
PRACTICAL STEPS TO ANDROID APP
DEVELOPMENT FOR GRAPHIC DESIGNERS

Vesa Antikainen

Bachelor’s thesis
March 2014
Degree Programme in Media
Interactive Media

TA M P E R E E N A M M AT T I K O R K E A K O U L U

Ta m p e r e U n i v e r s i t y o f A p p l i e d S c i e n c e s

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in Media
Interactive Media

VESA ANTIKAINEN:
Practical Steps to Android App Development for Graphic Designers

Bachelor’s thesis 47 pages, appendices 1 page
March 2014

The purpose of this thesis is to give graphic designers new to Android a clear view
of what goes into developing an app.

First all the basics of the Android OS are introduced with building blocks and con-
cepts needed to get started. After introducing the fundamental elements, the thesis
provides some recommendations on what programs could be used and how the
overall workflow should go. In the final part previously mentioned building blocks
and workflow patterns are put to use in the example case Dischive.

In conclusion Android OS was fairly easy platform for graphic designers, helped
by the outstanding design documents provided by Google. The industry standard
software has not been fully optimized for developing for Android OS, but things are
improving, making developing for Android fairly easy.

Key words: android, graphic design, mobile

3

CONTENTS

1 INTRODUCTION . 5

2 ANDROID AS A PLATFORM . 6

2.1 Different versions . 6

2.2 KitKat . 7

2.3 Older versions vs. KitKat . 7

2.4 System and Custom Themes . 7

3 METRICS AND GRIDS . 9

3.1 Size and Density Buckets . 9

3.2 48dp rhythm . 11

4 ANDROID STYLE GUIDE . 12

4.1 Design Principles . 12

4.2 Colors . 13

4.3 Icons . 13

4.4 Typography . 15

4.5 Android vs. Other Operating Systems . 15

5 USER INTERFACE ELEMENTS . 17

5.1 Element states . 17

5.2 Icons . 18

5.3 Building Blocks . 18

5.3.1 Buttons . 18

5.3.2 Switches and Sliders . 20

5.3.3 Progress & Activity Indicators . 21

6 WORKFLOW . 23

6.1 Prototyping Software . 23

6.2 Vectors and Artboards . 23

6.3 Naming conventions and asset organizing . 24

6.4 File Sizes and Formats . 26

6.4.1 WebP . 26

6.4.2 PNG Optimizers . 27

6.5 Automation . 28

6.5.1 Actions . 29

6.5.2 Batch Processing . 30

4

6.6 Android Asset Studio . 31

6.6.1 9-patch . 31

6.6.2 Action Bar Style & Holo Colors Generators . 34

7 EXAMPLE CASE – DISCHIVE . 36

7.1 User Interface . 36

7.2 Design Choices . 37

7.2.1 Branding . 37

7.2.2 Web version vs. Android version . 38

7.2.3 Android Components . 39

7.3 Problems . 40

7.3.1 Marking Shots . 40

7.3.2 Selecting Discs . 40

7.3.3 Score vs. Throws . 41

7.3.4 Hole Information . 42

7.4 Future of Dischive App . 42

8 DISCUSSION . 45

REFERENCES . 46

APPENDICES . 50

5

1 INTRODUCTION

Android is the most popular mobile platform in the world. Every day a million new

Android devices are registered. It is also the fastest growing mobile OS (operating

system). (Android Developers, 2013a.) It was originally developed by Android Inc.

but was bought by Google in 2005 (Elgin, 2005).

This thesis aims to give graphic designers a good overview on the fundamentals of

Android app development and what kind of elements there are in the OS. Also this

thesis provides some advice on what tools and software can and should be used in

the designers’ workflow and how one might go about doing so.

The example case, Dischive, is an upcoming Android app that gives disc golfers a

way to document their scores and have statistics compiled from the data. This sec-

tion highlights how the previously mentioned workflows and design principles are

applied in to real life project. Also some problems that have arisen are inspected

with an explanation of how they were solved.

6

2 ANDROID AS A PLATFORM

2.1 Different versions

There are multiple versions of An-

droid OS on the market. They use a

codename for each iteration to help

users differentiate significant changes

in the software. Google has come to

use snacks as codenames in alpha-

betical order, starting from Cupcake

(Android 1.5) and following with the

likes of Froyo (2.2–2.2.3), Ice Cream

Sandwich (4.0– 4.0.4) and Jelly Bean

(4.1–4.3).

PICTURE 1. Android mascots depicting different OS versions (Android.com,

2013)

All Android OS versions

(PCMag.com, 2014):

•	 Version 1.0/1.1

•	 Cupcake 1.5

•	 Donut 1.6

•	 Eclair 2.0/2.1

•	 Froyo 2.2

•	 Gingerbread 2.3

•	 Honeycomb 3.0

•	 Ice Cream Sandwich 4.0

•	 Jelly Bean 4.1/4.2/4.3

•	 KitKat 4.4

7

2.2 KitKat

The latest one of the versions is 4.4, KitKat. The Android Developers website prom-

ises it to be more streamlined and designed to run better on entry level devices

(Android Developers 2013b), meaning the OS isn’t as demanding on hardware as

the previous version.

From a graphic designers’ and user experience designers’ point of view, KitKat only

brings few new things, compared to previous versions of Android. These are main-

ly the new design guidelines and full screen mode where all system UI (user inter-

face) is hidden and can be revealed with a swipe gesture.

2.3 Older versions vs. KitKat

What usually comes with an older OS version is either a smaller or a lower DPI

(dots per inch) screen on the device. Android’s way of combatting different screen

sizes and DPI’s is to have different graphic assets for different devices. This creates

an extra step or two in the designer’s workflow but is well worth the work as your

app will look great on most if not all Android devices. Even though they might have

a little bit different look and feel you should be fine, when you follow the Android

design guidelines1 in your design process.

2.4 System and Custom Themes

“Themes are Android’s mechanism for applying a consistent style to an app or

activity. The style specifies the visual properties of the elements that make up your

user interface, such as color, height, padding and font size.” (Android Developers,

2013c.)

1	 http://developer.android.com/design/index.html

8

There are two system themes in Android: Holo Dark and Holo Light. Holo Dark is

basically the same theme as Holo Light but with dark colors. Paddings, heights and

font sizes are the same.

You can create custom themes to better suit your app’s (application) branding

and color scheme. This can be done via the Android SDK (Software Development

Kit). Most graphic designers don’t have good enough coding skills to make custom

themes, so usually a developer is needed in the process. When creating a theme it

is adviced to use one of the two system themes as a starting point (Android De-

velopers, 2013c). You should also follow the Android design guidelines when ever

possible.

FIGURE 1. Settings in Holo Dark (An-

droid Developers, 2013c)

FIGURE 2. Gmail in Holo Light (An-

droid Developers, 2013c)

9

3 METRICS AND GRIDS

Every day a million new Android devices are activated (Android Developers,

2013a). Those come in different sizes, aspect ratios and screen densities. Android

OS does its best to handle all possible variations. The OS scales graphical assets

depending on the situation. The developer is expected to include alternative assets,

different size versions of graphics, in their app for the OS to deliver optimized expe-

rience for the user.

3.1 Size and Density Buckets

Android documentation categorizes physical screen sizes in four rough categories:

small, normal, large and xlarge. Size of the screen is measured as a diagonal of the

screen, similarly as in TVs and monitors.

It also categorizes devices in two

categories describing the nature

of the device:

•	 Handset – smaller than

600dp

•	 Tablet – larger than or

equal 600dp

FIGURE 3. Illustration of how Android roughly maps actual screen sizes (Android

Developers, 2013g, modified)

FIGURE 4. Device categories (Android Devel-

opers, 2013j)

10

Screen densities are measured in dots per inch (dpi). The number represents how

many pixels there are within the physical screen. In Android world screens are

most commonly measured in density-independent pixels (dp). One dp is equal to

one physical pixel on a 160dpi screen. Different densities are grouped into general-

ized density buckets for the sake of simplicity (Android Developers, 2013g.):

•	 LDPI – Low density (120dpi)

•	 MDPI – Medium density (160dpi)

•	 HDPI – High density (240dpi)

•	 XHDPI – Extra-high density (320dpi)

•	 XXHDPI – Extra-extra!-high density (480dpi)

•	 XXXHDPI – Extra-extra-extra!-high density (640dpi)

The last one (XXXHDPI) is practically nonexistent but should be kept in mind if

one wants to futureproof their app. The majority of devices are made up of high

and extra-high densities while medium still holds at around 20% of the user base,

according to data collected from devices running the latest Google Play Store app.

(Android Developers, 2013h.)

There is also TVDPI (~213dpi) which fits in the middle of MDPI and HDPI and is

intended to be used when the app is displayed via a TV. Normally most apps don’t

need to provide resources for this density and it is not considered to be a “primary”

density group. There also is NODPI which is used for resources that are not ment to

be scaled to match the density of the device. (Android Developers, 2013s.)

Developers should provide different graphic assets for different density buckets.

The OS chooses which ones to use, depending on the device’s specifications. These

assets should follow the given scaling ratio between the five density versions,

2:3:4:6:8, starting from medium and ending in xxx-high (FIGURE 5). The LDPI

version isn’t necessary to provide, as the OS scales the MDPI version in half. For

example, launcher icon is 48dp in size so the baseline, medium version, should be

48*48px, HDPI at 72*72px which is 1.5 times the baseline, XHDPI version twice the

size of the baseline at 96*96px and so on. (Android Developers, 2013i.)

11

3.2 48dp rhythm

The recommended target size for objects on touchscreen is 48dp which translates

to about 9mm in physical size. This may vary slightly, but fits comfortably in recom-

mended target sizes of 7mm to 10mm. (Android Developers, 2013j.)

Android documentation urges developers to use this 48dp rhythm in their design.

It will result in objects never being too small to hit comfortably regardless of the

screen they are displayed on (Android Developers, 2013j). Gaps between touchable

UI elements are adviced to be 8dp.

If the element isn’t meant to be interacted with, the 8dp gap isn’t absolutely nec-

essary. These guidelines give you a very good starting point for your design. Ele-

ments have enough room around each other, and from a usability point of view,

everything should be in order.

FIGURE 6. Metrics closeup (Android Developers, 2013j)

FIGURE 5. Asset size comparison for different DPIs (Android Developers, 2013i)

12

4 ANDROID STYLE GUIDE

The Android Style Guide is a document created by Google to help developers pro-

duce apps that are immediately familiar to users and are easy to use and learn. By

following the guidelines a designer will dodge most of the usual usability mistakes

and usually create a more refined product.

4.1 Design Principles

The Android style guide defines Android’s design principles (Android Developers,

2013k). They fall into three different categories and are as follows.

From a UX designer’s perspective, all of these are important and you can read more

about these in the style guide1. As a graphic designer, the most important of these

are Keep it brief, Pictures are faster than words, Only show what I need when I need

1	 http://developer.android.com/design/get-started/principles.html

Enchant Me

•	 Delight me in surprising ways

•	 Real objects are more fun than

buttons and menus

•	 Let me make it mine

•	 Get to know me

Make Me Amazing

•	 Give me tricks that work every-

where

•	 It’s not my fault

•	 Sprinkle encouragement

•	 Do the heavy lifting for me

•	 Make important things fast

Simplify My Life

•	 Keep it brief

•	 Pictures are faster than words

•	 Decide for me but let me have the

final say

•	 Only show what I need when I

need it

•	 I should always know where I am

•	 Never lose my stuff

•	 If it looks the same, it should act

the same

•	 Only interrupt me if it’s impor-

tant

13

it and If it looks the same, it should act the same as they directly relate to how things

look.

In practice it comes down to things like making sure if something behaves as a

spinner it should look like a spinner. If the user can’t share the current page of the

app they shouldn’t be presented with a share button in the UI, even as a disabled

option in the action overflow menu in action bar. Adding images of people in con-

tact lists makes it much faster to browse, compared to when there are no images

attached to the name. These are only few most obvious examples of how the design

principles should be implemented in the graphic design.

4.2 Colors

Android has a palette of predefined

colors that appear in the OS. The

designer is not restricted to only use

these colors. It is encouraged to cus-

tomize the app to reflect one’s own

brand colors. Although the documen-

tation states that non-neutral colors

should be reserved for emphasizing

something, while providing good contrast between visual components and that red

and green may be indistinguishable from each other to color-blind users (Android

Developers, 2013d).

4.3 Icons

“An icon is a graphic that takes up a small portion of screen real estate and provides

a quick, intuitive representation of an action, a status, or an app (Android Devel-

opers, 2013e).” Icons should be provided in multiple predetermined sizes so the

OS can best choose which version to display for best outcome. The icon sizes can

FIGURE 7. Android color spectrum

(Android Developers, 2013d)

14

be viewed in the Icon documentation2 and are

subject to change with different OS versions.

The launcher icon appears on the home screen

or all apps view (FIGURE 8). The guidelines

state that it should use a disctinct shape with a

slight perspective as if viewed from above to be

percieved to have some depth. (Android Devel-

opers, 2013e)

The action bar (FIGURE 9) appears on most

apps excluding games and single serving apps

such as flash light apps. It contains icons that

provide access to most used relevant actions.

Search, refresh and share icons are among the

most usual ones. These icons should be flat, not

too detailed and easy to grasp the consept at

a glance (Android Developers, 2013e). These

icons can be used with different opacities.

Small contextual icons (FIGURE 10) can be used

all over apps. For example, the Gmail app uses a

star to denote a bookmarked item, much like on

the web based Gmail. These small icons should

also be fairly simple and subdued like the icons

in action bar.

Notification icons (FIGURE 11) appear along-

side with notifications. Not all apps generate

notifications though. These icons are smallest

of them all and should follow the lines of rest of

the icon designs.

2	 http://developer.android.com/design/style/iconography.html

FIGURE 8. Launcher icon

example (Android Developers.

2013i)

FIGURE 9. Action bar example

(Android Developers. 2013c)

FIGURE 10. Contextual icon

example (Android Developers.

2013i)

FIGURE 11. Notification icon

example (Android Developers.

2013i)

15

4.4 Typography

The default font for Android is Roboto which was introduced in OS version 4.0, Ice

Cream Sandwich (Android Developers, 2013f). Developers can use custom fonts in

their apps. Android supports True Type and Open Type fonts (Appcelerator Wiki,

2013). Developers should specify font sizes in sp (scale independent pixels) to en-

sure their app works well with system-wide scaling factor for text which users can

select from their Settings app. “One sp is one pixel on a 160dpi screen if the user’s

global text scale is set to 100%.” (Android Developers, 2013f.)

4.5 Android vs. Other Operating Systems

Operating systems have their own set of specifically designed UI elements. iOS

uses rounded corners and gradients, at least pre-iOS7, and Windows Phone uses

flat shapes with no 3D effects at all. Other conventions familiar from iOS like tab

navigation at the bottom of screen is not adviced due to Android having the system

buttons at the bottom. Instead, it is preferred to have tabs on top of the screen,

under the action bar.

FIGURE 12. Runkeeper app

on Android with tabs on top

(Google Play, 2014)

FIGURE 13. Runkeeper app

on iOS, tabs at the bottom

(iTunes, 2014)

16

Android’s own conventions are well presented in their own documentation3 and

are subject to change with each major release. (Android Developers, 2014.)

3	 http://developer.android.com/design/index.html

FIGURE 14. Sampling of icons from Android (top), iOS (center)

and Windows Phone (bottom) (Android Developers, 2014)

17

5 USER INTERFACE ELEMENTS

Android has a plethora of ready-to-use building blocks for developers to use. There

is no need to reinvent the wheel. These can be customized but it is adviced that de-

velopers keep these like they are unless changes are very necessary and only tweak

the colors to fit their brand.

The ready-made elements range from tabs and grid lists to spinners, buttons and

switches. The theme should handle most of the styling of these elements and often

ther is no need to customize these at all. If the designer decides to make custom UI

elements, they should make sure to follow the Android guidelines closely.

5.1 Element states

Elements in Android have different states:

•	 Normal

•	 Pressed

•	 Focused

•	 Disabled

•	 Disabled & Focused.

Normal is the default state, Pressed appears when the user touches the element,

Focused is displayed when element is selected, Disabled renders as normal but

with 30% opacity and Disabled & Focused is 30% opacity of Focused. Many of the

UI elements have the states built in and require no further action from the develop-

er. (Android Developers, 2013l.) If and when the designer wants to customize the

elements, they might need to create different assets for each or some of the states.

18

5.2 Icons

Icons are used throughout the OS and they all

need to be of a certain size to fit where they are

designed to be used. Icons have two measure-

ments that should be taken into account when

creating them, full asset and optical square. Full

asset is the physical size of the image. Optical

square is the portion of the full asset the graphic

is allowed to occupy (FIGURE 15).

TABLE 1. Icon sizes

Icon Full asset Optical Square

Launcher 48*48dp 48*48dp

Action Bar 32*32dp 24*24dp

Small / Contextual 16*16dp 12*12dp

Notification 24*24dp 22*22dp

For Google Play store the Launcher Icon must be 512*512px. Icons in the Action

Bar will be used in different opacities, to represent different states like Normal and

Disabled. Notification icons must be white. (Android Developers, 2013i.)

5.3 Building Blocks

5.3.1 Buttons

Buttons can have images and text in them. Image Only buttons should have an icon

that can be easily understood, for example a magnifying glass in search button. For

buttons with only an image, a background isn’t necessary. Text Only buttons are

best used when there is no easy way to represent with an image. A background isn’t

FIGURE 15. Full asset and op-

tical square of icons (Android

Developers. 2013i)

19

necessary for text buttons either unless the designer really wants to draw attention

to them, like Accept, Buy now and Sign up buttons. (Android Developers, 2013n.)

When the designer wants to customize buttons, they need to create three different

assets for it: Normal, Pressed and Focused (Android Developers, 2013m). All those

of course need to also be in different dpi versions.

While Android doesn’t support vector assets, it is still possible to create stretcha-

ble buttons. This comes in the form of 9-patch. “A NinePatchDrawable graphic is a

stretchable bitmap image, which Android will automatically resize to accommodate

the contents of the View in which you have placed it as the background.” (Android

Developers, 2013m) It is a .png file with an extra border that is 1 pixel wide. The

borders should be completely white or transparent on the parts that are not meant

to be stretched. Black parts of the top and left border define stretchable area. You

can optionally define the padding area with black portions in the bottom and right

borders.

FIGURE 16. 9-patch button demonstrated in the Android SDK Draw 9-patch soft-

ware

20

FIGURE 16 demonstrates how a 9-patched graphic works. The left pane shows

the original asset with stretch regions (top and left black lines with green areas),

paddings (right and bottom black lines) and optical bounds (red lines). On the right

pane, there are three previews of how the 9-patch will behave once it is stretched.

Due to this mechanic a continuous gradient from top to bottom or side to side isn’t

adviced. It can look clumsy when stretched and banding can occur if the gradient is

very subtle.

5.3.2 Switches and Sliders

There are three types of switches in Android, Check Boxes, Radio Buttons and On/

Off Switches. These behave very much like on normal web forms. Check boxes al-

low you to choose multiple options from a set, while radio buttons are suitable for

picking only one option. On/off switches are best used when the designer needs to

toggle one option on or off. (Android Developers, 2013p.) These switches can be of

any size but it is best to keep them close to the default sizes.

Sliders are interactive bars that “make it possible to select a value from a continu-

ous or discrete range of values by moving the slider thumb.” (Android Developers,

2013q) Most often these can be seen in form of volume sliders and seek bars in

FIGURE 17. Adroid Holo switches in different states, dark and light theme

21

video players. According to Android documentation, sliders don’t have disabled &

focused state.

5.3.3 Progress & Activity Indicators

“Progress bars are for situations where the percentage completed can be deter-

mined. They give users a quick sense of how much longer an operation will take.”

(Android Developers, 2013r.)

Activity indicators tell a user that something is happening, but not how long it will

take. There are two types of them, Activity Bar and Activity Circle. One example

how activity bars can be used is to show that download is starting and the bar

transforms into a progress bar when the download starts. Activity circle is a circu-

lar animation to be displayed when the app is loading something like a new email

but can’t show the content straight away. One shouldn’t use “Loading” text with the

activity circle as the animation already indicates that sufficiently. (Android Devel-

opers, 2013r.)

FIGURE 19. Android Holo progress bars, dark and light theme

FIGURE 20. Android Holo activity indicators, dark and light theme

FIGURE 18. Android Holo sliders in different states, dark and light theme

22

6 WORKFLOW

Cambridge Dictionaries Online (2014) defines workflow as “the way that a par-

ticular type of work is organized, or the order of the stages in a particular work

process“. Workflow of each individual can vary immensly. Although there are some

general principles a designer can incorporate to maximize productivity.

6.1 Prototyping Software

Prototyping with pen and paper is still as valid a method as any. Others prefer

dedicated prototyping softwares. Some of the softwares offer native Android UI

elements to play with. They might not be included in the initial install though, in

which case one should look for them on the developer’s website.

6.2 Vectors and Artboards

While Android doesn’t support vector assets it is still a smart move to use vectors

when creating one’s assets, either by using a vector editing program like Adobe

Illustrator or using vector shapes in raster graphics editors like Adobe Photoshop.

By working with vectors, it is possible to upscale assets if the need arises and

make downscaling easier as paths can easily be tweaked to match pixel boundaries

(Android Developers, 2013i). If one is not using vectors and needs to make a larger

asset than what they are working with, a total remake of the asset is most likely

needed for a sharp appearance in higher dpi screens.

It is also advisable to start with a large artboard when working with graphic assets.

Android documentation suggests starting with an artboard with dimensions that

are multiples of the target size. This will make the resize process easier and clean-

er. (Android Developers, 2013i.) And of course it is easier to do small modifications

to the graphics more easily than with small artboards where you can only zoom in

to some extent.

23

Some like to work with all assets in one artboard and slice the document to get

all assets independently. While this is an acceptable way of working, it is easier to

have a separate artboard for each icon, at least in Illustrator CS5 and up. You can

set the size for each artboard independently and export each artboard as a single

image. It is easier to handle full asset / optical square sizes of each icon this way.

6.3 Naming Conventions and Asset Organizing

Android doesn’t force the designer to use any predetermined file naming con-

ventions. They offer guidelines and some best practices to help you keep the files

organized and easy to understand for other people who work in a same team.

In an Android project all graphical assets are in a “res” folder, short for resources.

Inside the res folder the files are divided by their use. Most likely a graphic design-

er is interested in folders with drawables. There can be many uses for different

folders like drawable-ja (graphics optimized to be used with Japanese) or drawa-

ble-small-land-stylus (graphics optimized to be used in landscape mode on a low

dpi screen with a stylus) (Android Developers, 2013s). Often this amount of speci-

ficity isn’t needed and you get by with just the dpi specific folders:

•	 drawable-mdpi

•	 drawable-hdpi

•	 drawable-xhdpi

•	 drawable-xxhdpi

A graphic designer can have the assets on their computer in a folder with any name

they desire, but an app project demands for them to be named in certain way. The

folder names are easy to understand like they are so there is no real reason to

name them any other way. This makes the co-workers’ lives easier, as they don’t

have to decode the folder names to understand which is which.

Naming the image files is up to the designer, but it is wise to follow conventions set

by the default images of Android OS. TABLE 2 explains few but these are not all of

available types of assets.

24

TABLE 2. Different drawables names

Asset Type Prefix Example

Action bar ab_ ab_bottom_solid.9.png

Button btn_ btn_check_off.png

Dialog dialog_ dialog_full.9.png

Divider divider_ divider_horizontal.9.png

Icon ic_ ic_star.png

Menu menu_ menu_hardkey_panel.9.png

Tabs tab_ tab_selected.9.png

Naming different icons is more liberal but few good practices have emerged. TABLE

3 demonstrates suggested icon naming conventions.

TABLE 3. Icon naming convention suggestion (Android Developers, 2013e)

Asset Type Prefix Example

Icons ic_ ic_star.png

Launcher icons ic_launcher ic_launcher_calendar.png

Menu icons and Action

Bar icons
ic_menu ic_menu_archive.png

Status bar icons ic_stat_notify ic_stat_notify_msg.png

Tab icons ic_tab ic_tab_recent.png

Dialog icons ic_dialog ic_dialog_info.png

Buttons have several states and those need different assets. A fully functioning

button requires at least three different assets: Normal, Pressed and Focused. Nor-

mal state doesn’t need any suffix as it is the default state of the button. Disabled and

Disabled and Focused images are optional. Those states can be rendered with the

other three states with different opacity.

25

TABLE 4. Button states

State Suffix Example

Normal no suffix btn_check_off.png

Pressed _pressed btn_check_off_pressed.png

Focused _focused btn_check_off_focused.png

Disabled _disabled btn_check_off_disabled.png

Disabled and Focused _disabled_focused btn_check_off_disabled_focused.png

6.4 File Sizes and Formats

The file size limit of an Android app (APK) is 50MB, which can be expanded by two

2GB extension files (Android Developers, 2013t). It is advisable to keep your app

as small as possible, even though there are no limitations on how big a file one can

download over cellular network. Therefore it is to one’s best interest to keep image

assets as small as possible, without compromising the quality.

The norm today is to use JPG for images without transparency and little to no solid

areas of one color like photos, and PNG for images with transparency, icons and UI

elements. Many developers use additional software to reduce file size of images

even further than the software it was created in.

6.4.1 WebP

WebP is an image format designed by Google. It provides lossy and lossless com-

pression and animation support. Transparency is supported with both compres-

sions. The file size of lossless WebP images are promised to be 26% smaller than

the equivalent PNG file. For lossy image the file size reduction is up to 34% when

compared to JPG images of same quality. (Google Developers, 2013.)

Android supports WebP from Ice Cream Sandwich (4.0) and up. Chrome, Opera

11.10 also have native support and Internet Explorer supports WebP via the Google

26

Chrome Frame plug-in. (Google Developers, 2013.) While WebP isn’t a foolproof

solution for smaller file sizes globally it is possible to use it for apps when the app

is aimed at Android version 4.0 or newer. In 2013 Google started to serve WebP

images in Google+ app for Android where photos and images comprise the majori-

ty of bytes, resulting in 50% savings just by using a different file format (Google I/O

2013 - WebP, 2013). This change affected only the content, not the UI, but demon-

strates the power of a different file format can have.

Windows doesn’t natively support WebP but there is a codec1 that allows one to

view thumbnails in Windows Explorer and programs that use Windows Imaging

Component (WIC). Other software support is entirely up to the developers but

many imaging software do support WebP. On a Mac there is no graphic-design-

er-proof way to view WebP files natively yet. The most convenient way is to use

Google Chrome or most other browsers using Weppy plugin2.

There are tools like IMG2WEBP3 to convert images to WebP format but those are

hardly incorporable to the workflow as they can convert only one image at a time.

There is a file format plugin4 for Photoshop created by Toby Thain. To use this one

needs to download a proper version from the Telegraphics website and extract the

file format to [Photoshop folder]\Required\Plug-Ins\File Format

folder. With this, one can open and save WebP images in Photoshop. The only draw-

back is that at the moment, this plugin doesn’t support transparency.

6.4.2 PNG Optimizers

Different optimizers are a great way to bring down the filesize of PNG images. By

using these programs, the size of PNGs can be reduced by a tremendous amount. In

FIGURE 21, three PNGs with size of 444 by 416 pixels are compared. The first is the

1	 https://developers.google.com/speed/webp/docs/webp_codec

2	 http://seiryu.home.comcast.net/~seiryu/weppy.html

3	 http://img2webp.net/

4	 http://telegraphics.com.au/sw/product/WebPFormat

27

original out of Photoshop’s Save for Web dialog at 155KB. The second is TinyPNG5

optimized version with a size of 45,3KB. For the sake of testing the third one is run

through TinyPNG seven times and it is 25,8KB in size. At this point jagged edges

and very small changes in the noise pattern in the middle can be seen.

There are too many PNG optimizers out there to list, but here are few features to

keep in mind. Some of the optimizers are lossless that will perfectly preserve how

the image looks but will achieve less file size reduction than lossy ones. With lossy

compression one needs to judge how many times the image is compressed and see

how it affects the outcome. One essential feature of the optimizer is that it can com-

press multiple images or specified folders in one go. And if it’s an online software

it should be able to provide optimized images as a downloadable archive instead of

individual files one at a time.

6.5 Automation

In modern imaging software like Photoshop there are a few features to help you

with repetitive tasks like resizing and saving an image. These will make the work

5	 https://tinypng.com/

FIGURE 21. PNG optimization comparison with 400% zoom

28

easier and faster if one takes the time in the beginning to create actions that will

automate majority, if not all, of the steps.

6.5.1 Actions

Actions are Photoshops way of automat-

ing different steps one would otherwise

do manually repeatedly. The steps can

be recorded and then redone for other

images just by clicking a button instead of

repeating each step manually.

To create an action in Photoshop for

converting an xxhdpi image to xhdpi the following steps will be needed with any

document open:

1.	 Open the actions panel: Window → Actions

2.	 Create a set for your actions from either the Actions panel menu or bottom

of the panel. This is optional but it is good practice to keep your actions

organized.

3.	 Create new action from the panel menu or bottom of the panel.

4.	 Recording starts and everything you do will be recorded in the action. Resize

the image: Image → Image Size… and specify the width to 66,666% and

hit OK.

5.	 Stop recording.

Now ther is an action that generates an image ⅔ size of the source. After this, just

create similar actions for xxhdpi to hdpi (50%) and xxhdpi to mdpi (33,333%). This

example assumes the starting point is xxhdpi version and always scale image from

that version instead of the already resized ones. If you create the original in xxxhd-

pi or larger the percentages will vary.

One should keep in mind whether to scale layer styles with the image resize or not.

One could also include the saving the images in actions, but Photoshop insists on

FIGURE 22. Photoshop Actions panel

29

having absolute paths to the folder instead of relative paths. So it is not possible to

have the action use xxhdpi image as a source, do the steps, go up one folder and se-

lect drawable-mdpi folder and save a version there for example. Instead we create

an action for each target dpi and use batch processing to alleviate the problem.

6.5.2 Batch Processing

Batch processing in Photoshop is a way to run actions on multiple images in a row.

One can specify a folder filled with files and what action to run. One can additional-

ly choose to override the file naming scheme and where the files are saved in.

Adobe Illustrator allows batch processing much the same way as Photoshop does,

but with one huge caveat. Instead of saving the files automatically, it prompts the

save dialog and you need to specify where to save each file and with what name.

This completely defeats the purpose of batch processing the files.

To start a batch process, you need to navigate to File → Automate → Batch…

in Photoshop. In the dialog window (FIGURE 23) you need to select the action you

want to use, in this case the xxhdpi to xhdpi. The source are the files that will be

affected by the action. There are a few options but folder is often most convenient.

FIGURE 23. Photoshop Batch dialog window

30

Destination will be the folder the files are saved in after the action is performed.

If none is selected the files will stay open in Photoshop instead of being saved and

closed. After setting all the parameters hit OK and Photoshop will start processing

the images. Make sure to afterwards check the images that they actually are the

right size and if something has been resized poorly, like borders etc, correct man-

ually or try another method. Sometimes it is best to redraw whole icon for certain

dpi.

6.6 Android Asset Studio

Android Asset Studio6 is a collection of helpful tools for Android developers in-

cluding icon, 9-patch and style generators. Some of the icon generators are only

good for quick comparison on how the icons look on different sizes and while the

generated icons can be saved as image files it is ultimately faster to use Photoshop

actions to generate the icons and automatically put them in correct folders.

6.6.1 9-patch

Android SDK has a Draw 9-Patch program which can be used to generate 9-patch

images fairly easily. It lets you specify the stretch regions, content paddings and

optical bounds with visual editor and has a good preview on the right side (FIG-

URE 24). The only downside is that you will need to do this for every dpi version of

your 9-patch images. Depending on the case one could possibly get by with just one

asset but if it has rounded corners the corner radius will appear to change from dpi

to another.

9-patch images are easier made with a generator from the Asset Studio than in

Photoshop. You get a similar visual editor for the stretch, padding and optical

bound regions as you do with the SDK version and you can download the images as

one ZIP file. Scaling preview is missing though. After that you need to manually sort

the files in to the corrent folders for each density bucket you’re supporting.

6	 http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html

31

The SDK 9-patch software has one advantage over the Asset Studio one, multiple

stretch regions. This means that more than one region can be defined that stretch

on a side, enabling things like speech bubbles with the tail centered instead of in

a corner. FIGURES 26, 27 and 28 demonstrate the effects of different stretchable

regions on a speech bubble graphic.

FIGURE 25. Nine-patch Generator from Asset Studio web page

FIGURE 24. Android SDK Draw 9-patch software

32

FIGURE 26. No stretchable regions. Bubble and tail get deformed.

FIGURE 27. One horizontal stretchable region. Bubble tail stays

on right side.

FIGURE 28. Two stretchable regions. Bubble tail position varies

but doesn’t get deformed.

33

6.6.2 Action Bar Style & Holo Colors Generators

If the app uses the default Holo theme as

basis for the theme the Action Bar Style

Generator7 makes the graphic designer’s

life easier. You can define different colors

to match your branding and the generator

creates necessary files for the theme. It

also has an excellent preview of how the

theme will look like. After the color val-

ues have been specified, the assets can be

saved as a ZIP file and send it to the coders.

It is also possible to customize Holo styled

elements to fit your brand with Android

Holo Colors Generator8. The brand color

can be specified and which elements are

needed, and then downloaded as an ar-

chive with all dpi versions.

7	 http://jgilfelt.github.io/android-actionbarstylegenerator/

8	 http://android-holo-colors.com

FIGURE 29. Action Bar Style

Generator

FIGURE 30. Android Holo Colors Generator

34

7 EXAMPLE CASE – DISCHIVE

Dischive is a service for disc golfers for saving their scores and following their

progress through statistics. Scores are saved via a smartphone app and sent to a

database. On the website, users can view their scores and stats as well as interact

with other users and form teams and competitions. The app features will include

such as score keeping, friends’ scores on a current round, course maps and disc bag

management.

It has been in development for about a year with first alpha tests done in summer

of 2013, with a web app version for proof of concept. After a successful test period

the Android app development started with defining the core features and designing

an easy to use interface around those features.

Users were classed in two basic categories, normal users and advanced users. Nor-

mal users want to only track how many shots they’ve made in each hole and may-

be view them on the website later. Advanced users desire more control over their

statistics and will input their discs per throw, even position where the shot was

made and where it landed if given the option. They also want much more detailed

statistics on the web portion of the service.

7.1 User Interface

The goal for the app was to look minimalistic and be easy to use while still hav-

ing many advanced features for users that desire them. First we did some bench-

marking (Appendix 1.) with existing disc golf apps and construed different throw

input methods and biggest pitfalls to avoid. Afterwards, a prototype version was

developed as a pure web app, to test the proof of concept and to receive initial user

feedback from small test group on multiple devices. The web app (FIGURE 31) gave

us a good understanding of which direction to take the Android version and what

functionality was essential and revealed what was completely missing.

35

The first prototype was made with default Android Holo Light theme. It served the

purpose very well but later on more customization was needed. This came as color

changes, custom icons and elements. The first version of the Android app would

have all the features the web version had but in a more polished way and the back

end would be improved and compatible with future features.

7.2 Design Choices

7.2.1 Branding

Initially after settling for a name a visual identity was created around it. In the

beginning the web portion of the service was supposed to be called Dischive and

the app Discbee. Later this was discarded as it would potentially only confuse us-

ers, leaving everything under that Dischive brand. After the first alpha tests, it was

FIGURE 31. Dischive web app UI FIGURE 32. Dischive Android app

UI

36

decided that the logo needs some additional work as it was more of a football with

strange colors than a representative of a hive and didn’t reflect disc golf at all.

The new logo incorporates the octagon shape of a hive cell with golf disc cut outs. It

is also has a bit more movement to it than the old one. Also the brand colors were

adjusted towards a lighter scheme.

7.2.2 Web version vs. Android version

The first functional prototype UI was most affected by jquery mobile default

themes. These enabled fast iteration and development. It was possible to achieve a

functional and reasonably eye-pleasing design very fast with minimal effort. While

it was given that it won’t be used in the native apps, we’d still have a functional

product for people using platforms we don’t have a native app for yet, so it won’t be

wasted effort to make it look even moderately nice. Some of the planned features

just were impossible or too hard to implement on the web app.

FIGURE 33. Old Dischive and Discbee logos FIGURE 34. New Dischive logo

FIGURE 35. Dischive colors

37

Jquery mobile offered support for gestures on the web app. These were used for

switching between holes while marking throws. These were a little buggy at best

and buttons for switching the hole needed to be available. On Android, the but-

tons were scrapped and swiping is the only method to switch between holes. This

allows for a more minimal look and frees up space for other functions.

7.2.3 Android Components

One of the main priorities of the Android app was to make the user experience bet-

ter and more fluid. For the Android version, a decision was made to follow Android

style guides very closely to provide an easy and consistent experience for the users.

This would also benefit the product as the components will get updated as new

versions of Android are realeased.

On the web version, the course selection

was only one list of all the courses with

the ability to filter it by text. Text input on

mobile devices is fairly awkward even in

the best conditions. Something had to be

done to make the experience better. Most

players play regularly only on a handful

of courses thus it made sense to give the

user the ability to mark their favorite

courses, and those would be offered first

when starting a round. Also the app can

filter nearby courses based on the user’s

location. These options (All, Favorite and

Nearby courses) are presented using a

scrollable tab component to give the user

a hint that there are more than one cate-

gory of courses. FIGURE 36. Dischive course select

screen

38

7.3 Problems

In our user testing a few problems came to light that either bothered the users or

made the app unnecessarily hard to use.

7.3.1 Marking Shots

In the usual score keeping apps, you could only mark the amount of shots you

made on a certain hole, maybe how many of those were putts. You couldn’t get any

data about any penalties that may occur. To please the advanced users group it was

needed to add buttons for the common penalties like Out of Bounds and Missed

Mandatory. User setting will be implemented to swap the places of the buttons to

better suit user preferences in which hand they used to operate the app.

One obvious flaw in design was the list of throws on smaller screens. After four

shots, you couldn’t see the shots you just recorded as they appeared out of screen.

You could still scroll to the score but it wasn’t convenient enough. In the web app

the buttons also scrolled out of view and you needed to scroll back to input more

throws. The shot list needed to be scrollable on its own and have an option for us-

ers to have the list appear in reverse order, last shot on top.

7.3.2 Selecting Discs

In the beginning the disc select list was just an alphabetical list of user’s discs. It

was fairly hard to find the disc you were looking for if the user had more than five

discs in the list. Afterwards, an “in Bag” feature was added, which allowed users to

select which discs they had in their bag and the disc selection only showed those.

Still it was hard to tell the discs apart with just a list of disc names. A simple and

functional solution was to add the disc color in front of the disc name. This way,

users could easily find the disc they were looking for, most times even without

reading the name and just going by the color of the disc.

39

In the Android app, the disc color is put in use more

when applicable. For example, it makes the End of

the Round screen more visual and gives an idea of

which discs were used.

7.3.3 Score vs. Throws

In professional disc golf scores are recorded by the

total number of throws. In more casual settings,

players might use an over/under (+/-) system to

annotate performance compared to par of each

hole, i.e. on a par 4 hole -1 if player holed out with 3

throws.

Due to technical and time restrictions, the web app only had the number of throws

visible. Some players found it to be offputting and demanded to have a “score after

FIGURE 37. Disc list in the web app with and without disc colors

FIGURE 38. Dischive End

of Round screen

40

hole X” over/under option. Other players preferred to not “know” the score and

just record throws and calculate the score after the round themselves. Not knowing

the score made playing easier for them as they got less annoyed when doing poor-

ly and less anxious when they were doing well. In the final app, this will be a user

defined option and the round end screen will show both the amount of throws and

over/under score.

7.3.4 Hole Information

Most score keeping apps only allow one tee and one basket placement for each

hole. In reality, each hole may have two of each, sometimes more, with all the com-

binations. Initially, it was decided that Dischive would support different course lay-

out configurations, so users could choose which variation they would play, instead

of being forced to decide it before the round. Also this would allow the statistics to

represent the correct holes. For example when hole 5 on a course has a par 3 tee

and par 4 tee, in Dischive both would still be hole 5 for the same course but just

different variations while rest of the holes are the same regardless of the hole 5. In

other apps users would have two different rounds for each case, the par 3 and par

4, which you couldn’t change after starting the round.

Due to different configurations, it was important to show hole information in the

score keeping screen and allow to change the configuration on the fly if needed

without it being too obtrusive. The Nice to Know info, like hole distance were add-

ed in the app.

7.4 Future of Dischive App

After the public launch of Dischive Android app the development continues and

new features will be introduced. These won’t be in the first release, since they need

a considerable amount of testing.

41

The aim is to make the score-keeping as easy as possible. Users often have their

go-to discs for different holes and the app could learn this. After a user has been

using the app for a while the app could suggest a disc on each hole based on what

the user has thrown before. This would cut down the time needed to mark the tee

throw on most local courses the user frequents.

A more robust change to score-keeping might come with NFC (near field commu-

nication) stickers. This won’t be a feature for the professional players as you can’t

use discs that have been altered in any way in competition. The player could have

an NFC sticker under the disc which when held close to the mobile device could

tell the app which disc the user is throwing. This would remove the need to even

take the device out of bag or pocket and speed up the score keeping process con-

siderably. Later the disc manufacturers could also start including NFC chips mold-

ed straight into their discs. Initial tests for this method have been made but some

major obstacles are still preventing this becoming a reality.

Support for tablets is an important fea-

ture for Dischive app. This would enable

the app to use multiple panes in one

view. Tournament officials could use the

app to record scores of multiple con-

testants and spectators could follow the

scores in real time with their own tablet

or phone.

Dischive aims to be a social app for

groups of people who enjoy disc golf

together. This could come in a form of

group rounds. Users could open the app

at course and bump their devices togeth-

er, using features like Android Beam, to

mark that they are throwing the round

together. The users could see each oth-

ers’ scores during the round and in the

FIGURE 39. Dischive score keeping

screen with friends’ scores

42

web portion it could be visible who the user was with and how they did if the user

wishes to do so. One of the main principles of Dischive is to not show the users

scores publicly unless the user shares them to certain group or everyone. In other

services where every score is public the results can get distorted as users are too

embarassed to share their worst scores.

One final huge feature would be a course editor with vector shapes. Course maps

are very important for users new to the course. They rely on it to know which bas-

ket to throw in and where the next hole is etc. There are services online that offer

course maps but nothing can beat the convenience of having the course map with

you in the app. Also courses tend to change over time and many services don’t up-

date the maps or don’t know that the course has changed. Giving the users ability

to modify the courses and maps would provide a great way to keep the courses up

to date. Later the users perhaps could mark tees and basket placements with gps

coordinates via mobile devices if the coordinates prove to be reliable enough. This

would open up possibilities to show approximately how long each hole and their

variations are, what kind of distance is left to throw after teeing and directions to

the next hole.

43

8 CONCLUSION

Making graphics for an Android app isn’t technically very challening. After you

get familiar with the building blocks it is fairly straight forward. You need to know

which convetions are native to Android and avoid their counter parts from oth-

er operating systems. The developer documents on designing for Android are an

outstanding resource for referencing how certain things should be done on top of

being the most up to date information on the OS.

While generating graphics for Android doesn’t demand a tremendous amount of

skill, it still can be irritating to jump through all the hoops needed to produce all

the different assets. Industry standard software doesn’t natively support all the

needed file types, making it necessary to use multiple softwares for generating

9-patch versions of certain graphics for example. Also it takes time for a new file

type to reach high enough popularity for software developers to add support in

their software, not to mention the time it takes to work out all the issues related to

that file type in the software.

Big part of the Dischive app development was spent figuring out how to make the

app easy to use. This provided good foundation for the later design choises about

the look and feel of the app. First alpha tests helped greatly in streamlining the app

and figuring out which features were must and which could be either incorporated

later or left out entirely. In the end Dischive didn’t need that many custom graphic

assets and Android Asset Studio made the designers portion of the development

very fast.

44

REFERENCES

Android Developers. 2013a. Read 12.12.2013.
http://developer.android.com/about/index.html

Android Developers. 2013b. Read 12.12.2013.
http://developer.android.com/about/versions/kitkat.html

Android Developers. 2013c. Read 12.12.2013.
http://developer.android.com/design/style/themes.html

Android Developers. 2013d. Read 12.12.2013.
http://developer.android.com/design/style/color.html

Android Developers. 2013e. Read 12.12.2013.
http://developer.android.com/design/style/iconography.html

Android Developers. 2013f. Read 14.12.2013.
http://developer.android.com/design/style/typography.html

Android Developers. 2013g. Read 14.12.2013.
http://developer.android.com/guide/practices/screens_support.html

Android Developers. 2013h. Read 14.12.2013.
http://developer.android.com/about/dashboards/index.html

Android Developers. 2013i. Read 14.12.2013.

http://developer.android.com/design/style/iconography.html

Android Developers. 2013j. Read 14.12.2013.

http://developer.android.com/design/style/metrics-grids.html

Android Developers. 2013k. Read 14.12.2013.

http://developer.android.com/design/get-started/principles.html

45

Android Developers. 2013l. Read 16.12.2013.

http://developer.android.com/design/style/touch-feedback.html

Android Developers. 2013m. Read 16.12.2013.

http://developer.android.com/guide/topics/ui/controls/button.html

Android Developers. 2013n. Read 16.12.2013.

http://developer.android.com/design/building-blocks/buttons.html

Android Developers. 2013o. Read 16.12.2013.

http://developer.android.com/guide/topics/graphics/2d-graphics.html

Android Developers. 2013p. Read 17.12.2013.

http://developer.android.com/design/building-blocks/switches.html

Android Developers. 2013q. Read 17.12.2013.

http://developer.android.com/design/building-blocks/seek-bars.html

Android Developers. 2013r. Read 17.12.2013.

http://developer.android.com/design/building-blocks/progress.html

Android Developers. 2013s. Read 17.12.2013.

http://developer.android.com/guide/topics/resources/providing-resources.html

Android Developers. 2013t. Read 31.12.2013.

http://developer.android.com/distribute/googleplay/publish/preparing.html

Android Developers. 2014. Read 15.1.2014.

http://developer.android.com/design/patterns/pure-android.html

Appcelerator Wiki. Custom Fonts. 2013. Read 14.12.2013.
https://wiki.appcelerator.org/display/guides/Custom+Fonts

46

Cambridge Dictionaries Online. 2014. Read 7.1.2014
http://dictionary.cambridge.org/dictionary/british/workflow

Elgin, Ben. Google Buys Android for Its Mobile Arsenal. Bloomberg Businessweek.
16.8.2005. Read 12.12.2013. http://www.businessweek.com/stories/2005-08-16/
google-buys-android-for-its-mobile-arsenal

Google Developers. 2013. Read 31.12.2013.
https://developers.google.com/speed/webp/

Google I/O 2013 - WebP: Deploying Faster, Smaller, and More Beautiful. Google
Developers 2013. Watched 31.12.2013. http://youtu.be/pS8udLMOOaE

PCMag.com, 2014. Read 22.2.2014.

http://www.pcmag.com/encyclopedia/term/63822/android-versions

IMAGES

Android.com. 2013. [Website]. Visited 12.12.2013.
http://www.android.com/versions/kit-kat-4-4/

Android Developers. 2013d. Visited 12.12.2013.
http://developer.android.com/design/style/color.html

Android Developers. 2013c. Visited 22.2.2014.
http://developer.android.com/design/style/themes.html

Android Developers 2013g. Visited 14.12.2013.
http://developer.android.com/guide/practices/screens_support.html

Android Developers 2013j. Visited 14.12.2013.
http://developer.android.com/design/style/metrics-grids.html

47

Android Developers. 2013i. Visited 16.12.2013.

http://developer.android.com/design/style/iconography.html

Android Developers. 2014. Visited 15.1.2014.

http://developer.android.com/design/patterns/pure-android.html

Google Play. Runkeeper. 2014. Visited 22.2.2014.

https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro

iTunes. Runkeeper. 2014. Visited 22.2.2014.

https://itunes.apple.com/us/app/id300235330

48

APPENDICES

Appendix 1. Benchmark of score keeping apps

