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The present thesis describes the development and implementation of a dynamic cur-
rency exchange rate predictive model. The aim of the thesis was to measure and de-
termine the accuracy of a dynamic currency exchange rate predictive model by ana-
lysing different historical data samples. 
 
The theoretical framework of the thesis focused on research into different disciplines 
related to predicted analytics and the different data mining algorithms. The study was 
carried out using quantitative data samples and SAP high performance analytic appli-
ance predictive analysis library (PAL) Time series double exponential algorithm. The 
measurement was done by comparing the predicted or forecasted exchange rates 
against the actual exchange rates. Standard statistical methods were used to deter-
mine the accuracy of the predictive model. 
 
 The results of the study showed that last three months data sample or most recent 
data gives better predictive results for short term forecasting while the full data sample 
or entire data set gives better result for longer term forecasting.  
 
Based on the study, it is recommended that fundamental analysis of currency ex-
change method which takes account of the driving forces behind currency exchange 
rates such as political and economic situation, the rise and fall of interest rates and 
other economic indicators should be incorporated along technical analysis which in-
volves the use of historical data to get give better accuracy.  
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1 Introduction 

 

This chapter discusses and provides insights to background of this master’s thesis, 

research purpose and question and finally it covers the overall structure of the thesis. 

 

1.1 Background 

Technology for business intelligence has changed. The breakthrough of new technolo-

gies such as In-Memory computing database and innovation of advance software  have 

enabled  businesses to store, process and analyse a massive amount of data in real-

time as never before seen. The way information is collected, stored, processed and 

analysed has never been this efficient with the help of these new technologies and ad-

vance software applications. 

 

In today’s business environment, for companies to be competitive in business environ-

ment, adapt to changes in the market and stay ahead of their competitors, it is simply 

not enough to make decisions based on past and present information which only pro-

vides information to what has happened using traditional analytics applications or rely 

on decision making based on the gut feeling of senior management (Khan et al., 2008: 

581). 

 

Zaman (2013:1) stated that business organizations need to know more about the future 

and in particular, future trends, patterns and customer behavior in order to understand 

the business climate and the market in which they operate better. Figure 1 depicts that 

with predictive analytics, a business should be able to predict what will or might happen 

and make informed decisions unlike with traditional reporting, analytics and monitoring 

tools. 

 

Business intelligence disciplines such as data mining and predictive analytics which 

can predict what will or might happen in the future, as shown in figure 1, are used to 

extract both structured and unstructured data from different heterogeneous sources 

and uncover hidden patterns and relationship of similar information. 

 

Predictive analytics is part of business intelligence which combines techniques from 

statistics, modelling, machine learning and data mining that uses historical data and 
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operational data to forecast or make predictions about future occurrences. Predictive 

analytics is referred to as a model ability to generate accurate predictions of new ob-

servations, where new can be interpreted temporally as observations in a future time 

period (Shmueli et al, 2011:9). Gaultieril (2013:1) said that predictive analytics uses 

algorithms to find patterns in data that might predict similar outcomes in the future. 

 

The core element of predictive analytics is the predictor which is a variable that can be 

measured for an individual or entity to predict future behaviour. For example, a credit 

card company could consider age, income, credit history, and other demographics as 

predictors when issuing a credit card to determine an applicant’s risk factor (Zaman, 

2013:1). 

 

Companies such as Yahoo, Facebook, LinkedIn, Google and Netflix have been collect-

ing and analysing data about their users and customers. The data collected are used to 

improve the quality of services provided for their users and retaining their customers. 

The data collected by the companies from ubiquitous sources such as the geo-location 

tagging in smartphones, information posted on social networking sites, online chatting 

and blogging by users can be a potential goldmine if harnessed and utilized properly. 

They have realised that there are lots of opportunities to be tapped with the information 

collected because they can increase and get better insight about their customers, com-

petitors and business and generate new business opportunities. 

 

Common practical applications of predictive analytics include the use of big data and 

predictive analytics by LAPD police to prevent a crime before it happens. Another no-

table application of predictive analytics is credit scoring by financial services, weather 

predictions by meteorological institutes and customers churning by telecommunication 

companies. 
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Figure 1 – The spectrum of BI Technologies (Wayne W. Eckerson, 2007:5) 

 

1.1 Research purpose and motivation 

The present thesis work is purely for academic research and for the author’s profes-

sional growth. The author will use this thesis work and knowledge gained during the 

practical applications and implementations derived from this thesis research to get bet-

ter insights and understanding of next generation of business intelligence technologies. 

Gartner (2013:1) stated in figure 2 that the plateau of productivity of predictive analytics 

will become mainstream and will be reached within next 2 years. What this means is 

that predictive analytics adoption will become a common practice by companies to en-

able them to make better choices and decisions.  

In making predictions about future events or occurrences, there is hardly a correct an-

swer as the purpose is to make a good guess as much as possible and be less wrong 

instead of getting completely wrong result. Random walk theory has also stated that it 

is impossible to make predictions with historical data for example predicting stock pric-

es or currency exchange rates.  
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The purpose of this thesis is to compare and analyze different data samples of histori-

cal and current data to determine which data sample gives better accuracy of a predic-

tive model. In order to achieve this, the goal will be to develop currency exchange fore-

casting model using quantitative data sets and SAP High performance analytics appli-

ance (HANA) predictive analytic library software and compare the predicted or fore-

casted result against the actual result. Other ways of improving the model accuracy will 

also be discussed. 

 

 

Figure 2 - Gartner Hype Cycle for Emerging Technologies, 2013 

 

1.2 Research question  

The research question is how to determine the accuracy of a predictive model. The 

case will be based on currency forecasting model. 
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1.3 Thesis Structure 

 

Chapter 1 begins with a general background about predictive analytics and the im-

portance of the discipline. The research purpose and question are also discussed. 

Chapter 2 begins with the discussion of the different disciplines associated with predic-

tive analytics such as business intelligence, data warehouse, in-memory computing, 

and data mining and predictive analytics. 

The different predictive analytics algorithms will be introduced in chapter 3. However, 

the mathematics behind the different algorithms and how they aid in making predictions 

will not be discussed in detail. 

The evaluation of predictive model performance will be discussed in chapter 4 and 

chapter 5 will cover the predictive model development using SAP HANA PAL.  Finally, 

conclusions and recommendations will be discussed in chapter 6. 

 

 

Figure 3 - Thesis structure 
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2 Literature review 

This chapter discusses the concepts of machine learning, big data, data warehouse, 

business intelligence and in-memory computing and other disciplines associated with 

predictive analytics. 

 

2.1 Machine Learning 

 

A recent report from the Mckinsey Global institute asserts that machine learning a.k.a 

data mining or predictive analytics will be the driver of the next big wave of innovation ( 

(Pedro Domingos,2013:1). Machine learning is a branch of business intelligence con-

cerned with the design and development of algorithms that allows computers to evolve 

behaviours based on empirical data (James Manyinka et. al; 2011:29). 

One of the main purpose of machine learning research is to automatically learn to 

recognize complex patterns and make intelligent decisions based on data and some of 

the successful applications includes speech recognition, bio-surveillance, computer 

vision and robot control (Tom Mitchel, 2006:4). 

 

2.2 Big Data 

Intel IT Center (2013) refers big to huge datasets that are orders of magnitude larger 

(volume); more diverse, including structured, semi-structured and unstructured data 

(variety) and arriving faster (velocity) than what organizations or individuals have dealt 

with before.  

The capturing, storing, managing and analysing of big data is beyond the ability of typi-

cal database software tools (Jame Manyika et al.; 2011:1).However, with in-memory 

computing technologies big data can easily be analysed and processed to generate 

real time information. 

Big data is characterized by 3Vs as seen in the figure below. 

 

 Volume – The massive scale and growth of unstructured data outstrips tradi-

tional storage and analytical solutions. 

 Variety – Traditional data management processes can’t cope with the hetero-

geneity of big data  

 Velocity – data is generated real time with demands of usable information to be 

served immediately. 
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Figure 4 - 3Vs characterization of big data (Marko Grobelnik, 2012) 

 

The flood of data is generated by connected devices from PCs and smartphones to 

sensors such as RFID readers and traffic cams. Plus it is heterogeneous and comes in 

many different formats including text, documents, images, videos and more (Intel IT 

Center, 2013:3). 

It is predicted that by 2015, there will be about 8ZB (Zeta bytes) of data as shown in 

below figure and nearly 15 billion connected devices (ibid). 

 

 

 

Figure 5 - Data size of big data (Intel IT center, 2013) 
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2.3 Data Warehouse 

The term data warehouse was first coined in the early 1990s by Bill Inmon who defined 

data warehouse as “a subject-oriented, integrated, time variant, non-volatile collection 

of data organized to support management needs” (Zhenyu et al. 2002:23). 

According to (ibid.), data warehousing assists organizational information processing by 

providing a solid platform of integrated data both current and historical, from which or-

ganizations can conduct a series of business analyses. 

Data transferred to data warehouse usually come from various online transaction pro-

cessing (OLTP) source systems such as an Enterprise Resource Planning (ERP) sys-

tem. The cleansing of the data that will give meaningful insight to the business is done 

with an Extraction Transformation Loading (ETL) tool. Data warehouse stores infor-

mation from operational systems in online analytical processing (OLAP) cubes. Data 

warehouse OLAP engine provides means for users to access and analyse the data 

stored in the data warehouse. 

 

2.4 Data Mining 

 

Data mining application has just been made popular due to the recent classified NSA 

document made public by a former NSA contractor, Edward Snowden. The allegation 

made was that the US government has been secretly using data mining to spy and 

eavesdrop on their citizens and foreign governments through a clandestine program 

called PRISM where NSA taps directly to the servers of some of the biggest companies 

in the world such as Google, Microsoft, Yahoo, Apple and collect and store meta data 

of emails, phone calls, chat conversations, documents. The aim of the program is for 

the NSA to use predictive analytics to counter terrorism. 

 

Data Mining (DM) or Knowledge Discovery of Data (KDD) refers to extracting or mining 

knowledge from large amounts of data which is shown in figure 3 below (Kamber et al., 

2006: 5). Another meaning of data mining includes Knowledge mining from data, 

knowledge extraction, data/pattern analysis, data archaeology and data dredging.  
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Figure 6 - Data mining as a step in the process of Knowledge discovery (Kamber et al., 

2006: 6) 

 

 

 

No Steps Descriptions 

1 Data Cleaning 

to remove noise and inconsistent data and re-

dundant data 

2 Data integration where multiple data sources may be combined 

3 Data selection 

where data relevant to the analysis task are 

retrieved from the database 

4 Data transformation 

where data are transformed or consolidated 

into forms appropriate for mining by performing 

summary or aggregation operations 

5 Data mining 

an essential process where intelligent methods 

are applied in order to extract data patterns 

6 Pattern evaluation 

to identify the truly interesting patterns repre-

senting knowledge based on some interesting-
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Table 1 - Steps in the data mining process (Kamber et al., 2006: 7) 

 

 

The whole process of presenting the knowledge to the end user involves data prepro-

cess which includes data cleaning, data integration, data selection and data transfor-

mation as described in steps 1 – 4. Steps 5 – 7 uncover insights and meaningful mean-

ing of the data and present it to the end user through visualization.  

A typical DM system involves databases, data warehouses and information manage-

ment tools or reporting and analytics tools as shown in Figure 4. Data stored in data-

bases, data warehouses and other external repositories of information are cleaned, 

transformed and transferred into the data mining engine which then applied series of 

mathematical algorithms and present the data as required by the end user via front end 

reporting tools for visualization and analysis.  

 

Figure 7 - Architecture of a typical data mining system (Kamber et al., 2006: 8) 

 

 

ness measures 

7 Knowledge presentation  

where visualization and knowledge representa-

tion techniques are used to present the mined 

knowledge to the user 
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The concept of data mining is about finding patterns within business and scientific data 

and noted for handling large volumes of data to assist in the automation of the 

knowledge discovery process (Khan et al., 2008: 582). Disciplines such as statistics, 

Signal or image processing, artificial intelligence (AI), machine learning, database que-

ry tools, econometrics, management science, domain-knowledge-based numerical and 

analytical methodologies, nonlinear dynamic and stochastic systems have all contribut-

ed to Data Mining (Khan et al., 2008: 582). 

 

Data mining tasks can be modelled to descriptive and predictive in nature as shown in 

figure 6. Descriptive data mining includes clustering, summarization, association rules 

and sequence analysis while predictive involves classification, regression, prediction 

and time series analysis (Dunham M.H, 2003: 5).Predictive data mining topic will be the 

primary focus of this thesis report. 

 

 

Figure 8 - Data mining models and tasks (Dunham M.H, 2003: 5) 

 

 

2.5 Business Intelligence 

 

Business intelligence (BI) is a broad category of applications and technologies for 

gathering, storing, analysing and providing access to data to help enterprise users 

make better business decisions. Business intelligence applications include the activities 

of decisions support systems, query and reporting, online analytical processing 

(OLAP), statistical analysis, forecasting, and data mining (Luca Rossetti, 2006). 

Business intelligence applications can be of the following types: a) Mission- critical and 

integral to enterprise operations or occasional to meet a special requirement; b) enter-

prise-wide or local to one division, department or project; and c) Centrally initiated or 

driven by user demand. 

Figure 7 shows how data is extracted from source systems to front end BI applications 
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Figure 9 - An overview of Business Intelligence Technology (Surajit Chaudhuri et al., 

2010:93) 

 

As Figure 7 demonstrates, data which comes from multiple source systems are trans-

ferred and stored in OLAP cubes in data warehouse by an ETL tool and made availa-

ble to the users through front end reporting applications. ETL tool provides mechanism 

for data extraction from source systems, data transformation by enriching it with new 

business logic and cleansing of the data, and finally loading the data into data ware-

house OLAP cubes. 

The process described above shows how business intelligence applications are creat-

ed and made available to users for decision making purposes through visualized front 

end applications. 

 

2.6 In-Memory computing 

Predictive analytics in real-time is now feasible due to the ability of in-memory compu-

ting to find patterns and process complex data streams in real time. The combination of 

real time data streams and predictive analytics also known as processing that never 

stops has the potential to deliver significant competitive advantage for business (Intel 

IT Center, 2013).  

 

In-Memory computing BI enables data to be stored in random access memory (RAM) 

rather than on a physical disk as is the case of traditional DW. This storage of data in 

RAM enables faster access of data, boosts query performance and allows business 

intelligence and analytical applications to support faster decision-making as a result of 

near real time capabilities. 
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Presently, In-memory computing is becoming popular due to the following reasons 

summarized by (Chaudhury et al, 2011:93). “First, the ratio of time to access data on 

disk vs. Data in memory is increasing. Second, with 64-bit operating systems becoming 

common, very large addressable memory sizes (for example, 1TB) are possible. Third, 

the cost of memory has dropped significantly, which makes servers with large amounts 

of main memory affordable.” 

 

Also, (Yellowfin, 2011:3) stated that in-memory computing benefits include: first, dra-

matic performance improvements. In Practice, it means that Users are querying and 

interacting with data in-memory which is significantly faster than accessing data from 

disk. The second advantage of in-memory includes cost effective alternative to data 

warehouses. This is especially beneficial for midsize companies that may lack the ex-

pertise and resources to build a data warehouse. The in-memory approach provides 

the ability to analyze bigger data sets, and it is much simpler to set up and administer. 

Consequently, IT is not burdened with tasks that take time to perform performance tun-

ing which is typically required by data warehouses. 

 

The third advantage of in-memory computing use is the ability to discover new insights. 

It means that business users now have self-service access to the right information, 

coupled with rapid query execution, which allows the delivery of new levels of insight 

required to optimize business performance, without getting the IT ‘bottleneck’ (ibid). 

 

Based on these characteristics benefits, a typical scenario for the application of in-

memory computing is the retail sector whereby management can instantly learn what 

product a customer has purchased using real-time business insight by analysing the 

operations as are unfolding, rather than after waiting for a few days or weeks as is the 

case of using traditional data warehouse for business intelligence. In case of in-

memory computing, it is possible because the information can be transferred from 

source system to data warehouse or front end reporting applications instantly as it is 

created. 

 

In today’s fast pace business environment, In-memory computing is capable of resolv-

ing some of the challenges that users of data warehouse reporting are currently expe-

riencing as depicted in Figure 8 below where all the bottle necks in traditional data 

warehouse have been removed. 
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Figure 10 - Traditional data warehouse vs In-memory data Computing technology (In 

memory computing, the holy grail of analytics, 2013:4) 

 

For this research project, SAP HANA in-memory database technology will be used for 

the model development. Figure below depicts SAP HANA PAL with its native algo-

rithms.  
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Figure 11 - SAP HANA In-memory database and PAL (SAP HANA Predictive Analysis 

Library, 2013) 

 

 

2.7 Predictive Analytics 

 

Predictive analytics (PA) is a branch of business intelligence that applies disciplines 

such as probability and statistics, machine learning, artificial intelligence, and computer 

science to business problems (Collete L, The Power of predictive analytics, 2006:12). It 

uses historical or present data to predict future occurrence of events and unearth hid-

den meaning of data. In retail banking (Lamonth J, Ph.D, Predictive analytics: an asset 

to retail banking worldwide, 2005 VOL 14, Issue 10), it allows organizations to access 

risk and opportunities using historical data to construct models characteristics of a 

group of customers with their financial behaviour. 
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Collete (The power of predictive analytics, 2006:1) stated that predictive models ana-

lyse past performance to predict future behaviour and this is done by analysing histori-

cal and transactional data to isolate patterns and predict an outcome. A typical exam-

ple is customer churning (ibid). 

 

Predictive analytics is divided into the following, predictive model, descriptive model 

and decision model. Descriptive model identifies many different relationships in data 

and classify them into groups while predictive models analyses past performance to 

predict future behaviour (ibid). 

Finally, decision models which is the most advance level of predictive analytics predicts 

the outcomes of complex decisions in much same way that predictive models predict 

customer behaviour. 

 

The business cases of predictive analytics can be seen in figure 10 below. 

 

Figure 12 - Predictive analytics business and industry use cases  
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3 Predictive analytics algorithms 

This chapter introduces the different predictive analytics algorithms and their relation-

ship in making predictions. 

3.1 Regression analysis 

Regression analysis algorithm is commonly used and applied in making forecast, esti-

mation and predictions about future occurrences. It is used to ascertain the relationship 

between one or more variables and the causal effect they have on one another in order 

to gain information about one of them through knowing the values of the other, for ex-

ample understanding the effect of a price increase upon demand or the effect of 

changes in the money supply upon the inflation rate (Alan Sykes, An introduction of 

regression analysis, 1996:1). Other example of regression analysis includes the effect 

of war on high prices of oil (Stephen L., War and its effect on oil prices (2011) and  

the increase of air ticket prices on popular holiday destinations during summer period 

(Rebecca B., Cost of summer getaways hit as air ticket rise (2012). 

 

In regression analysis, variables can be independent which is sometimes called predic-

tor or dependent which can be called response variable. Predictor variables are those 

that can either be set to a desired value (controlled) or else take values that can be 

observed without any error (Turkman K.F., Linear Regression, 2012:13). Predictor var-

iables can be defined as those variables that can either be set to a desired value (con-

trolled) or else take values that can be observed without any error (ibid). 

 

A regression analysis with a single variable is called simple regression and if  

two or more variables occur; the regression analysis is called multiple regression anal-

ysis (Kerby Shedden, 2013:1). 

 

3.1.1 Simple linear regression analysis 

 

Simple linear regression with a single predictor variable is called simple linear regres-

sion and can be defined as (Jiawan H and Micheline K., 2006:355): 

y = b + wx 

Where the variance of y is assumed to be constant, and b and w are regression coeffi-

cients specifying the Y – intercepts and slope of the line (Jiawan H and Micheline K., 

2006:355): 
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The table below shows the relationship between Salary earned and number of years of 

work experience. When plotted in a scatter plot diagram, there is a direct relationship 

between years of experience in X axis and salary earned annually in Y axis. As the 

number or years of work experience increases so is the amount of salary earned.  

In reality, this is not always the case as there are lots of variables that affect the 

amount of salary earned. 

 

 

 

Figure 13 - Number of work experience versus Annual income 

 

Number of work experience years Annual Income

3 30000

8 57000

9 64000

13 72000

6 36000

11 43000

21 90000

1 20000

16 83000
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Figure 14 - simple linear regression 

 

3.1.2 Multiple linear regression analysis 

 

Multiple regression analysis is an extension of simple linear regression as it involves 

more than one predictor variable (Jiawan H and Micheline K., 2006:357). For example 

figure 9 below includes additional variable called number of years of education.  

 

An example of a multiple linear regression model based on two predictor attributes or 

variables, A1 and A2, is 

y = w0+w1x1+w2x2 

Where x1 and x2 are the values of attributes A1 and A2, respectively, in X.  

 

The method of least squares shown above can be extended to solve for w0, w1, and 

w2. The equations, however, become long and are tedious to solve by hand. Multiple 

regression problems are instead commonly solved with the use of statistical software 

packages, such as SAS, SPSS, and S-Plus  
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Figure 15 - work experience versus Annual income vs education 

 

3.2 Neural Networks 

Neural Networks also known as Artificial neural network (ANN) is a predictive analytics 

algorithm technique modelled after cognitive system and neurological functions of the 

brain and is capable of predicting new observations on the same or other variables by 

using artificial intelligence to learn from new and existing data (Statsoftsa, 2013).  

In other words, neural network is a simplified model of the biological nervous system 

and work and draws its motivation from the kind of computing performed by the human 

brain (Reshma et al., 2013:1). Neural network have been applied successfully to prob-

lems in the field of pattern recognition, image processing, data compression, forecast-

ing and optimization (ibid). 

 

Artificial neural networks is made of an artificial neurons modelled after natural biologi-

cal neurons as seen in the figure 14 below. As stated by (Gershenson C., 2003:1), 

Natural neurons receive signals through synapses located on the dendrites or mem-

brane of the neuron and these neurons are activated and emits signals through the 

axon whenever the signals received are strong enough or surpasses certain threshold. 

 

 

Number of work experience years Annual Income Number of years of Education

3 30000 5

8 57000 4

9 64000 4

13 72000 5

6 36000 4

11 43000 4

21 90000 7

1 20000 3

16 83000 5
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Figure 16 - Natural neurons 

 

ANN consists of inputs or synapses which are multiplied by weights or strengths of the 

respective signals. The activation of the neuron is determined by a mathematical func-

tion as shown in figure 15 (ibid). Patterns are presented to the network via the input 

layer, which communicates to one or more hidden layers where the actual processing 

is done via a system of weighted connections. 

 

 

Figure 17 - Artificial neuron 

ANNs are based on the combination of neurons, connections and transfer functions 

with various learning algorithms any layout methods for the neurons and their connec-

tions. The limitation of ANN is that it acts essentially as a black box that performs as-

signed tasks without the user having control of the output. The information stored in 
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neural networks is a set of numerical weights and connections that provides no direct 

clues as to how the task is performed or what the relationship is between the inputs 

and outputs. This limits the usage and acceptance of ANN since in many applications 

science and engineering it is demanded to use techniques based on analytical func-

tions that can be understood and validated (Tzeng et al., 2005:1). 

 

Examples of neural networks applications can be seen in the table below. 

Application  Description 

Detection of medical 

phenomena 

A variety of health-related indices (e.g., a combination 

of heart rate, levels of various substances in the blood, 

respiration rate) can be monitored. The onset of a par-

ticular medical condition could be associated with a 

very complex (e.g., nonlinear and interactive) combi-

nation of changes on a subset of the variables being 

monitored. Neural networks have been used to recog-

nize this predictive pattern so that the appropriate 

treatment can be prescribed. 

Stock market prediction Fluctuations of stock prices and stock indices are an-

other example of a complex, multidimensional, but in 

some circumstances at least partially-deterministic 

phenomenon. Neural networks are being used by 

many technical analysts to make predictions about 

stock prices based upon a large number of factors 

such as past performance of other stocks and various 

economic indicators. 

Credit assignment A variety of pieces of information are usually known 

about an applicant for a loan. For instance, the appli-

cant's age, education, occupation, and many other 

facts may be available. After training a neural network 

on historical data, neural network analysis can identify 

the most relevant characteristics and use those to 

classify applicants as good or bad credit risks. 
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Monitoring the condition 

of machinery 

Neural networks can be instrumental in cutting costs 

by bringing additional expertise to scheduling the pre-

ventive maintenance of machines. A neural network 

can be trained to distinguish between the sounds a 

machine makes when it is running normally ("false 

alarms") versus when it is on the verge of a problem. 

After this training period, the expertise of the network 

can be used to warn a technician of an upcoming 

breakdown, before it occurs and causes costly unfore-

seen "downtime." 

Engine management Neural networks have been used to analyze the input 

of sensors from an engine. The neural network con-

trols the various parameters within which the engine 

functions, in order to achieve a particular goal, such as 

minimizing fuel consumption. 

 

Table 2 - Examples of Neural networks (Statsoft, 2013) 

 

The different neural networks algorithms include: 

3.2.1 Feed-forward network 

A feed-forward network is a non-recurrent network which contains inputs, outputs, and 

hidden layers; the signals can only travel in one direction. Input data is passed onto a 

layer of processing elements where it performs calculations. Each processing element 

makes its computation based upon a weighted sum of its inputs. The new calculated 

values then become the new input values that feed the next layer.  

This process continues until it has gone through all the layers and determines the out-

put. A threshold transfer function is sometimes used to quantify the output of a neuron 

in the output layer. Feed-forward networks include Perceptron (linear and non-linear) 

and Radial Basis Function networks. Feed-forward networks are often used in data 

mining (Saed Sayad, 2013). 
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3.2.2 Feed-backward network 

 

A feed-back network has feed-back paths meaning they can have signals traveling in 

both directions using loops. All possible connections between neurons are allowed. 

Since loops are present in this type of network, it becomes a non-linear dynamic sys-

tem which changes continuously until it reaches a state of equilibrium. Feed-back net-

works are often used in associative memories and optimization problems where the 

network looks for the best arrangement of interconnected factors (ibid). 

 

3.3 Time Series 

In early Babylonian astronomy, time series have been used to predict numerous astro-

nomical events using the relative positioning of stars through observations of the 

movement of the planets. And this has formed the basis of planetary laws put forward 

by Johannes Kepler (G Kirchgassner and J. Wolters, Introduction to Modern Time Se-

ries, 2007:2). 

 

The analysis of time series helps to detect regularities in the observations of a variable 

and derive ‘laws’ from them, and/or exploit all information included in this variable to 

better predict future developments. The basic methodological idea behind these proce-

dures, which were also valid for the Babylonians, is that it is possible to decompose 

time series into a finite Number of independent but not directly observable components 

that develop regularly and can thus be calculated in advance. For this procedure, it is 

necessary that there are different independent factors which have an impact on the 

variable (ibid).  

 

G. Kirchgassner and J. Wolters (2007:2) defined time series analysis as a set of quanti-

tative observations of data collected over time arranged in chronological order usually 

daily values, weekly values, monthly values, quarterly values and yearly values. Usual-

ly the observations are made repeatedly over 50 or more time periods. The observa-

tions can be from a single case or an aggregated score from many cases tracked over 

a considerable time for example, the scores might represent the daily number of tem-

per tantrums of a two year old, the weekly output of a manufacturing plant, the monthly 

number of traffic tickets issued in a municipality, or the yearly GNP for a developing 

country (Hery Mulyana, 2011:1). 
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The intention is to determine if there is pattern in the data collected to date with the aim 

to make predictions of future developments or forecast.  

 

The technique that is used in time series data to make forecast or prediction is the ex-

ponential smoothing which assigns exponentially decreasing weights over time or as 

the observations get older unlike moving average method which compute the average 

of the most recent data values for the series and using the average to forecast the val-

ue of the time series for the next period. It can be said that exponential smoothing 

method gives more weight to recent observations in forecasting than the older observa-

tions. 

 

The three types of exponential smoothing methods are the single exponential smooth-

ing (SES) double (Holt’s) exponential smoothing (DES) and triple (winter’s) exponential 

smoothing. 

 

3.3.1 Single exponential smoothing 

This is also known as simple exponential smoothing and it is a suitable to model time 

series when there is no trend or seasonality in the data. When the data exhibits either 

an increasing or decreasing trend over time, simple exponential smoothing forecasts 

tend to lag behind observations. 

The formula for single exponential smoothing is as follows (Marzena et al., 2013:31): 

 

Ft+1 = Ft + α(yt – Ft)  or 

Ft+1 = αyt + (1 – α) Ft 

Where: 

Ft+1= forecast value for period t + 1 

yt = actual value for period t 

Ft = forecast value for period t 

α = alpha (smoothing constant) 

 

When applied recursively to each successive observation in the series, each new 

smoothed value (forecast) is computed as the weighted average of the current obser-

vation and the previous smoothed observation; the previous smoothed observation was 

computed in turn from the previous observed value and the smoothed value before the 

previous observation, and so on. 
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3.3.2 Double exponential smoothing 

Double exponential smoothing also called smoothing with trend is used for forecasting 

when there is trend in the data but no seasonality. This smoothing works much like the 

single exponential smoothing except that the components is updated with trend. 

The formulas for double exponential smoothing are (Marzena et al., 2013:37): 

 

Ct = αyt + (1 – α ) (Ct-1 + Tt-1) 

Tt = β(Ct - Ct-1) + (1 – β) Tt-1 

Ft-1 = Ct + Tt 

Where: 

yt = actual value in time t 

α = constant -- process smoothing constant 

β = trend -- smoothing constant 

Ct = smoothed constant -- process value for period t 

Tt = smoothed trend value for period t  

Ft+1 = forecast value for period t + 1 

t = current time period 

 

3.3.3 Triple exponential smoothing 

Triple exponential smoothing  also known as the Winters method  is a refinement of the 

popular double exponential smoothing model but adds another component which takes 

into account any seasonality or periodicity in the data. 

As with simple exponential smoothing, in triple exponential smoothing models past ob-

servations are given exponentially smaller weights as the observations get older. In 

other words, recent observations are given relatively more weight in forecasting than 

the older observations. This is true for all terms involved - namely, the base level Lt, the 

trend Tt as well as the seasonality index st. 

There are four equations associated with Triple Exponential Smoothing. 

Lt = a.(xt/st-c)+(1-a).(Lt-1+Tt-1) 

Tt = b.(Lt-Lt-1)+(1-b).Tt-1 

st = g.(xt/Lt)+(1-g).st-c 

ft,k = (Lt+k.Tt).st+k-c 

where: 

Lt is the estimate of the base value at time t. That is, the estimate for time t after elimi-

nating the effects of seasonality and trend. 

a - representing alpha - is the first smoothing constant, used to smooth Lt. 
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xt is the observed value at time t. 

st is the seasonal index at time t. 

C is the number of periods in the seasonal pattern. For example, c=4 for quarterly data, 

or c=12 for monthly data. 

Tt is the estimated trend at time t. 

b - representing beta is the second smoothing constant, used to smooth the trend esti-

mates. 

g - representing gamma is the third smoothing constant, used to smooth the seasonali-

ty estimates. 

ft,k is the forecast at time the end of period t for the period t+k. 

 

 

3.4 Decision Trees 

Decision trees are a simple, but powerful form of multiple variable analyses and pro-

vide unique capabilities to supplement complement and substitute for the following 

(Berry de Ville, 2006:1): 

 Traditional statistical forms of analysis such as multiple linear regression 

 A variety of data mining tools and techniques such as neural networks. 

 Recently develop multidimensional forms of reporting and analysis found in the 

field of business intelligence. 

Decision tree is a popular predictive analytics tool because of the way data is present-

ed visually. The visual presentation of data by decision trees makes it easy to read, 

understand and assimilate information. 

Berry and Linoff (2006:166) defined decision tree as a tree structure that can be used 

to divide up large collection of records into successively smaller sets of records by ap-

plying a sequence of simple decision rules. The members of each successive division 

resulting sets become more and more similar to one another. This is akin to the familiar 

division of living things into kingdoms, phyla, classes, orders, families, genera and spe-

cies (ibid). 

Decision trees are powerful and popular data mining tool for classification and predic-

tions. It is a tree in which each branch node represents choice between a number of 

alternatives, and each leaf node represents a classification or decision (ibid). 

The model for decision tree consists of a set of rules for dividing a large datasets into 

smaller, more homogeneous datasets with respect to a particular target variable (ibid) 

Decision tree consist of nodes that form a rooted tree. This is a directed tree with a 

node called the root which has no incoming edges. Other nodes have exactly one in-
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coming edge. A node that has outgoing edges is called an internal or test node. All 

other nodes are called leaves which can also be called terminal or decision nodes. 

There are numerous applications of decision trees. An example as shown below is the 

owner of an ice cream stand that wants to know what makes people will by ice cream 

(Padraic G. Neville, 1999:2). 

 

The observed data in the example showed that forty percent of people buy ice cream. 

This is represented in the root node of the tree at the top of the diagram. The first rule 

splits the data according to the weather. Unless it is sunny and hot, only five percent 

buy ice cream. This is represented in the leaf on the left branch. On sunny and hot 

days, sixty percent buy ice cream. The tree represents this population as an internal 

node that is further split into two branches, one of which is split again. 

 

 

Figure 18 - Decision tree (Padraic G. Neville, 1999:2) 

 

According to the tree, people almost never buy ice cream unless the weather cooper-

ates and either (1) they have some extra money to spend or (2) they crave the ice 

cream and presumably spend money irresponsibly or figure out another way of buying 

it (ibid). 
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3.5 Clustering  

Clustering is a descriptive data mining algorithm that categorizes observations in a da-

tabase into groups called clusters. This algorithm categorizes the total number of cases 

into a smaller number of groups such that the cases within each group are similar to 

each other, but dissimilar to the cases in other groups (Shiraj Khan et al., 2008:584). 

 

In clustering analysis, objects or observations in a specific cluster share many charac-

teristics, but are very different from objects or observations belonging to other cluster. 

 

Clustering analysis is widely use in customer market analysis, where customers are 

segmented based on different factors or criteria variables for example their income or 

level of education in order to target them for better pricing strategies. The segmentation 

of customers is a standard application of cluster analysis, but it can also be used in 

different, sometimes rather exotic, contexts such as evaluating typical supermarket 

shopping paths or deriving employers branding strategies (Larson et al. 2005:1). 

 

Cluster models resulting from cluster analysis have traditionally been used quite exten-

sively in marketing applications to help characterize groups of similar consumers. The 

ability to better understand these groups can lead to more effective messaging and 

new product development efforts.  

 

 

Some of the most popular methods used in clustering analysis include K-Means algo-

rithm and Kohonen self-organizing map (SOM). 

 

3.5.1 K-Means 

K-means clustering is a method that attempts to assign a set of n observations into a k 

number of clusters where each observation is allocated to the cluster with the nearest 

center point. Therefore each observation can only belong to one cluster. The center 

point of a cluster is the mean value for all the observations (Correa et al, 2012:2). 

Lloyd’s algorithm commonly known as standard algorithm or K-Means algorithm is one 

of the heuristic algorithms that are used to reach an optimum assignation of the obser-

vations to the cluster (ibid). This method is usually iterative technique to reach optimum 

clustering. 

Correa et al (2012:2) described that the whole process can be divided in two steps. 

Assignment is the first step, where each observation is assigned to the cluster with the 
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closes center point. The new center points are calculated based on the observations 

that formed the cluster at the end of step one in the second step. This process is re-

peated until the clusters remain unchanged. The goal of this process is to find the best 

fit to the data, minimizing the within –cluster sum of squares (ibid). 

3.5.2 Kohonen clustering Method 

Kohonen is an unsupervised and competitive commonly used clustering method. It 

comes from a self-organizing map (SOM) that is well-known dimension reduction 

method. Kohonen clustering method have some similarities with K-Means procedure 

such as the way that new observations are assigned to the clusters and that both 

methodologies are heuristic process, but the process as a whole is very different (Cor-

rea et al.,2012:3). 

In self-organizing cluster algorithm, clusters are determined when the nearest cluster 

called the wining cluster are moved closer towards the training case or observation. 

The amount of the movements depends of the distance between the winning cluster 

and the training case, and they decreased throughout the process by means of the 

learning rate (ibid). 

A neural network seen below is the basis of SOM cluster. The input layer is com-

pounded by the k variables (characteristics) of each of the N observations. There is no 

connection between the output nodes but every node has a connection with all the in-

put nodes. 

 

Figure 19 - Kohonen Neural Network ((Correa et al, 2012:3) 
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3.6 Association Rules Analysis 

Association rules analysis or market basket analysis is a popular tool for mining very 

large scale commercial database. The rules attempts to describe regions of relatively 

high density in a very large commercial database.  

Market basket analysis concerns the analysis of various subsets of items taken from a 

population of items. The subsets of concern, or rules, are those identified as having a 

minimum value of confidence, support or lift. An example rule is denoted as A->B, 

where A is referred to as the rule’s antecedent condition and B the consequent. The 

rule is interpreted as “If A occurs in the market basket, then B also occurs in the market 

basket.” (Sanford Gayle, 2000:1). 

 

For example, consider the sales database of an on-line retailer e.g. Amazon, where the 

objects represent customers and the attributes represent items or products. The rules 

to be discovered are the set of items or products most frequently bought together by 

the customers. An example could be that  

 

 15% of the people who buy Dorian Pyle’s Data Preparation for Data Mining also 

buy Data Mining Techniques by Berry and Linoff.”  

 60% of the customers who buy milk also buy bread and eggs 

 80% of the time that a specific brand of toaster is sold, customers also buys a 

set of kitchen gloves and matching cover sets. 

 

Also, movie rental such as Netflix uses market basket analysis to recommend movies 

for their customers for example customers that watches “Lord of the rings also watches 

the hobbit”. 

 

Some of the applications of market basket analysis include: 

 Analysis of purchases made with a credit card. 

 Analysis of telephone calling patterns 

 Analysis of medical history 

 Analysis of telecom service purchase 

 Identification of fraudulent claims  

 



Page 41 of 80 

 

 

3.7 Classification 

Classification is a data mining technique that is used for discovering classes of un-

known data. Classification follows supervised learning technique whereby a set of ex-

amples whose label are known are given to the algorithm. 

 

Classification consists of predicting a certain outcome based on a given input. In order 

to predict the outcome, the algorithm processes a training set containing a set of attrib-

utes and the respective outcome, usually called goal or prediction attribute (Fabricio 

Voznika and Leonardo Viana, 2007:1).Classification algorithm tries to discover rela-

tionships between the attributes that would make it possible to predict the outcome. 

Next the algorithm is given a data set not seen before, called prediction set, which con-

tains the same set of attributes, except for the prediction attribute – not yet known.  

 

The data classification process: Learning: Training data are analyzed by a classification 

algorithm. Here, the class label attribute is loan decision, and the learned model or 

classifier is represented in the form of classification rules. (b) Classification: Test data 

are used to estimate the accuracy of the classification rules. If the accuracy is consid-

ered acceptable, the rules can be applied to the classification of new data tuples. 

(Kamber et al., 2006: 287) 
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Figure 20 - Classification training data (Kamber et al., 2006: 287) 

 

 

Figure 21 - Classification test data (Kamber et al., 2006: 287) 

 

Classification technique includes rule based classifier, genetic algorithm, Bayesian 

classifier, k-nearest neighbor, rough sets and fuzzy logic. 
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3.7.1 Rule Based Classifier 

Rule based classifier deals with the discovery of high-level, easy to interpret classifica-

tion rules of the form IF-THEN (Beniwal and Arora (2012:3). The rules are composed of 

two parts mainly rule antecedent and rule consequent. The IF part which specifies a set 

of conditions referring to predictor attribute values is the rule antecedent while the part 

that satisfies the conditions in the rule antecedent is the THEN. 

3.7.2 Bayesian Classification 

Bayes Theorem which can also be called Naïve Bayesian classification was first pro-

posed by Thomas Bayes. This classification represents a supervised learning method 

as well as a statistical method of classification. This algorithm provides practical learn-

ing algorithms and prior knowledge and uses the learned knowledge to predict future 

events (Mihaesu C.2002:1). 

They can predict class membership probabilities, such as the probability that a given 

sample belongs to a particular class. Naive Bayesian classifiers assume that the effect 

of an attribute value on a given class is independent of the values of the other attrib-

utes. This assumption is called class conditional independence. 

One of the practical usages of Bayesian classification is email spam filtering because 

the algorithm can distinguish illegitimate spam mail from legitimate email (ibid). 

3.7.3 Genetic Algorithm 

Genetic Algorithms (GAs) are part of evolutionary computing which is a growing area of 

artificially intelligence (AI). GAs is adaptive heuristic search algorithm based on the 

evolutionary ideas of natural selection and genetics. It was inspired by Charles Darwin 

survival of the fittest evolutionary theory. Genetic algorithm attempts to exploit historical 

information to direct search into the region of better performance within the search 

space. 

Genetic algorithms are good at taking large, potentially huge search spaces and navi-

gating them, looking for optimal combinations of things, the solutions that would other-

wise take a life time to find (RC Chakraborty, 2010:1). 

 

Some of the applications of classification analysis include: 

 Credit approval 

 Target marketing 

 Medical diagnosis 

 Treatment effectiveness analysis 
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3.7.4 K-nearest neighbour 

 

K-Nearest neighbour (KNN from now on) is also called lazy learning algorithm because 

it doesn’t make assumptions on the underlying data distribution. It is also a lazy algo-

rithm. What this means is that it does not use the training data points to do any gener-

alization. In other words, there is no explicit training phase or it is very minimal. 

(Saravanan Thirumuruganathan, 2007). 

 

KNN classifiers are based on learning by analogy, that is, by comparing a given test 

tuple with training tuples that are similar to it. The training tuples are described by n 

attributes. Each tuple represents a point in an n-dimensional space. In this way, all of 

the training tuples are stored in an n-dimensional pattern space. When given an un-

known tuple, a k-nearest-neighbour classifier searches the pattern space for the k train-

ing tuples that are closest to the unknown tuple. These k training tuples are the k 

“nearest neighbours” of the unknown tuple (Kamber et al., 2006: 348). 
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4 Model Performance Evaluation 

This chapter introduces the various statistical methods to evaluate the performance of 

a predictive model and measures its accuracy. Robert Kunst (2012:58) stated that 

there are two ways to determine how good a forecast is. Firstly, the predictive accuracy 

is measured per se and secondly is by comparing various forecasting models. In this 

thesis paper, the accuracy of the model will be determined by using scientific measur-

ing tools. 

4.1 Goodness-of-fit 

One of the ways of evaluating the performance of a predictive analytic model is by 

looking at the accuracy of the model. This is done by comparing the predictive and the 

actual outcome of the result. When the predicted result outcome is close to the actual 

result outcome, the model is considered a good fit or has goodness-of-fit. In general, a 

good predictive model is when the difference between the observed values and the 

predicted values are small and unbiased (Jim Frost, 2013). 

 

Goodness-of-fit is determined using the Chi-Square distribution method which 

measures the observed frequency and expected frequency and the formula is (Cohen, 

H., 2012:459). 

 

    
( o   e)

2

  
 

Where  

   = is taken over all the categories 

   = Observed frequency 

   = Expected frequency 

Cohen, Barry (2012:.459) stated that, if the differences between the observed frequen-

cies and the expected frequencies are small,    will be small and that the greater the 

difference between the observed frequencies and those expected under the null hy-

pothesis, the larger    will be. 

 

The common measures used for measuring the goodness-of-fit are Root Mean Square 

Error, Relative Square Error and Coefficient of Determination. 

 

 



Page 46 of 80 

 

 

4.2 Root Mean Square Error 

 

The Root Mean Square Error (RMSE) (also called the root mean square deviation, 

RMSD) is a frequently used measure of the difference between values predicted by a 

model and the values actually observed from the environment that is being modelled. 

These individual differences are also called residuals or prediction errors, and the 

RMSE serves to aggregate them into a single measure of predictive power. The calcu-

lation for residuals is: 

 

Residuals = Actual value – Predicted value 

The RMSE of a model prediction with respect to the estimated variable Xmodel is defined 

as the square root of the mean squared error: 

n
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where Xobs is observed values and Xmodel is modelled values at time/place i. 

RMSE values can be used to distinguish model performance in a calibration period with 

that of a validation period as well as to compare the individual model performance to 

that of other predictive models. 

RMSE compares models whose errors have the same unit. An RMSE with lower value 

or value close to zero means the model is good and a higher RMSE value denotes a 

poor model. 

4.3 Relative Square Error 

 

Unlike RMSE, the relative squared error (RSE) can be compared between models 

whose errors are measured in the different units (Saed Sayad, 2013).The root relative 

squared error is relative to what it would have been if a simple predictor had been 

used. More specifically, this simple predictor is just the average of the actual values. 

Thus, the relative squared error takes the total squared error and normalizes it by divid-

ing by the total squared error of the simple predictor. By taking the square root of the 

relative squared error one reduces the error to the same dimensions as the quantity 

being predicted. 

 

Mathematically, the root relative squared error Ei of an individual program i is evaluated 

by the equation: 
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For a perfect fit, the numerator is equal to 0 and Ei = 0. So, the Ei index ranges from 0 

to infinity, with 0 corresponding to the ideal (Saed Sayad, 2013). 

 

 

Where a is actual target and p is predicted target (ibid). 

 

4.4 Mean Absolut error  

The mean absolute error is a statistical method used to determine the accuracy of a 

model when compared to actual and historical observations (Contextuall, 2012). 

To determine the model accuracy, each predicted value by the model is compared to 

the actual value observed and the absolute errors are averaged to develop an estimate 

of the model’s accuracy. 

The mean absolute error (MAE) has the same unit as the original data, and it can only 

be compared between models whose errors are measured in the same units. It is usu-

ally similar in magnitude to RMSE, but slightly smaller. 

The formula for is:  

 

Where p is predicted target, a is actual target and n is the number of observations 

(ibid). 
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4.5 Coefficient of Determination  

Coefficient of determination or R Squared is a statistical measure of how close the data 

are fitted in the regression line and it can be defined as the percentage of the response 

variable variation of the model. The formula is : 

 

    
                   

                
  

 

The value of R-Squared is always between 0 – 100%: 

0% indicates that the model explains none of the variability of the response data 

around its mean 

100% indicates that the model explains all the variability of the response data around 

its mean (Jim Frost, 2013). Higher values for R-Squared signify that the predictive 

model is good and that the model fits the data. 

4.6 Prediction Error 

When making predictions, assumptions are made that the underlying data follows 

some underlying mathematical model and during training, the training data is fitted into 

this assumed model to determine the best model parameter that will give minimal error 

(Ricky Ho, 2012). 

These assumptions often lead to two kinds of prediction errors namely error due to bias 

and error due to variance. Understanding these two types of error can help us diag-

nose model results and avoid the mistake of over-or under-fitting and help improve the 

data fitting process to that will result in a more accurate model. Bias and variance can 

be defined conceptually and graphically (Scott Fortmann-Roe, 2012). 

4.7 Conceptually 

Biased errors can be defined conceptually in terms of error due to bias and error due to 

variance. 

4.7.1 Error due to bias 

Error due to bias is taken as the difference between the expected (or average) predic-

tion of our model and the correct value which we are trying to predict (ibid).This is when 

the assumed model is fundamentally wrong for example if the output has a nonlinear 

relationship with the input and the model is assumed to be linear model.  
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4.7.2 Error due to Variance 

Error due to variance is taken as the variability of a model prediction for a given data 

point. For example, repeating the entire model building process multiple times. The 

variance is how much the predictions for a given point vary between different realiza-

tions of the model (ibid). 

4.8 Graphically 

Bias and variance can be visualized graphically using bulls-eye diagram. The center of 

the target is the model that perfectly predicts the correct values and as we move away 

from the center of the bulls-eye, the prediction gets worse and worse. The model build-

ing process is represented as number of separate hits on the target. Each hit repre-

sents an individual realization of our model.  

 

Figure 22 - Graphical illustration of bias and variance (ibid) 
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5 Predictive model development 

 

This chapter focuses on currency forecasting model development using SAP HANA 

PAL Time Series algorithm.  The model will attempt to compare the forecasted curren-

cy exchange rate against the actual exchange rate to determine the accuracy of time 

series algorithm. 

 

Foreign exchange market popular called Forex, is the biggest market in the world in 

terms of trading  volume with daily trading exceeding more than  4 Trillion USD and the 

market is dominated by big banks, corporations and private investment funds [38]. 

There are different factors which make currency exchange rate forecast difficult. Such 

factors include political, physiological and economic. There are 2 ways of forecasting 

currency exchange rate. The first one is fundamental analysis which includes purchas-

ing power parity (PPP), relative economic strength and econometric models. The other 

method is technical analysis which uses past data and mathematical techniques to 

forecast currency exchange rate. The forecasting model development will base on 

technical analysis. 
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5.1 Model development 

The overall predictive model development is depicted in figure 18 below. It shows the 

different phases from data collection to data analysis and results. 

 

 

Figure 23 - Model development flow chart 

5.2 Data collection 

The data for historical exchange rate collected for this research paper was extracted 

from Norwegian bank online database (Norges-bank 2013). The data is updated at 

3:15 PM on a daily bases and has several currency exchange rates. Similar historical 

exchange rates data can also be collected from other sources. One of the reasons of 

choosing the exchange rate from Norwegian bank was because it was easy to export 

to excel without having to do much conversion of the file into the right format. 

 

The data is extracted from the database is more than 13 years of data and it is from the 

period of 4th January, 1999 to 30th October, 2013. The number of observations of the 

data which is 3741 records is consistent with Time Series algorithm because at least 

52 observations are required to make any meaningful predictions. There is no currency 

exchange during weekends and public holidays. Figure 23 below represents the data 

extracted. 

Data 
collection 

• Data extraction from online database 

• Data selection 

Data 
preparation 

• Data cleansing such as removal of unwanted columns 

• Addition of additional columns 

• Creation of database tables 

Data 
processing  

• Application of double exponential predictive algoritms 

• Configuration of the algorithm parameters 

• Integration of predicted results and actual results 

Data analysis 
and result 

• Data visualizations  

• Result analysis 
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Figure 24- Historical Exchange rate 

5.3 Data preparation 

 

For this Time series forecasting model development, the exchange of Euro will be fore-

casted using historical data. SAP HANA PAL Time series double exponential smooth-

ing algorithm will be used for this forecasting model. The algorithm is suitable to model 

the time series with trend but without seasonality (Stephen L. Bernard, 2011), because 

currency exchange is traded daily and doesn’t depend on any season. The data that 

the forecasting model needs is required in a specific table format. This requires that the 

input data for the model is adjusted to meet the forecasting algorithm requirement. Al-

so, the algorithm doesn’t allow empty rows or any null values which means that all 

empty rows will have to be filled or removed from the data set. 

 

 

The data preparation includes the following 

 Removing empty rows from the dataset. 

 Removing unwanted columns. 

 Inclusion of additional ID Column in the file 

The extracted file has been converted to the required format by the HANA PAL algo-

rithm for example additional column has been added and this file will be transferred to 

the database table. 

Figure 24 below shows the converted file with additional ID column. 
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Figure 25 - Converted Historical Exchange rate table 

 

The figure below requires 2 columns as required by the algorithm (SAP, 2013) The ID 

column represent the key field of individual record and this will be created manually. 

The raw data column represents the exchange rate.  

 

Figure 26 - Double exponential smoothing Input table (SAP, 2013). 

 

To transfer the data from the excel file into the database, a table without any data is 

created and this table will have 2 columns, the ID and exchange rate fields. This table 

has same number of columns and data type as required by the input table of the algo-

rithm (SAP, 2013) 

 

ID Date Exchange Rate

1 4.1.1999 8,8550

2 5.1.1999 8,7745

3 6.1.1999 8,7335

4 7.1.1999 8,6295

5 8.1.1999 8,5900

6 11.1.1999 8,5585

7 12.1.1999 8,6100

8 13.1.1999 8,7470

9 14.1.1999 8,7245

10 15.1.1999 8,7150

11 18.1.1999 8,6575

12 19.1.1999 8,6300

13 20.1.1999 8,6000

14 21.1.1999 8,6050

15 22.1.1999 8,6225

16 25.1.1999 8,6125

17 26.1.1999 8,6125

18 27.1.1999 8,5985

19 28.1.1999 8,5700

20 29.1.1999 8,5785

21 1.2.1999 8,5395

22 2.2.1999 8,5845

23 3.2.1999 8,6250

24 4.2.1999 8,6425

25 5.2.1999 8,6725
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Figure 27 - Double exponential smoothing Input table (SAP, 2013). 

 

At this stage the date field from the extracted file is not required as it is now replaced 

by the new additional ID column. Figure 27 below shows that the Date field is not 

mapped to the table in HANA database. 

 

 

Figure 28 - Data mapping between the file and database table 

 

The data transferred into the table can be seen in figure 28 and this is the table that will 

be used for the currency forecasting model. 

 

  

Figure 29 - Database table showing historical data 
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5.4 Data Processing 

The data processed for the forecasting model required 3 different time horizons data 

samples. The first sample data is for 3 months has 66 observations. The second data 

sample is 1 year and has 250 different observations. The last sample data is the com-

plete data set of about 3741 observations spanning 166 months. 

Below table shows the number of observations across different time horizons. 

 

Time Horizon Number of Observations Period 

3 months 66 1.08.2013 - 31.10.2013 

12 months 250 1.11.2012 - 31.10.2013 

166 months 3741 4.01.1999 - 31.10.2013 

 

Table 3 - Different time horizons 

 

After the data cleansing and transformation of the extracted sample data which in-

cludes removing rows that do not have any exchange rate and the additional of addi-

tional column, the data were imported into the data base.  

 

Table Columns Description 

HISTORICAL_EXCHANGE_RATE 2 

storage of the complete 

data sample 

HISTORICAL_EXCHANGE_RATE_YEAR 2 

storage of  1 year data 

sample 

HISTORI-

CAL_EXCHANGE_RATE_MONTH 2 

storage of  3 month data 

sample 

 

Table 4 - Sample data tables 
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The forecasting values of these 3 different forecasting models were compared with the 

actual values and the results analysed. 

 

The number of observations inserted into the database can be seen from Figure 29 – 

31 below. All records were inserted based on the number of rows retrieved from the 

database tables 

 

 

Figure 30 - Full data sample 
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Figure 31 - Three month data sample 
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Figure 32 - One Year data sample 

 

The actual exchange rate used in the analysis can be seen from Figure 28 below and 

this table is updated frequently whenever there is new exchange rate. 
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Figure 33 - Actual exchange rates 
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5.5 Data analysis and results 

The analysis of the result started by comparing the different time horizons forecasted 

exchange rate values against actual exchange rates. The comparison can be seen in 

figure 26 where the different time horizon sample data can be measured against the 

actual value and the model accuracy ascertained. 

The model development is a combination of 4 different tables, three of the forecasting 

tables were automatically generated by the time series double exponential forecasting 

model and the fourth table holds the data of the actual currency exchange rate. The 

actual exchange rate started from 1st of November and this table will be updated regu-

larly with new actual exchange rate to measure the accuracy of the model and com-

pare the actual exchange rate against the forecasted exchange rate. 

During the analysis of the model and comparison of the forecasted results, the actual 

exchange rate extracted from the website and updated into the database was joined 

with the forecasted model generated table into a new table. The new table is a view of 

the four different tables and contains no data of its own. 

 

It can be seen in figure 33 that the data sample of 3 months produces the smallest var-

iance when compared with the actual exchange rate. The 1 year data sample used in 

the model showed the biggest variance when compared with the actual data. The full 

data sample shows a result that is considerably higher than the forecasted value. 

 

Figure 34 - Actual versus forecasted result Chart 

 

During the data examination, the reason why these variances occur can be attributed 

to how the double exponential smoothing forecast values. In double exponential 

smoothing, more weights are given to the latest exchange rates values compared to 

smaller weights given to older exchange rates. The 1 year data sample from 1st of No-

vember 2012 to 31st of October 2013 exchange rates is when the Norwegian Krone 
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performed stronger than the Euro, and this related to news about the breakup of the 

Euro currency and the political and economic situations in Greece and Spain due to the 

debt crisis (Ben Rooney, 2012). 

 

 

 

Figure 35 - Actual versus forecasted result table 
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Table 5 below shows the different statistical methods used in evaluating performance. 

3 months data sample has the least RMSE and variance while the 1 year data sample 

has the highest RMSE and variance. Overall the model is considered a good model. 

The calculations for the statistical methods can be seen in the appendix section. 

 

 RMSE MAE VARIANCE 

3 months data sample 0.30 0.27 7.1 

1 year data sample 0.90 0.9 23.4 

Full data sample 0.41 -0.39 -10.0 

 

Table 5 - Statistic methods of model accuracy 
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6 Conclusion and future research 

This is the final chapter of the thesis and it covers discussion related to conclusion and 

future research. 

6.1 Conclusion 

The thesis paper began by reviewing the different disciplines related to predictive ana-

lytics such as business intelligence, data mining, data warehouse and predictive analyt-

ics.  

The objective of this thesis is to develop a currency exchange rate predictive model 

using time series algorithm and measure the accuracy of the model by comparing the 

predicted exchange rate against the actual exchange rate. The historical data collected 

for the research was extracted from Norwegian bank online database and has 3741 

transactional records from the period of 4 January 1999 to 31 October 2013. Two other 

data samples namely, 12 months and 3 months of data were constructed from the orig-

inal data sets. The extracted data doesn’t contain exchange rates from weekends and 

national public holidays. 

Three different predictive models for each data sample were developed and measured 

against the actual result and based on the analysis of the result, it can be concluded 

that the most recent data which is the 3 months data sample produces the least vari-

ance when compared to the actual result and gives better accuracy. However, the 

model did not outperform the random walk theory which stated that future currency 

exchange rates cannot be predicted based on historical and current data because ex-

change rates follow an unpredictable path (Xie, Xin, 2011: 25) 

 

 

6.2 Future research 

 

Technical analysis of currency exchange rate is not adequate enough to give good 

accuracy as it only uses quantitative data based on historical and current data to pre-

dict future exchange rate. What technical analysis lacks is the information related to the 

driving forces behind the rise and fall on currency exchange rates for example an oil 

exporting country such as Norway that is heavily dependent on the price of oil may 

experience high exchange rate appreciation when the oil prices rise and depreciation 

when it falls (Quaisar F. Akram,2012). Also political and economic situation such as 

interest rate, debt crisis can also affect currency exchange. 
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Previous Studies using news headlines (Desh P. and Raymond .W, 2001) to predict 

exchange have been conducted and it will be worthwhile to use text analysis to quantify 

fundamental analysis such as market sentiments and various economic factors into 

numbers and integrate it with technical analysis to get better accuracy.  
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Appendices 

 

 

Appendix 1. Actual exchange rate sql script 

CREATE COLUMN TABLE "OKE"."ACTUAL_EXCHANGE_RATE" ("ID" INTEGER 

CS_INT NOT NULL , 

  "Date:" NVARCHAR(11), 

  "Rate" DOUBLE CS_DOUBLE, 

  PRIMARY KEY ("ID")) UNLOAD PRIORITY 5 AUTO MERGE 

 

Table 6 - Actual exchange rate sql script 

 

Appendix 2. 166 months exchange rate sql script 

 

CREATE COLUMN TABLE "OKE"."HISTORICAL_EXCHANGE_RATE" ("ID" INTE-

GER CS_INT, 

  "EXCHANGE_RATE" DOUBLE CS_DOUBLE) UNLOAD PRIORITY 5 

AUTO MERGE 

 

Table 7 – 166 months exchange rate sql script 

 

Appendix 3. 3 months exchange rate table 

CREATE COLUMN TABLE "OKE"."HISTORICAL_EXCHANGE_RATE_MONTH" ("ID" INTEGER 

CS_INT, 

  "EXCHANGE_RATE" DOUBLE CS_DOUBLE) UNLOAD PRIORITY 5 AUTO MERGE 

 

Table 8 - 3 months exchange rate table 
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Appendix 4. 1 Year data sample table sql script 

 

CREATE COLUMN TABLE "OKE"."HISTORICAL_EXCHANGE_RATE_YEAR" ("ID" 

INTEGER CS_INT, 

  "EXCHANGE_RATE" DOUBLE CS_DOUBLE) UNLOAD PRIORITY 5 

AUTO MERGE 

 

Table 9 - 1 Year data sample table sql script 

 

 

Appendix 5. Exchange rate comparison table 

 

CREATE VIEW "OKE"."EXCHANGE_RATE_COMPARISM_TABLE" ( "Date", 

  "Actual", 

  "Month_Forecast", 

  "Year_Forecast", 

  "Full_Forecast" ) AS select 

  T0."Date:" "Date", 

  T0."Rate" "Actual", 

  T2."Month_Forecast" "Month_Forecast", 

  T3."Year_forecast" "Year_Forecast", 

  T1."Full_forecast" "Full_Forecast"  

from "OKE"."ACTUAL_EXCHANGE_RATE" T0  

left outer join 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Result" T3 on T0."ID" = T3."ID"  

left outer join 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Result" T2 on T0."ID" = T2."ID"  

left outer join 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Result" T1 on T0."ID" = T1."ID" WITH READ ONLY 

 

Table 10 - Exchange rate comparison table 
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Appendix 6. Full data sample double smoothing Algorithm 

DROP TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args"; 

CREATE COLUMN TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args" ("NAME" VARCHAR(50), "INTARGS" INTEGER, "DOUBLEARGS" 

DOUBLE, "STRINGARGS" VARCHAR(100)); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args" VALUES ('RAW_DATA_COL', 1, null, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args" VALUES ('ALPHA', null, 0.9, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args" VALUES ('BETA', null, 0.7, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args" VALUES ('STARTTIME', 3741, null, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args" VALUES ('FORECAST_NUM', 30, null, null); 

DROP TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Result"; 

CREATE COLUMN TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Result" ("ID" INTEGER, "Full_forecast" DOUBLE); 

CALL 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el"("OKE"."HISTORICAL_EXCHANGE_RATE", 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Args", 

"OKE"."Currency_Forecast_Predictive_Model::Full_forecast_rate.All_Periods_Mod

el_doubleSmooth_Result") with overview; 

 

Table 11 - Full data sample double smoothing Algorithm 
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Appendix 7. 3 months data sample double smoothing Algorithm 

DROP TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args"; 

CREATE COLUMN TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args" ("NAME" VARCHAR(50), "INTARGS" INTEGER, "DOUBLEARGS" 

DOUBLE, "STRINGARGS" VARCHAR(100)); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args" VALUES ('RAW_DATA_COL', 1, null, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args" VALUES ('ALPHA', null, 0.9, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args" VALUES ('BETA', null, 0.6, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args" VALUES ('STARTTIME', 3741, null, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args" VALUES ('FORECAST_NUM', 30, null, null); 

DROP TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Result"; 

CREATE COLUMN TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Result" ("ID" INTEGER, "Month_Forecast" DOUBLE); 

CALL 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del"("OKE"."HISTORICAL_EXCHANGE_RATE_MONTH", 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Args", 

"OKE"."Currency_Forecast_Predictive_Model::Months_forecast.Months_forecast_mo

del_doubleSmooth_Result") with overview; 

 

Table 12 - 3 months data sample double smoothing Algorithm 
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Appendix 8. 1 Year data sample double smoothing Algorithm 

DROP TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args"; 

CREATE COLUMN TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args" ("NAME" VARCHAR(50), "INTARGS" INTEGER, "DOUBLEARGS" DOU-

BLE, "STRINGARGS" VARCHAR(100)); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args" VALUES ('RAW_DATA_COL', 1, null, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args" VALUES ('ALPHA', null, 0.7, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args" VALUES ('BETA', null, 0.3, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args" VALUES ('STARTTIME', 3740, null, null); 

INSERT INTO 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args" VALUES ('FORECAST_NUM', 30, null, null); 

DROP TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Result"; 

CREATE COLUMN TABLE 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Result" ("ID" INTEGER, "Year_forecast" DOUBLE); 

CALL 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model"

("OKE"."HISTORICAL_EXCHANGE_RATE_YEAR", 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Args", 

"OKE"."Currency_Forecast_Predictive_Model::Year_forecast.Year_forecast_model_

doubleSmooth_Result") with overview; 

 

Table 13 - 1 Year data sample double smoothing Algorithm 
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Appendix 9. 3 months data sample RMSE 

 

Figure 36 - 3 months data sample RMSE 

 

 

Appendix 10. 1 year data sample RMSE 

 

 

Figure 37 - 1 year data sample RMSE 
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Appendix 11. Full  data sample RMSE 

 

 

Figure 38 - Full data sample RMSE 

 

 

Appendix 12. 3 months data sample variance 

 

 

Figure 39 - 3 months data sample variance 
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Appendix 13. 1 year data sample variance 

 

 

Figure 40 - 1 year data sample variance 

 

 

Appendix 14. Full data sample variance 

 

 

Figure 41 - Full data sample variance 

 

 

Appendix 15. 3 months data sample MAE 

 

Figure 42 - 3 months data sample MAE 
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Appendix 16. 1 year data sample MAE 

 

Figure 43 - 1 year data sample MAE 

 

Appendix 17. Full month data sample MAE 

 

 

 

Figure 44 - Full month data sample MAE 

 


