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ABSTRACT Several studies have shown that complex nonlinear learning analytics (LA) techniques
outperform the traditional ones. However, the actual integration of these techniques in automatic LA systems
remains rare because they are generally presumed to be opaque. At the same time, the current reviews on LA
in higher education point out that LA should be more grounded to the learning science with actual linkage
to teachers and pedagogical planning. In this study, we aim to address these two challenges. First, we
discuss different techniques that open up the decision-making process of complex techniques and how they
can be integrated in LA tools. More precisely, we present various global and local explainable techniques
with an example of an automatic LA process that provides information about different resources that can
support student agency in higher education institutes. Second, we exemplify these techniques and the LA
process through recently collected student agency data in four courses of the same content taught by four
different teachers. Altogether, we demonstrate how this process—which we call explainable student agency
analytics—can contribute to teachers’ pedagogical planning through the LA cycle.

INDEX TERMS Explainable Artificial Intelligence, Decision Making, Higher Education, Student Agency

I. INTRODUCTION

THE global COVID-19 and the related closures of ed-
ucational institutions showed how significant it is for

students to be able to rely on their own resources. In particu-
lar, to continue learning, the educational institutions’ closures
placed greater demands on students’ autonomy and their
capacity for independent learning, executive functioning, and
self-monitoring [1]. It also showed that those students who
lacked the resilience and engagement to learn on their own, in
particular, were at risk of falling behind [1], [2]. In summary,
COVID-19 and its consequences for students revealed the
importance of being self-determined in learning and being
able to adapt to situations involving rapid change.

Student agency equips students to manage such situations.
It refers to students’ holistic judgement of how they can
affect and direct their learning in instructive settings, work
effectively, and utilize the assets that are accessible in the
learning environment [3], [4]. The importance of agency in
education has been emphasized by policy-making informers,
especially by the Organisation for Economic Co-operation
and Development [5]. Agency is a basic need in any goal-
oriented work, particularly in jobs that call for creativity and
continuous development in work practices [6]. This means

that graduates of higher education institutes, in particular,
should be prepared to act as developers and change agents
in their field. However, despite this need—especially in the
COVID-19 context but also in general—and the particular
emphasis on student agency by policy-making informers,
student agency has received little explicit attention in edu-
cational practice in higher education so far.

Learning analytics (LA) refers to a research field that
harnesses data on learners to understand, improve, and opti-
mize learning [7]. The use of LA can, for example, predict
academic success, improve quality assurance, and identify
at-risk students [8]. Moreover, dashboards are often utilized
to visualize learning processes and study pathways—not
only to increase awareness but also to give personalized
feedback to the learners. This kind of personalized feedback
and consideration of the personal traits of learners can pos-
itively influence the learning process and outcomes. Since
it is usually unfeasible for teachers to manually provide
such individualized feedback to all students—especially for
teachers in higher education settings who often have to
instruct hundreds of students with different backgrounds—
such automated feedback can offer significant support.

Jääskelä et al. [9] examined student agency as the theoreti-
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cal framework for assessing and enhancing digital education
at universities by making use of LA. Based on a factor
and robust cluster analysis process, which is conducted to
measure students’ responses to a validated scale [3], [9],
the students receive automated feedback on their individual
agency profile. In addition, the teacher of a higher education
course gets an aggregated overview of the different student
agency profiles. The essence of this automated agency-based
process—which is called student agency analytics (SAA)—
is to provide actionable information for students on their
learning efforts in relation to their perceived affordances in
the course and for teachers on students’ judgements of their
situational agency to increase pedagogical knowledge.

In a recent review, Deeva et al. [10] classified automated
feedback systems by their applied educational settings, the
properties of their delivered automated feedback, and their
design and evaluation approaches. They concluded that ap-
plied learning theories or educational frameworks had not
been reported in most cases. Moreover, they urged the de-
velopers to use more data-based solutions and to be able
to explain the reasons behind the automated system. There-
fore, the purpose of the present article is to show how
the integration of explainable artificial intelligence (XAI)
techniques with the SAA process (see Figure 1) can support
the transparency and data-based development of automated
feedback systems in education. More precisely, we aim to
integrate XAI techniques into the SAA process in the context
of higher education. This procedure improves awareness of
different stakeholders from such organizations on the learn-
ing arrangements, considers the complexity of the students’
capacities and various contextual resources, and supports
reflection.

Another reason why we aim to integrate XAI techniques
within SAA is that explainability became a key issue in LA
[11]. Relationships in educational data are often complex
[8], [12], and several theoretic LA studies have shown that
these relationship can be modeled better by complex models
than by simple linear ones (e.g., [13]–[16]). However, in
practice, these complex models are rarely used because they
are reckoned to be inexplicable. XAI is an emerging research
direction that can help the user or developer of complex
models understand the model’s behavior and provide human-
understandable justifications for it [17], [18]. Thus, the in-
tegration of XAI techniques allow us to also use the better
performing complex LA models in SAA and to explain them
in such a way that even practitioners with no background in
data analysis can easily understand them.

To demonstrate our explainable SAA process (XSAA), we
provide the results from a study of four concurrently imple-
mented courses on mathematics in an engineering education
degree program. The content and curriculum of these mathe-
matics courses are identical but they are taught independently
by four different teachers. This means we built and explained
our models not only by using the student-specific agency data
but could also link them to the particular teaching approaches
of the instructors. Such a setting is new and might help

teachers to increase their awareness of the effects of their
pedagogical planning and interventions.

The main contributions of this paper are twofold:

• We use XAI to produce explainability and actionability
through dashboards. These dashboards not only show
summaries of the raw student data (e.g., how active
they were with the tasks or how long it took to solve
a problem) but also—through nonlinear and universal
machine learning models—explain the reasons for the
students’ actions, linking them to a well-defined body
of pedagogical planning by the teacher.

• We discuss the usability of the results gained through
XSAA at the teaching practice level; that is, how they
may help teachers in reflecting and designing their cur-
riculum and in developing agency-supportive practices
in their teaching implementations.

The rest of the paper is organized as follows. Section II
outlines the background at the basis of our contribution.
First, we locate our research among the previous studies in
the field of LA and XAI in higher education. Second, we
summarize previous student agency LA studies. Section III
provides a discussion of the need for explainable models,
especially in LA. It also provides an overview of the different
XAI techniques that we are using for our SAA dashboards.
Section IV presents an example of an application of our
explainable SAA in higher education (i.e., the data and our
XSAA results from the four groups of students studying the
same mathematics course taught by different teachers at a
university of applied science). Finally, Section V presents the
main findings and implications of our study.

II. BACKGROUND
A. LA AND XAI STUDIES IN HIGHER EDUCATION
Hundreds of primary studies depicting and analyzing the use
of LA to improve educational actions in higher education
institutes (HEI) have been published, and their impacts and
outcomes have been summarized in many recent reviews
(e.g., [19]–[21]). Their overall conclusions suggest that LA
should be better grounded to learning science, its effective-
ness should be assessed, and actual linkages to teachers and
pedagogical planning should be emphasized.

For example, the review by Aldowah et al. [19],
which included 402 articles from 2000 to 2017, presented
many student-oriented characteristics such as “engagement,”
“achievement,” “participation,” “reflection,” “motivation,”
and “satisfaction” to be approachable by using LA tech-
niques. However, no linkage to the actual teaching activities
was presented. In the combined review-meta-review by Du
et al. [22] from 901 identified research papers from 2011 to
2017, the authors mentioned that instructors need to connect
LA with learning science and use dashboards for student
monitoring. Similarly, the knowledge gap between the the-
oretical frameworks of educational domain knowledge and
the LA models was emphasized in the review by Cui et al.
[23].
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FIGURE 1. The XSAA process can be depicted as a loop, which starts when the teacher makes the initial pedagogical plans. At some point in the learning and
teaching process, the students complete the AUS questionnaire, and the agency analytics is executed automatically. The teacher receives results, and can then
adjust the pedagogical plans according to the students’ experienced resources of agency.

After multistage screening, the review by Larrabee Son-
derlund et al. [24] ended up with only 11 studies out of
689 that were found to evaluate the effectiveness of LA
interventions, concluding that the lack of intervention studies
where the educational institution (in practice, the instructor of
a course in HEI) performs and evaluates systematic changes
of its actions. Moreover, based on analyzing 252 papers
published during 2012 to 2018, Viberg et al. [21] concluded
that “the overall potential of LA is so far higher than the
actual evidence, which poses a question of how we can facil-
itate the transfer of this potential into learning and teaching
practice.” Likewise, Ifenthaler and Yau [20] addressed the
study success of HEI students through 46 primary studies,
concluding that the lack of “rigorous, large-scale evidence of
the effectiveness of LA in supporting study success.” To this
end, the review by Leitner et al. [25], which was based on
101 articles during 2011–2016, nominated teachers solely as
a “side-product” of the research field.

Contrary to the huge amount of LA in HEI studies, studies
dealing with XAI in HEI are extremely scarce. A Google
Scholar and Scopus search in May 2021 identified only three
studies of XAI in HEI [26]–[28]. Putnam and Conati [26]
conducted experiments with nine university students testing
whether the students would like to receive explanations for
hints given in an intelligent tutoring system (ITS). They con-
cluded that the majority of students would like explanations
in the ITS, but the actual implementation of XAI was pre-

sented as future work. Likewise, Conati et al. [27] discussed
only theoretically necessary considerations to make an ITS
explainable for the benefit of learning. Alonso and Casalino
[28] used XAI for a distance learning set. However, they did
not provide any description of XAI techniques and solely
used existing software (WEKA) to gather explanations for
their prediction models. In sum, all three articles emphasized
the need for XAI in automated feedback systems in HEIs,
but none implemented and explained the underlying XAI
techniques.

B. STUDENT AGENCY ANALYTICS IN A NUTSHELL

a: Student agency in higher education

Agency has been under consideration in several disciplines
and has been highlighted in various areas of life. In general,
agency is one’s capacity to act and cause change. However,
different disciplines have their own and more detailed per-
spective on the meaning of agency. For example, in social
cognitive theory, agency is understood as an individual’s
capability to engage in intentional, self-defined, and mean-
ingful action [29]. Similarly, in social sciences, the concept of
agency concerns an individual’s capability to take intentional
and self-defined (i.e., autonomous) action and is focused on
the circumstances and structural factors that constitute frames
for action (e.g., [30]). Contemporary educational discourse
has emphasized the meaning of agency in lifelong learning
[31] and in student-centered learning [32]. Within educa-
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tional sciences, agency is seen as an integral part of learning,
which manifests itself both as individuals’ active action in
knowledge construction (e.g., [33]) and a sense of being
empowered in learning situations [34].

Our stance on student agency is based on the conceptu-
alization made by Jääskelä et al. [3], who synthesized the
previous literature on agency and defined student agency in
higher education as “a student’s experience of having access
to or being empowered to act through personal, relational,
and participatory resources, which allow him/her to engage in
purposeful, intentional, and meaningful action and learning
in study contexts.” Student agency consists of three resource
areas (see Figure 2). Personal agency resources consist of
the dimensions of competence beliefs and self-efficacy. Re-
lational resources refer to power relations in different edu-
cational settings, which include the experiences of equality
among the students, trust for the teacher, and support from
the teacher. Participatory resources of student agency involve
dimensions relating to engaged and active participation in
learning. Altogether, student agency is composed of 11 di-
mensions, and it is measured using a validated psychometric
Agency of University Student (AUS) scale [3], [35].

b: Student agency analytics
Discerning different study experiences can be demanding
in heterogeneous educational settings with a multitude of
students. To address this challenge, we apply a LA pro-
cess called student agency analytics, which utilizes robust
statistics and psychometric information obtained using the
AUS scale [9]. First, the students in a particular study group
or course complete the AUS questionnaire. Second, the
individual factor values of agency are calculated for each
student using the factor pattern matrix, which enables the
determination of the general agency profile of the whole
study group. Third, unsupervised learning, specifically robust
clustering, is used to provide prototypical agency profiles
with four distinct groups based on cluster validation indices,
as described in more detail in [9]. Kruskal-Wallis H and
Mann-Whitney U tests can then be used for explaining the
clustering results through the agency dimensions. Moreover,
if the information on the quality of learning outcomes or
course grades is available, it can be linked to the prototypical
agency profiles using supervised learning.

The main representations obtained using SAA are the stu-
dents’ individual agency profiles (IAPs), the general agency
profile (GAP) of a group (e.g., study group, course), and four
distinct prototypical agency profiles (PAPs) within a group.
IAP (Figure 2) represent the values of individual student’s
agency dimensions, which can be compared with the GAP.
IAP is a personal depiction, and it is aimed only at the student
accompanied with general information about student agency.
For the teacher, student agency analytics provide a general
overview of the agentic resources of the students. To preserve
students’ privacy, teachers do not receive individual student
profiles. Instead, their report consists of de-identified infor-
mation about the GAP and PAPs. Both the GAP and PAPs

are presented in the teacher report as a special combined bar
graph (Figure 4).

c: Teacher’s perspective
Teachers’ actions and their pedagogical choices influence
students’ learning experiences (e.g., [36]–[40]). In terms of
pedagogical planning, teachers would benefit from the anal-
ysis results concerning all their students. For instance, peer
support can help students in higher education to develop self-
regulation skills, decreasing or allowing better management
of study-related exhaustion [41]. Thus, it would be worth-
while for the teacher to identify the different experiences
of peer support to provide means and opportunities for stu-
dents to actualized supportive collaboration. Students’ prior
knowledge can significantly influence student achievement
[42]. Failing to consider students’ prior knowledge might
be manifested as a lack of competence beliefs and self-
efficacy. In summary, becoming aware of students’ agentic
experiences could help teachers make better pedagogical
plans and decisions.

From the teacher’s perspective, SAA summarizes the inter-
individual differences of learning experiences in a visually
interpretable form. As a result, students’ general assessment
of their agency and four distinct student agency profiles are
presented to the teacher. The process can be depicted as a
loop (see Figure 1), which starts when the teacher makes the
initial pedagogical plans. At some point in the learning and
teaching process, the students complete the AUS question-
naire, and the agency analytics is automatically executed. The
teacher receives results, which visually describe the GAP and
the PAPs. The teacher can then adjust the pedagogical plans
according to the students’ experienced agency resources. In
the following sections, we develop the SAA process toward
explainable LA.

d: Ethical considerations
A general prerequisite in LA should be the responsible use
of educational data [43]. It is worth emphasizing that SAA
aims not to evaluate or grade the students or their learning.
Instead, the purpose is to identify and make visible different
personal learning experiences through the concept of agency.
Thus, it is essential to ensure the privacy of the students and
teachers. The individual agency profile received by a student
is personal and only for the student’s use. Teachers or anyone
else do not see the student’s IAP unless they want to disclose
the results, for example, to help study counseling. Generating
aggregated results (GAP and PAPs) provide a means to
present detailed but de-identified information for the teacher.
Similarly, the teacher report depicting the aggregate results
of a course is meant only for the teacher to use in personal
pedagogical planning. The results should not be used to
evaluate the individual teachers or their teaching.

III. TOWARD EXPLAINABLE LEARNING ANALYTICS
From a technical point of view, LA is about modeling stu-
dents and learning. Its methods have roots in several different
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FIGURE 2. Student agency analytics provides information about the inter-individual differences relating to resources of student agency. This figure shows a
student’s personal report that consists of his/her individual agency profile in comparison with the general agency profile of the group. A teacher’s report consists of a
general agency profile of the group combined with four prototypical agency profiles (as visualized in Figure 3).

disciplines, such as statistics, education, psychology, and
machine learning [44], [45]. While traditionally, statistical
models were mainly used in LA to scaffold students and
help teachers, the machine learning models have gained in
importance in recent years [46]. This is mainly due to the
challenge of modeling the increasingly rich, varied, and
multimodal (such as eye tracking, physical movement, and
face recognition for emotion detection) LA data [47], [48].

Often a trade-off occurs between the performance of a
specific machine learning model and its explainability. For
example, in supervised learning, the performance (i.e., the
difference between the real outputs and the outputs of the
model) is usually better for complex models with nonlinear
combinations of inputs, but such models are harder or even
impossible to understand. These kinds of models are also
called “black boxes.” On the contrary, simple linear methods
are prone to perform worse, but they are easier to interpret
and understand. One example of the latter is a linear regres-
sion model, where the coefficient of an input can be directly
interpreted as the importance of that input.

Although they usually perform better, black boxes have
several problems. One problem relates to assuring that such
a model works as intended. If not even the designer of the
model can explain the model’s underlying logic and how it
arrived at a result, it is impossible to verify that the model
uses the right justifications for its decisions. In the worst
case scenario, such black-box models may use questionable
reasons for their decisions without anyone noticing them.
This usually happens if they adopt bias in the training data.
Bolukbasi et al. [49], for instance, showed that a model that
was trained on a corpus of Google News text, learned the

correct word embedding “man is to woman as king is to
queen," but at the same time also learned the worrisome
embedding “man is to woman as computer programmer is
to homemaker."

Another example, discussed by Freitas [50], comes from
the military: The military trained a classifier to distinguish
pictures of enemy tanks from pictures of friendly tanks. This
classifier was performing well on the training set but showed
poor performance when it was used in the field. Later it was
discovered that the pictures of enemy tanks in the training
set were taken mostly on overcast days, while the pictures of
other tanks were taken on fair weather days. It turned out that
the classifier had learned this pattern from the training set and
consequently mostly used background features to classify the
tanks. Such examples prevent users from trusting a black box
model. In fact, some studies have shown that even if they
are proven to be more accurate than human forecasters, most
people exhibit an inherent distrust of automated predictive
models [51]. If the users do not trust a model or a prediction,
they will not use or deploy it. Thus, the explainability of
models is important, not only for developers but also for the
end users, and all other parties involved.

XAI is a new research field. It refers to approaches at-
tempting to make machine learning models more explain-
able and to address the above-mentioned issues. Several
XAI review papers were recently published, indicating its
importance and topicality [18], [52]–[56]. Generally, the
explainability of a model refers to any approach that helps
the user or developer understand the model behavior and
its reasoning process [17]. While no definition of XAI is
uniformly accepted, it can be conceptualized as the ability to
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provide human-understandable justifications explaining the
way in which a model works so that observers can under-
stand how and why it has delivered particular outcomes. For
example, in the military classifier case discussed above [50],
an explanation would have shown that the classifier used the
background instead of the features of the tanks for classifying
the photos. Thus, XAI can help to identify potential bias in
the training data, ensure algorithmic fairness, and verify that
the algorithms perform as intended [53].

As pointed out by Baker [11], explainability is also one of
the biggest challenges in LA nowadays. Several LA studies
have shown that complex models outperform the simpler
ones. However, if an instructor does not understand such
a complex LA model and if a development team cannot
explain it, the LA model will probably never be employed
in practice (ibid). Instead, only simple linear models that
have been around for years continue to be used. This is a
problem, because as argued for example in [12], relationships
in educational data are often complex and cannot be modeled
well enough with the simple models. If the better performing
complex models could also be explained in such a way that
even practitioners with no background in data analysis could
easily understand them, they would probably be employed
more often.

Conati et al. [27] argued that the explainability of models
is also important for learners: For instance, if learners cannot
comprehend the logic of an intelligent tutoring system, they
are not motivated to follow the systems instructions and their
trust in the system as a whole will decrease. Another reason
the explainability of LA models has become increasingly
important is that the new General Data Protection Regulation
(GDPR) now includes a right to explanation and information
[57], [58]. This means that if automatic profiling "(e.g., in
student analytics) is used, it is not only a desiderata but
actually a requirement to be able to explain to a student why
he/she was assigned to a particular profile.

In general, one can distinguish XAI methods that are
intrinsic, meaning interpretable due to their simple structure,
and post-hoc XAI methods, meaning methods applied after
model training to explain the model’s logic in retrospect.
Moreover, one distinguishes between local and global ex-
planations [59], [60]. While modular global explanations
provide interpretation for the model as a whole, approaching
it holistically, a local explanation provides interpretation for a
specific observation (such as one particular student). Finally,
explanation techniques can be model specific, meaning the
explanation technique is specific to its model, or model
agnostic, meaning the explanation technique can be applied
to any model.

In this work, we use both intrinsic model-specific and
post-hoc model-agnostic explanations as well as global and
local explanations. Moreover, we want to explain not only
the most important characteristics of the different agency
profiles (global explanations) but also explain, for specific
observations, why they were assigned to a particular group
(local explanations). The latter are especially interesting for

instructors who receive a report about their students’ agency
and can then see why a particular student was assigned to a
particular agency group. Finally, as pointed out above, stu-
dents have a right to information about individual decisions
made by agency algorithms, and the local XAI techniques
enable us to provide such information.

a: Multinomial logistic regression
Logistic regression is an example of a machine learning
method that because of its linear structure is intrinsically
explainable and offers model-specific modular global ex-
planations. It is probably the most traditional technique to
predict a categorical response variable (i.e., the class). If
the class is dichotomous, a simple logistic regression can
be used that employs a logistic function to measure the
relationship between the class and the explanatory variables
through estimating probabilities. If the class has more than
two categories, multinomial logistic regression should be
used. Multinomial logistic regression uses the softmax func-
tion (i.e., a generalization of the logistic function to multi-
ple dimensions) to calculate the probabilities of each class
category over all possible class categories. These calculated
probabilities are then used for determining the class (i.e., the
response variable category) for the given inputs.

Logistic regression is intrinsically explainable through
its coefficients. The coefficient of a continuous explanatory
variable can be explained as the estimated change in the
natural log of the odds for the reference event for each
unit increase in the predictor [61]. In general, the larger the
absolute magnitude of a coefficient is, the more relevant the
corresponding explanatory variable is for the classification.
Moreover, the sign of the coefficient indicates whether the
explanatory variable increases or decreases the probability
of belonging to a certain class. Furthermore, if the logistic
regression model is penalized with the l1 norm, some of
the feature coefficients shrink to exactly zero, which makes
the model simpler and easier to explain [62]. However, al-
though (multinomial) logistic regression generally meets the
characteristics of an explainable model, Arrieta et al. [63]
point out that it may also demand post-hoc explainability
techniques, such as visualizations, particularly if the model
is to be explained to non-expert audiences.

b: Multilayer perceptron
A multilayer perceptron (MLP) is an example of a machine
learning technique that is also able to find and model complex
nonlinear interactions in data and, thus, often outperforms
linear techniques, such as the previous discussed logistic
regression. It consists of an input layer, at least one hidden
layer, and an output layer. Each layer consists of nodes,
and except for the input nodes, all nodes are neurons with
nonlinear activation functions. MLPs are fully connected,
meaning that each node in one layer connects with a certain
weight wij to every node in the succeeding layer. These
weights on the nodes are automatically adjusted to construct
the mathematical model that most accurately maps the input
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features (such as the agency dimensions of the students and
the information in which course he/she was studying) to the
output labels.

However, MLP models are generally regarded as black
boxes and opaque. For example, even when techniques are
used to identify the features that a particular MLP model
assigned significant weights to, the relationships between
those features and the classification can be weak because a
small permutation in a seemingly unrelated aspect of the data
can result in a significantly different weighting of features
[64]. Moreover, different initial settings can result in the
construction of different models [65].

c: Random forest
Random forests, as well as other tree-based techniques,
are one of the most popular nonlinear supervised machine
learning methods nowadays [66]. They are ensemble learners
based on decision trees, which are on the one hand, explain-
able and able to model nonlinear relationship in data, but on
the other hand, generally low performing because they tend
to overfit the training data. Through growing each tree in the
ensemble (i.e., the forest) only on a bootstrap sample from
the original data and by randomly using only a subset of
the features for each node in each tree, random forest keep
the main advantages of decision trees while at the same time
overcoming their disadvantage. In other words, random forest
are also explainable and able to model nonlinear relationship
in data, but—through the bagging of many uncorrelated de-
cision trees—surmount the overfitting and low-performance
issue of decision trees. In fact, they perform so well that
they are often the winner in machine learning competitions
[66], [67]. Nevertheless, although the importance of a global
model-specific feature is generally provided with the ran-
dom forest implementation (for example, in Python, Gini
measures the global importance of the input features), less
attention has been paid o far to local explanations for random
forest predictions [66].

d: Local interpretable model-agnostic explanations
Local interpretable model-agnostic explanations (LIME) are
a XAI tool developed by Ribeiro et al. [68]. LIME provides
explanations, such as features and rules of features, that were
important for predicting a specific observation (i.e., local ex-
planations). It can be used for any prediction model, meaning
it is model agnostic, because it does not even need know
the actual “black box" prediction model f ; it just uses its
predictions. More specifically, it changes the model’s inputs
and then uses the model’s outputs to make conclusions about
the model. The main idea is that if the model prediction does
significantly changes after the value of a feature is slightly
adjusted, that feature may be an important predictor. Vice
versa, if the prediction does not change, the changed feature
may not be important at all.

It accomplishes this by taking the observation x for which
the prediction should be explained and permuting its feature
values. All of these permuted fake observations are weighted

by their distance to x. Then, the black box model f is
used to predict the permuted observations, and a new surro-
gate/explanation model (can be any explainable model, such
as a linear model or decision tree) g is trained that reflects
the original predictions as accurately as possible, while the
complexity of this surrogate model is kept as low as possible.
Then the explanations of the simple surrogate model (for
example, the weights if g is a linear model) are used to
explain the local behavior of f(x).

Mathematically, this can be expressed as follows:

ξ = arg min
g∈G

L(f, g, πx) + Ω(g),

where πx is the proximity measure to define locality around
x, and Ω(g) is the complexity of g that should be kept low
(for example, by minimizing the number of non-zero weights
if g is a linear model).

The advantages of LIME are that it is relatively easy to use
and understand. However, certain drawbacks are associated
with it. One of these is the potential inconsistency between
the surrogate model prediction g(x) and the real model
prediction f(x). Anther drawback is the lack of comparative
values for the LIME values. SHAP, which will be discussed
below, overcomes these drawbacks.

e: SHapley Additive exPlanations
Shapley values, introduced by Shapley [69], originate from
cooperative game theory. They measure the fair payout that
each player should receive based on his/her contribution to
the total payout of the game. The payout for each player is
proportional to his/her marginal contribution to the total pay-
out. Similarly, when used as an explanation for a prediction,
a Shapley value measures the contribution of an individual
feature to the total prediction. This means a Shapley value is
the average marginal contribution of a feature value across all
possible coalitions of the features.

The fair contribution of feature i is obtained by taking the
average of the contribution over the possible different permu-
tations in which the coalition can be formed. Mathematically,
this can be expressed as follows:

φi(v) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
(v(S ∪ {i})− v(S)),

where N is the number of all features, S a subset of the N
features, and v(S) the prediction of the S features. When
feature i joins the S features, its marginal contribution is
v(S ∪ {i})− v(S).

Shapley values come with four desirable properties: (i)
efficiency, meaning that the sum of the Shapley values of all
features equals the value of the total coalition; (ii) symmetry,
meaning that all features have a fair chance to join the
prediction; (iii) dummy, meaning if a feature contributes
nothing to any coalition S, then the contribution of that
feature is zero; and (iv) additivity, meaning that for any
pair of predictions v, w: φ(v + w) = φ(v) + φ(w), where
(v + w)(S) = v(S) + w(S) for all S.
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SHapley Additive exPlanations (SHAP) are a XAI tool
developed by Lundberg and Lee [70] that uses these Shapley
values to explain machine learning models. It includes the
model-agnostic SHAP KernelExplainer that works uni-
versally for any prediction model. The KernelExplainer
builds a weighted linear regression by using the given data,
the predictions, and the function/model that predicts the
predictions. It computes the feature importance values based
on the Shapley values and the coefficients from a local linear
regression. Besides the KernelExplainer, the SHAP
tool also includes other explainers that have been optimized
for specific models. One example is the TreeExplainer,
which was optimized for tree-based prediction models [66].
According to Lundberg et al. [66], it is the only tool that
enables the exact computation of optimal local explanations
for tree-based models. The TreeExplainer can also be
used as a global explanation method by averaging local
explanations. For example, if this is done over all instances in
a dataset, it results in a global measure of feature importance.

IV. APPLICATION OF EXPLAINABLE STUDENT AGENCY
ANALYTICS
In this section, we present the results from an application of
XSAA in higher education. All the analytics were performed
in Python 3.8.2, using LIME and SHAP toolboxes.

a: Sample and study context
Four courses on mathematics (A1-A4) of first-year engi-
neering students (n = 141) in a Finnish higher education
institution (university of applied sciences, ISCED Level 6)
were studied. Each course had a different responsible teacher
but the same basic contents and learning goals. The teaching
arrangements as a whole were mostly traditional: lectures and
guided exercises in a classroom and additional homework.
The courses consisted of instructional videos, automatic tests
that guided the student depending on the answers, and a final
test. In addition to class hours, teachers sent emails to the
whole student group using the virtual learning environment.
Personal messages between teachers and students were ex-
changed by email. In all the courses, mid-term feedback was
collected, and depending on the results, some small modifi-
cations were made (for example, more time was allocated to
topics the students found challenging). All the courses also
had voluntary support classes guided by the teacher.

Different practices were also used between the courses.
Attendance affected the evaluation in one course (A2). Two
courses (A1 and A4) made continuous self-assessments; one
based on homework and their model solutions (A1) and the
other based on the results of automatic tests in the learning
environment (A4). One course (A3) had extra support hours
guided by a student assistant. In one course (A4), the stu-
dents had the opportunity to get a small amount of personal
guidance from the teacher if necessary. Moreover, this course
(A4) made weekly applications on the topics practiced and
had small teams.

b: Analysis between prototypes
Prototypical student agency profiles were created using clus-
tering. The different prototypical agency profiles (PAP1–
PAP4) and the general agency profile (GAP) are presented in
Figure 3. GAP is the profile of all the analyzed students. All
the agency dimensions maintain the order from the lowest
profile PAP1 to the highest profile PAP4. In general, the
relational resources of student agency (equal treatment, trust
for the teacher, and teacher support) were experienced as
the highest resource domain and > 4 in all profiles except
in PAP1. Three of the participatory resources (participation
activity, opportunities to make choices, and opportunities to
influence) were generally experienced as lower than other
resources in all the profiles. The rest of the participatory re-
sources and the personal resources were experienced close to
the factor value of 4 at the GAP level. PAP1 was particularly
characterized by low personal resources.

c: Analysis between courses
The analysis between courses revealed differences in student
agency between the four different course instances (A1–A4).
Figure 4 presents the box plots of each student agency dimen-
sion in each of the course instances. There were statistically
significant differences in all the dimensions based on the
pairwise comparison using the Mann-Whitney U statistics.
In particular, the student agency dimensions of trust for the
teacher, teacher support, and opportunities to influence were
experienced as lower in the A3 course instance comparing to
other courses, and the difference was statistically significant.

We also examined if there were any dominant prototypical
profiles present in each of the courses (Table 1). Based
on the chi-square test of the contingency table, statistically
significant differences were observed; χ2(9, n = 141) =
30.1, p < .001. More students were assigned to the higher
agency profiles PAP3–PAP4 in the courses A1 and A4. In
course A4, no students were observed in the low agency
profile PAP1. In course A3, the majority of the students were
in the profiles PAP1–PAP3, and only 5% were in the high
agency profile. In A2, a somewhat equal quantity of students
were assigned to each PAP.

TABLE 1. Students representing the different prototypical profiles
PAP1–PAP4 in each course instance A1–A4, with row-wise percentages;
χ2(9, n = 141) = 30.1, p < .001.

PAP1 PAP2 PAP3 PAP4
A1 4 (13%) 4 (13%) 16 (53%) 6 (20%)
A2 10 (30%) 8 (24%) 7 (21%) 8 (24%)
A3 16 (28%) 17 (29%) 22 (38%) 3 (5%)
A4 0 (0%) 11 (37%) 9 (30%) 10 (33%)

d: Prediction results
In comparison to earlier work, we not only created the student
agency profiles here but also built models predicting these
profiles. Using these models, their global model-specific
explanations, and local model-agnostic LIME and SHAP
explanations on top of them allows us to identify the most
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FIGURE 3. Student agency prototype profiles (PAP1–PAP4) and the general average profile of students (n = 141) studying in an engineering education program in
a higher education institution.

important characteristics explaining why certain students are
assigned to certain profiles. To predict the multinomial class
label (i.e., the agency profile), we used all 15 features: the 11
agency dimensions and the four course variables that were
one-hot encoded into binary features.

To estimate and compare the models for the supervised
task (i.e, predicting the student profile), we divided the data
with a stratified split into a training (80%) and an indepen-
dent test set (20%). Then, we used stratified fivefold cross-
validation on the training set to estimate the best hyper-
parameters for the classifiers. We compared the multino-
mial logistic regression (MLR) with l1, l2, and elasticnet
penalization, random forest, and MLP classification models
to predict the agency profile. Table 2 summarizes the best
model for each classifier as determined through the fivefold
cross-validation on the training set and its performance on
the independent test set. As shown in the table, the two
nonlinear classifiers (random forest and MLP) outperformed
the three linear classifiers. Overall, random forest was the
best performing classifier when comparing all classifiers, and
multinomial logistic regression with l1 penalization was the
best linear classifier.

TABLE 2. Accuracy of the supervised models predicting the agency profile
PAP1–PAP4 of the student.

test set train set
Classifier accuracy mean (std)
MLR l2 0.724 0.767 (± 0.098)
MLR l1 0.897 0.839 (± 0.061)
MLR elastincnet 0.793 0.829 (± 0.088)
Random forest 0.966 0.863 (± 0.069)
MLP 0.897 0.875 (± 0.103)

e: Global explanations
Since random forest was the best classifier overall and the
multinomial logistic regression with l1 penalization the best
linear classifier, we focused on these two models to explain
the prediction results. Figure 8 shows the coefficients of the
multinomial logistic regression with l1 penalization predict-
ing the highest agency profile PAP4. Figure 9 shows the
coefficients of the multinomial logistic regression with l1
penalization for all four agency profiles. The figures illustrate
that overall, the agency dimensions seem more important
for the prediction model than the course variables. However,
being in a certain course can also increase or decrease the
probability of belonging to a particular agency profile. For
example, being in course A1 decreases the probability of be-
longing to agency profile PAP2 and increases the probability
of belonging to agency profile PAP3 (see Figure 9).

Figure 10 shows the importance of the features of the
random forest model predicting the agency profile. In com-
parison to the coefficients from the multinomial logistic
regression, the feature importance levels of the random forest
are always positive and do not encode which class a feature
is indicative of. The random forest feature importance levels
can tell us that a certain feature is important, but not whether
it is indicative of a student having agency profile PAP1,
PAP2, PAP3, or PAP4. Moreover, they provide no infor-
mation in regard to whether a high feature value increases
or decreases the probability for a certain class. They just
summarize the importance of each feature for the whole
model.

If we combine all the local SHAP values (the results of
the individual local explanations are provided in the next
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FIGURE 4. Student agency dimension in each course instance and pairwise statistical significance using Mann-Whitney U statistics. As usual, ? corresponds to
p < 0.05, ?? to p < 0.01, and ? ? ? to p < 0.001.

section) for all the students, we can also get the global SHAP
explanations for a model. This is shown in Figure 5 for the
random forest classification model. As the figure shows, a
student’s competence belief was the most important feature
for the model, especially when determining if he/she belongs
to the lowest (PAP1) agency profile. This model-agnostic ex-
planation is the same as that from the model-specific feature
importance levels (see Figure 10, here the competence belief
was also the most important feature) but more informative as
it also shows which features are important for each profiles.

f: Local explanations
As explained in Section III, local explanations enable us to
explain why a certain student received his/her prediction and

the contributions of the individual predictors. Global feature
importance, as discussed above, only shows the results across
the entire population, but not on each individual student.
The local explanations, in contrast, enable us to pinpoint and
contrast the impacts of the factors for particular students.

To explain the model predictions for particular students,
we used the true positives with the highest probability for
each agency profile; that is, those four students from the test
set that the model correctly predicted to be PAP1, PAP2,
PAP3, and PAP4, respectively, with the highest probability.
Table 3 summarizes these local explanations for the random
forest model. As we saw already in the global model-specific
explanations (Figure 10), the opportunities to influence was
one of the most important variables for the random forest
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FIGURE 5. Global SHAP explanations for the random forest model. For
competence beliefs, the mean absolute SHAP values are 0.1 for PAP1, 0.06
for PAP2, 0.03 for PAP3, and 0.01 for PAP4, making it altogether the most
important global predictor for this model.

model. However, from Table 3, we can also see for which pro-
files this variable was especially important (namely, agency
profile PAP2, PAP4, and especially PAP3).

The LIME rules can also be presented visually. Figure 11
shows the LIME rule visualization for the PAP2 student
who was predicted to be a PAP2 profile with the highest
probability with the random forest model. For comparison,
Figure 6 shows the SHAP local explanations for the same
model and student. This plot provides a more comprehensive
explanation overview of the prediction than the LIME rules.

More specifically, as Figure 6 shows, the model predicted
an 88 percent chance that this student was a PAP2 student,
whereas the base value (i.e., the prediction if nothing would
be known about this student) for PAP2 was a 29 percent
chance. The feature values causing increased predictions
are in red, and their visual size shows the magnitude of
the feature’s effect. The biggest impact comes from the
opportunities to influence, which is 3.16 for this student. The
feature values decreasing the prediction are in blue. As can
be seen in Figure 6, the fact that this student is in course
A1 had a meaningful effect, decreasing the prediction. The
model predicted some tiny probabilities that this student was
a PAP1 or PAP3 student, but his/her competence beliefs are
lower than for PAP3 and higher than for PAP1 students. If
one subtracts the length of the blue bars from the length
of the red bars, it equals the distance from the base value
to the output. This means that the baseline plus the sum of
individual effects add up to the prediction as discussed in
Section III.

g: Local explanations for the student needing the most
support
The local explanations also enable us to locate the students
needing support the most and to receive the explanations
describing which factors could affect a change toward higher

agency. Based on Table 1 and Figure 9, we can conclude that
the students in course A3 needed the most support. Since
profile PAP1 represents the lowest agency profile, we chose
the student from the test set who was in course A3 and was
predicted to have the lowest agency profile PAP1 with the
highest probability for the local explanations. Figure 7 shows
the SHAP values explaining why this student was assigned
to profile PAP1 with the highest probability. As Figure 7
illustrates, the base value of the prediction in the absence
of any information on the independent variables is 0.2138.
Knowing that the competence beliefs of this student are only
1.907 increased the prediction that this student is PAP1 by
0.222, and knowing that the self-efficacy value of this student
is 1.878 increased the prediction for profile PAP1 by another
0.176 (see Table 4).

A. SUMMARY AND DISCUSSION OF RESULTS
Our results can be summarized from the application level
and the methodological level. From the application level, we
can conclude that the level of student agency was higher in
the two courses, A1 and A4, where continuous task-driven
self-assessment took place. No students were in the lowest
agency profile PAP1 in the course A4, and the majority of
the students in A1 and A4 were in the higher agency profiles
PAP3 and PAP4. One reason for the students’ generally high
sense of agency in course A4 might be the personal guidance
that the teacher offered in the course. Furthermore, a joint
analysis of Figure 8, Figure 5, and Table 3 suggests that if
the students found support from their peers and experienced
opportunities to influence and participate in the course, they
tended to have higher agency profiles.

From the teacher’s perspective, the XSAA results could
provide insight for pedagogical planning. For example, the
students in course A1 seem to have received the proper
amount of teacher’s support and attention, as relational re-
sources were scored high and those resources represented
some of the most important resource areas for the second
highest agency profile PAP3 (Figure 3, Figure 5, and Table 3).
To foster student agency of the PAP2 and PAP3 students in
A1, the teacher could provide low-threshold ways for partic-
ipation because the participatory resources were considered
important in the highest profile PAP4. In addition, sugges-
tions to improve pedagogical planning could be made by ana-
lyzing the characteristics of the students in the lowest agency
profile PAP1. The findings suggest that low self-efficacy and
competence beliefs are important common nominators for
students in PAP1 (Figure 3, Figure 5, and Figure 7). As there
were many PAP1 students in course A3, these students might
benefit from more extensive encouragement as well as more
attention and support in understanding the course contents
(cf., [71]).

From the methodological level, our results showed that
the complex nonlinear methods, especially the random for-
est, improved the accuracy of the predictive models. The
traditional linear techniques performed worse but came with
more informative global model-specific explanations. For
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TABLE 3. LIME rules explaining the true positive students for each profile from the test set with the highest probability with the random forest model. For each
student, the rules are ordered by importance with the most important rule first.

Profile PAP1 Profile PAP2
rule importance rule importance

competenceBeliefs <= 3.44 0.241 participation <= 2.81 0.095
selfefficacy <= 3.41 0.169 3.03 < oppoertunitiesInfluence <= 3.43 0.08

trust <= 3.99 0.066 peerSupport <= 3.56 0.072
interest <= 3.33 0.042 3.99 < trust <= 4.44 0.065

equalTreatment <= 4.17 0.03 3.38 < easeParticipation <= 3.76 0.062
oppoertunitiesChoises <= 2.86 0.029 3.44 < competenceBeliefs <= 3.96 0.039

teacherSupport <= 4.17 0.029 3.41 < selfefficacy <= 4.03 0.032
oppoertunitiesInfluence <= 3.03 0.028 3.33 < interest <= 3.94 0.029

easeParticipation <= 3.38 0.021 4.17 < equalTreatment <= 4.61 0.026
CourseA4 <= 0.00 0.02 4.17 < teacherSupport <= 4.61 0.021

peerSupport <= 3.56 0.009 CourseA4 <= 0.00 -0.02
CourseA1 <= 0.00 -0.006 CourseA1 > 0.00 -0.018
CourseA2 <= 0.00 -0.005 2.86 < oppoertunitiesChoises <= 3.26 0.016

participation <= 2.81 0.001 CourseA2 <= 0.00 -0.007
0.00 < CourseA3 <= 1.00 0.0 CourseA3 <= 0.00 0.001

Profile PAP3 Profile PAP4
rule importance rule importance

3.43 < oppoertunitiesInfluence <= 3.79 0.078 peerSupport > 4.27 0.138
competenceBeliefs > 4.34 0.054 oppoertunitiesInfluence > 3.79 0.113

trust > 4.71 0.054 easeParticipation > 4.28 0.081
4.61 < equalTreatment <= 4.83 0.053 trust > 4.71 0.075

teacherSupport > 4.81 0.052 participation > 3.72 0.064
3.88 < peerSupport <= 4.27 0.045 competenceBeliefs > 4.34 0.03

interest > 4.35 0.044 interest > 4.35 0.028
3.76 < easeParticipation <= 4.28 0.031 oppoertunitiesChoises > 3.70 0.024

4.03 < selfefficacy <= 4.40 0.021 selfefficacy > 4.40 0.018
CourseA1 <= 0.00 -0.015 equalTreatment > 4.83 0.013
CourseA4 > 0.00 -0.014 CourseA4 > 0.00 0.011

2.81 < participation <= 3.34 0.012 teacherSupport > 4.81 0.005
oppoertunitiesChoises > 3.70 0.011 CourseA3 <= 0.00 0.005

CourseA3 <= 0.00 -0.01 CourseA1 <= 0.00 -0.001
CourseA2 <= 0.00 0.009 CourseA2 <= 0.00 -0.001

example, while the global model-specific explanations from
the random forest simply provided a ranking of the input
features, the global model-specific explanations of the lo-
gistic regression with l1 penalization also showed which
feature was important for which class and which direction
(i.e., whether it increased or decreased the probability for
this class). Moreover, several features were dropped from the
model, making it sparser and more interpretable.

Through recently developed model-agnostic XAI tools, we
were able to also explain the better performing classifiers.
LIME and SHAP can be used on top of any (complex)
classifier to explain predictions for particular students (local
explanations). These local explanations are very important,
mainly for two reason. First, the GDPR now includes a right
for explanation [57]. This means that if an automatic profiling
is used in an LA tool, the student has a right to receive an
explanation about his/her particular profiling.

Second, the local and global explanations can be different,
and it is thus not enough to use the global explanations to
explain why a particular student was assigned to a certain
profile. For example, according to Figure 5, the most im-
portant agency dimensions for PAP2 (visual consideration of
the lengths of the orange bars) are opportunities to influence,
competence beliefs, and then trust for the teacher and self-
efficacy. However, according to the LIME rules for that stu-
dent in the test set who was assigned to PAP2 with the highest

probability (Table 3), the order of importance concerning
agency dimensions was participation activity, opportunities
to influence, peer support, and then trust for the teacher.

In other words, the LIME rules (also those for the students
that are representative for their PAP-profiles) do not always
resemble the global explanations (Figure 5). For example,
for the particular PAP2 student analyzed in Table 3, the
value of participation activity was extremely low (2.69, see
Figure 11), and the local surrogate model built by LIME to
explain this prediction relied on this feature to a significant
degree. This exemplifies the “local fidelity” of LIME: LIME
explanations can be trusted only locally around the specific
instance being explained. In contrast, the local SHAP ex-
planations can—because of their additivity—be combined so
that they can also be used to explain the global behavior of
the model (Figure 5), being therefore more in line with the
global model-specific explanations (Figure 10).

Naturally, our results are limited to the relatively small
amount of data. Further data collection is required to increase
the reliability of the observed connections between student
agency and course implementations in higher education. In
this paper, we have established the foundations for the use of
XAI techniques in analyzing students’ agency. Further work
is required to examine, for example, the causal relationships
of teaching practices and student agency.
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FIGURE 6. SHAP values explaining why the random forest model predicted an agency profile 2 student from the test set to be profile PAP2 and not profile 1, 3, or 4
(the bars are ordered by the profile number; i.e, the first bar predicts PAP1, the second PAP2, and so on). For each bar, the values explain how to get from the base
value that would be predicted if no feature would be known to the current output for this particular profile 2 student. Feature values causing increased predictions are
in red, and feature values decreasing the prediction are in blue. Their visual size shows the magnitude of the feature’s effect.

FIGURE 7. SHAP values explaining why the random forest model predicted an agency profile PAP1 student studying in course A3 from the test set to be profile
PAP1 (true positive). The most important explanations are the low competence beliefs and self-efficacy values of this student.

V. CONCLUSION

Student agency is a key construct in the contemporary dis-
course about student-centered learning in higher education
[3]–[5]. Jääskelä et al. [9] developed an LA process called
student agency analytics (SAA), which utilizes a psychome-
tric questionnaire instrument [35] and machine learning to
provide information about the different resources of student
agency. The recent literature on LA has highlighted the im-
portance of explainability when utilizing complex models in
education (e.g., [11], [14], [72]). In this study, we employed
XAI techniques to derive more detailed information from
student agency data. The purpose was to illustrate how the
SAA process, combined with XAI techniques, could advance
teachers’ pedagogical awareness and reflection.

The purpose of the XAI techniques is to help to gain an
understanding of how and why a model works. We used
the multinomial logistic regression coefficients, feature im-
portance levels of the random forest model, and combined
SHAP values to explain the essential characteristics of the
different agency profiles (global explanation). The prediction
of the student profiles showed that the nonlinear techniques
(especially random forest) modeled the data the best. The

finding indicates that the relationships between the prototyp-
ical profiles of student agency and the teaching practices in
higher education are relatively complex. Local explanations
gave insight into why a student was assigned to a particular
agency profile. Altogether, the XSAA results could be used
to derive tentative explanations of the different experiences of
student agency and to suggest ideas for pedagogical planning,
as summarized in Section IV-A.

Educators at all levels of education need to take steps
toward supporting student agency. To promote the educators’
efforts, Moses et al. [4] called for connecting theory and prac-
tice and suggested increasing the research and practitioner-
focused work about how teachers could support student
agency. They emphasize that student agency “is a practice-
embedded construct that shapes the daily work of educators”
by involving them in reflecting the ways to create agentic
spaces for students and making pedagogical decisions based
on that reflection [4]. We see that this kind of teacher reflect-
ing, pedagogical planning, and sharing of experiences of the
agency-supporting practices among the colleagues could be
facilitated using research-based tools and explainable SAA.
These tools could help teachers to detect and understand the
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FIGURE 8. Coefficients of the multinomial logistic regression with l1
penalization predicting the highest agency profile (PAP4). For seven features,
the coefficient is zero, meaning they were irrelevant for this prediction model. A
high value in all the picked features (except CourseA3) increases the
probability that a student will be assigned to PAP4. However, if the student is in
course A3, the probability that he/she will be assigned to PAP4 decreases.

FIGURE 9. Coefficients of the multinomial logistic regression with l1
penalization predicting agency profiles PAP1-PAP4. As a whole, the course
features seem not as important as the agency dimensions but they are
contributing. For example, if a student is in course A1, the probability that
he/she will have the second highest agency (PAP3) increases.

different experiences of student agency in their courses.
In summary, explainable models can provide more detailed

and meaningful information about the different dimensions
of student agency. By getting an overview of the different
experiences of student agency in their courses, teachers could
better meet the practical challenges of supporting student
agency. Furthermore, higher education institutions could bet-
ter adapt their capabilities to different learners’ needs now
and in the future. Thus, XSAA has the potential to contribute
to teachers’ pedagogical planning through the LA cycle.
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