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Abstract. In this paper, we integrate a lot sizing problem with the
problem of determining optimal values of safety stock and safety lead
time. We propose a probability of product availability formula to assess
the quality of safety lead time and a multiobjective optimization model
as an integrated lot sizing problem. In the proposed model, we optimize
six objectives simultaneously: minimizing purchasing cost, ordering cost,
holding cost and, at the same time, maximizing cycle service level, prob-
ability of product availability and inventory turnover. To present the
applicability of the proposed model, we consider a real case study with
data from a manufacturing company and apply the interactive NAU-
TILUS Navigator method to support the decision maker from the com-
pany to find his most preferred solution. In this way, we demonstrate
how the decision maker navigates without having to trade-off among the
conflicting objectives and could find a solution that reflects his preference
well.

Keywords: Inventory management · Uncertain demand · Uncertain
lead time · Interactive decision making · NAUTILUS Navigator.

1 Introduction

Lot sizing has emerged as one of the key factors for the effective supply chain
management. The purpose of lot sizing is to determine an optimal order quantity
that minimizes costs while satisfying demand. After Harris’s economic order
quantity concept for solving a simple lot sizing problem [10], there has been a
dramatic increase in interest over the last century in developing lot sizing models
to adapt to more complex situations [1,8].

Uncertainties complicate lot sizing problems. In fact, predicting the exact
demand for future needs is challenging. Commonly, many companies hold a
certain amount of stock, known as a safety stock (SS), as a buffer to cope when
demand exceeds the prediction [31]. Another source of uncertainty is the delivery
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lead time [24]. Companies usually have an agreement with their suppliers for the
delivery time, but for many reasons, there can be delays. To overcome this issue,
an additional time period, known as a safety lead time (SLT), is defined [31].
During the SLT period, companies keep their stocks available to satisfy the
demand.

The problem of determining an optimal SS value has been studied by many
researchers [9]. Various methods have been developed [26] to find an optimal
value of SS that should be small enough to reduce costs while satisfying demand
and guaranteeing a high service level. Most studies expand the cycle service level
(CSL) formula [23] to adapt to various conditions. When lead time is uncertain,
the CSL formula takes into account the average and standard deviation of the
lead time [28]. On the other hand, the problem of finding an optimal SLT value
is not as popular as the previous one [7]. In [12], inventory costs are minimized
subject to a service level constraint to find an optimal SLT, and an optimization
model based on Markov Chain is proposed in [6]. However, there is a lack of
formula to control the quality of SLT.

The relationship between lot sizing problems with SS and SLT has been
studied in [22]. Keeping stock for SS and SLT increases order quantity, which
also increases the costs. Some researchers have studied lot sizing problems with
uncertainty on demand and lead time [7]. However, they mostly use statistical
tools to handle uncertainty in lot sizing models, but not simultaneously find SS
or SLT. Some of them use simulation to find an optimal SS and SLT. There
is a lack of integration of a lot sizing problem and problems of determining SS
and SLT values in the literature. The problem of integrating lot sizing and SS
determination is proposed in [18], but they consider SLT as the input value.

Lot sizing problems naturally include a conflict between minimizing costs and
satisfying demand simultaneously. Additional problems of determining SS and
SLT increase the conflict because holding more stock for SS and SLT makes the
costs higher. For this reason, multiobjective optimization [19] is a good tool to
solve lot sizing problems [2]. A multiobjective optimization problem has several
mathematically incomparable solutions, called Pareto optimal solutions. Solving
a multiobjective optimization problem can be understood as finding the most
preferred solution for a decision maker (DM), who has expertise in the problem
domain. Interactive methods [20] are regarded as promising because the solution
process is iterative and they allow the DM to gain insight into the problem and
change his/her preferences during the solution process, thanks to learning. So
far, however, there have been a few studies applying interactive multiobjective
optimization in lot sizing problems [29].

In this research, we consider a single item multi period lot sizing problem
with uncertainty on demand and lead time. The main contributions of this paper
are threefold. First, we propose a novel formula, named probability of product
availability (PPA), for measuring the quality of SLT to handle unpredicted lead
time. Second, we develop a multiobjective optimization model that determines
the optimal lot sizes for each period and simultaneously finds the optimal values
of SS and SLT. Last but not least, we support a DM to find the most preferred
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solution for the optimization model by applying an interactive NAUTILUS Nav-
igator method [25].

The proposed multiobjective optimization model has six objectives to opti-
mize simultaneously. Three of them are minimizing cost functions, i.e. purchas-
ing cost (PC), ordering cost (OC), and holding cost (HC). We consider them
separately to see trade-offs between objectives. The CSL is maximized to im-
prove safety against demand uncertainty. We propose a PPA formula to assess
the quality of SLT to buffer lead time uncertainty, which is maximized in the
model. Lastly, inventory turnover (ITO) as the primary performance indicator
for inventory management [27] is maximized to measure the effectiveness of this
model in handling the inventory system.

Most lot sizing problems are difficult to solve because of their complexity [14].
In this paper, we use the interactive NAUTILUS Navigator method [25]. The
strength of this method in handling computationally expensive problems meets
the need of this kind of problem. Another strength of this method is allowing the
DM to find his/her most preferred solution without sacrifices, which meets the
needs of the DM. In this, the strategy is starting from a bad point and improving
all objectives simultaneously. We use real data from a manufacturing company
and a real DM to prove the validity of our proposed model. Finally, we support
the DM to find the most satisfying solution for him by using this method.

The remainder of the paper is organized as follows. Section 2 reviews the basic
concepts of multiobjective optimization and the NAUTILUS Navigator method.
Then, the proposed multiobjective optimization model is presented in Section 3.
In Section 4, the case study together with the real data from a manufacturing
company is described, following by results and analysis of the decision mak-
ing process using NAUTILUS Navigator. Finally, conclusions and discussions of
possible extensions are presented.

2 Background on Multiobjective Optimization

In this section, we briefly review the basic concepts and definitions related to
multiobjective optimization, followed by the NAUTILUS Navigator method.

2.1 Basic Concepts and Definitions

A multiobjective optimization problem can be formulated in the following form:

minimize f(x) = (f1(x), ..., fk(x))T

subject to x ∈ S,
(1)

where k ≥ 2 objective functions, fi : S → R for 1 ≤ i ≤ k, are simultaneously
optimized. The vector of decision variables x = (x1, ..., xn)T belongs to the
feasible region S ⊂ Rn, which is formed by constraints. The image of the feasible
region Z = f(S), Z ⊂ Rk is called a feasible objective region, which is formed
by the vectors of objective values z = f(x) = (f1(x), ..., fk(x))T , z ∈ Z, x ∈ S.
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Because of the conflicting objectives, a multiobjective optimization problem
(1) has several different solutions, called Pareto optimal solutions, which reflect
the trade-offs among the conflicting objectives. A solution z1 ∈ Z is said to
dominate another solution z2 ∈ Z if z1i ≤ z2i for all i = 1, ..., k and z1j < z2j for
at least one j = 1, ..., k. A solution z ∈ Z is called a Pareto optimal solution if
z is not dominated by any other solution. The lower and upper bounds of the
Pareto optimal solutions are called an ideal point z∗ and a nadir point znad,
respectively, which reflect the best and the worst values that each objective
function in the Pareto optimal solutions can achieve.

Pareto optimal solutions are incomparable mathematically. Additional pref-
erence information from a DM is needed to identify the most preferred solution
as the final solution. A DM is an expert who has a responsibility to make a
decision in the problem domain, who is usually a supply chain manager in lot
sizing. The preference information from the DM can be incorporated before the
optimization process (a priori methods), after having generated a representative
set of Pareto optimal solutions (a posteriori methods), or during an iterative
optimization process (interactive methods) [19]. The advantages of interactive
methods, which allow the DM to learn different aspects of the problem during
the solution process and change their preferences during the solution process
if desired, are the main reasons we chose this type of methods. Many interac-
tive methods have been developed [20]. In this paper, we apply the NAUTILUS
Navigator method [25] because of its ability in handling computationally expen-
sive problems and the possibility to find the most preferred solution without
trading-off. This is important since DMs sometimes get anchored around the
initial solution and a trade-off free method avoids anchoring.

2.2 NAUTILUS Navigator

The NAUTILUS Navigator method combines the idea of NAUTILUS methods
[21] to avoid trading-off and navigation ideas elaborated in [11]. Due to the fact
that people do not respond similarly to losses and gains [15], trading-off among
Pareto optimal solutions causes some decisional stress to the DM [17]. Motivated
by this fact, NAUTILUS methods start from the worst possible objective func-
tion values and iteratively gain in all objectives without sacrificing any of the
current values. Methods in the NAUTILUS family [21] differ in the way used
to interact with the DM to find the final solution. NAUTILUS Navigator uses
navigation to direct the movement from the worst starting point, which is the
nadir point or any undesirable point provided by the DM, to a Pareto optimal
solution as the final solution. In this process, the DM specifies a desirable value
for each objective function, which are the components of a reference point, as
a search direction to direct the movement towards desired Pareto optimal solu-
tions. During the navigation process, the DM can change the reference point,
the movement speed, or even go backwards if he/she wishes so.

To handle computationally expensive problems, a set of Pareto optimal so-
lutions is generated before the interactive process starts. The generation may
take time because of expensive functions, but it is done without involving the
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DM. Any a posteriori methods can be used to generate a set of Pareto optimal
solutions or a set that approximates Pareto optimal solutions. When involv-
ing the DM, the navigation process takes place using this set without solving
the original computationally expensive problem. This allows showing real-time
movement without waiting times to the DM. The detailed algorithm can be seen
in [25].

Fig. 1. GUI of the NAUTILUS Navigator method

A graphical user interface (GUI) is important for NAUTILUS Navigator to
visualize the navigation process. Figure 1 shows the available GUI that can be
freely downloaded from https://desdeo.it.jyu.fi. The DM provides his/her
preferences using the sliders on the left side or inputs values in text boxes at
the top. The green area in the graph shows the reachable ranges, which are
the best and the worst objective function values, that each objective can reach
from the current step without sacrifices in any objectives. Thus, the reachable
ranges shrink when approaching Pareto optimal solutions. Whenever the DM
wants to change his/her preference, he/she can stop the process and change the
reference point. The black lines in the middle of the graphs show the positions
of the components of the reference point. The DM is allowed to jump to any
previous step using the radio button in the bottom right. He/she then needs to
provide which step to go to and re-specify his/her preferences in order to define
a new direction. The DM can navigate until he/she finds his/her most preferred

https://desdeo.it.jyu.fi
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Pareto optimal solution at the end of the solution process. In that case, the
ranges shrink to a single point.

3 Problem Formulation

We study a lot sizing problem for a single item with a single supplier and in mul-
tiple time periods. We follow a periodic review policy, where orders are reviewed
over discrete time periods t = 1, ..., T . The order quantity (Q(t)) is reviewed at
the beginning of period t, and the order arrives after a stochastic lead time. The
following assumptions are made throughout this paper.

1. The predicted demand during period t (D(t)) follows a normal distribution
with a mean µ and a standard deviation σ. The demand in each period is
independent of other periods.

2. The lead time follows a normal distribution with a mean L and a standard
deviation s.

3. The price for purchasing one unit of item (p) is constant in all time periods
and does not depend on the order quantity.

4. The cost for a single order is c without any capacity limit.
5. The cost of holding one unit of item (h) is constant throughout all time

periods.
6. There is no backorder cost involved.
7. There is an agreement between the company and the supplier that the com-

pany must order with a minimum order quantity moq and it rounds up by
a rounding value r. Therefore, the order can only be placed by following the
formula moq + a r for any integer a ≥ 0.

3.1 Safety Stock and Safety Lead Time Formulation

As said, we focus on the lot sizing problem with uncertainty in demand and lead
time. Many researchers have utilized a SS to protect against demand uncertainty
and a SLT to handle lead time uncertainty [16]. A SS means keeping more stocks
as a buffer against demand fluctuations. To control the amount of SS, the cycle
service level (CSL) formula is applied [4]. CSL is the probability of not hitting
a stockout in a replenishment time (RT). A RT is a time needed to refill the
stock, that is from the arrival of one order to the arrival of the next one. We set
RT = 1 +SLT since we order in each period and prepare for late delivery in the
SLT period. To prevent stockout during a RT, the difference between an actual
demand (D∗RT ) and a predicted demand (DRT ) must be less than SS. We adopt
the CSL formula for demand and lead time uncertainty [28] with our definition
of RT, which can be written as follows:

CSL = P (D∗RT ≤ DRT + SS)

= F (DRT + SS,DRT , σRT ) = F

(
SS

σRT

)
,

(2)
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where F is the standard normal distribution function and σRT is the stan-
dard deviation of demand during a RT, which can be formulated as σRT =√
σ2(1 + SLT ) + µ2s2.
A SLT is assigned to handle unpredicted lead time. During the SLT period,

the availability of stock to cover predicted and unpredicted demand must be
guaranteed. Therefore, we consider an additional SLT period in the fill rate (FR)
constraint to secure the availability of the stock during SLT to cover the predicted
demand. A SLT period is also considered in CSL to buffer unpredicted demand
during SLT. However, if the order arrives after the SLT period, the stockout
may occur. Therefore, it is important to decide an optimal SLT value with a
low possibility of having stockout. In this paper, we propose the probability
of product availability (PPA) formula to measure the quality of SLT. PPA is
defined as the probability of not having stockout because of the late delivery,
which occurs when the actual order arrives during the period L+SLT . The PPA
formula can be written as follows:

PPA = P (actual delivery time ≤ L+ SLT )

= F (L+ SLT,L, s) = F

(
SLT

s

)
.

(3)

This formula can be used to find the SLT value by defining an appropriate PPA
level.

3.2 Multiobjective Optimization Model

As said, we propose a multiobjective optimization model with six objectives,
three to minimize and three to maximize. The main goal of this model is to find
the order quantity of each period (Q(t), t = 1, ..., tn) together with SS and SLT
values with the best balance between the objective functions. We define I(t) as
the inventory level at the end of period t where I(t) = I(t−1)+Q(t−bLc)−D(t),
and Y (t) as the order indicator where Y (t) = 1 if the order is placed (Q(t) > 0),
otherwise Y (t) = 0. The proposed optimization model can be written as follows.

min PC =
∑
t

Q(t) p, OC =
∑
t

Y (t) c, HC =
∑
t

I(t− 1) + I(t)

2
h,

max CSL (2), PPA (3), ITO =
∑
t

D(t)

(I(t− 1) + I(t))/2
,

s.t.
I(t− 1) +

∑t
i=t−bLcQ(i)− SS∑t+bPc

j=t D(j) + (P − bP c)D(dP e).
≥ 1 , for t = 1, ..., T, (4)

Q(t) = Y (t) (moq + a r) , for any integer a ≥ 0 and t = 1, ..., T, (5)

SS ≥ 0 and SOT ≥ 0. (6)
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Following the dynamic lot sizing problem [14,30], three types of cost are
considered: PC, OC, and HC. We consider them separately to see the trade-offs.
Minimizing PC implies minimizing HC, but OC has a trade-off with HC because
ordering the same amounts of items many times makes OC higher and HC lower.
For inventory management purposes, it is important to understand both HC and
OC. In order to prevent partial optimization, which could be the case if only
total costs were measured, it is important to separate them. When targeting at
low HC only, one can be misled, as then there could be a temptation to order
more often, resulting in higher OC.

We maximize CSL to prevent stockout because of the demand uncertainty
and maximize PPA to avoid stockout due to late delivery. Keeping a high value
of SS raises the CSL but PC and HC increase, which is a conflict as we need to
maximize CSL but minimize OC and HC. Having a long SLT increases the PPA
but decreases CSL with the same SS value. Then PPA has a trade-off with CSL,
PC and HC. Maximizing ITO is our last objective function. To have a high ITO,
the order must be as close to the demand as possible in order to hold less stock,
which has a trade-off with OC. Furthermore, ITO has a trade-off with CSL and
PPA as less stock is needed to have a high ITO, but CSL and PPA need more
stock to have better safety in handling uncertainties.

FR represents customer service for an inventory control system. It is defined
as the fraction of orders that are filled from stock [13]. It is an important indicator
in daily operations. In the proposed model, FR is the first constraint (4) to fulfill
the predicted demand. In each period, we guarantee that our stock (excluding
SS) can satisfy the predicted demand. The consideration period for one order
(P) in the periodic review policy is 1 + L [4], but an additional SLT period
is also considered to ensure the stock availability during SLT. Thus, we set
P = 1 + L + SLT . FR is a fraction between available stock without SS and
the predicted demand during P. When FR is at least one, the stock availability
to handle the predicted demand is guaranteed. Furthermore, we ensure that all
orders follow the agreement of minimum order quantity and rounding value in
constraint (5), while constraint (6) is defined to confine the lower bounds of SS
and SLT.

4 Computational Results

We consider a case study from a manufacturing company to demonstrate the
applicability of the proposed model. We apply the interactive NAUTILUS Nav-
igator method to support the supply chain manager of the said company, acting
as the DM, to find his most preferred solution without trading-off.

4.1 Information about the Case

We review a weekly single item lot sizing problem for 41 weeks. Thus, the opti-
mization model has 43 integer decision variables, including weekly order quan-
tities, SS and SLT. We received data of an item, which is a component of the
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company’s product. The data is generated from the company’s planning system.
The data contains current inventory information for the item as well as a con-
sumption projection according to the company’s production plan. Based on the
data, the price to purchase one unit of the item is e91.18, the cost for a single
order is e200, and the cost of holding one unit of item is ten percent of the
price annually. The lead time for this item is 6 weeks, with a standard deviation
s = 0.93 days. The company has made a prediction for the weekly demand data
based on its historical data, which varies with a mean µ = 116.22 and a standard
deviation σ = 29.04. The opening inventory is 312 units and the company has
made previous orders for the next six weeks, which are (48, 119, 120, 120, 48, 96).
Based on the agreement between the company and the supplier, the company
must place an order with a minimum of 48 units and round by 48 units.

As a request from the DM, bounds for SS and SLT were defined as additional
constraints. The DM was only interested in SS values lower than µ and SLT
values below four days. He also requested to see at least one day SLT or one
day’s worth of demand for SS, which is µ/5. Furthermore, low ITO values below
ten were not interesting for the DM.

As said, a GUI plays an important role in NAUTILUS Navigator. A few
modifications of the available GUI were done in this research to make the GUI
more useful for the DM in this case. The DM preferred to see the probability of
product unavailability (PPU) rather than PPA. Thus, we switched to minimize
PPU = 1−PPA in the fifth objective. Furthermore, the DM wanted to see the
information of days of stock (DoS). DoS is an inventory performance indicator
describing the number of days needed to sell an item. DoS is calculated as the
number of days in one year (we use 254 working days) divided by ITO.

4.2 Computational results

As described in Section 2.2, the starting point of the NAUTILUS Navigator
method is a set of pre-generated solutions. As said, lot sizing problems are com-
putationally expensive problems. Because of their complexity, many researchers
use metaheuristic methods, like evolutionary algorithms, to solve various prob-
lems of lot sizing [14]. In this paper, we applied NSGA-III [5] by using the pymoo
framework [3] because of its ability to solve constrained multiobjective optimiza-
tion problems with integer variables. Evolutionary algorithms cannot guarantee
Pareto optimality but can generate sets of solutions where no solution dominates
the others.

Some strategies were needed to generate a large amount of nondominated
solutions. Because a single run of NSGA-III was not able to generate enough
solutions, we ran the algorithm several times with different initial populations.
Furthermore, to get more solutions, various parameters of evolutionary opera-
tors were used that were available in the framework. Finally, all solutions were
combined, dominated solutions were deleted, and 1503 nondominated solutions
were obtained that approximate Pareto optimal solutions.

The DM started the navigation process by investigating the reachable ranges
for the first step, which were represented by the ideal point and the nadir point
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initially derived from the set. With the bounds defined by the DM, the ideal
point was z∗ = (358 884.48, 1 000, 674.73, 0.9945, 0, 97.45) and the nadir
point was znad = (367 637.76, 6 800, 4 782.04, 0.5, 0.5, 10.19) (remember that
the fourth and sixth objectives are to be maximized and the others are to be
minimized). Initially, the DM wanted to set the ideal point as the reference point
to investigate how the navigation ran and which Pareto optimal solutions can
be found if he wanted all the objectives to navigate towards their best values.

Fig. 2. A Pareto optimal solution for the ideal point as the reference point

Because of the trade-offs among the objectives, getting the best possible val-
ues for all objectives is naturally impossible, but, the DM navigated till the
Pareto optimal solution z = (358 884.48, 4 400, 1 011.40, 0.7504, 0.1414, 47.67)
was reached. Thus, the reachable range was finally a single point. Figure 2 shows
this navigation. The DM analyzed that, in step 52, there was a significant de-
crease of the upper bound for the reachable CSL values to 0.8116, and the ITO
reachable range shrunk with the upper bound 59.53. Because of this, the DM
decided to go backwards to step 50 and provided new preferences.

The DM wanted to keep the ITO in the best value at this step, which was
59.53. He then set the components of the reference point for PC and OC to
their worst values, and keep the other components as their best reachable values
at this step. Therefore, the new reference point was (367 637.76, 6 800, 901.98,
0.9835, 0, 59.53). He let the navigation continue until the end to check the Pareto
optimal solution that could be reached. The Pareto optimal solution obtained
was z = (363 261.12, 6 000, 1 108.19, 0.8437, 0.0159, 39.25). He found the CSL
value better but it was not satisfactory enough for him. He learned that the
upper bound of the CSL’s reachable values started to decrease at step 80. He
then decided to return to this step to set a new reference point.
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The DM navigated with different desired values of ITO to observe how much
he needed to sacrifice in ITO to get better values for CSL. He returned to step
80 a few times with different desired values for ITO, but he only got 0.9041 as
the best value for CSL. He decided to go further backwards to step 16 because
the upper bound of ITO and HC in reachable values had a significant decrease
after this step. He set all cost objectives in their worst reachable values, CSL and
PPU in their best reachable values, and ITO=48. He let the reachable ranges
shrink till the Pareto optimal solution z = (363 261.12, 6 400, 1 183.94, 0.9366,
0.0159, 35.68). The DM found that the CSL value was not satisfactory enough.

The DM realized that CSL had a trade-off with PPU, and he needed to relax
PPU to get better CSL. He decided to return to step 75 when the CSL decreased.
He then relaxed the ITO value to the worst reachable value, and got the Pareto
optimal solution z = (363 261.12, 5 800, 1 066.10, 0.9272, 0.1414, 42.69). He was
happy with the improvement of ITO but was still curious to find a better CSL
value.

The DM wanted to investigate how much he needed to sacrifice in ITO when
he desired to improve CSL. He then decided to go to the very first step and set his
preferences at the best reachable value for CSL and the worst reachable values
for costs and PPU. For ITO, he set 40 as the desired level. He let the navigation
converge to a single solution. He got the best CSL value and the Pareto optimal
solution was z = (367 637.76, 5 800, 1 061.90, 0.9945, 0.5, 42.94). He was very
happy with this solution. He thought that the CSL value was very good and the
other objective values were acceptable. He decided to accept this solution as the
final one.

Fig. 3. The decision variables corresponding to the final solution

The decision variables corresponding to the final solution for order quantities
can be seen in Figure 3. The other decision variables were SS = 92 and SLT = 0.
The green line in Figure 3 shows the incoming order quantities for each week,
which are the previously set order data for t = 1, ..., 6 and the optimized order
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quantities Q(t − L) for t = 7, ..., 41. The inventory level in the blue line shows
that during the first six weeks, which cannot be controlled by the model due
to the lead time, the company had excess inventory. The inventory level then
decreased and followed the demand quantity to have a higher ITO, which is a
useful indicator for inventory management and planning purposes.

By deepening his understanding of the interdependencies between conflicting
objectives, the DM learned a lot from his own area of responsibility as a supply
chain manager and also gained the confidence to modify his original preferences.
At first, he was not willing to sacrifice on any objectives, but during the deci-
sion making process, there was a growing awareness that not everything can be
achieved, but sacrifices have to be made. These included, among other things,
the CSL and ITO. However, in his day-to-day operations, ITO is a goal set by
the company’s top management. Therefore, deviating from this objective must
be strongly justified to the management.

As a result of the learning process, the DM gained confidence in setting his
preferences, and thus multiobjective optimization and NAUTILUS Navigator
supported his understanding and ability to justify his decisions. The DM greatly
appreciated the fact that as the decision making process progressed, he con-
stantly saw the navigator’s results and understanding of achieving objectives,
which guided him in setting his preferences. The possibility to stop the process
at any time and the feature to go backwards in the navigator, were, in his view,
excellent opportunities to make decisions easily. The GUI of the navigation and
the real-time updating of the results also supported his decision making. The
navigator graphs and the sliders for setting the reference point were, in the DM’s
view, a clear advantage in support of decision making. The whole process was
so instructive and professionally useful.

As can be seen in Figure 3, the inventory level was significantly reduced from
its original level. The DM commented that this is a typical example of decisions
being made in the past ”for the sake of certainty”, where typically stock levels
tend to rise. NAUTILUS Navigator as a method responded precisely to the
need for decisions to be based on calculations rather than assumptions. The
DM was pleased with the result of the objective function values, as well as the
corresponding decision variables. Overall, the DM was satisfied with the results
and operation of NAUTILUS Navigator and found an interactive method very
suitable for learning. He is willing to adopt the method more widely for inventory
planning and control, especially for critical items.

5 Conclusions

In this paper, we considered a single item multi period lot sizing problem in a
periodic review policy under a stochastic environment on demand and lead time.
We used a SS to handle uncertainty on demand and CSL to measure the quality
of SS. To handle uncertainty on lead time, a SLT was used and we proposed
the PPA formula to measure the quality of SLT. The aim of this paper was
to integrate the lot sizing problem with the problem of determining the optimal
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values of SS and SLT. We developed a multiobjective optimization model to solve
the integrated lot sizing problem. Six objectives were optimized simultaneously
to find the optimal order quantity in each period and at the same time determine
the optimal values of SS and SLT.

Real data from a manufacturing company was used to demonstrate the ap-
plicability and usefulness of the proposed model. A supply chain manager from
the said company acted as the DM to draw managerial insights into the decision
making process. The interactive NAUTILUS Navigator method was successfully
applied to solve our integrated computationally expensive lot sizing problem.
The DM appreciated the navigation process that allowed him to learn during
the decision making process and find the most satisfying solution for him. He
confirmed the validity of the solution and found it useful for his daily operation.

For future research, considering many items would present more computa-
tional challenges but meet the needs of real industrial problems. A company may
have thousands of items that are impossible to consider separately. Another pos-
sible future research topic is to address the variation of price based on the order
quantity, or integrating the model with the problem of determining minimum
order quantity and rounding value.
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9. Gonçalves, J.N., Sameiro Carvalho, M., Cortez, P.: Operations research models
and methods for safety stock determination: A review. Operations Research Per-
spectives 7, 100164 (2020)

10. Harris, F.W.: How many parts to make at once. Factory, The Magazine of Man-
agement 10, 135–136 (1913)

11. Hartikainen, M., Miettinen, K., Klamroth, K.: Interactive Nonconvex Pareto Nav-
igator for multiobjective optimization. European Journal of Operational Research
275(1), 238–251 (2019)

12. Hegedus, M.G., Hopp, W.J.: Setting procurement safety lead-times for assembly
systems. International Journal of Production Research 39(15), 3459–3478 (2001)

13. Hopp, W.J., Spearman, M.L.: Factory Physics. Waveland Press, Inc, 3 edn. (2008)

14. Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lot sizing: A review and com-
parison of solution approaches. European Journal of Operational Research 177(3),
1855–1875 (2007)

15. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk.
Econometrica 47(2), 263–291 (1979)

16. van Kampen, T.J., van Donk, D.P., van der Zee, D.J.: Safety stock or safety lead
time: coping with unreliability in demand and supply. International Journal of
Production Research 48(24), 7463–7481 (2010)

17. Korhonen, P., Wallenius, J.: Behavioural issues in MCDM: Neglected research ques-
tions. Journal of Multi-Criteria Decision Analysis 5(3), 178–182 (1996)

18. Kumar, K., Aouam, T.: Integrated lot sizing and safety stock placement in a net-
work of production facilities. International Journal of Production Economics 195,
74–95 (2018)

19. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers (1999)

20. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective
optimization methods. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Cri-
teria Decision Analysis: State of the Art Surveys, pp. 931–980. Springer, 2 edn.
(2016)

21. Miettinen, K., Ruiz, F.: NAUTILUS framework : Towards trade-off-free interaction
in multiobjective optimization. Journal of Business Economics 86(1), 5–21 (2016)

22. Molinder, A.: Joint optimization of lot-sizes, safety stocks and safety lead times
in an MRP system. International Journal of Production Research 35(4), 983–994
(1997)

23. New, C.: Safety stocks for requirements planning. Production and Inventory Man-
agement 12, 1–18 (1975)

24. Pahl, J., Voß, S., Woodruff, D.L.: Production planning with load dependent lead
times: an update of research. Annals of Operations Research 153, 297–345 (2007)

25. Ruiz, A.B., Ruiz, F., Miettinen, K., Delgado-Antequera, L., Ojalehto, V.: NAU-
TILUS Navigator: free search interactive multiobjective optimization without
trading-off. Journal of Global Optimization 74, 213–231 (2019)

26. Schmidt, M., Hartmann, W., Nyhuis, P.: Simulation based comparison of safety-
stock calculation methods. CIRP Annals 61(1), 403–406 (2012)

27. Silver, E.A., Pyke, D.F., Thomas, D.J.: Inventory and production management in
supply chains. CRC Press, 4 edn. (2017)

28. Talluri, S., Cetin, K., Gardner, A.J.: Integrating demand and supply variability
into safety stock evaluations. International Journal of Physical Distribution and
Logistics Management 34(1), 62–69 (2004)



Lot sizing with safety stock and safety lead time 15

29. Torabi, S., Hassini, E.: An interactive possibilistic programming approach for mul-
tiple objective supply chain master planning. Fuzzy Sets and Systems 159(2),
193–214 (2008)

30. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model.
Management Science 5, 89–96 (1958)

31. Whybark, D.C., Williams, J.G.: Material requirements planning under uncertainty.
Decision Science 7(4), 595–606 (1976)


	Interactive multiobjective optimization in lot sizing with safety stock and safety lead time

