to yield.
The results of this study seem to indicate that using detected counts of wheat
heads directly in calculating yield is highly dependent on detection algorithm
performance. Unless image acquisition protocols can capture all existing heads
present in field of view by overcoming physical occlusions, it may be prudent to
follow a more probabilistic approach. Using the Bayesian framework to develop
prior distributions of head metrics and yield can possibly help overcome certain
limitations of the detection process. This justifies more data along the lines of
GWHD database [3], but with additional physical measures of wheat heads and
grains and yields. Further efforts will be made to gather studies that report on grain
distribution and their yield potential [24] and those that ideally extend the scope of
investigation to wheat head lengths and widths. Minor improvements can also be
made to smooth the transfer of data between various components of the workflow,
such as automating the data transfer between the camera and the workstation.

In conclusion, this chapter outlines the essentials of an important tool for research
data collection campaigns. It should be noted that the foreseeable utility of this is
not to replace current methods of estimation or measurement. Traditional calibrated
methods are important to gather ‘ground truth’ values that are very low on procedure
complexity though high on labour cost. Satellite-based and other remote-sensing-
based measures have higher resolutions but also involve a more involved data
workflow with processes that can be complex. Yield mappers provide reliable
measures with high resolution; however, they are a significant investment as well
as limited in scope to harvested yield. With the approach suggested here, there are
two main uses: practitioners without yield mappers who would like to estimate yield
of standing crop or at the time of harvesting to gather a reasonable distribution of
yield. The other use case, and the primary motivation for this study, is that when
conducting research on test fields where access to measuring methods is varied
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between different participating farmers, it can be a useful tool for researchers to
be able to assess and monitor yields for record keeping and monitoring the effects
of interventions across time.
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Assessment of Crop Yield Prediction
Capabilities of CNN Using Multisource
Data

Petteri Nevavuori, Nathaniel Narra, Petri Linna, and Tarmo Lipping

Abstract The growing abundance of digitally available spatial, geological, and
climatological data opens up new opportunities for agricultural data-based input–
output modeling. In our study, we took a convolutional neural network model
previously developed on Unmanned Aerial Vehicle (UAV) image data only and
set out to see whether additional inputs from multiple sources would improve
the performance of the model. Using the model developed in a preceding study,
we fed field-specific data from the following sources: near-infrared data from
UAV overflights, Sentinel-2 multispectral data, weather data from locally installed
Vantage Pro weather stations, topographical maps from National Land Survey of
Finland, soil samplings, and soil conductivity data gathered with a Veris MSP3 soil
conductivity probe. Either directly added or encoded as additional layers to the input
data, we concluded that additional data helps the spatial point-in-time model learn
better features, producing better fit models in the task of yield prediction. With data
of four fields, the most significant performance improvements came from using all
input data sources. We point out, however, that combining data of various spatial or
temporal resolution (i.e., weather data, soil data, and weekly acquired images, for
example) might cause data leakage between the training and testing data sets when
training the CNNs and, therefore, the improvement rate of adding additional data
layers should be interpreted with caution.
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1 Introduction

The application of novel and performant deep learning techniques has seen an
increasing trend in the last few years in the domain of Smart Farming and Precision
Agriculture [16]. Multiple factors are at play: the abundance of open access satellite
system spatial data, availability of commercial unmanned aerial vehicles (UAVs)
mountable with external sensors, developments in the soil sensor and camera sensor
technologies, and the constant need to optimize the production of farms.

Convolutional neural networks (CNNs), being a subset of deep learning, have
been utilized in recent studies on crop yield prediction [16]. The spatial model
architecture has been used in predicting cotton yield from RGB data taken at close
proximity [14], cereal crop yield prediction from mid-altitude UAV RGB data [9],
rice grain yield estimation [18], and crop yield prediction using multisource inputs
on patch scale [2]. In [9], we compared intra-field crop yield estimation performance
with NDVI and RGB data from the earlier and later part of the growing season
with a variety of CNN configurations. The focus of that study was to assess the
generalization capability of a yield prediction model with UAV RGB data.

1.1 Objectives

In this study, we examine the effect of additional field-related spatial or spatial-like
data on the intra-field crop yield prediction capabilities using data gathered from
the earlier half of the growing season of 2018 (weeks 21–26). The objective of
this study is to assess crop yield prediction capabilities with the best CNN model
composition from [9] by varying the input data configuration. The focus of this
study is to see whether additional data, such as weather data, soil and ground
information, and open-access Sentinel-S2 data would improve the point-in-time
prediction performance compared to just using UAV-based RGB data. To limit the
scope of the study, architectural and hyperparameter tuning of the CNN model is
not addressed here to better isolate performance changes to data, and the tuned out
architectural and optimizer-related hyperparameters were thus taken from [9].

2 Material and Methods

2.1 Data Acquisition

For this study, four crop fields were selected for data acquisition in the vicinity of
Pori, Finland (61◦29′6.5′′N, 21◦47′50.7′′E) for the growing season of 2018. The
field information is provided in Table 1. Following the conclusions of [9], only data
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Table 1 The fields selected for the study in the proximity of Pori, Finland. The thermal time is
calculated as the cumulative sum of temperature between the sowing and harvest dates. Mean yield
has been calculated from processed yield sensor data for each field

Field no. Size (ha) Mean yield (kg/ha) Crop (Variety) Thermal time (◦C) Sowing date

1 7.59 5157.6 Wheat (Mistral) 1316.8 14 May

2 11.77 5534.3 Barley (Zebra) 1179.9 12 May

3 7.88 4166.9 Barley (RGT Planet) 1127.6 16 May

4 7.24 6166.0 Oats (Ringsaker) 1216.4 18 May

Table 2 General information
of data sources and their
original formats

Source Type Resolution/step Multitemporal

UAV Raster 0.3125 m/px Yes

Sentinel-S2 Raster [10, 20, 60] m/px Yes

Soil samples Vector 50 m No

Veris MSP3 Vector 20 m No

Topography Vector 2 m No

Weather Tabular – Yes

Yield Vector Varying No

from the earlier half of the growing season was considered for UAV and Sentinel-S2
data.

The multisource input data for the fields consists of UAV-based RGB images,
location data, multispectral Sentinel-2 [3] satellite data, sparsely collected and ana-
lyzed soil samplings, machine-collected soil information, topography information,
and local weather station data. General information about the original data sources
is given in Table 2. Some of the data were collected during the growing season of
2018 either manually or automatically, while other data were acquired within 1-year
time difference from the aforementioned season. A total of 39 layers constitute the
input data sets, while a single layer, the crop yield, is used as the ground truth. These
data are described next and the data layers are numbered for further reference.

2.1.1 UAV

It has already been demonstrated that UAV-based RGB data from the first half
of the growing season works better than the data from the second half of the
growing season and better than NIR only in crop yield prediction [9]. The UAV
data of this study has also been used in [8]. The images were taken at an average
height of 150 m with a minimum of three ground control points for geometric
calibration. Color correction was performed preflight and illumination sensors
were used for radiometric calibration. We selected UAV-based RGB data acquired
for the first weeks after sowing (weeks 21–26 of 2018). Thus, every imaged
field has five distinct UAV RGB rasters in the collected data set. The data were
acquired with overflights using a SEQUIOA (Parrot Drone SAS, Paris, France)
multispectral camera mounted on a Airinov Solo 3DR (Parrot Drone SAS, Paris,
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France) UAV. Field-wise orthomosaics were constructed with Pix4D (Pix4D S.A.,
Prilly, Switzerland) software. UAV data contain the following layers:

1. Red
2. Green
3. Blue.

2.1.2 Sentinel-S2

The Sentinel-S2 satellite data for the fields were acquired from the Copernicus Open
Access Hub (European Space Agency, Paris, France). The data were date-matched
to UAV images during acquisition, prioritizing images where the algorithmically
determined cloud probability was lowest. Thus, five Sentinel-S2 rasters with
temporal spacing similar to the UAV data were selected for the data set. With the
abbreviated names of product layers in brackets, the Level-2A Sentinel-S2 consists
of the following layers:

4. Wavelength 0.443 μm (B01)
5. Wavelength 0.490 μm (B02)
6. Wavelength 0.560 μm (B03)
7. Wavelength 0.665 μm (B04)
8. Wavelength 0.705 μm (B05)
9. Wavelength 0.740 μm (B06)

10. Wavelength 0.783 μm (B07)
11. Wavelength 0.842 μm (B08)
12. Wavelength 0.865 μm (B8A)
13. Wavelength 0.945 μm (B09)
14. Wavelength 1.610 μm (B11)
15. Wavelength 2.190 μm (B12)
16. Aerosol optical thickness at 550 nm (AOT)
17. Scene classification layer (SCL)
18. Water vapor map (WVP)
19. Cloud probability (CLDPRB)
20. True color, red (TCIR)
21. True color, green (TCIG)
22. True color, blue (TCIB).

2.1.3 Soil Samples

Soil samples were manually collected from the fields by ProAgria, an agronomic
counseling institution, and sent to a Eurofins (Eurofins Viljavuuspalvelu, Mikkeli,
Finland) laboratory for further analysis. Soil samples were collected with 50 m steps
so that a single sample represented an area of 50×50 m. The samples were collected
manually once during November 2018. Being point vectors, the data were rasterized



Assessment of Crop Yield Prediction Capabilities of CNN Using Multisource Data 177

with the gdal_warp program of the GDAL utility [17]. Soil sample data contain
the following layers:

23. Calcium
24. Copper
25. Potassium
26. Magnesium
27. Manganese
28. Phosphorus
29. Sulfur
30. Zink.

2.1.4 Veris MSP3

To get a finer map of soil characteristics, a MSP3 soil scanner (Veris Technologies,
Salina, Kansas, USA) was used to map the fields at depths of 0–30 cm and 30–
90 cm. The measurements were performed during April and May of 2019. The
MSP3 measures the soil’s electrical conductivity (EC), which is an indicator of
soil compactness, wetness, and soil type proportions. Additionally, the instrument
measures the pH of the soil. Being irregularly spaced point data initially, data had to
be rasterized from point vectors. The rasterization was done with the gdal_warp
program of the GDAL utility [17]. Each field was measured once. Veris MSP3 data
contain the following layers:

31. Shallow EC
32. Deeper EC
33. Ratio, (EC SH / EC DP)
34. Infra-red reflectance
35. Red reflectance
36. Soil pH.

2.1.5 Topography

The National Land Survey of Finland conducts light detection and ranging
(LiDAR)-based elevation mappings on a regular basis in Finland. This data is
openly available for anyone to download [10] and contains laser-scanned point
cloud data with approximately one point per 2 m2 [7]. The LiDAR data set was
acquired for each of the four fields. The LiDAR data were converted from point
cloud data to spatial rasters using the ArcGIS (Esri, Redlands, California, USA)
software. During the conversion, the data were interpolated to match UAV data in
terms of resolution. The topography data contain only the following layer:

37. Elevation information.
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2.1.6 Weather Data

Weather data were collected with two separately located Vantage Pro2 (Davis
Instruments, Hayward, California, USA) weather stations. As the fields constitute
two distinct clusters, a weather station was placed in the immediate vicinity of each
field cluster. While the stations log multiple variables with a time resolution of
just minutes, we utilized accumulated daily statistics and matched data to UAV
acquisition dates. Thus, five weather data maps were constructed for each field
spacing matching the dates of the UAV data. The weather data contain the following
layers:

38. Cumulative temperature sum
39. Cumulative rain sum.

2.1.7 Yield Data

As the task of regression is that of supervised prediction, the training of the CNN
model requires information about the ground truth, the target values. These were
acquired during the harvest of 2018 via yield mapping sensor devices attached to
the harvesters, either with a CFX 750 (Trimble Navigation, Sunnyvale, California,
USA) or with a Greenstar 1 (John Deere, Molinde, Illinois, USA). CFX 750
utilizes optical sensors to measure yield throughput and moisture. Greenstar 1
utilizes a kinetic mass flow sensor to measure yield throughput and a separate
moisture sensor. The yield maps generated by the mapping equipment were initially
in the form of vector point clouds. The irregularly spaced points were filtered
prior rasterization to contain only points where the yield was between 1500 and
15,000 kg/ha and the harvester speed between 2 and 7 km/h, following the yield
preprocessing methodology of [9]. Rasterization was then done by interpolating the
yield data to form a raster image.

2.2 Data Preprocessing

2.2.1 Interpolation

The first step after the acquisition of data was to harmonize the spatial res-
olution across multiple different sources. The UAV data were initially down-
sampled to 0.3125 m/px or 32 pixels per 10 m. This is to match the method
of data processing in [9]. Main reasons are to limit the inputs to reasonable
size and to have the input dimensions conform to a power of 2 for GPU-based
computations. The coarser data, namely Sentinel-S2, soil samples, Veris MSP3,
elevation, and yield data, required upsampling via interpolation to match this
resolution. The interpolation was done using the GDAL utility’s gdal_grid
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Fig. 1 Examples of input data interpolations on field scale. (a) the interpolated phosphorus map,
(b) the interpolated calcium content in the field, and (c) the pH map as measured by the Veris
MSP3 soil mapper

program with invdist:power=3:smoothing=20 interpolation algorithm. As
with the input data, also the target crop yield data were interpolated to UAV
matching resolution. Example results of interpolation are depicted in Fig. 1.

2.2.2 Input Feature Normalization

After interpolation, the next step was to normalize the data. While absolute values
could also be directly used, scaling the input values close to the magnitude of the
model’s parameters (i.e., weights) helps the model converge faster. Input layers were
normalized using a function

dNORM = (d − μd)/(max(d) − min(d)), d ∈ D, (1)

where d is a layer in the set of all layers D in the data set and dNORM is the
normalized layer. However, the target crop yield values were not scaled, akin to
[9].

2.2.3 Frame Separation

The CNNs require input data to have fixed dimensions. Low number of fields and the
irregularities of field shapes led us to extract smaller, fixed dimension frames from
the field data. Following [9], we extracted overlapping 40 × 40 m (128 × 128 px)
frames with 10 m horizontal and vertical steps. Prior extraction, all input and target
data from various input sources were aligned in terms of geolocation and resolution
to ensure frame extraction from matching areas. Frames containing half or more
valid pixels were included in data, while those having less than half were discarded.
This resulted in a total of 16,375 input target frames.
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2.2.4 Data Sets

Extracted samples were then divided into training, validation, and test sets. Training
and validation sets were utilized during the training, while the test set was set aside
as the out-of-sample performance evaluation data set. As the number of unique
fields was low, we wanted to maximize the sample variability the model sees during
training. We first attempted to train the models with data separated on a per-field
basis with two fields for training, one for validation and one for testing. This led
to the model overfitting to the training data and poor generalization performance
due to low training data set variability. Similarly, a low performance was achieved
with splitting fields to separate training, validation, and test sections. Thus, we then
decided to divide the data temporally into distinct training, validation, and test sets
according to the UAV image acquisition week. The samples were then shuffled to
eliminate spatial autocorrelation in subsequent samples due to overlapping frame
extraction. Used weeks, sample counts, and sample count proportions for separated
sets are given in Table 3.

2.3 Model Architecture

Convolutional neural networks (CNNs) are a subset of spatial model architectures
within the broader context of deep learning. CNNs excel in tasks, where the inputs
fed to the model are either images or image-like data, i.e., spatial data [5, 13].
While the inner workings of the CNNs have already been well documented [9], we
quickly review the operating principles of a CNN. The architecture operates with
layers, like many of the deep learning architectures. Each layer is a combination of
a convolution operation, which is often followed by a pooling operation. At the heart
of the model are the trainable filters of the convolution operation, i.e., the kernels,
which produce feature maps for further use.

In our study, we implement and use the best performing CNN architecture
of [9]. The model consists of six convolutional layers, followed by two fully
connected (FC) layers. Convolutional layers consist of 2D convolutions, batch
normalization, and nonlinear activation with a rectified linear unit (ReLU). First
and last convolutional layers also employ max pooling with 2 × 2 kernel to extract
more robust features and reduce intermediate output data dimensions. First five
convolutional layers operate with 64 5 × 5 kernels and the last convolutional layer
with 12 85 × 5 kernels. The outputs of the last convolutional layer are then flattened

Table 3 Compositions of
training, validation and test
sets used to train and evaluate
the models

Data set Weeks Frames Proportion

Training 21, 23, 25 7561 46.2%

Validation 24 2938 17.9%

Test 22, 26 5876 35.9%
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to a single vector, which is then fed to two 1024 neuron FC layers, both having
ReLU activation. Last FC layer outputs the final prediction result. The model was
implemented with PyTorch [11] and trained with Skorch [15].

2.4 Training

To gauge the effects of multisource data on the crop yield prediction task with spatial
inputs, we performed trainings with four different input data configurations. The
data configurations and the input data sources included in them are further given in
Table 4. To elaborate, the derived data configurations were as follows:

– RGB only. As [9] was conducted with RGB data from UAVs only, we wanted
to make baseline performance evaluation with UAV RGB data only. No other
sources were included in this setting.

– No S2. Next, we wanted to see the effects of soil and weather data on the
predictive performance. We thus included all other sources of data (UAV, soil,
Veris MSP3, topography, and weather) but excluded the satellite data.

– S2 Raw. As Sentinel-S2 Level-2A products contain additional algorithmically
generated layers, we wanted to see the effect of including just the raw wavelength
bands with other input data sources.

– S2 Full. The last setting was to use all data acquired for this study.

Because data were distinct from data used in [9], we initialized and trained all
models anew for each data configuration. To account for the effects of randomized
network parameter initialization, we trained 10 models per data configuration, 40
trainings in total. We used Adadelta [19] as the optimizer, 0.58 for the learning rate,
0.001 for the weight decay, and 0.9 for Adadelta’s ρ coefficient as those were the
best performing hyperparameters in [9]. Similarly, we used early stopping with a

Table 4 The different data configurations used for training distinct models. RGB Only uses UAV
RGB data only. No S2 uses UAV, soil, Veris MSP3, topography, and weather data. S2 Raw adds
Sentinel-S2 raw wavelength band data to No S2. S2 Full adds calculated Sentinel-S2 Level-
2A product layers to S2 Raw. An X indicates the inclusion of an input data source to a data
configuration, while a dash indicates the exclusion

Source Channels RGB Only No S2 S2 Raw S2 Full

UAV 1–3 X X X X

Soil 23–30 – X X X

Veris 31–36 – X X X

Topo 37 – X X X

Weather 38–39 – X X X

S2 bands 4–15 – – X X

S2 other 16–22 – – – X

Band count 3 20 32 39
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patience of 50 stagnant epochs and continued the training once. The models were
trained with Nvidia Tesla V100 Volta and Pascal architecture server GPUs in a
distributed computation environment.

3 Results

The CNN models with distinct input data configurations were trained with data
of four unique fields. The model architectures, hyperparameters, and the training
procedures were identical to [9]. As the aim of our study was to evaluate the effects
of introducing multisource inputs to crop yield prediction, we trained spatial yield
prediction models with four distinct data configurations. The data configurations
are discussed in Sect. 2.4. As the training time loss function we used the mean
squared error (MSE). Other loss metrics were also calculated, including the square
root of the MSE (RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), and the coefficient of determination (R2). These metrics (RMSE,
MAE, MAPE) were not monitored during training and, thus, did not influence model
selection.

The baseline model using UAV RGB data only attained 1055.7 kg/ha test RMSE,
18.2% test MAPE, and 0.343 test R2. Out of all data configurations, the best
performance of 364.1 kg/ha test RMSE, 5.18% test MAPE, and 0.922 test R2 was
achieved using all input data presented in our study (S2 Full). The performance
results for all data configurations with the held-out test data set are given in Table 5.

To gain a better view into how the models train with distinct data predicted,
we also examined the unseen test sample distributions of predicted values against
ground truth values, the true crop yields. With the data, the baseline RGB Only
model’s predictions resemble a Gaussian distribution centered around the mean
5140 kg/ha of true yield values. As more inputs are introduced, the predicted
distributions’ shapes align with the true values more closely, expressing multi-modal
peaks where the true values have them. The test set distributions are depicted in
Fig. 2.

Table 5 The test set performance of the same CNN architecture and hyperparameter configuration
with various data configurations. RGB Only is the baseline model. Out of the configurations, the
model performed best with all input data layers (S2 Full)

Data configuration Test RMSE (kg/ha) Test MAE (kg/ha) Test MAPE (%) Test R2

RGB only 1055.7 838.8 18.2 0.343

No S2 892.4 694.9 14.8 0.531

S2 raw 461.0 340.9 6.94 0.875

S2 full 364.1 274.3 5.18 0.922



Assessment of Crop Yield Prediction Capabilities of CNN Using Multisource Data 183

Fig. 2 Distributions of predictions against true yields with the holdout test set

4 Discussion and Conclusions

In this study, we evaluated the effects of using input data from multiple sources on
the task of spatial crop yield prediction. Using a CNN model architecture developed
for UAV RGB inputs from [9], we introduced additional data from sources like
soil samplings, Veris MSP3 soil scanner, topographical maps, weather stations, and
Sentinel-S2 satellites to the model. We trained ten models for each distinct input data
configuration: (1) a RGB Only baseline model, (2) a No S2 multisource model with
satellite data excluded, (3) a S2 Raw multisource model with raw satellite band data
included, and (4) a S2 Full multisource model with all input data. Out of each set of
ten trained models, we selected the models performing best. The model architecture
and hyperparameters for the training were taken from [9] and left unchanged to
constrain the variability in performance to data only. The only thing varying between
model trainings, in addition to four distinct input data source configurations, was the
initialized model weights.

The performance with a larger number of fields using UAV RGB data has already
been extensively studied in our previous studies [9] and [8]. Thus, training a model
with only UAV RGB data provides a studied baseline to which models trained with
additional data can be compared against. The best performing data configuration
was S2 Full with 364.1 kg/ha test RMSE, 5.18% test MAPE, and 0.922 test R2

using all 39 layers of input data for each extracted frame. Compared to the baseline
RGB Only model, the S2 Full attained 65.6% lower RMSE, 67.3% lower MAE,
71.5% better MAPE, and 0.579 higher R2 with the test set. Generally, every model
with multisource inputs performed better than the baseline model. This is shown in
Table 6.

Crop yield prediction with spatial data and spatial deep learning models has seen
an increase in the past few years [16]. Having been studied with a variety of different
architectures, from feed-forward networks to hybrid spatiotemporal models, studies
have also been conducted with CNN as the main architecture. In [9], a single CNN
model was developed to predict crop yields from fields with varying crop types
(wheat, barley, and oat) from UAV images collected from Finnish crop yields during
2017. Using smaller frames extracted from orthoimages, the best performance was
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Table 6 The relative performance of the models trained with distinct multisource input data
configurations to the baseline RGB Only model. Relative improvements in MAE, RMSE and
MAPE are given in proportion to the baseline error values. Improvement in R2 is given in absolute
units

Relative change from RGB only

Data setting Test RMSE Test MAE Test MAPE Test R2

No S2 -15.5% -17.2% -18.7% +0.188

S2 raw -56.3% -59.4% -61.9% +0.532

S2 full -65.6% -67.3% -71.5% +0.579

484.3 kg/ha MAE and 8.8% MAPE. Using soil nutrient data, seed rate, elevation
maps, soil’s electroconductivity, and satellite data in USA, the authors of [2] trained
a CNN to predict crop yields for nine fields. They report an average scaled MSE
of 0.70 which translates to 1145 kg/ha. The authors of [18] utilized RGB and
multispectral data acquired with a UAV from rice fields in China to predict rice
yields with a composite CNN model on field block scale. Feeding the multisource
data to distinct, parallelized CNNs, they report a rice yield prediction performance
of 0.50 R2 and 26.6% MAPE.

As we had sufficient data overlap across multiple input sources and the data
were acquired from only four unique fields, objective multisource crop yield
prediction performance evaluation requires more care in interpreting the results.
Relative increase in performance from best performing UAV data utilizing RGB only
model to the best No S2 model with additional soil and weather data was notably
small. Largest improvements were gained with the introduction of Sentinel-S2 data.
Adding raw Sentinel-S2 bands to the RGB, soil, and weather data increased the per-
formance by 40.8% RMSE, 42.2% MAE, 43.2% MAPE, and 0.344 R2 from No S2.
Thus, the increase in performance with Sentinel-S2 is considerably higher than what
was achieved with adding soil, topography, and weather data to UAV RGB data.

Data acquisition for remote sensing and multisource input data for smart farming
is generally laborious and resource intensive. While satellite data is generated
automatically, UAVs require semi-autonomous operation at best and the collection
of soil data requires extensive on-site manual labor. With more data from a variety
of sources, a more extensive and representative study can be conducted.

Another limitation stems from differences in spatial and temporal dispersion of
different input data sources. UAV, Sentinel-S2, and weather data vary temporally
in the data we have used, whereas soil samplings, Veris MSP3, and topographical
maps do not. As our data was split temporally to training, validation, and test
sets, the latter are present in all of these data sets. On the other hand, weather
data varies only temporally and constitutes spatial rasters with constant values
corresponding to the time of UAV imaging. This means that whether the data
is split temporally or spatially, some layer or part of data is always present in
training, validation, and test sets. As the authors of [12] point out, deep learning
models are able to implicitly learn linear and nonlinear couplings from data with
correlations. This means that the deep learning models learn sets of representative
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features from complex combinations of the inputs and not from single input values
on solitude. Furthermore, the performance gains with UAV RGB data combined
with temporally invariant soil and ground data is trumped by the performance
gains of data configurations using Sentinel-S2 data as additional inputs. This would
suggest that the combination of the inputs matters more than presence of distinct,
invariant data in training, validation, and test sets. However, the concrete effects of
simultaneous layer-level data existence in training, validation, and test data sets are
presently unknown to us and, thus, a subject of future research.

Regarding multisource data in the context of smart farming and crop yield
estimation, data itself is an evolving research topic. The use of multisource inputs in
remote sensing, while focusing on multispectral data acquired from satellite systems
orbiting the globe, has been extensively reviewed in [4]. The use of multispectral
data from UAVs and the prediction architectures thereof is also a developing topic
[6]. Another topic related to spatial data is that of autocorrelation [1]. To address
autocorrelation of spatial frames in a future study, the inclusion of pixel-wise
location information, as suggested in [1], should be sufficient to inform the deep
learning model whether data similarity is due to proximity or some other factors or
a combination of them.

In conclusion, our study indicates that increasing the number of input data
sources increases the performance of intra-field crop yield prediction. To draw
definite conclusions on the most optimal configuration of input data sources, more
data is required. With more representative data, generalizable conclusions are more
warranted. As the data in this study focuses on a single rowing season, a future
plan is to study the generalization of a multisource crop yield prediction model
with multiple years of data. Yet in this study, the relative increase from baseline
of using UAV RGB only as the input data was notable. Consolidating UAV RGB
data with soil and ground topology data already somewhat improves the prediction
performance, while largest performance gains were gained from using Sentinel-S2
in addition to UAV RGB, soil sampling, Veris MSP3 soil scanner, weather. and
topography data.
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Indirect SLAM methods, 84
Industry-grade UAS, 16
Inertial mass units (IMUs), 102
Initial SLAM map, 101
Input feature normalization, 179
Intelligence, Surveillance, and Reconnaissance

(ISR), 52, 53
International Protection Marking, 11
Internet of Things (IoT), 113, 116
Interpolation, 178–179
Intra-field crop yield prediction, 174, 185
Invisible drones, see Ultra-HDR optical

cloaking system
Iterative closest points (ICPs)

convergence, 94
evaluation times, 102
Go-ICP (see Go-ICP)
horizontal rotation, 95
match error, 96
matches, 95

near-uniform PC, 85
outlier ratio g, 84
standard baseline method, 84
transformations, 85

Iterative improvement, SLAM
application, 105
convergence criterion, 99
extra matches, 99
ICP matches, 98
inequality border, 98
initial tree registration, 97
mini-algorithm, 98
overlap l, 97
Poisson disk distributed pairs, 98
rigid body interpolation, 105
selecting m potential pairs, 97
sparse PCs, 97
value pairs, 98

Iterative tree map improvement, 105

J
Just-in-time/dynamic data, 19

L
Laser scanning, 84
Leaf Area Index (LAI), 127
LiDAR-based elevation mappings, 177
Lidar-based odometry, 83
Light-emitting surface, 75
Light detection and ranging (LiDAR), 132, 177
Linear and nonlinear couplings, 184
Liquid water content (LWC), 33
Long-term autonomy, 84, 86, 104
Low-carbon operation, 19
Low-cost solid-state LiDARs, 85
Low-speed wind tunnels, 33
LWC, see Liquid water content (LWC)

M
Machine learning techniques, 112
Map-based localization, 85
Map noise, 101
MATLAB, 80
Maximum take-off mass (MTOM), 5
Maximum take-off weight (MTOW), 36
Mean absolute error (MAE), 182, 183
Mean absolute percentage error (MAPE), 182,

183
Mean squared error (MSE), 182, 183
Measurement technologies, UAV imaging

camera, 112
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high-quality measurement data, 111
orthophoto imaging, 112
redundancies, 112
sensor/technique integrations, 112
sensor technology development

possibilities, 115
target object, 115

Mechanical and electrical powers, 40
Medium-gaps-first strategy, 103
Military domain, 52
Mobile sensing platforms (MSPs), 53–55
Modern microprocessors, 6
Modern power technologies, 6
Moisture content, 143
Moisture index, 124
Monocultural farming, 114
MTOM, see Maximum take-off mass (MTOM)
MTOW, see Maximum take-off weight

(MTOW)
Multi-robot collaboration, 103
Multispectral cameras, 134, 175

N
National Aviation Authority (NAA), 3
National Land Survey, 140
Nautical twilight, 74
Near-uniform randomness, 85
Netherlands Organisation for Applied

Scientific Research (TNO), 53, 54,
67, 68

Network-based computational offloading, 84
Non-dimensional quantities, 40
Non-illuminated drone, 73
Nordic challenges, UAS

anti-icing solutions, 20
Arctic, 4, 7, 11–13
Arctic Circle, 4
autumn season, 4
generic challenges, 4
HCI, 14–17
infrastructure-related challenges, 17–19
lack of supply, 19
legislation and organisational, 13–14
low-carbon operation challenges, 19
operational challenges, 4–5
personal qualities, 14–17
research, 20, 21
safety systems, 20, 21
security, 20
summers, 4
technological challenges, 4
UAS design-related, 5–8

weather-and nature-related (see Weather-
and nature-related challenges,
UAS)

winter season, 4
Normal distribution transform (NDT), 85
Normalized Difference Moisture Index

(NDMI), 161
Normalized Difference Vegetation Index

(NDVI), 161
Normalized Difference Water Index (NDWI),

124
No S2 multisource model, 183
Numerical tools, 32

O
Object detection, 163
Open field cultivation

biological functions, 122
climate change, 123
crop field, 126
decision-making, 134
drones, 124–126, 133
hydrological and crop growth models, 133
measurement targets

plant proxies, 127
soil characteristics, 127–128
soil proxies, 127

measurement technology
generic sensor, 129
ground probes, 128, 129
radar, 131
soil moisture sensors, 132
spectral imagery, 131–132
UAV mountable technology, 127, 130

photosynthesis, 122
plant properties, 124
roots, 122
soil biota, 121–122
soil characteristics, 134
soil hydrological properties, 122
soil moisture, 134
soil water content, 122–125
uncertainty, 134
water data, 123
water dynamics, 123
water stress detection, 126, 132

Operational AI, 6–7
Operational Expenditure (OPEX), 56
Operator exponentiation

accuracy, 91
alternative parameterization, 88
cyclic property, 88
error, 91
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matrix power, 89, 90
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rigid body transformation, 87
Rodriguez formula, 88
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sequential matrix multiplication version, 91
singularity, 89
Taylor series, 89
twist gain function G(θ), 88, 89
twist S, 88
vector cross product, 88

Ordinary ICP match, 100
Organic farming, 114
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Out-of-sample performance evaluation data

set, 180

P
Payload, 5
Pedotransfer functions (PTF), 128
Performance analysis, 63–64
Performance zones, 166
Pheromone, 58
PID controller, 76
Plain SLAM, 84
Plant available water, 124, 127, 133
Plant proxies, 124, 127
Pollen beetles (Meligethes aeneus), 112
PostgreSQL database, 161
Power coefficient choices

cumulative measures, 104
skew path, 104
sophisticated SE(3) metric, 104

Precision agriculture, 174
Precision farming, 109
Prediction architectures, 185
Professional operations, 16
Propeller dynamometer, 37–38, 47
Propeller performance testing, 36–37
Public defence, 52
Python implementation, 102
PyTorch implementation, 163
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Quality criteria, final map

Blur ratio b, 100
convergence criteria, 99
grid factors, 100

RMSE, 99
rounding operator, 100
transformations, 99

R
Radar, 131
Radio communication, 7
Randomized network parameter initialization,

181
Rasterization, 177
Realistic cost functions, 68
Rectified linear unit (ReLU), 180
Region Proposal Network, 163
Remote and unstructured environments, 84
Remote sensing methods, 109, 123, 129, 133
Reynolds number propeller performance, 32
RGB Only baseline model, 182, 183
Rigid body motion interpolation

boundary conditions, 92
contractive property, 93
globalization, 92
ICP method pcregistericp(), 91
intermediary PCs, 92
interpolation scheme, 93
numerical verification, 91
odometry, 91
PCs combination, 92
sanity test, 93
SLAM history, 93
transformation matrices, 92

Rotorcraft, 33

S
Safety, 18, 20
Satellite-based navigation systems, 18
Scanned point clouds (PCs), 84
Search space reduction, 103
Security, 18, 20, 21
Self-corrective localization, 86
Self-corrective odometry, 92
Self-corrective SLAM approach, 104
Self-organizing swarm, 57
Self-swarming, situational awareness (SA)

application
approach, 58
base location impact, 66
battery charging, 61
benchmark performance analysis, 63–64
benchmark scenario vs. number of drones

and bases, 65
data collection, 63, 67
departure and path planning, 61, 66
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drone bases, 60
drones, 60
future work

adding priorities, 68–69
agent autonomy, 68
realistic cost functions, 68
stochastic vs. deterministic planning, 69
topology and swarm size, 69

hexagonal mesh, 60, 61
imaginary maps, 63
maps, 60
near optimal, 60
number of bases and drones, 64–66
objective, 57–58
performance measure, 61–62
power consumption, 61
problem definition, 57
random vs. near-optimal base placement,

66
real-time data collection capability, 57
signal, DTs, 60
solution, 59–60
specification, 57

Sensor accuracy, 6
Sensor chip, 76
Sentinel-S2 rasters, 176
Sentinel-S2 satellite data, 176
SEQUIOA, 175
S2 Full multisource model, 183
Short flight time, 12
Simplistic tree registration method, 103
Simulation, 116
Simultaneous layer-level data existence, 185
Simultaneous Localization and Mapping

(SLAM)
BnB limits, 93–97
ICPs (see Iterative closest points (ICPs))
iterative improvement (see Iterative

improvement, SLAM)
operator exponentiation, 87–91
quality criteria of the final map, 99–100
rigid body motion interpolation, 91–93
SfM, 84
3D laser scanners, 84
UAVs, 85
unstructured forest environments, 84

Sky-measuring sensor, 78
SLAM method pcregistericp(), 85, 100, 103
Small-scale closed-loop occurrences, 86
Smart dust, 126
Smart farming, 110, 174
Software-defined radio (SDR), 150
Soil compaction, 142
Soil hydrology, 123

Soil layers, 143–144
The Soil Moisture and Ocean Salinity, 143
Soil moisture mapping, 150
Soil proxies, 124, 127
Soil salinity, 144
Soil samples, 176–177
Soil water measurement, 125
Sparse point clouds, 86
Spatial variation, 123
Spectral imagery, 131–132
Spectral unmixing, 113
Spraying UAVs, 110, 116
Square root of the MSE (RMSE), 182, 183
S2 Raw multisource model, 183
State-of-the-art lidar-based SLAM algorithms,

85
Structure from motion (SfM), 84
Surveillance, 53, 67
Sustainable farming, 110
SWACOM, see Swarming and Combat

Management (SWACOM)
Swarm, 55–58, 67
Swarming and Combat Management

(SWACOM), 55
Synthetic aperture radar (SAR) algorithm, 131

T
Technical malfunctions, 8
Technical Research Centre of Finland (VTT),

53, 68
Technology readiness level (TRL), 110, 117
Test set distributions, 182
Thermal cameras, 132
Time constraints, 16
Topography data, 177
Translation granularity, 102
Translation search, 102
Twilight, 74, 80, 81
2D convolutions, 180

U
UA, see Unmanned aircraft (UA)
UAS control interfaces, 14
UAS, see Unmanned aircraft system (UAS)
UAS design-related challenges

air density change in higher altitude, 7–8
assistive and mission-specific sensors, 6
CNTs, 5
communications, 7
computing capacity, 6
edge computing, 6
Europe, 5
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UAS design-related challenges (cont.)
fixed-wing lightweight UA, 5
operational AI, 6–7
payload, 5
power source, 6
radio communication, 7
sensor accuracy, 6
technical malfunctions, 8
UA-associated sensor technologies, 6
VTOL features, 7
wireless communication, 7

UAS traffic management (UTM), 15, 19
UAV-based RGB data, 175–176
UAV imaging study

agricultural applications, 110
data management, 112–113, 115–116
development, 109
execution technologies, 113–114, 116
farming methods, 114, 116
measurement technologies, 111–112, 115
monocultural change, 110
smart farming, 117
top-down approach, 111

UAV RGB data, 183, 185
UAV RGB inputs, 183
UAV RGB rasters, 175
UAVs, see Unmanned aerial vehicles (UAVs)
Ultra-HDR optical cloaking system

APA102C RGB LEDs, 75
the cloak, 75
cloaking factor, 80–81
control system, 76–77
drone, 78–79, 81
light-emitting cloak, 74
location/direction, 74
measurement system, 76
size, 77
sky, 73, 74, 77
technological challenges, 74
test patch, 77–78
typical luminance, 74

Uniformity assumptions, 103
Unmanned aerial vehicles (UAVs), 4, 124

algorithmic approaches, 164
anti-icing solutions, 32
autonomous, 52–53
Bayesian framework, 169
civilian and military surveillance tools

ISR, 52
clustering algorithms, 163
clustering methods, 167, 168
computer vision methods, 164

crop and soil management, 157
crop monitoring, 164
distribution of grains, 164, 166
DTs, 56
ecosystem, 164
FasterRCNN architecture, 164, 167
flying patterns, 110
food security, 158
geology, 55
grain sampling locations, 164
head detection, 168
head morphometry, 169
imaging (see UAV imaging)
machine learning methods, 158, 159
material, 159–160
methods

clustering, 161–162
data preparation, 161
drone imaging, 162
wheat grain data, 162
wheat head detection, 163

MSPs, 54–55
non-homogeneous distribution, 158
parameter, 158
remote-sensing-based measures, 169
resource efficiency, 166
Reynolds number propeller performance,

32
satellite-based imagery, 158, 159, 169
sensor developments, 158
sensors, 164
spatial variability, 164
spatial variations, 158
spraying, 110
swarms, 55–56, 67
technologies, 110
TNO, 53, 54, 67
TNO reconnaissance drone, 53, 54
training data—images, 168
VTOL, 32
VTT, 53, 67
wheat head measures, 164
wind conditions, 67

Unmanned aircraft (UA), 2, 3, 5, 20
Unmanned aircraft system (UAS)

application, 2
arctic conditions, 2
Arctic environment, 21
COVID-19 pandemic, 20
developed countries, 2
DroneMaster project (2020–2022), 3
EU legislation, 3–4
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European Union (EU) regulations, 2
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infrastructure requirements, 15
NAA, 3
non-commercial application, 2
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Nordic weather conditions, 2
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open category applications, 3
open category training, 3
operational challenges, 20, 21
professional applications, 3
professional development, 20
professional training, 3
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Unmanned aircraft system operator (UAS
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Unmanned ground vehicles (UGVs), 85
UTM, see UAS traffic management (UTM)
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Vantage Pro2, 178
Vegetation index, 124
VEML6040 color sensor, 76
Veris MSP3, 177, 185
Vertical take-off and landing (VTOL), 7, 32, 36
Visible Atmospherically Resistant Index

(VARI), 114
Visual-based odometry, 83
VTOL, see Vertical take-off and landing

(VTOL)
The “VTT mod” propeller dynamometer, 37
VTT, see Technical Research Centre of Finland

(VTT)

W
Weather-and nature-related challenges, UAS

dust and solid particle clouds, 11, 12
environmental challenges, 11, 12
extreme light conditions, 11, 12
flight moisture, 10
fog, 10
freezing rain, 9–10
geographical formations, 13
geographical irregularities, 13
heavy and gusty wind, 10–12
ice fog, 9–10
low temperature-related impacts, battery

life, 9
mist, 10
navigation systems, 12
Nordics and Subarctic/Arctic locations, 9
open category operations, 8
operational conditions, 8
rain, 10
rapid temperature changes, 9
short flight time, 12
specific and certified operations, 8
technological and operational, 8
temperatures, 9
UA aerodynamic properties, 8
UA mission, 11

Wind power domain, 36
Wind speeds, 35
Wind tunnels, 33–34
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testing, 33, 37, 38

Wireless communication, 7

Y
Yield estimation, see Unmanned aerial vehicles

(UAVs)
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